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Abstract

Data and information are integral to the modern economic system. Advances in technology
have allowed companies to both collect and utilize vast amounts of data. At times this data
can be very private and collected surreptitiously. Smartphones and other devices that keep
us in constant contact with the internet provide companies like Google and Facebook with a
wealth of information to sell. Despite all this, there currently does not exist a systematic way
to value data. In the absence of such valuations, gross economic inefficiencies are inevitable.
In this thesis, we seek to model ways in which data can be bought, sold, and used fairly
in an economic environment. We also develop a theory to value data in different settings.
Our models and results are applied to a variety of different domains to demonstrate their
efficacy. Results from game theory and mathematical programming allow us to provide fair
and efficient allocations of data. This research shows that there exists an efficient and fair
method with which to determine the value of information and data and to trade it fairly.
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Title: William A. Coolidge Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In November 1856 at the height of the Crimean war, an unknown nurse arrived in

southern Ukraine. What Florence Nightingale found at the British army hospital was

unbelievable. In war, tragedies are unavoidable, but what Nightingale observed wasn't

battle killing soldiers, it was medicine. Poor hospital sanitation was leading to the bulk

of deaths among soldiers. Nightingale used statistics to persuade military leaders to im-

prove sanitation, resulting in a drop in the death rate from 42% to 2%. This dramatic

improvement was the product of the acquisition and interpretation of data. The ability

to extrapolate from experience and learn from data propelled a little known hominid from

its enclave in western Africa to the dominant species on the planet in the evolutionary

blink of an eye. For millennia, the knowledge of which rocks made the best arrowheads

to which roots were safe to eat to how to use the stars to navigate was indispensable in

the expansion and success of our species. This knowledge came from data. Without input,
the human learning machine would be lost. Data is the lifeblood of humanity's success.

If information and data were valu-
able in the 1 9 th century, it is noth-
ing compared to their importance in
the modern world. From finance to
insurance to your washing machine,
data gives systems the ability to make
better informed decisions (including
the optimal composition of a portfolio
or your preferred tumble dry setting.)
The ability to process information has
grown hand in hand with increases in
computing power. No longer do statis-
ticians have to rely on painstakingly
hand-collected data. Modern technol-

I ~ ~ 13,& orE - ASM or MOPTALITY
A ,PI .MA 1 IN THE ARMY IN THE EAST. APRIL 26AR.jIA CM 85.

/ ......

7A, f4 hh-4.114 4d

/* .8M..N. . .04 xr-f1 4-,
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Figure 1-1: Florence Nightingale's Statistics.
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ogy gives us a repository of information larger than we even know what to do with. It is

partially for this that machine learning has gone from a relatively obscure branch of statistics

and computer science to the hottest academic topic taught in schools today.

While machine learning has made great strides, several issues remain. Modern machine

learning is highly domain specific. For example, algorithms that work quite well with data

collected from one distribution might not work well for data collected from another. Algo-

rithms that are quite successful at using sparse medical data might fail miserably when used

to analyze high dimensional financial data. Different application domains require different

tasks. Google uses website data to solve an eigenvalue problem to produce search results.

Such an approach would not work if one wanted to predict the price of Google's stock in a

month's time. In this way, machine learning consists of a menagerie of different algorithms

cobbled together, most being specialized to particular problems in particular settings. Many
of these algorithms don't even have provable performance guarantees. Clearly these methods

are highly dependent data structure and on the required task. Hence, the value of data to

one algorithm that can use it, might be very different to one that cannot.

Furthermore, sources of information are becoming more aware and more reticent to release
data. Consider the recent hacks of Equifax which resulted in a leak of sensitive private

information on more than 100 million Americans. This data was originally collected by
Equifax without the knowledge or consent of these individuals, highlighting the importance
of modern privacy. It remains to be seen whether future legislation will address these issues,
however, the ability to control where your data goes is something more and more people are

becoming concerned about. As such, some data is destined to become a scarce resource in the

future as individuals recognize and correct their breaches of privacy. Thus, machine learning
algorithms should be designed to acquire useful data while at the same time mitigating

privacy concerns.

One solution to these problems would be to monetize data transmission. If google would
like to use my search history to give me personalized advertisements, they must pay me
something. While we understand much more about data collection and manipulation than

we used to, the economics of information transfer is practically unstudied. There is currently

no systematic way to assign value to data. Despite this, individuals are beginning to realize
the value of their own data. It has become common practice, for example, to hide one's

location and browsing online when shopping for airline tickets as different online retailers

will increase their prices if they see you've previously shopped for particular tickets. The

value of data and the value of privacy are two sides of the same coin, each resulting from a

cycle of learning and resulting outcomes.

This thesis seeks to find a solution to the problem of valuing information. We develop

a structure through which data can be bought and sold fairly and describe under what

conditions optimal learning or profit can occur. We show how the economics of data and

information differ from other types of assets and develop specialized analysis techniques to

both value information and model market dynamics. Before this however, it would be nice
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to develop some intuition about this problem. Consider the following examples.

1.1 Examples

Example 1

During the financial crisis in 2008, many factors contributed to a sudden systemic economic

failure. One component was uncertainty surrounding certain types of complex financial

instruments. Assets like securitized mortgages played a part in stoking and maintaining the

panic that led to the downturn. Let's place ourselves in the shoes of a financial firm in 2006,
before the crisis hit, who is considering either buying or selling such securitized mortgages.

In order to make a decision on whether or not to buy or sell such assets, we as the firm must

make a decision about what these assets are worth. To do so requires a minor digression on

the structure of these investments.

A mortgage-backed security, made infamous in the aftermath of the great recession, is

simply a mixture of different pieces of debt. In general, securitization is a technique to

transform illiquid asset which generate receivables into securities that may be bought and

sold in the open market. The process of securitization requires that first the originator

of the assets create a portfolio of unwanted assets. Next, this pool of assets is sold to an

intermediate financial firm who finances this acquisition by issuing tradable, interest-bearing

securities. Investors who buy such securities receive interest from the returns on the asset.

In the specific case of mortgage backed securities, banks package and sell unwanted mortgage

debt to financial firms who package this debt in the form of securities to sell to investors.

Banks still collect on the loans and pass on profits, minus a small fee, to the financial firm

who in turn yields most of that profit to the investors. The way that firms package this

debt however is to split up individual pieces of debt into tiny pieces, and then recollect

these pieces based upon their riskiness. For example, if you were to go out and buy one of

these securities, it would contain small pieces of hundreds if not thousands of mortgages,
This means that when your neighbors, or equally a household across the country, pays their

mortgage this month and your security stipulates that you own 1% of their debt, you will

receive 1% of their interest (minus some processing fee.) Thus, securitization is a means of

diversifying the risk of an asset.

Now let's get back to the firm trying to value such securities. It is clear that their value

is directly associated with the probability that each of the mortgages get paid each month.

However, since securitization may pack a huge number of assets into one security, one would

need to know the default rate on the same large number of mortgages spread across the US

(or even the world.) Hence, data on mortgage payments would be central in determining

its value. The banks issuing individual loans still collect on them after securitization and

would have access to data such as payment history and other personal information. They

could sell this information to financial firms who would in turn be able to form an accurate

assessment of the value of these securities, allowing them to make optimal decisions in the
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future.

Mathematically speaking, let us consider a security to be a vector s E R' such that si

represents the percentage of each piece of n debts. Then, to simplify matters somewhat,
say that each of the debts di are i.i.d. Bernoulli random variables paying 1 with probability

pi and 0 with probability 1 - pi. Hence, given some sample of the debts, the profit of the

security is defined as sid. For this reason, it would be helpful to know the values pi in

order to calculate the expected value of the investment. Thus, our goal as the financial firm

is to obtain data to learn the expected value of the security by learning the pi's. In order to

do this we have access to several pieces of information:

1. We know that each piece of debt di we hold in the security has some associated features

(e.g. type of employment, location etc.) represented by the vector vi

2. For each piece of debt di we hold a prior belief on the possible distribution of pi given
by Pi(pi).

3. Banks who lend to households have access to vi and the payment history hi E R'

which is simply a time series with entries {0, 1}.

4. Each bank can sell the pair (hi, vi).

With these conditions established, it becomes clear that our goal is to design a function

f : R" -+ R with the property that f(vi) ~ pt. With this, we can accurately calculate both

the distribution and the expectation of the returns of the security s. Then we would be

able to determine if the security is under or overpriced, and what its risk is to then behave

accordingly. All we need in order to learn the function f is access to data (hi, vi) which we

may purchase from banks.

The question then becomes, how much should we

purchase this information for. To answer this ques-
tion, first we need to define our utility as a financial
firm. In other words, we need a quantitative descrip-

tion of how much we value accuracy in predicting the

values of the pi. Suppose this function takes the form

U(f, s) = sigi(f (vi), pi) where gi is some mono-

tone decreasing function in If(vi) - piI with maxi-

mum where f(vi) = pi. Then, suppose we have an

algorithm A that takes as in the prior distribution Pi

and the data (hi, vi) and returns a new distribution

Pi such that as T -+ oo, A(Pi, (hi, vi)) approaches

the dirac delta function P (p) -+ 6 (pi - p). In other

words, with infinite information, the algorithm allows

0.14-

0.12-

0.10-

0.06-

0.02 -

0.00

PMF for Returns on Security s

.

*0.

0 5 10 15 20 25 30
Profit

Figure 1-2: The goal of the firm is to esti-
mate the PMF of the security s, seen above.
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us to exactly learn the value of pi. Then one may suppose that the value of the information,
and hence the amount we pay for (vi, hi) to us is exactly the marginal change in U given

this data is processed by A. Sadly, this doesn't work, since in terms of our utility we are

equally well off simply not buying any data and there is no incentive to learn.

One further complication is the addition of other financial firms competing with us. It

may be the case that the more other firms learn there we lose utility commensurately. We

want to find a fair, systematic way to obtain information from banks, or vendors of data,
who have the ability to sell to multiple firms. Such a system does not exist to date. One

of the goals of this thesis is to find a mechanism that, given some sources of data and firms

who want to use that data, assigns an allocation of data in a fair way.

This example highlights the multifaceted nature of this problem. In order to assign value

to data, one must consider the preferences of those selling and buying it, the preferences

and information held by other sources and buyers of information, the combinatorial value

of subsets of data and the method with which data is learned. Such a problem might seem

intractable, however, it consists'of only three major pieces. First, we need to understand the

economics designing a market to share data. Second a thorough knowledge of the domain

from which the information originated is integral to data valuation. Finally, in order to cal-

culate the value of data, an algorithmic mechanism must factor in domain specific knowledge

and economic preferences to produce an allocation.

Example 2

Rare diseases like ALS are particularly difficult to research for several reasons. First of all,
there is minimal data. If a drug company wanted to develop a new therapy to manage or cure

such a disease, the sample size they could work with is incredibly small. It is also difficult to

justify the large cost of this development in order to sell a drug to such a small population,
despite the possible improvement in many people's lives. The act of sharing data is risky to

patients, whose information could end up in the hands of insurance companies that might

decide to charge more to these individuals. Furthermore, in the realm of medicine, sharing

data may be as simple as obtaining genetic information to something as complicated and

risky as participating in a drug trial. These methods of data collection could cost people their

lives, something not necessarily taken into account by statisticians and scientists collecting

information.

