
Measuring Time To Interactivity for Modern Web Pages

by

Vikram Nathan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

Auho .. Signature redactedA uthor

bepartment of Electrical Engineering and Computer Science
January 31, 2018

Certified by
Hari Balakrishnan

Fujitsu Professor of Computer Science
Thesis Supervisor

A ccepted by.........................
LesWe X. Kolodziejski

Professor of Electrical Engineering and Computer Science
ARCHIVE3 Chair, Department Committee on Graduate Students

MASSACHUSETTS INSTiTUTE
OF TECHNOLOGY

MAR 2 6 2018

LIBRARIES

MITLibraries
77 Massachusetts Avenue
Cambridge, MA 02139
http://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

Line marks along the top of pages.

Measuring Time To Interactivity for Modern Web Pages

by

Vikram Nathan

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Web pages continually strive for faster loading times to improve user experience. However,
a good metric for "page load time" is elusive. In particular, we contend that modern web
pages should be evaluated with respect to interactivity: a page should be considered loaded
when the user can fully interact with all visible content. However, existing metrics fail to
accurately measure interactivity. On one hand, "page load time", the most widely used
metric, overestimates the time to full interactivity by requiring that all content on a page
has been both fetched and evaluated, including content below-the-fold that is not immedi-
ately visible to the user. Newer metrics like Above-the-Fold Time and Speed Index solve
this problem by focusing primarily on above-the-fold content; however, these metrics only
evaluate the time at which a page is fully visible to the user, disregarding page functionality,
and thus interactivity.

In this thesis, we define a new metric called Ready Index, which explicitly captures
interactivity. Defining the metric is straightforward, but measuring it is not, since web
developers do not explicitly annotate the parts of a page that support user interaction. To
solve this problem, we introduce Vesper, a tool which rewrites a page's source code to
automatically discover the page's interactive state. Armed with Vesper, we compare Ready
Index to prior load time metrics like Speed Index. We find that, across a variety of network
conditions, prior metrics underestimate or overestimate the true load time for a page by
between 24% and 64%. Additionally, we introduce a tool that optimizes a page for Ready
Index and is able to decrease the median time to page interactivity by between 29% and
32%.

Thesis Supervisor: Hari Balakrishnan
Title: Fujitsu Professor of Computer Science

Acknowledgments

I am indebted to several people for their guidance and support throughout this project.

To Ravi Netravali, my close colleague and co-author, for being a trusted peer mentor and

teaching me almost everything I know about web programming. To James Mickens, for

his steady guidance and unfading sense of humor. To Hari Balakrishnan, for granting me

the latitude to explore my interests and for his patience while I did. To my labmates, Amy

Ousterhout and Anirudh Sivaraman, for their helpfulness, hilarity, and willingness to play

table tennis on short notice. And to my friends and family, for their unwavering support

and encouragement since the day I started graduate school.

Contents

1 Introduction

1.1 The Importance of Interactivity .

1.2 Measuring Interactivity .

2 Background

3 Ready Index

4 Vesper

4 .1 P hase I .

4.1.1 Element Visibility .

4.1.2 Event Handlers .

4.1.3 Event Handler State .

4.1.4 Implementation. .. .

4.2 Phase 2 .

4.2.1 Measuring Functionality Progress

4.2.2 Measuring Visibility Progress

4.3 D iscussion .

5 Evaluation

5.1 Methodology

5.2 Cross-metric Comparisons

5.3 Case Studies

5.4 Mobile Page Loads

5

11

11

13

17

23

25

26

26

26

27

28

29

29

30

31

33

33

34

36

38

5.5 Browser Caching . 40

5.6 Cross-Browser Comparisons . 40

6 Optimizing for Interactivity 43

6.1 Does OPT-RI Help Interactive Sites? . 46

6.2 Do User-perceived Rendering Times Change? 47

6.2.1 Effects of Deprioritizing Interactivity 48

6.3 D iscussion . 49

7 Conclusion 51

6

List of Figures

1-2 Timelines for loading the amazon . com homepage, indicating when crit-

ical interactive components become fully interactive. The client used a 12

Mbits/s link with a 100 ms RTT (see Chapter 5.1 for a full description of

our m ethodology) . 14

4-1 Vesper's two-phase approach for measuring RI and RT. Shaded boxes in-

dicate steps that occur during a page load. Clear boxes represent pre- and

post-processing steps. 26

5-1 Comparing RT, PLT, and AFT. Results used emulated links with a band-

w idth of 12 M bits/s. 35

5-2 Median (95th percentile) load time estimates (see Chapter 2 for a discus-

sion of the units). Results used our entire 350 page corpus. Content was

loaded over a 12 Mbits/s link. See Chapter 5.1 for a full description of our

m ethodology. 35

5-3 Comparing the progressive metrics (Ready Index versus Speed Index). Re-

sults used emulated links with a bandwidth of 12 Mbits/s. 36

5-4 Exploring how visibility and functionality evolve for two different pages.

The client had a 12 Mbits/s link with an RTT of 100 ms. Remember that

a progressive metric like Ready Index is calculated by examining the area

that is above a curve. 37

5-5 Comparing the load metrics for mobile pages loaded on a Nexus 5 phone.

The network used an emulated Verizon LTE link with a 100 ms RTT. 39

7

5-6 Page loads with warm browser caches. The desktop browser used a 12

Mbits/s link with a 100 ms RTT. 41

5-7 The Ready Index for each page in our corpus, as measured on different

desktop browsers (Chrome and Opera). Pages are sorted on the x-axis by

increasing Ready Index on Chrome. The results were collected using cold

browser caches and a 12 Mbits/s link with an RTT of 100 ms. 42

6-1 The dependency graph for priceline . com. OPT-PLT assigns equal

weights to all nodes. OPT-SI prioritizes the shaded objects. OPT-RI prior-

itizes the objects with dashed outlines. 44

6-2 The results of our first user study. OPT-RI leads to human-perceived re-

ductions in the completion times for interactive tasks. 47

6-3 Median user-perceived load time for each site in the second user study.

Error bars span the 25th to 75th percentile. OPT-RI resulted in perceived

load times comparable to OPT-SI. 48

8

List of Tables

1.1 Median (95th percentile) load time estimates in units of seconds. Each page

in our 350 site corpus was loaded over a 12 Mbits/s link. 15

6.1 Median (95th percentile) load time improvements using our custom Polaris

schedulers and the default one (OPT-PLT). Results used our entire 350-

page corpus. Loads were performed on a desktop Chrome browser which

had a 12 Mbits/s link with an RTT of 100 ms; the performance baseline

was a regular (i.e., non-Polaris) page load. The best scheduler for each

load metric is highlighted. 44

9

10

Chapter 1

Introduction

1.1 The Importance of Interactivity

Users want web pages to load quickly [34, 42, 44]. Thus, a vast array of techniques have

been invented to decrease load times. For example, browser caches try to satisfy network

requests using local storage. CDNs [13, 29, 38] push servers near clients, so that cache

misses can be handled with minimal network latency. Cloud browsers [5, 31, 36, 40] re-

solve a page's dependency graph on a proxy that has low-latency links to the core Internet;

this allows a client to download all objects in a page using a single HTTP round-trip to the

proxy.

All of these approaches try to reduce page load time. However, an inconvenient truth

remains: none of these techniques directly optimize the speed with which a page becomes

interactive. Modern web pages have sophisticated, dynamic GUIs which contain both vi-

sual and programmatic aspects. For example, many sites provide a search feature via a text

input with autocompletion support. From a user's perspective, such a text input is worthless

if the associated HTML tags have not been rendered; however, the text input is also crippled

if the JavaScript code which implements autocompletion has not been fetched and evalu-

ated. As shown in Figure 1-1(a), pages often contain hundreds of event handlers that drive

interactivity. JavaScript code can also implement animations or other visual effects which

do not receive GUI inputs directly, but which are still necessary for a page to be ready for

user interaction. For example, of the event handlers on the the Amazon.com landing page,

11

1.00 - -
0.75-

O 0.50-
0 0.25

0.000.0 2$0 500 7$0 1000
Number of Event Handlers

(a) For the Alexa US Top 500 sites, we observed the median number of GUI event handlers to be
182. This measurement excludes any load-related handlers, e.g. 'load', 'DOMContentLoaded',
'lazyLoad'.

C

4-
0

E
z1

hadlrs Mos even haner are trggre -- etlya se acign o th site. C

t t we an a a ends.

In~ ~ this 3aer we pr1os a2 ne de ito f r .a t Vm tha dir C ;atr e p g

interactivity.i We dern a page tobtullae hn

(b) The distribution of event handler types on http://www.amazon.com, excluding all load-related

handlers. Most event handlers are triggered directly by a user action on the site.

Figure 1- 1(b) shows that most respond directly to user input, e.g. clicks and hovers. Others

do not respond directly to user activity but may still be necessary for full interactivity, e.g.

they are triggered when an animation ends.

In this paper, we propose a new definition for load time that directly captures page

interactivity. We define a page to be fully loaded when:

(1) the visual content in the initial browser viewport' has completely rendered, and

(2) for each interactive element in the initial viewport, the browser has fetched and eval-

uated the JavaScript and DOM state which supports the element's interactive func-

tionality.

'The viewport is the rectangular area of a page that the browser is currently displaying. Content in the
initial viewport is often called "above-the-fold" content.