Imagine several drug companies are competing to develop a drug to treat a rare disease.

They each have different goals they would like to achieve with their treatment and can

evaluate and tune their methodology through data collection from patients. These patients in

turn could be incentivized to share their information in some way, but must be compensated

for possible risks to their well being. In this case, we may design a system similar to the

one discussed above in which the marketplace provides a matching between patients and

drug manufacturers upon the stipulation that expected harm patients is commensurately

compensated. This highlights the importance of the feedback between sharing data and
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future costs, and how such feedback must be accounted for in valuing data. The value of

data and information is not limited to training algorithms. In fact, data gives agents the

ability to assess the current state a game in order to choose their action.

Example 3

Consider the following game. There exists firms fi,..., fa, each with functions TJ that map

data to utility. Additionally, there exist m sources of data, Si, ... , Sm, such that each Si is

a collection of datasets Ujdij. Firms fi may choose to buy data from each source meaning

they sample some dataset from these collections. Suppose at each step they can sample or

not sample from each source. Multiple sampling from the same source is not allowed. Each

firm has past information about the sources of information encoded in the function Gi(K)
that gives the expected value, in terms of the utility given by Fi, of buying data from a

subset of sources nI {S1, ..., Sm}. Sampling from Si comes at a price pi, where p = {Pi} is
the vector of all such prices. Given p and g, each firm calculates which sources to sample

from by optimizing: rai(p, !9) argmax 9i(k) - 1 p3 . Now, the if we imagine the subsets
KC{Si,..Sm} jEK

themselves operating as autonomous agents attempting to collect as much profit as possible,
each source of data Sj will perform the optimization (where cj is the cost of producing the

data set.) max E pj

A Nash equilibrium in this game would consist of a set of prices p such that no one source

Si has an incentive to change their price. It is unclear, without knowing the structure of the

functions gi and by extension rj(p, !9), whether or not such equilibria exist, whether or not

they are unique and finally whether they can be calculated. It stands to reason however, if

such an equilibrium p can be found, that this represents one interpretation of the value of

data. Note that this could be generalized such that the function F maps data to an estimate

of some state Oj, which in turn dictates the action ai and subsequent utility ui of firm fi. In
this case, all of this information would give fi the ability to update 9i over time as data is

collected.

1.2 Previous Work

Scoring Rules

Buying, selling and valuing information and data has been studied in several contexts in

the past. In the 1950's, weather stations discovered that they needed a way to incentivize

forecasters to provide accurate predictions [1]. This problem is not limited meteorology [2].

In fact, a large number of problems in statistics attempt to estimate the distribution of a

given random variable. Probabilistic forecasting is central in both finance and economics.

Development of Markov chain Monte Carlo methods [31 dramatically increased the value

of such methods. In order to estimate such distributions however, one must first collect
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and aggregate information from sources of information and belief. For example, a weather

station might collect information from a variety of different forecasters, aggregate it, and

publish a forecast based upon the result of this procedure. The question then becomes how

to get good information. In mathematical terms, suppose there is a risk-neutral agent who

holds a belief, in this case represented by a probability distribution P = {pi} over a set of

r states, such that Pi = 1. If one were attempting to use this agent's information along

with others to assess the true distribution of a variable, one could offer a reward to this

agent for reporting a distribution R which we would hope equals P. To encourage both

truthful reporting and incentivize good forecasting, the reward c for the agent's reported

distribution {ri} = R, would have the form c = Zpisi(P) > 0 where the function si, called

a scoring rule, is constructed such that c is maximized when R = P and P = P where P is

the true distribution of the variable in question. Hence, this value c attempts to ascribe a

value of the information or belief provided, depending on both its truthfulness and accuracy.

Brier [1] introduced the first such scoring rule as si = ai + b 2r - E r which was later
\ k /

refined by Good [41 to the logarithmic rule si = ai + blog(ri). While these scoring rules give

a good way to describe the value of certain types of data, they run into the problem that,
when aggregating data in most cases the output distribution is equal to one of the inputs

[51, called the dictator, meaning that the information provided by other agents was not a

posteriori useful. Modern results in scoring rules [6], [71, [8] demonstrate how the convexity

of such rules can guarantee truthfulness in a wide variety of situations and additionally that

different estimable values can be properly predicted using the theory of elicitible functionals.

While interesting and useful from the perspective of designing a fair market, these results

don't consider the economic aspects of data.

Active Learning

The problem of sampling informative, and possibly costly, data is the guiding principle

behind active learning. Problems here can be categorized as either stream based or pool-

based depending on the manner in which new data can be obtained. In the stream based

case, the learner is presented with one piece of data to label or not to label at each time in

the process. The active learning algorithm then provides a suggestion, based upon observed

properties of the data, whether or not it is worth labeling. The algorithm employed must

hence take in the observed properties of data and output an estimate of how valuable it

will be to the learning task. These problem and algorithms have good performance both

empirically and theoretically [9], [101, [11]. Pool-based learning [121 takes the approach that

most instances of unlabeled data are known to the learner at each time who then must

pick the best data to label given past information. Specifically, in the pool-based case, the

learner is presented with a set of labeled data, here denoted as DL = {( 1, ... , (Xn, Yn)

and unlabeled data Du = {1x, ... , xmu}, where y is the associated label to the point xi. We

15



assume the total set D = DL U De, is sampled independently and identically from the same
distribution. The learner then uses the labeled points to train an algorithm f and faces the
objective of learning points in D, in order to improve the algorithm's performance. These
problems generally feature a small labeled set and a much larger unlabeled set from which
to choose points to label. With a small budget to query the unlabeled points, the challenge
is to extract as much information from the unknown set as possible while staying within
budget constraints.

Results in pool-based active learning focus mainly on measures that indicate which un-
known point to learn. Such measures can be considered to be functions that estimate the
value of previously unlearned data. Lewis and Gale [13] developed uncertainty sampling,
labeling the data point that maximizes uncertainty while Tong and Koller [141 applied this
notion to SVM's by sampling points based upon their distance to the boundary of the clas-

sifier. Uncertainty sampling is in fact a broad term for a variety of different metrics used to
guide active learning.

Another direction of research in this area is representative sampling. Here researchers
attempt to find a measure of how representative a certain unknown data type is of the
distribution in question thereby avoiding outliers. In the case of a linear classifier, there may
be a point that is far away from the bulk of the rest of the data but happens to be close to the
decision boundary, in which case, learning the type of this point is not very useful to classify
the rest of the data accurately. Nguyen and Smeulders [151 and Donmez, Carbonell, and
Bennett [161 show how points near the boundary of this linear classification problem are more
representative if they are more tightly clustered. Clustering among data points is another
method often used in determining the representativeness of a point. Specifically, if data is
unlabeled and belongs to a tight cluster, it generally serves as a good representative of said
cluster and labeling such a point will have broader accuracy improvements. Several papers
recently [17], and [18] show that different approaches to clustering can identify the best
points to learn. In essence, active learning depends on estimating the value of incorporating
different pieces of data into a learning task.

Algorithmic Game Theory

This problem relies heavily on algorithmic game theory to transform information into up-
dated beliefs and those beliefs into actions. These in turn result in economic outcomes.
There is a large body of literature on such topics (see [19], [20], [21]) and our focus will
be on different aspects of games studied in papers such as [22]. We will utilize some of
these models and results to evaluate how rational agents behave when buying and selling

information, and, additionally will after determining players' preferences, attempt to design
information sharing mechanisms that are optimal for one or both parties. Such algorithmic
mechanism design has been explored in [23]. In particular, one active area of research we
will draw upon is the field of online mechanism design, in which dynamic outcomes from a

game are used to design an economic mechanism in which some global behavioral objective
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is optimized. Algorithms and results in this field are succinctly described in [23] in which

the authors describe a theoretical framework in which an online mechanism can be achieved

in polynomial time given some reasonable assumptions on the structure of a game. Since we

are trying to optimize feedback control, it is additionally useful to consider plant dynamics

similar to those in [24] and [25]. Here the author provides an optimal bidding mechanism

for advertisements that relies on a randomized online algorithm to update its actions.

In the simplest case, information trading between two parties can be described as a

multi armed bandit problem with costly observations. The multi armed bandit problem, in

which a player has the choice of some number of of actions, each with observable rewards

given according to some unknown distribution, has been thoroughly studied in the statistical

learning theory literature [261, [27], [281. This model describes optimal decision making in

the presence of uncertainty and has applications in a variety of different domains [291 [301
[31]. It is a prototypical example of what machine learning experts term the exploration

versus exploitation trade off. Initially, when not much is known about the reward for each

action, there is an incentive to experiment with different actions to learn their underlying

return structure. At a certain point, however, one would want to use such knowledge to

pick the best action. In our case however, we consider the case in which observations, i.e.

data collection, becomes costly. Several papers recently [321, [33] and [341 have examined

this situation given some constraints on the exploration phase of the algorithm. [351 and [36]
study the case when observations have fixed costs and costs drawn from some underlying

distribution respectively. In the latter case, learning not only has to be done on the reward

distribution of each action but also on the cost distribution of observing each action's result.

In our case, instead of considering the cost of observations drawn from some distribution, we

allow this quantity to be determined as the result of game theoretic dynamics between those

sharing and those utilizing information. The question then becomes whether or not the same

techniques and algorithms can be applied in this case to efficiently solve this variation on the

multi armed bandit problem. Much of the work above describes polynomial time algorithms

that converge to optimal solutions in the case where there is only one strategic decision

maker. In our case however, the dynamics of two players trading information becomes far

more intricate. There must necessarily be considerations on learning budget, stability and

truthfulness. In [23] the authors show how truthful mechanisms can be created in an auction

type game, results we hope to apply to our information sharing mechanism.

1.3 Contributions of This Thesis

In almost every major industry, due to digitization and cheap sensors if a quantity of interest

can potentially be measured and predicted, it is. Modern computational resources and the

increasing sophistication of statistical inference algorithms has led to firms getting more

value from the data they collect. The prevalence of data sources and the increasing value

firms find in it, has led to data increasingly being viewed as an asset.
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Currently, there are gross inefficiencies in the way data is traded - both from the per-
spective of firms buying data, and vendors collecting and selling it. Firms buy data based on
intuitions on whether it might be useful in predicting trends they are interested in modeling.
For example, within financial firms there are large teams whose sole purpose is to obtain
datasets from a variety of sources to value financial instruments. Often they buy data with-
out ever having assessed its predictive quality, out of fear that all other firms are buying it
too. Even if it turns out that the data a firm buys is predictive, there is no principled method
to put a dollar value on the increase in predictive quality. Vendors (e.g. Reuters, Forrester,
Gartner), on the other hand, have no method to value the new, unique data sources in-
creasingly becoming available. Furthermore, vendors have no way of knowing which firms in
particular will find these datasets useful. Hence, they keep selling the same type of datasets
they have been selling for years to same set of companies leading to is firms and vendors
locked in long-term contracts for the same dataset. Given the nature of data-driven decision
making, if vendors cannot make informed decisions of what data to collect and who to sell
it to, it will lead to less predictive models. Our goal is to create a valuation system, or data
marketplace, in which data can be bought and sold.

The increasing use of data

in modern society is an in-
How do a guarantee firms ......... tevitable product of recent

.. s ttechnological advances. From

the perspective of those us-
ing the data, new algorithms

Prediction Goals
Value of Accuracy and computers have been huge

Data Set

in advancing their goals, but
ero edcl o a. w alociate o". -ed... * ...... revenuetovendws?: the current process of learn-

Data Allocation Marketplace
Compnsation For Data ing is becoming hopelessly in-

..a.....ata..........efficient. One of the rea-
Car. a data aikxafian

Value of Data be cal.cUalted Jefrtly? sons big data is catching on
... is because it is designed to

lcion ne deal with huge quantities of
data through techniques like
dimension reduction. How-

Figure 1-3: A Data Marketplace. ever, as powerful as dimension

reduction is, at a certain point
these firms must face the fact that they will no longer be able to collect an huge amount
of complex data and conclude something useful, rather they will need to shift to collecting
useful data in a more targeted way. Our system is designed to do just that. Firms who
participate will be guaranteed to only receive data that is most useful to their objective,
disregarding other information that could be misleading or repetitive. Additionally, while
they will pay some fee to collect this information, it will be small compared to the effort
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required to sift through all the data available to find data they need. Firms also sometimes
require information that is difficult to collect either due to privacy concerns, lack of sources
or some other complication. In this case, offering a financial incentive to share information
in a fair market will make sources of rare data less reticent in releasing their information,
increasing the possibilities for firms.

From the individual's perspective, the current system of data acquisition completely dis-

regards our right to privacy. If Google or Equifax or the government can collect information
on anyone's preferences and beliefs at their leisure, the social ramifications could be catas-

trophic and we are already seeing a push towards regulations on privacy. However, a push
towards what? It is not as if the economy, which subsists on data, will stop collecting our

information. What is needed is a systematic way that data and information can be shared

such that all parties benefit. The results proposed in this paper would be such a system.

Upon adoption of such a system, we foresee the following societal benefits:

" Useful data would be more available to those who need it, streamlining learning.

" Individual privacy would be protected.

" There would exist a systematic, unified method to value information.

Apart from the considerable social impact solving this problem will have, there are some

fascinating and fundamental technical challenges that need to be tackled along the way, that

make this endeavor especially exciting. First, how many times should a vendor replicate a

dataset to maximize revenue? - Data shares similarities with digital goods (e.g. songs, mobile

apps) where the marginal cost of production is zero. However unlike other digital goods, it

is realistic for a firm to derive most of its value from a dataset due to exclusive access, and so

replicating data and making it less scarce can severely affect its market value; Second, unlike

other economic assets, the value of data to a firm cannot be assessed a priori; the value of data

is derived solely from its ability to predict a quantity of interest. In addition, valuations for

datasets are inherently combinatorial in nature and given the potential scale of this problem,
it is infeasible for any mechanism to go through every possible combination of datasets when

matching firms and vendors. Hence any mechanism not only has to match firms and vendors,
it must efficiently and accurately assess the predictive quality of various combinations of

dataset with respect to the quantities firms are interested in. No mechanism currently used

has this capability. Solving either problem above would be a significant technical milestone

in of itself, and both are vital in achieving the vision of a data marketplace.

This thesis seeks to make the most general system possible, however, as previously men-

tioned, it is not possible to quantify the value of data without considering the application

domain. For example, information on financial assets might be both structured and valued in

a vastly different ways from data on medical procedures. With that said, we think that there

are huge possibilities for this technology in the domains of medicine, finance and insurance.
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Data is integral to every decision a firm takes. Thus, firms and vendors must value data

very carefully. Understanding the fundamental economic forces governing data exchange is

an important problem. We hope change how data is traded, away from long-term contracts

between the same set of firms and vendors to a more robust data allocation mechanism. This

will ensure that firms that derive the most value from a dataset are the ones that get it,
and vendors are incentivized to collect unique, predictive datasets. In addition, given how

sensitive of a topic privacy has become, only by accurately assessing how valuable the data

of an individual is, can we have a rigorous discussion on what data is worth collecting in

addition to ensuring that individuals that choose to provide their data are fairly paid for it.

To date, there has been no attempt to create a system to fairly value and trade data. Such a

system could be applied in a variety of fields from finance and e-commerce to medicine and

advertising.

1.3.1 Outline

The structure of the thesis is as follows: in Chapter 2, we introduce the mathematical

preliminaries necessary for the analysis and design of data marketplaces. We also introduce

several different methods of both valuing and trading data, and discuss their relation to

previous work done in combinatorial auctions and algorithmic game theory. In Chapter

3, we develop a method with which to price data to optimize total learning under certain

restrictions on learning. Chapter 4 describes an integer programming formulation of our

problem and novel relaxations and approximations we may use to solve it. Chapter 5 gives a

framework for a profit maximizing data allocation mechanism. We discuss several directions

for future work and conclude in Chapter 6.
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Chapter 2

Preliminaries

In this chapter we provide the mathematical background that will allow us to value data. It

is divided into three main sections: the first section is devoted to machine learning, especially
to highlight several algorithms and results in supervised learning. In particular, metrics for
measuring error in machine learning will be important in quantifying the value of data, and
hence will be covered; the second section covers several major results in algorithmic game
theory, focusing in general on mechanism design, combinatorial auctions and associated
algorithms; finally, the third section gives a model for the data valuation problem along with
preliminary results.

2.1 Machine Learning

In "Computing Machinery and Intelligence" [37], Alan Turing posed the question "Can
machines think?" or rather "Can machines do what we can do." This idea was formalized
by Tom Mitchel who said "A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance at tasks in
T, as measured by P, improves with experience E." This is precisely the goal of machine
learning: to provide a computer some experience and use that to learn to do some assigned
job better. Machine learning makes data driven predictions or decisions by building a model
from input. Applications of this technology are pervasive in the modern world. We find
machine learning software reading handwriting [381, identifying spam [39], characterizing
social networks, recognizing faces among many other applications. There is currently great
excitement in academia and society regarding the possibilities of such technology. However,
there are reasons to temper our expectations. Pattern recognition, which lies at the heart
of all machine learning problems, is highly nontrivial. It is easy for example, to come to
the wrong conclusions given limited or faulty data, as Microsoft learned in 2016 with their
chatbot fiasco [40]. Furthermore, current research on the brain suggests that the ways we
process data and the way a computer functions are vastly different, so trying to obtain

human-type cognition from a machine is probably unreasonable.
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With those caveats in place, machine learning has also made great strides in recent

years. From Google's reinforcement learning algorithm mastering the notoriously difficult

game 'Go', to the emergence of self driving cars, machine learning and artificial intelligence

are becoming commonplace in modern life. Machine learning can be separated into several

different types of tasks. Supervised learning, unsupervised learning and reinforcement learn-

ing. For the most part, this thesis will focus on supervised learning tasks, however, it is

useful to understand the flavor of the other two topics as well.

2.1.1 Supervised Learning

Example 1. Let's consider a fictional email service, "Fahoo," that must design a method for

identifying spam emails. Mathematically this means constructing a function f : R' - {S, N}
that maps the vectorized description of some email to "spam" (S) or "not spam" (N). To

do this, we have access to a set of pre-classified emails {(e1, c), (e 2 , c2 ), ... , (ek, ck)} with

which we can test and tune our function f. For this example we will gloss over exactly how

emails are turned into vectors e1 except to say that these vectors are called "features" and the

associated ci E {S, N} are called their "labels." From this information Fahoo must decide,

given some new email e E Rin, whether e is spam or not.

The above example is a classic problem in supervised learning. An algorithm is presented

with a set of inputs with which it can learn a function f in order to accomplish a task (in this

case identifying spam). Supervised learning tasks fall into two main categories: classification

and regression. A classification task asks the machine categorize data into a finite number of

categories. This could be binary classification such as the spam example above, or it could

be something more complicated like identifying a handwritten letter which would belong

to a set of size 26. In regression, the prediction can range over a continuous set of values.

Examples of a problem in regression might be predicting the rainfall for the next day given

current meteorological measurements. In either case, the essence of the problem is to take
input data {(ei, ci), (e 2 , c 2 ), ... , (ek, ck)}, process this data using an algorithm, and return a

function f which makes predictions f(e) = c.

At its heart, supervised learning is an optimization problem. In the spam example above
we would like to design a function f that mistakes as few inputs as possible. To do so, we

might define an error function error(f) = n1 f(e2 )#c where lf(e)c, is an indicator function.

Anywhere the function f makes a mistake is penalized by the error function. In general,
f belongs to a class of functions parametrized by a E R' such that the machine learning

algorithm must now solve the optimization problem min error(f). A classic example of this

might be, if e E R2 to take a linear function f(x, a) = a1X 1 + a 2x 2 . This may seem like a

restrictive class of functions to consider, however, it can give astonishingly accurate results,
particularly when combined with the kernel methods. It is important to note that different

algorithms can be trained using different error functions with different results. In general,
error functions that are nice, e.g. linear or convex, functions of the parameters a provide
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nice algorithmic solutions, however, as we will see, this is not always possible.

One problem in supervised learning is that, once given a labeled data set

{(el, c1), (e2 , c2 ), ---, (ek, Ck)}, the algorithm should avoid overfitting. It could be the case that

the function we design f works perfectly on the input data

{ (e 1, c1), (e2 , c 2 ), ---, (ek, Ck)}, but not well on unknown inputs. We need the function f to

generalize well. There are many methods to design such functions, but, without new data,
we must have a way to test how well our function f might behave on unknown data. Do do

this we employ a common tool in machine learning and statistics known as cross validation.

This technique, in essence, chooses a subset S of our training data { (es1 , csl), ... , (es,, cs)},
uses this subset as the input to our chosen algorithm to design fs, and then tests the error

of fs on the remainder of the training data. If we do this procedure repeatedly we can

measure how well our algorithm does creating functions that generalize well. We will use

similar techniques later on to determine the value of data and information to different tasks.

Another difficulty faced by supervised learning is that there is no limit to how large or

complex the data can be. Often times this makes it necessary for a preliminary algorithm to

transform the data initially before it can be used to train the learning task. Such transforma-

tions could come in the form of dimension reduction, Fourier and Laplace transformations,
or other methods, depending on the domain. Consider genetic data. The complexity of DNA

and the human genome might mean that this information could belong to large dimensional

Euclidean space and it is generally difficult to design efficient, meaningful algorithms that

make predictions in R".
Thankfully, as many modern results

like the Johnson-Lindenstrauss theorem
show, high dimensional data can be pro-
jected onto much smaller subspaces with-
out losing too much information. In the
following we give an example of how such
dimension reduction techniques can be
employed to preprocess data.