12

70 M Triggered by GUI input
Not affected by GUI input

60

50

40

30

20 I
10-

0- -- - -

Prior definitions for page load time overdetermine or underdetermine one or both of those

conditions (Chapter 2), leading to inaccurate measurements of page interactivity. For ex-

ample, the traditional definition of a page load, as represented by the JavaScript on load

event, captures when all of a page's HTML, JavaScript, CSS, and images have been fetched

and evaluated; however, that definition is overly conservative, since only a subset of that

state may be needed to allow a user to properly interact with the content in the initial view-

port. Newer metrics like above-the-fold time [8] and Speed Index [14] measure the time

that a page needs to render the initial viewport. However, these metrics do not capture

whether the page has loaded critical JavaScript state (e.g., event handlers that respond to

GUI interactions, or timers that implement animations).

1.2 Measuring Interactivity

To accurately measure page interactivity, we must determine when conditions (1) and (2)

are satisfied. Determining when condition (1) has been satisfied is relatively straightfor-

ward, since rendering progress can be measured using screenshots, or the paint events that

are emitted by the browser's debugger interface. However, determining when condition

(2) has been satisfied is challenging. How does one precisely enumerate the JavaScript

state that supports interactivity? How does one determine when this state is ready? To an-

swer these questions, we introduce a new measurement framework called Vesper. Vesper

rewrites a page's JavaScript and HTML; when the rewritten page loads, the page auto-

matically logs paint events as well as reads and writes to individual JavaScript variables

and DOM elements.2 By analyzing these logs, Vesper generates a progressive load metric,

called Ready Index, which quantifies the fraction of the initial viewport that is interac-

tive (i.e., visible and functional) at a given moment. Vesper also outputs a derived metric,

called Ready Time, which represents the exact time at which all of the above-the-fold state

is interactive.

Using a test corpus of 350 popular sites, we compared our new load metrics to tradi-

2 Each HTML tag in a web page has a corresponding DOM element. The DOM element is a special
JavaScript object which JavaScript code can use to manipulate the properties of the underlying HTML tag.

13

Time to AFT Time to RT Time to PLT
(3.40s) (5.96s) (8.68s)

Sign-in dropdown menu
Search category
dropdown menu Cart button

Search bar i, Search button

o 1 2 3 4 5 6 7 8 9
Time (seconds)

(a) Loading the normal version of the page.

Time to AFT Time to RT Time to PLT
(2.51s) (5.12s) (7.96s)

Sign-in dropdown menu
Search category
dropdown menu Cart button

Search bar Search button

0 1 2 3 4 5 6 7 8 9
Time (seconds)

(b) Loading a version of the page which optimizes for above-the-fold time.

Time to AFT Time to RT Time to PLT
(2.89s) (3.81s) (6.76s)

Sign-in dropdown menu
Search category
dropdown menu Cart button,

Search bar

Search button

0 1 2 3 4 5 6 7 8 9
Time (seconds)

(c) Loading a version of the page which optimizes for Ready Time.

Figure 1-2: Timelines for loading the amazon. com homepage, indicating when critical
interactive components become fully interactive. The client used a 12 Mbits/s link with a
100 ms RTT (see Chapter 5.1 for a full description of our methodology).

tional ones. Figure 1-2(a) provides a concrete example of the results, showing the differ-

ences between page load time (PLT), above-the-fold time (AFT), and Ready Time (RT) for

the ama z on . com homepage when loaded over a 12 Mbits/s link with a 100 ms RTT. AFT

underestimates time-to-full-interactivity by 2.56 seconds; PLT overestimates the time-to-

full-interactivity by 2.72 seconds. Web developers celebrate the elimination of milliseconds

14

RTT I PLT RT AFT
25 ms 1.5 (3.9) 1.1 (2.9) 0.8 (1.9)
50 ms 3.4 (7.2) 2.5 (5.8) 1.9 (4.7)
100 ms 6.1(12.5) 3.9 (9.1) 2.9(7.0)
200 ms 9.2(20.6) 5.6(12.8) 3.8(8.9)

Table 1.1: Median (95th percentile) load time estimates in units of seconds. Each page in
our 350 site corpus was loaded over a 12 Mbits/s link.

of "load time," claiming that a slight decrease can result in millions of dollars of extra in-

come for a large site [7, 11, 43]. However, our results suggest that developers may be

optimizing for the wrong definition of load time. As shown in Table 1.1, prior metrics

inaccurately forecast time-to-full-interactivity under a variety of network conditions, with

median inaccuracies of 24%-39%; as shown in our user study (Chapter 6), users with in-

teractive goals prefer websites that actually prioritize the loading of interactive content.

The differences between load metrics are particularly stark if a page's dependency

graph [27, 39] is deep, or if a page's clients are stuck behind high-latency links. In these

scenarios, the incremental interactivity of a slowly-loading page is important: as the page

trickles down the wire, interactive HTML tags should become visible and functional as

soon as possible. This allows users to meaningfully engage with the site, even if some

content is missing; incremental interactivity also minimizes the time window for race con-

ditions in which user inputs are generated at the same time that JavaScript event handling

state is being loaded [33]. To enable developers to build incrementally-interactive pages

with low Ready Indices, we extended Polaris [27], a JavaScript framework that allows a

page to explicitly schedule the order in which objects are fetched and evaluated. We cre-

ated a new Polaris scheduler which is Ready Index-aware; the resulting scheduler improves

RI by a median of 29%, and RT by a median of 32%. Figure 1-2(c) demonstrates the sched-

uler's performance on the amazon. com homepage. Importantly, Figure 1-2(b) shows that

optimizing for above-the-fold time does not optimize for time-to-interactivity.

Of course, not all sites have interactive content, and even interactive sites can be loaded

by users who only look at the content. In these situations, pages should optimize for the

rendering speed of above-the-fold content. Fortunately, our user study shows that pages

which optimize for Ready Index will substantially reduce user-perceived rendering delays

15

too (Chapter 6). Importantly, Vesper also enables developers to automatically optimize

their pages solely for rendering speed instead of Ready Index.

In summary, this paper has four contributions. First, we define a new load metric called

Ready Index which considers a page's interactive status (Chapter 3). Determining how in-

teractivity evolves over time is challenging. Thus, our second contribution is a tool called

Vesper which automates the measurement of Ready Index (Chapter 4). Our third contri-

bution is a study of Ready Index in 350 real pages. By loading those pages in a variety of

network conditions, we explain the page characteristics that lead to faster interactivity times

(Chapter 5). Our fourth contribution is an automated framework for optimizing a page's

Ready Index or pure rendering speed; both optimizations are enabled by Vesper-collected

data. User studies demonstrate that pages which optimize for Ready Index provide better

support for immediate interactivity (Chapter 6).

16

Chapter 2

Background

In this chapter, we describe prior attempts to define "page load time." Each metric tracks a

different set of page behaviors; thus, for a given page load, different metrics may provide

radically different estimates of the load time.

The Original Definition

The oldest metric is defined with respect to the JavaScript onload event. A browser fires

that event when all of the external content in a page's static HTML file has been fetched and

evaluated. All image data must be present and rendered; all JavaScript must be parsed and

executed; all style files must be processed and applied to the relevant HTML tags; and so on.

The load time for a page is defined as the elapsed time between the navigationStart

event and the on load event. In the rest of the paper, we refer to this load metric as PLT

("page load time").

PLT was a useful metric in the early days of the web, but modern web pages often

dynamically fetch content after the onload event has fired [23, 24]. PLT also penalizes

web pages that have large amounts of statically-declared below-the-fold content. Below-

the-fold content resides beneath the initial browser viewport, and can only be revealed

by user scrolling. PLT requires static below-the-fold content to be fetched and evaluated

before a page load is considered done. However, from a user's perspective, a page can be

ready even if its below-the-fold content is initially missing: the interactivity of the initial

viewport content is the primary desideratum.

17

Time to First Paint

Time to First Paint (TTFP) measures when the browser has received enough page data

to render the first pixels in the viewport. Thus, TTFP represents the earliest time that a

user could meaningfully interact with a page. For a given PLT, a lower TTFP is better.

However, decreasing a page's PLT is not guaranteed to lower its TTFP, and vice versa [1].

For example, when the HTML parser (which feeds input to the rendering pipeline) hits

a <script> tag, the parser must synchronously fetch and evaluate the JavaScript code

before continuing the HTML parse [27]. By pushing <script> tags to the end of a

page's HTML, render times may improve, but the browser loses opportunities to fetch

JavaScript code early and keep the client's network pipe fully utilized. Careless deferral

of JavaScript evaluation may also hurt interactivity, since event handlers will be registered

later, animation callbacks will start firing later, and so on.

Above-the-fold Time

This metric represents the time that the browser needs to render the final state of all pixels

in the initial browser viewport. Like TTFP, above-the-fold time (AFT) is not guaranteed to

move in lockstep with PLT. Measuring AFT and TTFP requires a mechanism for tracking

on-screen events. WebKit-derived browsers like Chrome and Opera expose paint events via

their debugging interfaces. Rendering progress can also be tracked using screenshots [2,

10].

If a web page contains animations, or videos that automatically start playing, a nayve

measurement of AFT would conclude that the page never fully loaded. Thus, AFT algo-

rithms must distinguish between static pixels that are expected to change a few times at

most, and dynamic pixels that are expected to change frequently, even once the page has

fully loaded. To differentiate between static and dynamic pixels, AFT algorithms use a

threshold number of pixel updates; a pixel which is updated more than the threshold is

considered to be dynamic. AFT is defined as the time that elapses until the last change to a

static pixel.