Example 2. A study in 2008 by Amer-
ican and Swiss researchers led by John
Novembre at UCLA [41] examined how
human genetics relate geographically with
one another. They collected blood from
over 1, 300 individuals from three dozen
countries across the whole of Europe.
Each of these samples was a 200, 000 di-
mensional vector vi E R2 00 ' represent-
ing single nucleotide polymorphisms, es-

-.

Figure 2-1: Genes Mirror Geography.

sentially places in human DNA that commonly differ between populations. Doing analysis in

200,000 dimensional space is difficult and the researchers wanted a way to somehow visualize
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their results. To do this they collected the column vectors {vi} into a matrix A, and then
decomposed A into its singular value decomposition A = UDVT. Then, defining the first two
columns of U as u1 , u2 they calculated U2UDV T where U2 = [U1, U2]'. Using the well known
result from linear algebra that states that this projection optimally preserves variance of the
columns of A, this process resulted in a 2 dimensional vector i for each individual. That
amounts to a dimension reduction from 200, 000 dimensions to 2 dimensions. Incredibly,
when the new values iU were plotted in R2, seen in Figure 2-1, they exactly mirrored the
geographical locations of each sample. This is simply one example of the usefulness of pre-
processing and the necessity of finding the critical components of data. Had the researchers
really tried to do analysis with the original A, they would have been sunk.

There are numerous different methods for supervised learning, all of which will be com-
patible with the data marketplace we design, however we will discuss two examples that
highlight some important algorithmic problems and properties.

Support Vector Machines

Imagine we have a binary classification task such that we would like to have a function
f : R" - {-1, 1} where f(x) classifies the feature vector x E Rn as belonging to one group
or another. One method we might use to do this is called linear classification. Specifically,
this method says to parametrize the class of functions f(x) we want to pick from by a

vector a c R+1 such that f(x) = sgn (an+1 + i aixi). The function an+1 + Z a simply

describes a hyperplane in n dimensional space which classifies points based on which "side"
they happen to fall on. Now suppose we have a set of
such that xi c R" and yj E {-1, 1}.

Given this, we would like to choose the optimal

vector a such that f makes the fewest mistakes pos-
sible on the training set. To this end, we might pe-

nalize the function f(x, a) as we did before, by adding
a penalty of one for every misclassified example, how-

ever, this approach has several problems. First of all,
the loss function is discontinuous and hard to optimize,
and second, there could be an infinite number of so-

called separating hyperplanes that properly classify the

data we are provided with. How should we choose one?
For these reasons, we would rather consider the loss

k n
function-, (max{0, 1- yj(an+1 + E aj)}I +Aara.

This gives us the ability to both create a maximally
separating hyperplane and to deal with training data that is not linearly separable. At this

point, we solve for a using dual convex programming. The dual problem, which relies only

labeled points {(xi, yi), ... , (X,, yk)}

-4 -2 0 2

Figure 2-2: Linear Classifier.
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on the inner product of the feature vectors, can be manipulated so that we may take non-

linear mappings # : R' -* R', apply these to our initial features, and solve the problem in

the higher dimensional linear space. Such methods are known as kernel methods and are

used extensively. SVMs are but one example of a method of training classifiers, however,

in most cases these methods follow the same principles: There is some class of functions f
parametrized by a. Given some labeled data {(Xi, yi), ... , (X,, Yk)} and some loss function,

we minimize the loss over the labeled data with respect to a to estimate the true classifier.

Neural Networks

Another interesting class of learning algorithms are known as neural networks. Pioneered in

the 1950's and inspired by rudimentary models of the brain, they remained largely forgotten

until modern computing power allowed it to reach its full potential.

Neural networks are simply functions f : R' - R'. What makes them special is that,

given any other function g : R" - R', we can design a neural network to give us f that

approximates g arbitrarily well. This means that even tw

2-3 can be correctly classified by these methods.

A neural network is a directed graph with nodes and

edges consisting of several different components. The

first component is the input layer, a set of n nodes,
the output layer, a set of m nodes, and some number of

hidden layers each with an unspecified number of nodes.

Each of these layers are connected to subsequent layers

by a number of weighted edges wij, beginning with the

input, then hidden, then output layers. Nodes in the

network take in a sum, weighted by the strength wij

of incoming edges, of outputs Ai in the previous layer.

This sum is then fed into a function 0 : R -* R such that

the output of node j becomes O(9j + E wijAi) where

the weights wij and the offsets 6O are all parameters the

learning algorithm can adjust. Common functions used

o sets such as those seen in Figure

0 ?)

-0 6

Figure 2-3: Difficult Classification

for 0 are sigmoid functions, step

functions, or any other function that approximates some sort of threshold. Now, given some

set of labeled data {(Xi, yi), ... , (Xk, Yk)} where xi E R" and yi E R' we can use an algorithm

known as backpropegation to adjust the weights and offsets so that f correctly classifies

training data. The backpropegation algorithm is just clever differentiation in combination

with gradient descent. Any neural network made up of more than one hidden layer is known

as a deep neural network and if can be shown that any function can be arbitrarily well

approximated by three hidden layers of arbitrary size.

In each of the problems above, it was assumed that the algorithm was provided with

labeled training data. This doesn't account for the problem that useful data is often scarce,

noisy and costly to collect. Machine learning algorithms that factor this constraint into their
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methodologies are called active learning methods. They are particularly important to our
work as they focus on only collecting data of the highest quality. This means that by defining
a value for data will place this class of algorithms on solid footing, which until now operate
mainly based on heuristic estimates of what is "good" data.

Active Learning

Any supervised learning algorithm, including the ones discussed above, rely on previously
labeled data. If there is no data to tell a neural network what outputs should be associated
with different inputs, you might as well just throw a dart at a board for all the predictive
value the function will have. For this reason, data is incredibly important to all of these
learning tasks. However, data and information can be both difficult and costly to obtain.
Active learning is a subfield of supervised learning that attempts to develop algorithms which
take this cost into account. Suppose that we are conducting a study on sexually transmitted
diseases in a population of college students. Perhaps our goal is to predict the likelihood a
student with particular features and behavior has of coming down with a given infection.
To do this, we would need to collect some data on students that both have and don't have
the ailment in question. However, due to the sensitivity of such information, subjects would
both have a tendency to either lie or not report at all. To encourage them to report their
feature xi E Rn and their status yi E {-1, 1} (infected or not) we as researchers could
offer a financial incentive for truthful reports. As researchers, we have a limited budget
so we would like to build the most accurate classifier possible while minimizing the money
spent on data. Classic approaches to this problem generally obtain data that is the most
uncertain to the classifier. In the case of a support vector machine, this might mean labeling
feature vectors that lie closest to the separating hyperplane previously given by our learning
algorithm. Other variations on this idea include choosing to label data points that, in
expectation, improve the performance our algorithm. Specifically, suppose we have some
supervised learning algorithm A that takes in some training set {(Xi, yi), ... , (Xk, Yk)} and
produces a function f(x) E [0, 1]2 representing the probability of x being in one category or
the other. Suppose further that there is an error function E(f, {(XI, yi), ... , (Xk, Yk)}) such
that f satisfies f = argmin E(g, {(XI, y1), ... , (Xk, yA)}). Now, given this, suppose there exists

g
unlabeled data {w1 , ... , w1} such that, if the true label of wi is ui, the total error changes by
6(wi , u) = E(f, {(xi, y1), ... , (Xk, yk)}) - E(f, {(x1, y), ... , (k, yk), (wi, ui)}). Then we can
choose the data point wi that, in expectation f(wi) 1 6(wi, 1) + f(wi) 26(wi, -1) improves the
performance of the algorithm the most.

Two other important branches of machine learning are unsupervised learning and rein-
forcement learning. Unsupervised learning takes unlabeled input {X 1 , ... , Xn} and tries to
associate with those points some sort of structure. Clustering is a popular tool used for
this purpose and a variety of different problems in network analysis and other fields require
machines to "learn" about unlabeled data. Reinforcement learning tries to update some
learning function f from data that is fed back into the system as a result of decisions made
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from previous functions f. A classic example of this is the lauded multi-armed bandit prob-
lem which, in its simplest form, states that a gambler has access to m arms a1 , ... , a, each
paying 1 with probability pi and 0 with probability 1 - pi. The objective of the gambler is
to, while playing, identify which arm is best. A classic solution to this problem dictates that
one should choose an arm ai at time t with probability ewi (t) where w (t) is the number of

E ewi (t)

wins of arm aj at time t. Over time this policy converges to the optimal policy with bounded
regret.

2.2 Algorithmic Game Theory

In their pivotal paper [42], Nisan and Ronen pointed out a growing need to consider al-
gorithmic problems in distributed settings with self interested agents. The most obvious
example of such a setting is the internet, in which countless selfish agents interact at all
times. Current research in this field focuses on the stability and computability of equilibria
as well as the efficiency, in terms of the price of anarchy of such distributed systems. Sev-
eral different economic applications to this work are gaining importance including complex
auctions, targeted advertisement, and a variety of other multi-agent systems. We will draw
mainly on the ideas of mechanism design and in particular auction theory as they relate to
our learning problem.

2.2.1 Mechanism Design

A blend of economics, game theory and engineering, mechanism design analyzes strategic in-
teraction by designing mechanisms to incentivize players to cooperate for a global objective.
In mechanism design problems, games are played by agents that have particular types. Let
0. E e, denote the type of the ith agent from the total set of possibilities E8. Then, given an
outcome of the game o c 0, the utility of each agent can be expressed in terms of a function
parametrized by their type. In mathematical terms, if agent i has type 0, G E , and o E 0
is the outcome of the game, the utility they receive is ui(o, Of). Agents, or players, then have
a set of strategies or actions si(Oi) E Ei they can take to effect the outcome of the game. In
addition to playing a single one of these actions, we may consider mixed strategies, where
agents play distributions over the set Ei representing the probability they play particular
actions. The utility of each agent can be rewritten as a function ui(o(s 1 , s2, ... , sn), 02) de-
pending on their type and the other players' actions, where o(si, S2, ... , sn) is the outcome of
the game depending on the strategy profile of all the players participating.

Definition 3. A strategy profile (S1, s2,..., sn) is called a Nash equilibrium if every agent max-
imizes their expected utility so that for each i we have u2 (o(si, s-i), Oi) ;> ui o(si, s-i), Of), Vsi

si
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Although the idea of the Nash equilibrium is central to game theory, it makes excessively
strong assumptions about agents' information about other players. Additionally, there are
sometimes multiple equilibria. Various different extensions of this idea have been proposed
to solve these issues. Dominant strategy equilibria feature agents who have one strategy
that outperforms all others regardless of the other players' actions. In addition there are
mixed Nash equilibria and Bayesian Nash equilibria which both behave better than pure
Nash equilibria.

Mechanism design is often concerned with dominant strategy equilibria. Consider auction
design. The standard problem states that there is some object for sale, and agents a1 , ... ,a,
who would like to buy the object. Each agent has their own valuation vi, ... , va, for the object
and therefore would not like to spend any more than that to obtain it. The problem is to
allocate the object to the person who values the object the most. One idea to consider would
be to collect how much each agent says they value the object, i, ... , v~, (these are known as
the bids) and give the object to the agent with the greatest valuation Fi5 for the price Ui7.
However, this doesn't work, since agents may lie about their valuations in order to increase
their utility. Specifically, if the winning agent decreases their bid Ui by e, as long as the bids
are reasonable space, he will increase his utility by E, so there is an incentive to lie. Enter
the Vickrey auction, the cornerstone of mechanism design and truthful mechanisms. The
Vickrey auction, also known as a second price auction, determines that the agent with the
highest bid ji is allocated the object for a price of zFj where 17j is the second highest bid. In
this case, if the winning agent changes their bid up or down a small amount, they do not
change their utility, unless they drop too far and lose the object entirely, going from positive
utility to zero utility. Hence, the winning player has no incentive to lie. If the other players
lie, they either continue not to get the object, or get it at too high a price. The structure
is elegant in its simplicity and many results in mechanism design were either inspired by or
simplify to this kind of mechanism.

Mechanism design, in its simplest form, consists of a social choice function f : 0 1 x ... x
E) -- 0 that describes the best outcome for set a players with different types. A mechanism
M =( 1 , ... , En, g(e)) defines the set of strategies available to each player and a rule g(o)
that describes the outcome of each action profile. A mechanism defines the actions available
and the outcomes based on those actions.

Definition 4. We say that a mechanism M implements the social choice function f(0) if,
at equilibrium, the outcome predicted by the social choice function is also the outcome at
equilibrium of the mechanism.

Many mechanisms such as auctions rely on agents to report their types 6, 8E such that
f(6) = o E 0 is the optimal social outcome.

Definition 5. Mechanisms that feature dominant strategies that are truthful are called "truth-

ful".

The Vickrey auction discussed above is the prototypical example of a truthful mechanism
since a simple payoff rule incentivizes agents to report their true value for an object. In later
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sections, our goal will be to design rules for allocating goods and money such that all parties
involved in a transaction are incentivized to reveal their true type.

2.2.2 Combinatorial Auctions

It is important to take a closer look at a particular brand of mechanism design known as

combinatorial auctions before we delve more deeply into the problem of valuing data. The

purpose of an auction like the second price auction discussed above, is to allocate a good in
the most socially optimal way possible. It can be shown that the Vickrey mechanism does

just this, by both incentivizing bidders to reveal their true valuations and by giving the object

to that agent who values it most. While this is fine when considering selling a single good

or service, more complicated auctions might not yield such an elegant result. In particular,
auctions involving the sale of a variety of distinct assets pose several interesting challenges

to the mechanism designer. First of all, because of complementaries and substitution effects

between different goods being sold, bidders have valuations and preferences over subsets of

goods. This means that economic efficiency is improved as long as bidders may place offers

on subsets of goods. Auctions with this structure are known as combinatorial auctions and

are becoming more and more important in the 21st century. Examples of combinatorial

auctions include the FFC spectrum auction, auctions for airport time slots [43], and delivery

routes [44].

These are auctions in which there are n agents as usual ai, ... , a, however, instead of

bidding on one object, there are multiple objects 01, ... , Ok available. Furthermore, the value

of an allocation of objects 01, .. , Ok to player ai is not linear in the objects. In mathematical

terms this means that Vi(01,..., Ok) # Vi(o, ..., ok_1) + Vi(ok), where V(9) gives the value
of a subset of objects to agent ai, and therefore objects may be worth more when paired

with other objects. As an example of this one can think of the body of a vehicle and its

engine as two objects. Separately they may have low value, but together they have value

greater than the sum of their parts. For this reason agents release valuations or bids on

subsets of objects and the auction designer must come up with a way to distribute money

and objects in such a way that buyers and sellers alike are incentivized to participate fairly.

Due to this, bidders must transmit some description of their bids for each subset of items

being sold, a computationally complex task. Thus, the bidder must calculate its utility for

each of m! different subsets, and then transmit this as an exponentially long vector to the

auctioneer. It is clear that this isn't efficient or even feasible as m grows. Many solutions

to this problem including bidding languages [451, oracle submission [461, and other bidding

restrictions 147] have been proposed. It is well known that this problem is NP-complete in

the worst case, however, in recent years several different methods to approximate optimal

solutions have been proposed. We can write the problem of multi unit combinatorial auctions

as the following integer program.
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n

max E 1 Vi(S)y(Si) (2.1)
i=1 SCM

s.t. Ey (s, Zi) < k Vj E f{I, ... , m}
SjyES i=1

Zy(S, i)1 Vic{1,...,rn} (2.2)

SCM

y(Si) E {O, 1}

The constraint y(S, i) 0 {, 1} can be relaxed to y(S, i) E [0, 1] in order to utilize tools

from linear programming. Solutions that result from this relaxation may be useful to estimate

optimal allocations of goods, and may additionally give information in terms of the dual of

the problem. Finally, some work has been done analyzing incentive compatible or truthful

mechanisms to elicit bids from participants in such an auction. The classic example of this

is the Vickrey-Clark-Groves (VCG) mechanism which is truthful provided optimal solutions

to the above integer program can be solved exactly. As this is often intractable, some

researchers have proposed other forms of mechanisms.

2.3 Valuing Data

The purpose of this thesis is to define the value of a piece of data, and describe a method

through which it can be sold. In fact these two goals are intrinsically intertwined in that the

price of data is dependent on some kind of market which in turn is impacted by the definition

of the value of data. Dynamics of buying and selling data can take many different forms and
in order to consider them in the greatest generality possible, we consider for the remainder

of this work the following situation. Suppose we have n firms fi, ... , fn who would like to buy

information and m vendors of information vi,..., v, each selling data set di, ... , din. Each of

the firms would like to estimate the state of a variable 0% E 0j, where E9 E Rk is convex

and there is a function gj(0) for each firm fi giving them some utility for their estimate of

the type 0%. These functions gj(0) are maximized when 0 is the true state 0%. Each firm has

previous information Ei(t) at time t and an algorithm Ai : I x d :- 0, that uses previous

information and some subset d E {d, ... , d,} to update the firm's estimate of 0 to Oi. On the

other side of the transaction, the vendors vj gain utility by monetary payment from firms

for releasing data, in addition to some feedback effects bj(fi, ... , fk) based upon who gets

dataset dj. Note that vendors may replicate their data to sell it to multiple firms. Finally,
depending on the level of information of different firms, individual firms may be penalized

by the function cj(01 , ... , 0n). It is our task to come up with a good method to allocate data

to firms and choose how firms pay vendors.
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Definition 6. A data valuation game consists of the following:

1. n firms { f1, ... , f,} each having information {I1, ... ,I } who wish to estimate the state
64e E i, where Ei is convex, of some variable. Utility is gained through the function

gi(9), where 0 is the estimate of the state, such that gi(0) is globally maximized when
the estimate 0 is equal to the true state Oi. Finally, each firm has an algorithm Ai that
takes in -1i and some datasets {dil, ... , dik} that produces a new estimate of the state
6'. Finally, there is a function for each firm representing competition between firms
ci(01, ... , ,) so that the total utility of the firm fi is equal to gi (0) + ci (01, .,-i) minus

what they pay for the data they buy.

2. The information parametrizing the firms gives them utility for each set of data S
{ dil, ... , dik} denoted V(S).

3. There are m data vendors {v1, ... , vm} selling data sets {d1 , ... , dm} such that the utility

from a transaction is decomposed into the monetary payment, pj, and the feedback effect
bj (f1, ... , fj,) that occurs as the result of selling information dj to the firms f31,..., fi,.

To sort through all of the notation introduced above, it is useful to consider an example:

Example 7. Consider the problem of a ride sharing service like Lyft or Uber trying to
estimate the future demand for service at a specific time and a specific place. To make this
estimate they will need to collect historical data on users' past demand. Suppose, for this
example, there are two firms f1, f2 representing Lyft and Uber, who would like to estimate
the number of people 0 demanding their service on a Saturday night so that they may adjust
their prices accordingly. Each firm gains g1 (0), g2 (0) respectively from these estimates, the
more accurate the better, and hence would like to collect as much information as possible.
They must weigh this gain against the potential cost of collecting this data. Finally, they
may be penalized by a competition function ci(01, 02) dependent on both players estimates.
On the other hand, there are m users of these services who may sell their data {d1 , ... , dm}

to either (or both) firms at some set prices. Their utility is then this price plus the possible
feedback effects of sharing their data. For example, if an individual's data suggests that
their demand on Saturday will be extremely high, it is in the best interest of a ride sharing
service to increase prices at that time, since this will result in more revenue. In this case,
the information this individual shared had a direct effect on their prosperity in the future
and hence, this must be factored into their utility. In such a game, the players may decide
to buy or not buy at a particular price (in the firms case) or sell or not sell at a particular
price (in the case of the vendors.) However, without knowing how the data dj improves their

estimate, how is a firm supposed to decide what price a piece of data is worth? Conversely,
without knowing the effects of their data on the estimate 6 and the resulting feedback, how do
vendors decide at which price to sell? The inherent informational asymmetries of this game

make these tasks difficult.
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This example, and preceding definition, suggest that a third party might be necessary in
determining the optimal price to buy and sell data, since, the only way the firm can value
the data is by processing it, implying that it already received it. Additionally, the only way
to determine the feedback effects of sharing information, is to share it to find out how that
changes 9. These are both unattractive options for all parties involved, and hence, data will
be sold at far to high or far to low a price, these prices will be slow to respond to changes
in learning or data quality and total welfare will suffer. Hence, we would like to create a

mechanism that, given the information of the firms and access to the data sets, assigns an
allocation of both data and funds. In this way, it is similar to the idea of a combinatorial
auction discussed earlier with some significant variations. First of all, firms do not bid on
subsets of data, they provide their information and utility functions and the mechanism
decides how much they value these subsets; and second, the datasets can be replicated,
removing one of the more difficult constraints of the combinatorial auction problem. The
following chapter will be concerned with constructing allocations of data and wealth optimal
for all participants.

2.3.1 Individual Data Valuation

Before we develop the methods to do this however, it is necessary to discuss an firm's
data valuation. This is the quality of data we would like to describe however value is a
nebulous term. In much of the previous research on scoring rules and active learning, the
value of data is simply how it increases accuracies of prediction. In this paper, we will
often take a similar approach, but it is worth pointing out that information is only useful
in a situation where it can be exploited. If I obtain data that accurately predicts the
economic growth of Kazakhstan, this isn't useful to me unless I can use that information.
In this research we assume that data serves the following role. A firm is playing a game
with actions a E A such that, depending on the state of the game 0 E E, they receive utility
u(a, 0). The goal then, given the firm knows the true state 0*, becomes to play a that satisfies
a = argmax u(a, 0*). Before soliciting information, the firm has an estimate of 6 informed by

aEA

either past information other priors. They also have the ability to incorporate new data into
this estimate of 0 using some predetermined algorithm with the goal of improving utility.
The value of information is simply then the difference in utility with and without using the
data to estimate 0 and obtain optimal actions a E A.