18

Speed Index

AFT fails to capture the progressive nature of the rendering process. Consider two hypo-

thetical pages which have the same AFT, but different rendering behavior: the first page

updates the screen incrementally, while the second page displays nothing until the very end

of the page load. Most users will prefer the first page, even though both pages have the

same AFT.

Speed Index [14] captures this preference by explicitly logging the progressive nature

of page rendering. Intuitively speaking, Speed Index tracks the fraction of a page which

has not been rendered at any given time. By integrating that function over time, Speed

Index can penalize sites that leave large portions of the screen unrendered for long periods

of time. More formally, a page's Speed Index is fJ"d1 - VC() dt, where end is the AFT01 100 weeedi h F

time, and VC(t) is the percentage of static pixels at time t that are set to their final value. A

lower Speed Index is better than a higher one.

Strictly speaking, a page's Speed Index has units of "percentage-of-visual-content-that-

is-not-displayed milliseconds." For brevity, we abuse nomenclature and report Speed Index

results in units of just "milliseconds." However, a Speed Index cannot be directly compared

to a metric like AFT that is actually measured in units of time. Also note that TTFP, AFT,

and Speed Index do not consider the load status of JavaScript state. As a result, these

metrics cannot determine (for example) when a button that has been rendered has actually

gone live as result of the associated event handlers being registered.

User-perceived PLT

This metric captures when a user believes that a page render has finished [21, 37]. Unlike

Speed Index, User-perceived PLT is not defined programmatically; instead, it is defined

via user studies which empirically observe when humans think that enough of a page has

rendered for the page load to be "finished." Like Speed Index, User-perceived PLT ig-

nores page functionality (and thus page interactivity). User-perceived PLT also cannot be

automatically measured, which prevents developers from easily optimizing for the metric.

19

TTI

Several commercial products claim to measure a page's time-to-interactivity (TTI) [30, 35];

however, these products do not explicitly state how interactivity is defined or measured. In

contrast, Google is currently working on an open standard for defining TTI [18]. The

standard's definition of TTI is still in flux. The current definition expresses interactivity in

terms of time-to-first-paint, the number of in-flight network requests, and the utilization of

the browser's main thread (which is used to dispatch GUI events, execute JavaScript event

handlers, and render content). TTI defines an "interactive window" as a five second period

in which the main thread runs no rendering or JavaScript tasks that require more than 50

ms; in other words, during an interactive window, the browser can respond to user input in

at most 50 ms. A page's TTI is the maximum of:

(1) the time-to-first-paint, and

(2) the time to the first interactive window that has at most two network requests in flight.

This definition for load time has several problems. First, it could declare a page to be

loaded even if the page has not rendered all of the content in the initial viewport. Second,

this definition does not distinguish between network requests for above-the-fold content

and below-the-fold content; as a result, condition (2) might be governed by the time needed

to fetch below-the-fold content that is unnecessary from the perspective of a human user

who initially only cares about above-the-fold content. Similarly, this TTI definition does

not distinguish between JavaScript state that supports above-the-fold event handlers, and

JavaScript state that does not. User-perceived interactivity requires the former state to be

loaded, but not the latter. A third problem is that TTI's notion of an interactive window

is too conservative. Modern browsers prioritize the execution of event handers [22], and

those handlers typically run for only a few milliseconds [32]. Using intelligent redraw

algorithms and GPU offloading [19], modern browsers also minimize the rendering activity

that executes on the main thread. So, it is unlikely that the browser's main thread will be

executing a long-running, high-priority task if GUI handlers also wish to run.

20

Summary

Traditional metrics for load time fail to capture important aspects of user-perceived page

readiness. PLT does not explicitly track rendering behavior, and implicitly assumes that

all JavaScript state is necessary to make above-the-fold content usable. AFT, Speed Index,

and User-perceived PLT consider visual content, but are largely oblivious to the status of

JavaScript code-the code is important only to the extent that it might update a pixel using

DOM methods [26]. However, AFT, Speed Index, and User-perceived PLT completely ig-

nore event handlers (and the program state that event handlers manipulate). Consequently,

these metrics fail to capture the interactive component of page usability. Google's TTI also

imprecisely captures above-the-fold, interactive state, resulting in load time estimates that

are not tight.

21

22

Chapter 3

Ready Index

In this chapter, we formally define Ready Index (RI). Like Speed Index, RI is a progressive

metric that captures incremental rendering updates. Unlike Speed Index, RI also captures

the progressive loading of JavaScript state which supports interactivity.

Defining Functionality

Let T be an upper-bound on the time that a browser needs to load a page's above-the-

fold state, and make that state interactive. This upper-bound does not need to be tight; in

practice (Chapter 5), we use a static value of 30 seconds.

Let E be the set of DOM elements that are visible in the viewport at T. For each e E E,

let h(e) be the set of all event handlers that are attached to e at or before T. Let te be the

earliest time at which, for all handlers h E h(e), h's JavaScript function has been declared,

and all JavaScript state and DOM state that would be accessed by h's execution has been

loaded. Given those definitions, we express thefunctionality progress of e as

F(e, t) = I(t > te) (3.1)

where the step-function I0 is 1 if its argument is true, and 0 otherwise. Intuitively speaking,

Equation 3.1 states that a DOM node is not functional until all of the necessary event

handlers have been attached to the node, and the browser has loaded all of the state that the

handlers would touch if executed.

23

Defining Visibility

An element e may be the target of multiple paint events, e.g., as the browser parses ad-

ditional HTML and recalculates e's position in the layout. We assume that e is not fully

visible until its last paint completes. So, if P(e) is the set of paint events that update e, the

visibility progress of e is

V(e,t) = - e (I(t > tp) (3.2)
J e)IpEP(e)

where tp is the timestamp of paint event p. Similar to how Speed Index computes progres-

sive rendering scores for pixels [14], Equation 3.2 assumes that each paint of e contributes

equally to e's visibility score. Note that 0 V(e,t) <.

Defining Readiness

Given the preceding definitions for functionality and visibility, we define the readiness of

an element e as

R(e, t) = -F(e, t) + -V(e, t) (3.3)
2 2

such that the functionality and visibility of e are equally weighed, and 0 < R(e, t) < 1. The

readiness of the entire page is then defined as

R (t) = E A (e) R(e, t) (3.4)
eEE

where A (e) is the area (in pixels) that e has at time T.

Putting It All Together

An element e is fudly ready at time t if R(e,t) = 1, i.e., if e is both fully visible and fully

functional. A page's Ready Time (RT) is thus the smallest time at which all of the above-

the-fold elements are ready. A page's Ready Index (RI) is the area above the curve of the

readiness progress function. Thus, RI is equal to

RI= T IR(t) dt (3.5)
0 R (T)

24

Chapter 4

Vesper

Vesper is a tool which allows a web developer to determine the RI and RT for a specific

page. Vesper must satisfy three design goals. First, Vesper must produce high coverage,

i.e., Vesper must identify all of a page's interactive, above-the-fold state. Second, Vesper's

instrumentation must have minimal overhead, such that instrumented pages have RI and RT

scores that are close to those of unmodified pages. Ideally, Vesper would also be browser-

agnostic, i.e., capable of measuring a page's RI and RT without requiring changes to the

underlying browser.

These design goals are in tension. To make Vesper browser-agnostic, Vesper should be

implemented by rewriting a page's JavaScript code and HTML files, not through modifica-

tion of a browser's JavaScript engine and rendering pipeline; unfortunately, the most direct

way to track interactive state is via heavyweight instrumentation of all reads and writes that

a page makes to the JavaScript heap, the DOM, and the rendering bitmap. Vesper resolves

the design tension by splitting instrumentation and log analysis across two separate page

loads. Each load uses a differently-rewritten version of a page, with the first version using

heavyweight instrumentation, and the second version using lightweight instrumentation.

As a result, the second page load injects minimal timing distortion into the page's true

RI and RT scores. Figure 4-1 provides an overview of Vesper's two-phase workflow. We

provide more details in the remainder of this chapter.

25

Page Load I Page Load 2

rmL ad nsrmCapture paint

page with: page state events Compute
Paewih.Kwt ScoutIntuetadlyt I Cope

2.Ee nt 1. Take periodic Log element visibility

visibility logic Identify visible DOM Snapshots creati and progress Compute3. ~Fire handlers 2.Lg euieionCopt3. Event elements for visible L ge Log RT and RI

hStore all elements for functionality element Compute ___ ----
shims event eeme functionality

handlers functional progress

Figure 4-1: Vesper's two-phase approach for measuring RI and RT. Shaded boxes indicate
steps that occur during a page load. Clear boxes represent pre- and post-processing steps.

4.1 Phase 1

The goal of this phase is to identify the subset of DOM nodes and JavaScript state which

support above-the-fold interactivity.

4.1.1 Element Visibility

For most pages, only a subset of all DOM nodes will have bounding boxes that overlap

with the initial viewport. Even if a node is above-the-fold, it may not be visible, e.g., due

to CSS styling which hides the node. Vesper injects a JavaScript timer into the page which

runs at time T. When the timer function executes, it traverses the DOM tree and records

which nodes are visible. In the rest of the chapter, we refer to this timer as the Vesper timer.