This estimation of value is very dependent on the application. If we are trying to predict

the price of a particular stock 0, it is not possible to determine the utility increase of data
since we can't tell what 0 will be. One solution to this is to obtain data about past stock

prices to use current data as a predictive tool. This brings up a subtle but important

distinction in how data is used. Some data is used to train the model. In the case of a stock,
this might be historical correlations between different data and said stock. This information
is used to tune the algorithm that gives the best actions a E A possible. Additionally data
is used as a signal of the current state. In the stock pricing example, this might be current

32



economic indicators or social media sentiment that we use to feed into our algorithm to give
us a. Both uses of data increase prediction accuracy, but in different ways. All this raises
the question why we don't simply just quantify value as an increase in accuracy. It could
be the case that certain mistakes still lead to the right a E A while other minor mistakes
lead to catastrophic loss in utility. So we are not only concerned with how data improves
our model, but how that model impacts utility. This distinction is not present in any of the
current literature.

We will assume for the remainder of the thesis that the system that allocates data to
firms has the ability to calculate functions Vi(S) that quantify the increase in utility of
firm fi obtaining and learning from data dj E S C {di, ... , dm1. Additionally, as competition
between firms and feedback from data to vendors is difficult to model and analyze, we assume
that the functions V represent only the value firm fi gets, and the vendors are simply paid
some profit. We include an example before moving onto the next chapter.

A Hidden Markov Model

Suppose we are a financial firm tracking the price xt of an asset over time. We assume
that this asset's price is described by some m state hidden Markov model. At the outset,
we have a set of priors on the transition probabilities, in the model which we would like to
update using past observations. We also have access to historical prices. Observations in
this case can be bought at some price pi. Given no observations, all we have is the historical
prices, and hence, can calculate the estimated distribution of prices at time m. Ideally, we
would like to get all observations yo, ... , yn- so that we can get an accurate estimate of
P(xilyi). If we can get such an estimate, and our previous knowledge of the Markov model
gives us P(xmi, xr) then if we can obtain observation yin, we should be able to accurately
estimate the future price xm. Depending on the prices of the past observations and the states
... X_ 1 , X0 , X 1 , ... , Xrm , it should be optimal to get some subset of observations yi, -- , y.-, to
train the model.

Then, getting yin gives us a signal about the future value we want to predict. This
illustrates the multifaceted uses of data, both as a training tool and as an indicator of the
current state. Now, assume that the utility of our firm is described by --(I0x - XM 11)

2

where Xm is our estimate of the future stock price. In this case, since we do not yet have
access to the value x,, what we may do to estimate the value of getting some observations

ys for S C [m] would be to first get an estimate of Yi, for all i E S without using any
observations, then train the model using the data ys to get new observations Yi'. Then
we can measure the difference in utility both learning and not learning the data by taking
V(y,) = -(IIX - y,'I1) 2 + (I1X, - ZI11) 2 . Then, this should give some estimate of the

iES
value of the subset ys C {-.., Y-1, Yo, .. , Ym-i1}. Finally in order to assess the value of the
current observation yi, we use the model, trained using ys, and measure the increase in
utility over time both with and without current observations. In other words, we take
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V(ym) = -(xi - yi'|I)2+ (|1 x - YilI)2 where Yi' is the value of xi estimated by
\iES

the trained model with observation yi, and Yj is the estimate without this observation.

Hence, the total value of learning subset ys U

ym becomes simply the sum of their two values Simulated Valuation Function
V(ys U ym) = V(ys) + V(ym). Note that all of
these values can be calculated empirically and 1.2,3,4

* .398
give an estimate of the increase in utility of the

firm by learning data.

Simulations

Simulations using a similar model and four

data sets demonstrate that, while initially, data

largely improves estimation, additional informa-

tion has decreasing, or even possibly negative,
marginal returns. This is seen in Figure 2-4

where the Hasse Diagram of the partially ordered

set defined by inclusion of subsets of all data

{di, d2 , d3 , d4 } is labeled with the accuracy im-

provements achieved by learning the data corre-

sponding to each node. It is clear that as we look

higher in the graph, and therefore learn more

data, the accuracy improves.
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Figure 2-4: Simulated Valuation Function

This is further seen in figure 2-5 where

he values {V(0), V(di), V(di U d 2 ), K(di U

2 U d3), V(di U d2 U d3 U d4 )} are plotted
r several different V functions. These dif-

erent Vi's were generated by allowing each

gent fi access to different prior information.

is easily seen though that in general, learn-

ig follows an increasing, subadditive trend.

Figure 2-5: Comparison of Different Valuation Func-
tions
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Chapter 3

Data Matchings

3.1 Data Matching Mechanisms

In the previous chapter, we defined the problem faced by a mechanism designer valuing and

selling data. In this section, we will describe several methods to allocate data that guarantee

truthfulness given some structure on data and learning. We later develop and analyze an

algorithm to find optimal matchings.

Definition 8. In a data valuation game, the outcome of playing is called an allocation and

can be represented by sets S1, ... , S, C {d1 , ... , d, } representing which data is allocated to

which firm, and prices pij paid by firm i to data set j if j E Si.

Our goal is to find data allocations that maximize both profit and learning. This can

also be visually represented by a weighted bipartite graph M such that there are n nodes

representing firms, m nodes representing vendors and edges only exist between these groups.

The weight of the edge encodes the price paid for the data.

Definition 9. Given a data valuation game, a data matching graph is defined as the

weighted bipartite graph M between nodes representing firms and nodes representing vendors

such that the weight of each edge represents the amount of money paid by a particular firm

for a particular dataset.

Note that an allocation in the sense of definition 8 corresponds to a unique data matching

graph. The challenge of designing a mechanism to value and trade data then becomes finding

a good matching M. We need the parties to present their information truthfully, otherwise

the value of data will be ill-defined. This means that firms will not be incentivized to alter

their information and vendors need to properly represent their data as well. If we design a
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mechanism in which there is an incentive to lie, then the value of a piece of data in that

case is meaningless. Additionally we need to design a mechanism in which there is some

incentive to play i.e. participants always have some positive benefit. Finally, there may be

many matchings M 1, ... , Mp that satisfy the above conditions. To distinguish among them,
we need to define some kind of system wide goal such as matchings that maximize total

learning or maximize total revenue (the sum of edge weights in the graph.)

Note that, from the perspective of both firms and vendors, the data matching graph

contains all the information necessary to determine their utility. Hence, we may rewrite the

utility of the firms as simply Vi(M) and of vendors as uj(M). One important consideration

in designing an auction (as this is a highly complex example of an auction) is that the agents

who value an object the most receive that object. In our case, the value a firm has for

an individual piece of data is linked to what other data they have received, as well as the

information of other firms. One method with which to measure this would be to look at the

incremental difference of (M) when an edge, representing transmission of a single data

set, is removed.

Definition 10. Suppose that firm fi and data set dj are neighbors in the data matching

graph M. The incremental value VUj(M) of a dataset dj to the firm fi is the difference

(M ) - Vi(M') where M' is the same as M minus the edge connecting fi and dj.

This definition works fine when we consider data that firm fi is already allocated. How-

ever, suppose we wanted to determine fi's incremental value for a piece of data it does not

have like dk. In this case, we may add an edge to M and do the same procedure, but it is

unclear what weight this edge should be. This brings us to our first simplifying assumption

on M, namely that edges connected to a dataset dk must all have the same weight. In

fact, this will play a pivotal role in designing a truthful payment mechanism later on. With

this in mind, we may define the incremental value of data dk to firm fi as the difference

Vik(M) = i(M') - Vi(M) where M' contains an edge between dk and fj whose weight is

determined by the algorithm generating matchings.

Now, back to auctions. The goal of an auction is to allocate goods to the firms that value

them most. With the above definitions we may define the notion of a stable matching. Let

Si(M) be the set of data sets received by firm fi in matching M and likewise let Rj(M)

be the set of firms receiving data set dj in that same matching. For the remainder of this

section, we suppose that k1 = Rj(M) is a fixed parameter of the system. So vendors must

decide ahead of time exactly how many times to replicate their data.

Definition 11. Given a data valuation game and an associated data matching graph M, the
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matching M is called a stable matching if for every firm i and every data set j E Si(M)

we have that Vi(M ) ;> Vkj(M) for every k Rj(M).

This means that a matching M is stable if there is never the case that firm fi incremen-

tally values dj more than another firm fk, and dj is allocated to fk and not fi.

Proposition 12. If a matching M is not stable it cannot maximize total learning.
n

Proof. Define V(M) = i V(M) and note that if M is not stable, it is the case that firm fi
values dk more than fj and dk is only allocated to fj. Here, if we alter the matching M to

M' such that instead of an edge between dk and f3 there is now an edge between dk and fi,
by definition, the utility V(M) < V(M') and hence M cannot maximize total learning. 0

As the above result shows, if we would like to maximize social welfare in terms of learning

(or more generally bidder utility) we must consider only stable matchings.

Before beginning to describe a method to build such matching M consider a simple

example. Suppose we have two firms fi, f2, and two data sets d1, d2 such that the utility

of each firm is given by u1 (0) = 0, ui(di) = 1, ui(d2 ) = 1, ui(di U d2 ) = 10 and U2 (0)

0,u 2 (di) = 2, ui(d2 ) = 2,ui(di U d2 ) = 4.

At this point there are several methods to consider.

We might first take a greedy approach, simply adding an Firm 1 Vendor 1
edge at the point where the incremental value Vij(M) is

the greatest. In this case, we must decide what the weight

of the edge should be and at what point to stop adding Firm 2 Vendor 2

edges, lest we end up with a complete graph.

Doing this and stopping after adding 2 edges gives the
Figure 3-1: A Greedily Constructed

following stable graph seen in figure 3-1. However, the Matching.
high value of giving both d, and d 2 in combination to firm

fi suggests that the matching seen in figure 3-2 would be more profitable. Furthermore, if

we continue this greedy process until there are 3 edges, we obtain a graph that is no longer

stable, implying that someone, fi who values d 2 more than f2 doesn't get it.

Firm 1 Vendor 1

Firm 2 Vendor 2

Figure 3-2: A Better Matching.
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We would like to avoid the possibility that this algorithm

might cycle between different matchings, never converging to

an optimal graph as seen in figure 3-3 and we additionally need

* to make sure that whichever matching this algorithm termi-

0 nates at is truthful. If, for example, we construct a graph such

as in figure 3-4 where the firms pay exactly their valuations for
igure 3-3: A Cycling Algorithm the data, they will be incentivized to lie about those valuations

Firm 1 Vendor

2
Firm 2 Vendor

2

Figure 3-4: An Untruthful Matehi

to the system.

In this case truthful reporting is no longer a Nash equi-

1 libria, a situation we need to avoid. In total, we are looking
for an algorithm with the following properties:

2 * The algorithm to find M can't get stuck at a solution

that is not stable, in the sense defined above.

ng. . The algorithm cannot cycle.

* The algorithm must terminate at a matching M that

incentivizes truthful reporting from firms and ven-

dors.

Note that firms providing the mechanism with information {11, ... , n}, gi (), and Ai, is

mathematically the same as simply providing functions Vij(M). Hence for notational brevity

we will assume that firms simply report these functions.

Proposition 13. Consider a data valuation game with n firms and one vendor and one

corresponding data set d. Suppose that the vendor has already decided it will replicate the

data 1 < k < n times. In this case, there exists a truthful mechanism to allocate the data.