4.1.2 Event Handlers

Developers make a DOM element interactive by attaching one or more event handlers to

that element. For example, a <butt on> element does nothing in response to clicks until

JavaScript code registers onc lick handlers for the element. To detect when such handlers

are added, Vesper shims the event registration interfaces [25]. There are two types of

registration mechanisms:

e DOM elements define JavaScript-accessible properties and methods which support

event handler registration. For example, assigning a function f to a property like

'Shimming is a powerful technique to interpose on a built-in function in Javascript; anytime the function
is called, the shim first executes custom code and then passes control to that function.

26

DOMnode. onc lick will make f an event handler for clicks on that DOM node.

Invoking DOMnode. addEventListener ("click", f) has similar seman-

tics. Vesper interposes on registration mechanisms by injecting new JavaScript into

a page which modifies the DOM prototypes [25]; the modified prototypes insert log-

ging code into the registration interfaces, such that each registered handler is added

to a Vesper-maintained, in-memory list of the page's handlers.

* Event handlers can also be defined inline via HTML as a tag property, e.g., <img

s rc=. ... onload=handler () />. At T, the Vesper timer iterates through the

page's DOM tree, identifying event handlers that were not registered via a JavaScript-

level interface, and adding those handlers to Vesper's list.

The Vesper timer only adds a handler if the handler is attached to a visible DOM element

that resides within the initial viewport.

4.1.3 Event Handler State

When a handler fires, it issues reads and writes to program state. That state may belong

to JavaScript variables, or to DOM state like the contents of a tag. As the handler

executes, it may invoke other functions, each of which may touch an additional set of

state. The aggregate set of state that the call chain may touch is the functional state for

the handler. Given a DOM element e, we define e's functional state as the union of the

functional state that belongs to each of e's event handlers.

If e resides within the initial viewport, then e is not functional until two conditions have

been satisfied:

1. all of e's event handlers must be registered, and

2. all of e's functional state must be loaded.

At any given moment during the page load, none, either, or both of these conditions may

be satisfied. For example, if e's event handlers are defined in a <script> tag, but key

functional state is defined by downstream HTML or <script> tags, then after evaluation

of the first <s cr ipt> tag, condition (1) is true, but condition (2) is not.

27

To identify a page's functional state, Vesper instruments the HTML and JavaScript in

a page, such that, when the instrumented page loads, the page will log all reads and writes

to JavaScript variables and DOM state. When the Vesper timer runs, it actively invokes

the event handlers that were captured by event registration shimming. As those handlers

fire, their call chains touch functional state. By post-processing the page's Scout logs, and

looking for reads and writes that occurred after the Vesper timer began execution, Vesper

can identify a page's functional state. In particular, Vesper can associate each handler with

its functional state, and each DOM element with the union of the functional states of its

handlers.

To fire the handlers for a specific event type like click, the Vesper timer deter-

mines the minimally-sized DOM subtree which contains all handlers for the c lick event.

Vesper then constructs a synthetic click event, and triggers it by invoking the built-in

DOMnode. dispatchEvent () method for each leaf of the subtree. This approach en-

sures that synthetic events follow the same dispatch path used by real events.

Some event types are logically related to a single, high-level user interaction. For exam-

ple, when a user clicks a mouse button, her browser generates mousedown, click, and

mouseup events, in that order. Vesper is aware of these semantic relationships, and uses

them to guide the generation of synthetic events, ensuring a realistic sequence of handler

firings.

4.1.4 Implementation

To instrument a page, Vesper could modify the browser's renderer and JavaScript engine to

track reads and writes to DOM objects and JavaScript variables. However, our Vesper pro-

totype leverages Scout [27] instead. Scout is a browser-agnostic rewriting framework that

instruments a page's JavaScript and HTML to log reads and writes. A browser-agnostic ap-

proach is useful because it allows Vesper to compare a page's Ready Index across different

browser types (Chapter 5.6).

The instrumentation which tracks element visibility and handler registration adds neg-

ligible overhead to the page load process. However, tracking all reads and writes to page

28

state is more costly. Across the 350 pages in our test corpus, we measured a Scout-induced

load time increase of 4.5% at the median, and 7.6% at the 95th percentile. Thus, trying

to calculate RI and RT directly in Phase 1 would lead to inflated estimates. To avoid this

problem, we use the outputs of Phase 1 as the inputs to a second phase of instrumentation.

This second phase is more lightweight, and directly calculates RI and RT.

4.2 Phase 2

In Phase 2, Vesper tracks the rendering progress of the above-the-fold DOM elements that

were identified in Phase 1. Vesper also tracks the rate at which functional JavaScript state

and DOM state is created. This information is sufficient to derive RI and RT.

4.2.1 Measuring Functionality Progress

A DOM element becomes functional when all of its event handlers have been registered,

and all of the functional state for those handlers has been created. An element's functional

state may span both the JavaScript heap and the DOM. Vesper uses different techniques to

detect when the two types of state become ready.

JavaScript state

By analyzing Scout logs from Phase 1, Vesper can determine when the last write to each

JavaScript variable occurs. The "last write" is defined as a source code line and an execu-

tion count for that line. The execution count represents the fact that a source code line can

be run multiple times, e.g., if it resides within a loop body.

At the beginning of Phase 2, Vesper rewrites a page's original JavaScript code, injecting

a logging statement after each source code line that generates a final write to functional

JavaScript state. The logging statement updates the execution count for the line, and only

outputs a log entry if the final write has been generated.

29

DOM state

An event handler's functional state may also contain DOM nodes. For example, a k e ypr e s s

handler may assume the existence of a specific DOM node whose properties will be modi-

fied by the handler. At the beginning of Phase 2, Vesper rewrites a page's original HTML to

output the creation time for each DOM node. The rewriting is complicated by the fact that,

when a browser parses HTML, it does not trigger a synchronous, JavaScript-visible event

upon the creation of a DOM node. Thus, Vesper rewrites a page's HTML to include a new

<script> tag after every original HTML tag. The new <script> tag logs two things:

the creation of the preceding DOM node, and the bounding boxes of all DOM nodes that

exist at that moment in the HTML parse. The <s cr ipt> tag then removes itself from the

DOM tree (so that at any point in the HTML parse, non-Vesper code which inspects the

DOM tree will see the original DOM tree which does not contain Vesper's self-destructing

tags). DOM snapshots using self-destructing JavaScript tags are by far the most expen-

sive part of the Phase 2 instrumentation; however, they only increase page load times by

1.9% at the median, and 3.9% at the 95th percentile. Thus, we believe that the overhead is

acceptable.

After the initial HTML parse, DOM nodes may be created by asynchronous event

handlers. Vesper takes care to log such creations by interposing on DOM methods like

DOMnode . appendChild (). This interpositioning has negligible overhead and ensures

that Vesper has DOM snapshots after the initial HTML parse.

4.2.2 Measuring Visibility Progress

DOM snapshots allow Vesper to detect when elements are created. However, a newly-

created element will not become visible until some point in the future, because the construc-

tion of the DOM tree is earlier in the rendering pipeline than the paint engine. Browsers do

not expose layout or paint events to JavaScript code. Fortunately, Vesper can extract those

events from the browser's debugging output [15]. Each layout or paint message contains

the bounding box and timestamp for the activity. Unfortunately, the message does not in-

clude which DOM nodes were affected by the paint; thus, Vesper must derive the identities

30

of those nodes.

After the Phase 2 page load is complete, Vesper collates the DOM snapshots and the

layout+paint debugging events, using the following algorithm to determine the layout and

paint events that rendered a specific DOM element e:

1. Vesper finds the first DOM snapshot which contains a bounding box for e. Let that

snapshot have a timestamp of td. Vesper searches for the layout event which imme-

diately precedes td and has a bounding box that contains e's bounding box. Vesper

defines that layout event Lfirst to be the one which added e to the layout tree.

2. Vesper then rolls forward through the log of paint and layout events, starting at Lfirst,

and tracking all paint events to e's bounding box. That bounding box may change

during the page load process, but any changes will be captured in the page's DOM

snapshots. Thus, Vesper can determine the appropriate bounding box for e at any

given time.

As described in Equation 3.2, each paint event contributes equally towards e's visibility

score. For example, if e is updated by four different paints, then e is 25% visible after the

first one, 50% visible after the second one, etc.

In summary, the output of the Phase 2 page load is a trace of a page's functionality

progress and visibility progress. Using that trace, and Equations 3.4 and 3.5, Vesper deter-

mines the page's RT and RI.

4.3 Discussion

The PLT metric is natively supported by commodity browsers, meaning that a page can

measure its own PLT simply by registering a handler for the onload event. Newer met-

rics that lack native browser support require 1) browsers to install a special plugin (the SI

approach [17]), or 2) page developers to rewrite content (the approach used by our Vesper

prototype). Vesper is amenable to implementation via plugins or native support; either op-

tion would enable lower instrumentation overhead, possibly allowing Vesper to collapse its

two phases into one.

31

As a practical concern, a rewriting-based implementation of Vesper must deal with

the fact that a single page often links to objects from multiple origins. For example, a

developer for f oo . com will lack control over the bytes in linked objects from bar. com.

As described in Chapter 5, our Vesper prototype uses Mahimahi [28], a web replay tool, to

record all of the content in a page; Vesper rewrites the recorded content, and then replays

the modified content to a browser that runs on a machine controlled by the f o. com

developer. In this manner, as with the browser plugin approach, a developer can measure

RI and RT for any page, regardless of whether the developer owns all, some, or none of the

page content.

If a page contains nondeterminism, then the page may have different functional state

across different page loads. For example, an event handler which branches on the return

value of Math. random () might access five different DOM nodes across five different

loads of the page. Even if a page's functional state is deterministic, Vesper's synthetic

event generation (Chapter 4. 1) is not guaranteed to exhaustively explore all possible event

handler code paths. Vesper could use symbolic execution [9] to increase path coverage,

but we find that Vesper's current level of coverage is sufficiently high. Note that prior load

metrics like Speed Index are also subject to inaccuracy due to nondeterminism.

32

Chapter 5

Evaluation

In this chapter, we compare RI and RT to three prior metrics for page load time (PLT,

AFT, and Speed Index). We do not evaluate Google's TTI because the metric's definition is

still evolving; also, at the time of this paper's writing, the browser plugin which measures

TTI [16] does not work for most pages in our test corpus.

Across a variety of network conditions, we find that PLT overestimates the time that

a page requires to become interactive; in contrast, AFT and Speed Index underestimate

the time-to-interactivity (Chapter 5.2 and 5.4). These biases persist when browser caches

are warm (Chapter 5.5). Furthermore, the discrepancies between prior metrics and our

interactive metrics are large, with median and 95th percentile load time estimates often

differing by multiple seconds (Table 1.1 and 5-2). Thus, Ready Index and Ready Time

provide a fundamentally new way of understanding how pages load.

5.1 Methodology

We evaluated the various load metrics using a test corpus of 350 pages. The pages were

selected from the Alexa US Top 500 list [3]. We filtered sites which used deprecated

JavaScript statements that Scout [27] does not rewrite. We also filtered sites which caused

errors with Speedline [10], a preexisting tool for capturing SI.

To measure PLT, we recorded the time between the JavaScript navigationStart

and onload events (Chapter 2). RT and RI were measured with Vesper, which instru-

33

mented each recorded page using the two-phase approach described in Figure 4-1; we set

T equal to 30 seconds. We also used Vesper to measure AFT and SI1 . Calibration exper-

iments showed that Vesper's estimates of SI were within 2.1 % of Speedline's estimates at

the median, and within 3.9% at the 95th percentile.

Measuring PLT is non-invasive, since unmodified pages will naturally fire the navigat i on St a rt

and onload events. Capturing the other metrics requires new instrumentation, like DOM

snapshots (Chapter 4.2.1). To avoid measurement biases due to varying instrumentation

overheads, each experimental trial loaded each page five times, and in each of the five

loads, we enabled all of Vesper's Phase 2 instrumentation, such that each load metric could

be calculated. Enabling all of the instrumentation increased PLT by 1.9% at the median,

and 3.9% at the 95th percentile.

We used Mahimahi [28] to record the content in each test page, and later replay the

content via emulated network links. With the exception of the mobile experiments (Chap-

ter 5.4), all experiments were performed on Amazon EC2 instances running Ubuntu 14.04.

Unless otherwise specified, each page load used Google Chrome (v52) with a cold browser

cache and remote debugging enabled so that we could track layout and paint events.

5.2 Cross-metric Comparisons

On computationally-powerful devices like desktops and laptops, network latency (not band-

width) is the primary determinant of how quickly a page loads [1, 6, 27, 36]. So, our first

set of tests used a t2.large EC2 VM which had a fixed bandwidth of 12 Mbits/s, but a round-

trip latency that was drawn from the set {25 ms, 50 ms, 100 ms, 200 ms}. These emulated

network conditions were enforced by the Mahimahi web replay tool.

Table 1.1 summarizes the results for PLT, RT, and AFT. Recall that these metrics are

non-progressive, i.e., they express a page's load time as a single number that represents

when the browser has "completely" loaded the page (for some definition of "completely").

As expected, PLT is higher than RT because PLT requires all page state, including below-

the-fold state, to be loaded before a page load is finished. Also as expected, AFT is lower

'When computing an element's readiness, we assign all weight to its visibility and ignore its functionality

34

6. 7.5 12

0 100 St200 300 0 100 St200 300 0 100 200e

(a) 50 ms RTT (b) 100 ms RTT (c) 200 ms RTT

Figure 5-1: Comparing RT, PLT, and AFT. Results used emulated links with a bandwidth
of 12 Mbits/s.

RTT J Ready Index Speed Index

25 ms 714 (1522) 568 (1027)
5O ms 1759 (3846) 1325 (3183)
lO0ms 2737 (6174) 2054 (4549)
200ms 4252 (9719) 3071 (6913)

Figure 5-2: Median (95th percentile) load time estts (see Chapter 2 for a discussion of
the units). Results used our entire 350 page corpus. Content was loaded over a 12 Mbits/s
link. See Chapter 5.1 for a full description of our methodology.

than RT, because AFT ignores the load status of JavaScript code that is necessary to make

visible elements functional.

The surprising aspect of the results is that the differences between the metrics are so

noticeable. As shown in Figure 1-2(a) and Table 1.1, the differences are large in terms of

percentage (24.0%-64.3%); more importantly, the differences are large in terms of absolute

magnitude, equating to hundreds or thousands of milliseconds. For example, with a round-

trip latency of 50 ins, RT and PLT differ by roughly 900 ms at the median, and by 1.4

seconds at the 95th percentile. For the same round-trip latency, RT and AFT differ by

approximately 600 ms at the median, and by 1.1 seconds at the 95th percentile.

The discrepancies increase as RTTs increase. This observation is important, because

cellular and residential networks often have RTTs that exceed 100 ms [4, 20]. For example,

in our emulated network with an RTT of 100 ms, RT differed from PLT by 2.2 seconds at

the median; RT differed from AFT by 1 second at the median. From the perspective of

a web developer, the differences between RT and AFT are particularly important. Users

frequently assume that a visible element is also functional. However, visibility does not

necessarily imply functionality, and interactions with partially-functional elements can lead

35

50 s0 120000

106 000- 9000

Site Site Site

(a) 50 ms RTT (b) 100 ms RTT (c) 200 ms RTT

Figure 5-3: Comparing the progressive metrics (Ready Index versus Speed Index). Results
used emulated links with a bandwidth of 12 Mbits/s.

to race conditions and broken page behavior [33]. In Chapter 6, we describe how developers

can create incrementally-interactive pages that minimize the window in which a visual

element is not interactive.

Figure 5-1 compares the RT, PLT, and AFT values for each page in our 350 site corpus.

Pages are sorted along the x-axis in ascending AFT order. Figure 5-1 vividly demonstrates

that PLT is an overly conservative definition for user-perceived notions of page readiness.

The spikiness of the RT line also demonstrates that pages with similar AFT values often

have very different RT scores. For example, consider an emulated link with a 100 ms round-

trip time. Sites 200 (mashable. com) and 201 (overdrive . com) have AFT values of

3099 ms and 3129 ms, respectively. However, the sites have RT values of 4418 ms and

3970 ms, a difference of over 400 ms. In Chapter 5.3, we explain how the relationships

between a page's HTML, CSS, and JavaScript cause divergences in RT and AFT.

Figures 5-2 and 5-3 compare the two progressive metrics. The results mirror those

for the non-progressive metrics. A page's SI is lower than its RI, because SI does not

consider the load status of JavaScript code that supports interactivity. Furthermore, pages

with similar SIs often have much different RIs.

5.3 Case Studies

Figure 5-4 uses two randomly-selected pages to demonstrate how interactivity evolves. Fig-

ure 5-4(a) describes the homepage for Bank of America, whereas Figure 5-4(b) describes

the homepage for WebMD. Using the terminology from Chapter 3, each graph plots the

visual progression of the page (LeCE V(e, t)A(e)) and the readiness progression of the page

36

1.00
U)

_i5. 0.75-
E
0

(0.50-
0
-0.25-

U-

1000 2000
Time (ms)

(a) https://www.bankofamerica.com

ed Index: 1342 ins
dy Index: 1967 ins

- Ready Pro
- Visual Co

3000 4000

10,00 20'00 3000 4000
Time (ms)

(b) http://www.webmd.com

Figure 5-4: Exploring how visibility and functionality evolve for two different pages. The
client had a 12 Mbits/s link with an RTT of 100 ms. Remember that a progressive metric
like Ready Index is calculated by examining the area that is above a curve.

(R(t)); in the graphs, each data point is normalized to the range [0.0,1.0]. At any given

moment, a page's readiness progression is less than or equal to its visual progression, since

visual progression does not consider the status of functional state.

The gaps between the red and blue curves indicate the existence of visible, interactive

DOM elements that are not yet functional. If users try to interact with such elements, then

at best, nothing will happen; at worst, an incomplete set of event handlers will interact with

incomplete JavaScript and DOM state, leading to erroneous page behavior. For example,

37

SpE
Rea

gress
npleteness

0.00 -I

0

1.00-

EL 0.75-
E
0
o 050-
0
t 0.25-
U-

Index: 1736 ms
Index: 2093 ms

- Ready Progress
- Visual CompleteneE

Speed
Ready

s

the Bank of America site contains a text input which supports autocompletion. With RTTs

of 100 ms and above, we encountered scenarios in which the input was visible but not

functional. In these situations, we manually verified that a human user could type into

the text box, have no autosuggestions appear, and then experience the text disappear and

reappear with autosuggestions as the page load completed.