Proof. In order to construct such a mechanism, we will generalize the idea of a second

price auction, in which the winning bidder must pay the second highest bid for the object

in question. Here, we define the k winners to be those k firms fi, ... , fk (without loss of

generality firms are ordered by V(d) > V2 (d) > ... > V,(d)) who have the k highest values

Vi(d) for the data set. Each of these firms pay Vk+1(d) for the data d. In this case, no

firm has an incentive to change their information. To see this, we will consider two case.

First, consider a firm fi who wins the data by submitting information truthfully. Then,

suppose they lie about their information, changing their valuation of the data to Xi(d). If

#i(d) > V(d), they still win the object and have the same positive utility Vi(d) - Vk+1 which
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is the same as if Vk+l(d) < i(d) < Vi(d). Finally, if Vk+1(d) > i(d) the firm fi gets utility

0. So in any of these cases, there is no incentive to lie about the information firm fi provides.

Second, suppose fi does not get allocated d when they truthfully provide information. If

they lie to get a new valuation Vi(d), there are several possibilities: if i(d) < V(d), they

still lose the object and get utility 0; if Vk(d) > i(d) > Vi(d), again they get utility 0; and

finally if Vk(d) < 17i(d), they receive the object and get negative utility Vi(d) - Vk(d). So in

any case, there is no incentive to lie, and this is a truthful mechanism. E3

Definition 14. In a data valuation game, we will call the above mechanism a generalized

second price auction.

3.1.1 Separable Data

In the case of more than one data set, we need to find the right amount firms should pay

for data sets in transactions given by M. To this end, suppose we have a data valuation

game with n firms, m vendors and an associated data matching graph M. Suppose further

that this graph is stable. As before, let Si(M) be the set of data sets received by firm fi in

matching M and let Rj(M) be the set of firms receiving data set dj in that same matching.

Then we may generalize the Vickrey auction discussed in the introduction by setting the

price of each piece of data sold to the highest incremental valuation of that data by those

who did not receive it. In mathematical terms, the price pj(M) of data dj in the matching

M is given by max Vkj(M). If the set Rj (M) {fi, ... , ft} then we set the price pj = 0.
kZR3 (M)

It can be shown that in the case of multiple data sets, this is not necessarily a truthful

mechanism. However, by putting certain structure on the way firms value data, this can be

remedied.

One major difficulty in trying to sell and value data in a market is that many different

pieces of information may contain substitutive value. For example, if a climatologist were

looking for data about greater Boston area, the weather reports in Cambridge and Boston

would tell them very similar information. Hence, both data sets are not necessary for learn-

ing. If we suppose though, that one of the stipulations of the market is that vendors sell

differing data sets, we could avoid this problem. What we would like to be able to do is,
given the number of times each data set is replicated kj, auction each good off individually

to construct the desired data matching.

Definition 15. Given a data valuation game with n firms and m vendors, the data sets

d1,...,d, are called separable if for every pair of data matchings M, M', every i E [n] and

every j E [m] we have Vi((M ) =Vi (M')
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With this in place, let's consider a greedy method of constructing matchings by choosing

a single data set at a time to auction. In this case we order the data sets by the amount

of total revenue they receive in a generalized second price auction as above, then iteratively

perform these auctions to create the matching. Suppose for the remainder of this section

that there are no ties in valuing data i.e. Vi (M) h Vkj (M) for all k, i, j and matchings M.

This makes tie breaking a non issue. This could also be solved by saying that if firms tie, if

in doubt the firm with the smaller index is allocated the good.

Algorithm 1 Elementwise Matching Contstruction
Input: V1 , ... , V,,: valuation functions; di, ... , din: separable datasets; k1 , ... , kin: number

of reproductions of each data set.

1: for j from 1 to m do
2: Do: Generalized second price auction auction:
3: Find kj highest bids Vi(0). Call the kj + ith highest bid V*.
4: Add an edge eij of weight V* for all i with kj highest bids.

5: Return: Optimal stable matching M with edges given by the process above.

Theorem 16. Given a data valuation game with separable data, a stable matching M with

payments defined using the generalized second price auction is unique and truthful.

In order to prove this, we state and prove the following lemmas.

Lemma 17. In a data valuation game with separable data, a stable matching can be found by

individually performing m generalized second price auctions on the single data sets d1 ,...,dm

where values for firms are given simply by Vjj(0), and then combining these auctions to

construct a matching. In other words, there will be an edge between fi and dj in M if and

only if in the auction for dj, fi is allocated the data set.

Proof. Consider such a matching M. If M were unstable, it would be the case that for

i E R3 (M) and k 0 R3(M), Vi(M) < Vkj(M). But, since the data is separable this

would imply that Vi(0) < V 3 (0). This is a contradiction since the generalized second price

mechanism on a single data set would not have allocated the data set dj to fi instead of fk

if this were the case. l

Lemma 18. A data valuation game with separable data has a unique stable matching.

Proof. Note that the number of times each data set is replicated is fixed by the vendors at

kl,..., km. Hence, consider any matching M' different to the matching M constructed in

the previous lemma. Suppose M' has an edge between fi and dj where M does not. This
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implies by the above construction that Vij(M) < Vkj(M) for some k who is not allocated

the data dj in M'. Hence M' cannot be a stable matching.

Lemma 19. A data valuation game with separable data is truthful under the generalized

second price auction mechanism and the above matching algorithm.

Proof. This fact follows from the fact that the matching, and hence the utility of each firm,

is simply a combination of individual auctions. Hence, by changing their information firm

fi is playing m different auctions in which he will not benefit from changing his strategy as

shown in proposition 13. Thus there is no incentive for firms participating in this market

mechanism to lie about information they provide to the system. El

In total, these three lemmas prove theorem 16, and furthermore, since there exists a

unique equilibrium in this case, the notion of the price, or value, of data is well defined.

Related to the idea of separability above is the notion of partially separability data

Definition 20. Given a data valuation game with n firms and m vendors, the data sets

d,...,d,n are called partially separable if there exists a partition S ={S} of {1, ... , m}

such that the function Vi (d1 , ... , dn) can be decomposed into the sum Vi,s (dsj) where ds,

represents data in the set Si.

Now suppose we have a method A with which to define an optimal matching in a data

valuation problem.

Corollary 21. Given a data valuation game with partially separable data partitioned by

S = {Sj} and optimal algorithm A to assign matchings, an optimal matching for this case

can be found by iteratively applying algorithm A to the subproblems selling data Si to firms

in order to construct a matching for all data {1, ... ,}.

Sadly in most cases, the restriction of separability or partial separability is unrealistic,

however, we may generalize this method.

3.1.2 e Separability

Definition 22. Given a data valuation game, data sets d1 , ... , dn are called E separable if

for any matching M, we have | Vi(M) - Vi( 0 )| < e. In other words, data in combination is

roughly the same in value when considered individually.
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As a market designer, one can imagine that the system itself gets some percentage of

each transaction and hence, would like to maximize the total revenue of any stable matching

it constructs. Along these lines, the system would like to maximize the total value V of

matchings it selects.

Definition 23. The total value V(M) of matching M is the total revenue, or sum of all

edge weights, in the allocation. The optimal such V for a data valuation game is called the

value of the game.

In the case of separable data, this is not an issue since there is only a single stable

matching. However, if we have a data valuation game with e-separable data, we may still

construct a matching, that is not necessarily truthful or stable, but that has nice guarantees

on its total value. Before we state this result, we introduce the idea of subadditive learning.

Definition 24. In a data valuation game, we say that learning is subadditive if for every

firm fi, and every data set dj, Vi(M) < Vi(M') if Sj(M') C Si(M). In other words, the

incremental value of data decreases as more data is processed.

Using these relaxations of the earlier constraints on the value functions, we can modify

our original algorithm so that as before, the system individually auctions the data sets, but

now the winners pay the alternative amount for data dj given by max Vkj(M). It is
koRj(M)

possible, if e is large or if there is other instability in the system that this matching will not

be stable.

Algorithm 2 Modified Elementwise Matching Contstruction
Input: V, .... , V: valuation functions; dl, ... , d,: e separable datasets; k1 , ... , k,: number

of reproductions of each data set.

1: for j from 1 to m do
2: Do: Generalized second price auction auction on functions Vi(0):
3: Find kj highest bids Vi (0).
4: Add an edge eij for all i with kj highest bids.

5: Return: Unweighted matching M with edges specified by the process above.
6: for j from 1 to m do
7: For each dj, set edge weight of all edges in M connected to dj to max Vkj(M)

kwRj(M)

8: Return: Weighted matching M.

In addition to this, we see that data valuation games that are simply perturbed ver-

sions of games with separable data inherit many of the nice properties of their more basic

predecessors.
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Theorem 25. Given a data valuation game with c-separable data, as long as e < 6(Vi, ..., Vn, d1 , ... , dm)

where J(V1,..., V, d1 ,..., dm) is some parameter of the system, there exists a polynomial time

algorithm to find a stable matching.

Proof. Suppose that using values Vi (0) we construct the unique matching M using algorithm

2. In this case, for each data set dj, we can define the value 6j to be the difference

(5= min V(0) - Vk(0).
iERj(M)
kVRj(M)

Then using these parameters we can define 6' = min 6j with which we can further define
1<j<in

6(Vi, ... , ,di, ... , dm) = 6'/2. Note then that if e < S(Vi, ... , Vdi, ... , dm), the matching

that algorithm 2 provides remains stable since

min Vi(M) - Vkj(M) > min Vi(0) - Vk3 (0) - 2e > 0.
iERj(M) iERj(M)
kj Rj(M) kg Rj(M)

This implies that for any firm fi receiving data dj in the matching M, we have Vi(M) >

Vkj(M) for all k 0 R,(M), hence the matching M is stable.

Thus, given any game, there is a simple way of checking whether or not we may use

algorithm 2 to find a matching. We simply need to find the value of 6(V1, ... , V, dl, ... , dm)

that belongs to this game and then determine how c-separable the data is. As long as

e < 6(V1, ... , Vn, d1, ... , di) the algorithm will converge efficiently to a desirable solution.

These results suggest another benefit of data matching mechanisms. As discussed earlier,

it is important for vendors to sell unique data. Otherwise, if all sources of information are

essentially the same as far as learning is concerned, competition will drive down prices and

there will cease to be an incentive to sell. One method to solve this problem would be

to only include data that satisfies the properties stipulated above. In particular, suppose

there is a system with firms fi, ... , fu, and data sets dj, ... , d, that satisfy e separability with

e < 3(Vi, ..., ,Vn di, ... , d,). In this case, suppose there is an additional data set dm+1 that

the system could value and sell as well. Before including it in the transaction however, the

mechanism could calculate the new value 6(V, ... , V, di, ... , dm, dm+i) as well as the new e

associated to the game. If e remains smaller than 6(V1 , ... , Xn, di, ... , dm, dm+1), then it makes

sense to include the new data dm+i, otherwise it could be discarded. Now, calculating the

new e is highly computationally taxing since it involves examining the new values Vi(M)

where dm+1 is included. However, it turns out this is unnecessary. All that is needed is to

use algorithm 2 to get a matching M with dm+1 included and then determine the maximum
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deviance of Vi(M) from the values Vij(0). In this sense we can define

E =max Vi (M) - Vij(0)
1<i<n

<j!m+1

. If < 6(V1, ... , Vn, di, ... , dM, d,+ 1 ) by the same reasoning as in Theorem 25, Algorithm 2

converges in polynomial time to a stable matching. Hence, by selectively choosing the data

to include in a transaction, we can guarantee that we may use an efficient algorithm to value

and sell data. These results are summarized by the following algorithm.