Both the red and blue curves contain stalls, i.e., time periods in which no progress

is made. For example, both pages exhibit a lengthy stall in their visual progression-for

roughly a second, neither page updates the screen. Both pages also contain stretches which

lack visual progress or readiness progress. During these windows, a page is not executing

any JavaScript code which creates interactive state.

Functionality progression stalls when the <script> tags supporting functionality

have not been fetched, or have been fetched but not evaluated. Visual progression may

stall for a variety of reasons. For example, the browser might be blocked on network

fetches, waiting on HTML data so that new tags can be parsed and rendered. Browsers also

use a single thread for HTML parsing, DOM node rendering, and JavaScript execution;

thus, executing a <script> tag blocks parsing and rendering of downstream HTML. As

described in Chapter 6, developers can use automated tools to minimize these stalls and

improve a page's Ready Time and Ready Index.

5.4 Mobile Page Loads

Mobile browsers run on devices with limited computational resources. As a result, mobile

page loads are typically compute-bound, with less sensitivity to network latency [6, 36]. To

explore RI and RT on mobile devices, we USB-tethered a Nexus 5 phone running Android

5.1.1 to a Linux desktop machine that ran Mahimahi. Mahimahi emulated a Verizon LTE

cellular link [41] with a 100 ms RTT. The phone used Google Chrome v53 to load pages

from a test corpus. The corpus had the same 350 sites from our standard corpus, but used

the mobile version of each site if such a version was available. Mobile sites are reformatted

to fit within smaller screens, and to contain fewer bytes to avoid expensive fetches over

cellular networks.

38

12

9-

o 6
E

A

- Page Load Time
- Ready Time
- Above-the-Fold Time

0 100 200 300
Site

(a) RT vs. PLT vs. AFT

100001-

7500-

E
x 5000-

2500 -

- Ready Index
-Speed Index

6 100 200 300
Site

(b) RI vs. SI

Figure 5-5: Comparing the load metrics for mobile pages loaded on a Nexus 5 phone. The
network used an emulated Verizon LTE link with a 100 ms RTT.

As shown in Figure 5-5, mobile page loads exhibit the same trends that we observed

on more powerful client devices. For example, the median PLT is 35.2% larger than the

median RT; the median RI is 29.7% larger than the median Speed Index. These differences

persist even when considering only the mobile-optimized pages in our corpus. For that

39

Lii.E

subset of pages, the median PLT is 27.4% larger than the median RT, and the median RI is

25.3% larger than the median Speed Index.

5.5 Browser Caching

Our prior experiments used cold browser caches, meaning that, to load a particular site, a

browser had to fetch each of the constituent objects over the network. However, users often

visit the same page multiple times; different sites also share objects. Thus, in practice,

browsers often have warm caches that allow some object fetches to be satisfied locally.

To determine how warm caches affect page loads, we examined the HTTP caching

headers [12] for each object in our corpus. For each object that was marked as cacheable,

we rewrote the headers to indicate that the object would be cacheable forever. We then

loaded each page in our corpus twice, back to back; the first load populated the cache, and

the second one leveraged the pre-warmed cache. Figure 5-6 shows the results for a desktop

browser which used a 12 Mbits/s link with an RTT of 100 ms.

As expected, pages load faster when caches are warm. However, the general trends from

Chapter 5.2 still hold. For example, the median PLT is 38.2% larger than the median RT,

which is 26.0% larger than the median AFT. The correlations between various metrics also

continue to be noisy. For example, SI increases from 1147 ms to 1168 ms between sites 134

(duckduckgo. com) and 135 (nexusmods . com); however, RI decreases from 1601 ms

to 1228 ms.

5.6 Cross-Browser Comparisons

Different browsers are built in different ways. As shown in Figure 5-7, those architectural

variations impact page load times. Figure 5-7 compares Ready Index on Chrome v53

and Opera v42. Chrome and Opera share non-trivial amounts of code; in particular, both

browsers use the WebKit rendering engine and the V8 JavaScript runtime. However, the

browsers have sufficiently heterogeneous code to produce a noticeable bias in RI values:

Chrome's RI values are 6.5% lower at the median, and 11.9% lower at the 95th percentile.

40

8

200
Site

300

(a) RT vs. PLT vs. AFT

100
Site

200 300

(b) RI vs. SI

Figure 5-6: Page loads with warm browser caches. The desktop browser used a 12 Mbits/s
link with a 100 ms RTT.

To understand the causes for such discrepancies, developers must analyze the steps that

a browser takes to load a page. Tools like WProf [39] and the built-in Chrome debugger

allow developers to examine coarse-grained interactions between high-level activities like

HTML parsing, screen painting, and JavaScript execution. However, Vesper's logs describe

41

-Page Load Time
- Ready Time

- Above-the-Fold Time

6

Cl)

E
4

2

0

6000 -

4500-

E
x 3000-
a) 150fl

(

- Ready Index
-Snpd Index

0 100

8000

E 6000

4000

_0

ai) 2000
CC

0

71

-
- Opera
- Chrome

-I-

0 100
Site

200 300

Figure 5-7: The Ready Index for each page in our corpus, as measured on different desktop
browsers (Chrome and Opera). Pages are sorted on the x-axis by increasing Ready Index
on Chrome. The results were collected using cold browser caches and a 12 Mbits/s link
with an RTT of 100 ms.

how interactive state loads at the granularity of individual JavaScript variables and DOM

nodes. For example, Vesper allows a developer to associate a dynamically-created text in-

put with the specific code that creates the input and registers event handlers for the input;

Vesper also tracks the JavaScript variables that are manipulated by the execution of the

event handlers. None of this information is explicitly annotated by developers, nor should

it be: for a large, frequently-changing site, humans should focus on the correct implemen-

tation of desired features, not the construction of low-level bookkeeping details about data

and code dependencies. Thus, automatic extraction of these dependencies is crucial, since,

as we demonstrate in Chapter 6, a fine-grained understanding of those dependencies is

necessary to minimize a page's time-to-interactivity.

42

Chapter 6

Optimizing for Interactivity

To minimize a page's Ready Time and Ready Index, browsers must fetch and evaluate

objects in a way that prioritizes interactivity. In particular, a browser should:

1. maximize utilization of the client's network connection;

2. prioritize the fetching and evaluating of HTML files which define above-the-fold

DOM elements;

3. prioritize the fetching and evaluating of <script> tags which generate interactive,

above-the-fold state; and

4. respect the semantic dependencies between a page's objects.

By maximizing network utilization (Goal (1)), a browser minimizes the number of CPU

stalls which occur due to synchronous network fetches; ideally, a browser would fetch each

piece of content before that content is desired by a parsing/evaluation engine. Goals (2) and

(3) directly follow from the definitions for page readiness in Chapter 3. However, Goal (4)

is in tension with the others: fetching and evaluating objects in a way that satisfies Goals

(1), (2), and (3) may break page functionality. For example, two JavaScript libraries may

have shared state, like a variable that is written by the first library and read by the second.

Invalid reads and other problems will arise if a browser evaluates the two libraries "out-of-

order" with respect to the lexical order of their <s cript> tags in the page's HTML.

43

Figure 6-1: The dependency graph for price l ine . com. OPT-PLT assigns equal weights
to all nodes. OPT-SI prioritizes the shaded objects. OPT-RI prioritizes the objects with
dashed outlines.

Weights PLT RT AFT SI RI
OPT-PLT 36% (51%) 13% (22%) -4% (5%) -7% (4%) 8% (17%)
OPT-RI 23% (34%) 32% (48%) 15% (26%) 12% (20%) 29% (35%)
OPT-SI 10% (19%) 18% (31%) 27% (39%) 18% (28%) 14% (23%)

Table 6.1: Median (95th percentile) load time improvements using our custom Polaris
schedulers and the default one (OPT-PLT). Results used our entire 350-page corpus. Loads
were performed on a desktop Chrome browser which had a 12 Mbits/s link with an RTT
of 100 ms; the performance baseline was a regular (i.e., non-Polaris) page load. The best
scheduler for each load metric is highlighted.

Web pages contain a variety of additional dependencies which constrain the order in

which objects can be fetched and evaluated. Polaris [27] is a load optimizer which uses

Scout to extract all of these dependencies and generate an explicit dependency graph (i.e.,

a partial ordering that specifies how certain objects must be loaded before others). Polaris

then rewrites the page so that the page is self-assembling. The rewritten page uses a custom

JavaScript library to schedule the fetching and evaluating of objects in a way that satisfies

Goals (1) and (4).

At any given moment in a page load, the dynamic critical path is the path in the de-

pendency graph which has the largest number of unfetched objects. The default Polaris

scheduler prioritizes the fetching of objects along the dynamic critical path. This policy

minimizes PLT, but may increase or decrease RT, depending on whether interactive, above-

the-fold state is created by objects along the dynamic critical path.

44

We created a new scheduling policy, called OPT-RI ("optimize RI"), which priori-

tizes the loading of interactive content. Let Ointeractive be the objects (e.g., HTML files,

JavaScript files) which Vesper identifies as generating interactive, above-the-fold state.

Given Ointeractive and the dependency graph from Scout, OPT-RI assigns node weights of

zero to nodes that do not reside in Ointeractive; for a node in Ointeractive, OPT-RI finds all

of the above-the-fold elements which the node affects, and then weights the node by the

fraction of the initial viewport area which those elements cover. During the actual page

load, the OPT-RI scheduler prioritizes objects along the weighted dynamic critical path.

We also define OPT-SI, which only considers visual progress. Nodes which do not lead

to the creation of visible, above-the-fold DOM elements receive a weight of zero. For each

remaining node, OPT-SI finds the DOM elements which the node influences, and assigns a

node weight which is proportional to the fraction of the viewport which the elements cover.

OPT-SI will not prioritize JavaScript files that only define event handler state; however,

OPT-SI will prioritize JavaScript files that dynamically create above-the-fold content via

DOM methods like document . appendChild (). Figure 6-1 provides an example of a

real dependency graph, and the nodes which are prioritized by the various schedulers.

Table 6.1 compares the performance of the schedulers. OPT-RI and OPT-SI reduce

all load metrics, but the targeted metrics decrease the most. Thus, sites that want to de-

crease time-to-interactivity must explicitly target RI and RT, not preexisting metrics like

SI and PLT. For example, consider the search button in Figures 1-2(b) and 1-2(c). OPT-RI

makes the button interactive one and a half seconds earlier than OPT-SI. Differences of that

magnitude have significant effects on user satisfaction and site revenue [7, 11, 43].

As shown in Table 6.1, OPT-RI reduces RI by a median of 29%, and RT by a median

of 32%; PLT, AFT, and SI also drop, but not as much (by 23%, 15%, and 12%, respec-

tively). Interestingly, the default Polaris scheduler (OPT-PLT) improves PLT, RT, and RI,

but actually hurts AFT and SI by -4% and -7% at the median. The reason is that JavaScript

files often form long dependency chains; evaluating one JavaScript file in the chain leads

to the fetching and evaluation of additional JavaScript files. These long dependency chains

tend to lie along the dynamic critical paths which are preferentially explored by OPT-PLT.

By focusing on those chains, OPT-PLT increases the speed at which event handling state is

45

loaded. However, this approach defers the loading of content in short chains. Short chains

often contain images, since images (unlike HTML, CSS, and JavaScript) cannot trigger

new object fetches. Deferring image loading hurts AFT and SI, though RT and RI improve,

and the likelihood of broken user interactions (Chapter 5.2 and Chapter 5.3) decreases.

6.1 Does OPT-RI Help Interactive Sites?

The results from Table 6.1 programmatically compare OPT-PLT, OPT-SI, and OPT-RI. We

now evaluate how the differences between these optimization strategies are perceived by

real users. Our first question was whether optimizing for RI helped users perform interac-

tive tasks. In other words, can users complete a task faster on a webpage optimized with

OPT-RI?

We ask each user to interact with five well-known landing pages: Amazon, Macy's,

Food Network, Zillow, and Walmart. For each site, users completed a site-specific task that

normal users would be likely to perform. For example, on the Macy's page, users were

asked to hover over the "shopping bag" icon until the page displayed a pop-up icon which

listed the items in the shopping bag. On the Walmart site, users were asked to search for

"towels" using the autocompleting text input at the top of the page; they then had to select

the autocompleted suggestion. To avoid orientation delays, users were shown all five pages

and the location of the relevant interactive elements at the beginning of the study. This

setup emulated users who were returning to frequently-visited sites.

The study had 85 users interact with three different versions of each page: a default

page load, a load that was optimized with OPT-SI, and one that was optimized with OPT-

RI. For each page, users were presented with the three variations in a random order and

were unaware of which variant they were seeing. Users were asked to select the variant

that enabled them to complete the given task the fastest; if users felt that there was no

perceivable difference between the loads, users could report "none."

As shown in Figure 6-2, OPT-RI was overwhelmingly preferred, with 83% of users

believing that OPT-RI led to the fastest time-to-interactivity. For example, on the Macy's

page, OPT-RI made the shopping bag icon fully interactive 1.6 seconds faster than the

46

Load method Preference %
OPT-RI 83%
OPT-SI 4%

Default load 7%
None 6%

Figure 6-2: The results of our first user study. OPT-RI leads to human-perceived reductions
in the completion times for interactive tasks.

default page load, and 2.1 seconds faster than the OPT-SI load. Time-to-interactivity

differences of these magnitudes are easily perceived by humans. Thus, for pages which

contain interactive, high-priority content, OPT-RI is a valuable tool for reducing time-to-

interactivity (as well as the time needed to fully render the page).

This study focused on users whose goal is to perform an interactive task, and we con-

clude that for such users, OPT-RI provides a substantial benefit over optimizations for

existing metrics. However, what about users who load a web page without immediately

trying to interact with it? We show that for these users, OPT-RI yields load times that are

comparable to those produced by OPT-SI.

6.2 Do User-perceived Rendering Times Change?

Unlike the first user study, our second one asked users to evaluate the load time visually,

without the goal of performing an interactive task. We asked 73 people to judge the load

times of 15 randomly-selected sites from our corpus, each of which had three versions

(one for each optimization strategy). We used a common methodology for evaluating user-

perceived load times [21, 37]. We presented each user with 10 randomly-selected pages that

used a randomly-selected optimization target; we injected a JavaScript keypress handler

into each page, so users could press a key to log the time when they believed the page to be

fully loaded. In all of the user studies, content was served from Mahimahi on a Macbook

Pro, using an emulated 12 Mbits/s link with a 100 ms RTT.

Unsurprisingly, users believed that OPT-PLT resulted in the slowest loads for all 15

pages. However, OPT-SI did not categorically produce the lowest user-perceived rendering

times; users thought that OPT-RI was the fastest for 4 pages, and OPT-SI was the fastest

47

6-
6- Optimized Metric EPLTERIE SI

>

0

0_ r, a. I0a.m0
LL -0 Cm M oE-

-__ 25 LE44) C
a) 0 nC CM)
E D

Figure 6-3: Median user-perceived load time for each site in the second user study. Error
bars span the 25th to 75th percentile. OPT-RI resulted in perceived load times comparable
to OPT-SI.

for 1 1. Figure 6-3 shows the average perceived loading times for all three optimization

strategies on all web pages that were part of the study. Across all sites, the median and

95th percentile user-perceived rendering times with OPT-RI were within 4.7% and 10.9%

of those with OPT-SI, respectively. Furthermore, the performance of OPT-RI and OPT-SI

were closer to each other than to that of OPT-PLT. At the median (95th percentile), OPT-RI

was 14.3% (25.3%) faster than OPT-PLT, whereas OPT-SI was 17.4% (32.9%) faster.

These results indicate that a page which only wants to decrease rendering delays should

optimize for SI. However, optimizing for RI results in comparable decreases in rendering

time, while producing substantial benefits to users trying to perform an interactive task.

6.2.1 Effects of Deprioritizing Interactivity

Our study also illustrated several of the pitfalls that occur when the JavaScript state nec-

essary for user interaction is not prioritized. For example, on the Zillow homepage, users

were asked to click the "Sign in" button which generates a popup login form. However,

in the default and (more commonly) the OPT-SI scenarios, users often clicked the button

48

before the necessary handlers were loaded. This resulted in altered page behavior: instead

of displaying a login form overlayed on the homepage, users were redirected to a separate

login page. Several users also experienced issues with the autocomplete feature on the

Amazon homepage. Similar to the challenges described in Chapter 5.3, users often entered

search terms before the autocomplete feature was ready, leading to searches without the

feature or disappearing text results. Finally, for FoodNetwork, users were asked to hover

over the "Shows" tab at the top of the page to generate a dropdown menu. In many scenarios

with OPT-SI, users hovered over the tab before the necessary handlers were loaded, forcing

them to repeatedly move the mouse on and off the tab until the handlers were defined and

the dropdown menu appeared.

6.3 Discussion

Object dependencies limit a scheduler's ability to reorder how objects are fetched and eval-

uated. Thus, achieving further reductions in "load time" (as defined by our interactive

metrics or by prior ones) will likely require new approaches for decomposing a large web

page into smaller chunks. Smaller chunks reduce the number of per-chunk dependencies

and allow schedulers to perform more aggressive reordering of chunk fetches and evalua-

tion.

In some cases, generating smaller chunks is straightforward. For example, consider

a large, monolithic JavaScript file which defines both interactive state and non-interactive

state. If the different types of state are cleanly defined in separate parts of the file, then the

file can be partitioned into separate halves that are scheduled independently. Unfortunately,

JavaScript code rarely possesses such clean delineations, meaning that a single line of code

may access both interactive and non-interactive state.

Extracting above-the-fold, interactive HTML tags is similarly challenging. The visual

properties of a particular tag are dependent on the visual properties of the tag's ancestors,

descendants, and siblings in the HTML tree; thus, decomposing a page's HTML into above-

the-fold interactive tags and other, lower-priority tags is difficult. Given these observations,

we believe that the most aggressive optimizations for interactivity will require pages to be

49

written in new markup formats and scripting languages. These new frameworks will al-

low developers (or automated tools) to efficiently and explicitly describe the dependencies

which bind individual objects.

50

Chapter 7

Conclusion

Both users and developers want pages to load faster. However, existing metrics for page

load time are misleading. Some of them ignore JavaScript state which supports interac-

tivity, while others do not explicitly model visual progression, and unfairly penalize sites

which have below-the-fold content. In this paper, we propose Ready Index and Ready

Time, two new metrics which explicitly consider the interactivity of above-the-fold con-

tent. These metrics declare a page to be loaded when its above-the-fold content is both

visible and ready for user inputs.

Tracking a page's interactive state is challenging, so we built Vesper, a tool that auto-

matically measures Ready Index and Ready Time without requiring assistance from web

developers or content providers. Our experiments with Vesper on a test corpus of 350 pop-

ular sites show that Usability Time and Usability Index differ considerably from existing

metrics. Specifically, we find that defining functionality accounts for a substantial amount

of time in modern page loads and that this cost varies largely across pages, independently

of visibility.

Furthermore, with the help of case studies, we verified that above-the-fold content often

becomes visible before it becomes functional, leading to time periods in which pages have

broken usability. To minimize these periods, we leveraged Polaris to create an interactivity-

aware scheduler for self-assembling pages. Using this scheduler, pages can reduce their

Ready Times by a median of 32%. Our results suggest that Usability Time and Usabil-

ity Index are most improved by optimizations that explicitly attempt to minimize them:

51

targeting other metrics, such as Speed Index, produces only a fraction of the possible im-

provements to usability. These results motivate future web optimizations to improve page

usability by explicitly targeting Usability Time and Usability Index.

Finally, this work advances fundamental questions about web optimization. What is the

"correct" metric that developers should optimize for? Is there a "best" way to optimize for

any given metric, not just interactivity? How can web pages be written differently to make

web optimizations easier? Though we offer a take on these issues from the perspective of

interactivity, we recognize that a complete answer will require a coordinated effort from

the entire web community. We strongly hope that future efforts will continue to investigate

this area and foster a deeper understanding of these questions.

52

Bibliography

[1] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben Green-
stein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian Yin.
Flywheel: Google's Data Compression Proxy for the Mobile Web. In Proceedings of
NSDI, 2015.

[2] Akamai. WebPagetest - Website Performance and Optimization test. https / /
www . webpagetest . org/, 2016.

[3] Alexa. Top Sites in United States. http://www.alexa.com/topsites/
countries /US, 2015.

[4] Mark Allman. Comments on Bufferbloat. SIGCOMM Comput. Commun. Rev.,
43(1):30-37, January 2012.

[5] Amazon. Silk Web Browser. https: //amazons ilk. wordpres s. com/, De-
cember 16, 2014.

[6] Mike Belshe. More Bandwidth Doesn't Matter (Much). https: //goo. gl/
PFDGMi.

[7] Jake Brutlag. Speed Matters. https: / /research. googleblog. com/20 0 9/
0 6/speed-matters .html, 2009.

[8] Jake Brutlag, Zoe Abrams, and Pat Meenan. Above the Fold Time: Measuring
Web Performance Visually. http: //assets .en.oreilly. com/l/event/
62/Above%20the%2OFold%2OTime_%20Measuring%2OWeb%2OPage%

20Performance%2OVisually%20Presentation .pdf, 2011.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and Auto-
matic Generation of High-coverage Tests for Complex Systems Programs. In Pro-
ceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI'08. USENIX Association, 2008.

[10] Pierre-Marie Dartus. speedline. https://github.com/pmdartus/
speedline, 2016.

[11] Kit Eaton. How One Second Could Cost Amazon $1.6 Billion In
Sales. https: //www. fastcompany. com/1825005/how-one-second-
could-cost-amazon-16-billion-sales, 2012.

53

[12] Darin Fisher. HTTP Caching FAQ. https: //developer. mozilla. org/en-
US/docs/Web/HTTP/Caching_FAQ.

[13] Michael J. Freedman. Experiences with CoralCDN: A Five-year Operational View.
In Proceedings of the 7th USENIX Conference on Networked Systems Design and
Implementation, NSDI'10. USENIX Association, 2010.

[14] Google. Speed Index - WebPagetest Documentation. https: / /sites . google.
com/a/webpagetest.org/docs/using-webpagetest/metrics/

speed-index, 2012.

[15] Google. Chrome Debugging Protocol. https: //developer. chrome. com/
devtools /docs /debugger-protocol, 2016.

[16] Google. Lighthouse. https: //developers. google. com/web/tools/
lighthouse/, May 24, 2017.

[17] Google. Perceptual Speed Index. https: //developers .google. com/web/
tools / lighthouse/audit s / speed-index, April 20, 2017.

[18] Google. Time to Interactive (TTI). https://github.com/WPO-
Foundation/webpagetest/blob/master/docs/Metrics/
TimeTo Interactive .md, June 24, 2017.

[19] Chris Harrelson. Performance improvements in Chrome's rendering
pipeline. Chromium Blog. https://blog.chromium.org/2017/01/
per formance-improvement s-in-chromes .html, January 30, 2017.

[20] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen, and
Oliver Spatscheck. A Close Examination of Performance and Power Characteristics
of 4G LTE Networks. In Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, MobiSys '12. ACM, 2012.

[21] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir Das. Improving
User Perceived Page Load Times Using Gaze. In Proceedings of NSDI, 2017.

[22] Sami Kyostila and Ross McIlroy. Scheduling tasks intelligently for optimized
performance. Chromium Blog. https: //blog. chromium. org/2015/04/
scheduling-tasks-intelligently- f or30 .html, April 30, 2015.

[23] Google Developers. Reduce the size of the above-the-fold content.
https://developers.google.com/speed/docs/insights/
PrioritizeVisibleContent, April 8, 2015.

[24] Google Developers. Remove Render-Blocking JavaScript. https : //
developers.google.com/speed/docs/insights/BlockingJS, April
8, 2015.

54

[25] James Mickens, Jeremy Elson, and Jon Howell. Mugshot: Deterministic Capture and
Replay for Javascript Applications. In Proceedings of NSDI, 2010.

[26] Mozilla Developer Network. Document Object Model (DOM). https:
//developer.mozilla.org/en-US/docs/Web/API/Document_
Ob je ct_Mode1, August 2016.

[27] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. Polaris:
Faster Page Loads Using Fine-grained Dependency Tracking. In Proceedings of the
13th USENIX Conference on Networked Systems Design and Implementation, NSDI,
Berkeley, CA, USA, 2016. USENIX Association.

[28] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. Mahimahi: Accurate Record-and-Replay
for HTTP. In Proceedings of USENIX ATC, 2015.

[29] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai network: A plat-
form for high-performance internet applications. SIGOPS Oper. Syst. Rev., 44(3),
August 2010.

[30] Dan Oksnevad. Time to Interact: A New Metric for Measuring User Expe-
rience. https://blog.dotcom-monitor.com/web-performance-
tech-tips/time-to-interact-new-metric-measuring-user-

experience/, February 3, 2014.

[31] Opera. Opera Mini. http: //www. opera. com/mobile /mini, 2015.

[32] Ratanaworabhan Paruj, Benjamin Livshits, and Benjamin Zorn. JSMeter: Comparing
the Behavior of JavaScript Benchmarks with Real Web Applications. In Proceedings
of USENIX WebApps, 2010.

[33] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. Race Detection
for Web Applications. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI '12. ACM, 2012.

[34] Tiffany Poss. How Does Load Speed Affect Conversion Rate? Oracle: Modern
Marketing Blog. https: //blogs .oracle. com/marketingcloud/how-
does-load-speed-af fect-convers ion-rate, January 14, 2016.

[35] Tony Russo. Why Your Website Dev Team Should Care About Revenue.
https://www.bluetriangletech.com/performance-insider/
your-webs ite-dev-team- should-care-about-revenue/, June 10,
2016.

[36] Ashiwan Sivakumar, Shankaranarayanan Puzhavakath Narayanan, Vijay Gopalakr-
ishnan, Seungjoon Lee, Sanjay Rao, and Subhabrata Sen. PARCEL: Proxy Assisted
BRowsing in Cellular Networks for Energy and Latency Reduction. In Proceedings
of CoNext, 2014.

55

[37] Matteo Varvello, Jeremy Blackburn, David Naylor, and Konstantina Papagiannaki.
EYEORG: A Platform For Crowdsourcing Web Quality Of Experience Measure-
ments. In Proceedings of the 12th International on Conference on Emerging Net-
working EXperiments and Technologies, CoNEXT '16. ACM, 2016.

[38] Limin Wang, Kyoung Soo Park, Ruoming Pang, Vivek Pai, and Larry Peterson. Re-
liability and Security in the CoDeeN Content Distribution Network. In Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference, ATEC '04.
USENIX Association, 2004.

[39] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. Demystifying Page Load Performance with WProf. In Proceedings of
NSDI, 2013.

[40] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. Speeding Up Web
Page Loads with Shandian. In Proceedings of the 13th Usenix Conference on Net-
worked Systems Design and Implementation, NSDI. USENIX Association, 2016.

[41] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks. In Proceedings of
NSDI, 2013.

[42] Sean Work. How Loading Time Affects Your Bottom Line. Kissmetrics Blog.
https: / /blog. kis smet rics . com/loading-t ime /, April 28, 2011.

[43] Zizhuang Yang. Every Millisecond Counts. https: / /www. facebook . com/
note. php?noteid=1228 6 910 3 919, 2009.

[44] Wesley Young. The Need For Speed: 7 Observations On The Impact Of
Page Speed To The Future Of Local Mobile Search. Search Engine Land.
http://searchengineland.com/need-speed-7-observations-
impact-page-speed-future-local-mobile-search-243128,
February 29, 2016.

56