Algorithm 3 Discriminative Data Selection

Input: V1 , ... , VI: valuation functions; di, ... , dm: E separable datasets; kl, ... , km: number
of reproductions of each data set; d,+1, k + m + 1: new data set with reproduction limit.

1: for j from 1 to m + 1 do
2: Do: Generalized second price auction auction on functions Vi(O):
3: Find kj highest bids V (0).
4: Add an edge eij for all i with kj highest bids.

5: Return: Unweighted matching M with edges specified by the process above.
6: for j from 1 to m do
7: For each dj, set edge weight of all edges in M connected to dj to max Vkj(M)

k R,(M)

8: Return: Weighted matching M.
9: for i from 1 to m + 1 do

10: z= min Vi (0) - Vj (0).
iERj(M)
kVR, (M)

11: j = min 6j /2
(1<j<m)

12: j = max |Vi (M) - Vi (0)
1<i<n

13: if E < 5 then
14: Include dm+1

15: else
16: Discard dm+i

3.1.3 Simulations

In order to simulate the operation of the greedy algorithm described in this chapter, we

first needed to develop a method with which to construct valuation functions in a way that

their separability could be controlled. This was achieved by writing such functions V(S)

as functions of indicators V(zi, ... , Zm) where zj is 1 if data set j goes to this firm. Then
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Figure 3-6: Greedy Versus Optimal Learning.

we can simplify this expression by creating a quadratic form V(zi, ... , z") = zTQz. Note
that in the case the data is separable, Q will be a diagonal matrix. Hence, by perturbing
diagonal matrices to increasing degrees, we are able to construct valuation functions with a
controllable level of separability.

With this, we considered the case of 5
firms fi, ..., f5 and 4 data sets di, ..., d4 such
that each firm is assigned a random Q with

some level of separability. Then the greedy

algorithm described above was executed re-
sulting in some level of global learning and

a corresponding matching. Finally, the opti-

mal allocation was calculated with the same
associated statistics. We saw that, for mod-

erate amounts of separability, the matchings

provided by both mechanisms, seen in Fig-

ure 3-5, are not very different. Additionally,

Greedy Matching

Figure 3-5: Greedy V
Moderate Separability

Optimal Matching

ersus Optimal Matching Given

as the amount of separability increases (or the matrices Q become closer and closer to di-
agonal) the graphs in Figure 3-6 show that the learning provided by the greedy algorithm
approaches the optimal learning.

These simulations support the results above in that they show how our greedy algorithm
works extremely well with separable or near separable data. It also demonstrates that when
data is only moderately separable, in our case meaning the matrices Q are only somewhat
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diagonally dominant, the greedy algorithm still performs well. This implies that in prac-

tice, such an algorithm would be very successful in assigning approximately optimal data

allocations.

3.1.4 Profit Maximization and Optimal Replication

In the results above, the goal generally was to optimize the total welfare of the firms partici-

pating in the system. We examined how several algorithms might construct socially optimal

solutions. However, this analysis neglected the utility of the vendors selling the data. One

could argue that the socially optimal solution in terms of learning must be close to optimal

for vendor's profit as well since, if firms are learning more they are willing to pay more.

However, in the design of such algorithms, sometimes vendor's profit falls by the wayside

in order to incentivize truthfulness. This isn't a good situation and could drive vendors to

leave the market if they are not being fairly compensated for their data. For example, one

might consider the case in which a data set is highly valuable to only one firm, and negligibly

valuable to the others. Using the mechanism described above, the vendor in this case would

not be able to gain much profit from selling this data, despite its value to one firm. In order

to fix such a situation, more attention should be paid to the vendor's side of things.

Above we assumed that the vendors have the ability to replicate their data a certain

number of times kj. With something like data, this replication is free, and so it begs the

question why vendors wouldn't be willing to replicate their information n times. Broadly,

the reason they wouldn't want to do this boils down to supply and demand. If they is a

glut of a certain data set it becomes less valuable than if it is scarce even when firms are

essentially non competitive. This is clear in the above mechanism where replicating n times

would give profit of 0, and in other scenarios. Hence, kj, the number of times a data set is

copied becomes an important parameter with which vendors, or the system, can maximize

profit. To see how this might work, consider the following example.

Example 26. Consider a data valuation game in which there is one data set d1 , and n

firms each with value v 1 > v2 > ... > vn for this information. Suppose we define k to

be the number of times that d1 is copied, and using the generalized second price auction

mechanism, we would like to find the k that maximizes profit. In this case, we will calculate

k* = argmaxvk+lk. This is all well and good, however, consider the k* + 1th firm. They
kE[n-1]

now have an incentive to lower their valuation vk*+1 -- vk*+2 + e. In this case, the value in

the maximization k* = argmaxvk+1 k becomes k* - k* + 1 so that now fk*+1 is included in
ke[n-1]

the allocation of d1 . However, this means that the mechanism is no longer truthful strategy
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dominant.

As we can see by the above example, changing the parameters of the mechanism in

response to firms' reports generally leads to situations that can be exploited by lying. In

fact, in a perverse way, your truthfulness depends on the fact that the price of a good is

completely independent for your valuation of that good. Otherwise, you may manipulate

the system. This seems to suggest that attempting to maximize vendor's profit is entirely

pointless if it will always lead to a mechanism that is not truthful, however, we still have a

few tricks up our sleeve. Let's stick with the case of a single data set, and change our model

slightly so that the vendor now offers a price p for that data set, and firms who have vi > p

are allocated the data at that price. We might imagine doing the same sort of optimization

over p as we did before with k to maximize profit, but again we see this creates an untruthful

mechanism (for identical reasons.) However, in this paradigm we can come up with several

work arounds. First, consider the case that the vendor specifies a target profit R they would

like to obtain from the transaction. In this case, we can define a truthful mechanism that

will achieve this if possible. To do this, we search over the vi's to find a set S C [n] with

fSI = k such that for all i E S, vi > R/k. If such a set can be found, then for the smallest

possible k, we allocate the data to these fi for i E S for a price R/k. Here, there is no

incentive to lie as doing so will not increase your utility.

This is an encouraging result that might suggest that we look for the best R possible, but

again, this would run into the same problems we had before. The way to fix this is to partition

[n] randomly into two subsets F1 , F2 such that we may calculate R1 = maxpl{i E Filvi > p}I
p>o

and R2 = maxpl{i c F21vi > p}I. Using these two values, we can run the same auction like
p>o

mechanism above using R1 on F2 and R2 on F1 . It is important to note that either R1 < R2

or R 2 < R1 . Suppose without loss of generality that R1  R 2 , then we are guaranteed to

find k firms in F2 such that vi > R1 /k, so we are guaranteed a profit of min{R1, R2 } from

this process. This trick allows us to at least partially optimize the profit gained from selling

a single data set in a truthful way, but unfortunately, there is no clear way to generalize this

to the case of multiple data sets (unless they are separable.) This drawback aside, we do

have the following result:

Theorem 27. In a data valuation game with one data set and n firms, the mechanism

described above achieves expected revenue E(Revenue) such that

E(Revenue) > OPT/4

where OPT is the optimal revenue defined by OPT = max pl{i E [n] vi > p}I.
p>o
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Proof. OPT indicates an optimal price p* for the data, and k firms who buy it. Additionally,

after we randomly partition [n] into F and F2 , there are k1 firms in F who are allocated d,

and k 2 firms in F2 who get it. Now suppose we calculate R1 = maxp > OpI{i E F Ivi > p}I

and R 2 = maxp > OpI{i E F2 Ivi > p}1. Here we see that R1 > p*ki and likewise R 2 > p*k2.

Using this and the fact that E(Revenue) = E(min{R1 , R2}), we have that

E(Revenue) >E(min{R1 , R2})
OPT - kp*

> E(min{kip*, k2p*})
kp*

> E(min{ki, k2})
- k

Now note that if we condition on the fact that there are k replications of the data, the

expectation E(min{ki, k2 }) can be bounded inductively. For k = 1, E(min{ki, k2}) = 0,
and for k = 2, E(min{ki, k2 }) = 1/2. Note that for k increasing E(min{ki, k2}) = Mk =

Mk - Mkl + Mk_1 and if we let the increment be defined as Xk Mk - Mk_1 we see that
k

E(min{ki, k 2 }) = E Xk. Then if we have i odd we see that ki f k2 and hence, Xi = 1/2
i=1

whereas if i is even Xi > 0. This gives us that

k

E(min{ki, k2}) = Xi
i=1

k I k

22 4

But then, we see that E(Revenue) > and hence that E(Revenue) > OPT/4. lOPT -k

This is an interesting result in trying to optimally sell one data set, however, it cannot be

clearly extended to the more combinatorially complex case of multiple data sets. Still though,

it illustrates the importance of maintaining independence between prices and valuations in

these sorts of transactions, an observation that will be crucial in much of this thesis.

In this chapter, we saw how to generalize a truthful mechanism in the presence of many

data sets. We also demonstrated the difficulty in developing such a mechanism with which

to sell data and showed, how truthful profit maximization might be achieved.
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Chapter 4

Integer Programming Methods

4.1 Integer Programming and Incentive Compatibility

In mechanism design, the goal is to create a system in which individuals have the incentive

to act in a way that optimizes a global variable. In the case of auctions, this welfare can be

measured by the total utility of participants. This is usually optimal for the sellers of these

goods as well since the more utility bidders receive in the system, the more they are willing

to pay. In our case of valuing and selling data, note that if we have independent firms and

vendors with no feedback, we may write the problem of finding a suitable matching that

maximizes social welfare in terms of learning as the following integer program:

n

max ZZVi(S)y(S, i)
i=1 SCM

n

SAt. y(S, i) < kj Vj (E {1, ... , M}
SjjES %

y(S, 0) < 1 Vi E Il ... n}
SCM

y(S, i) E{0, 1}

where V (S) is the valuation of firm fi for subset of data S C M, kj is the reproduction

limit of jth data set dj and y(S, i) is an indicator variable representing which data goes

to which firm. This method of optimization is the most common technique in analyzing

combinatorial auctions, however in our case we run into several difficulties. First of all,

there is no reason that kj should necessarily be limited or predetermined. We note that in
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the case that kj = n the solution of this problem is trivial with every firm receiving every

dataset. Furthermore, this optimization problem does not specify payments for goods. This

could be solved by taking the dual of the Lagrangian relaxation of the problem above, and

interpreting dual variables associated with the first set of constraints as prices for goods.

However, without guaranteeing that the relaxation of the problem is integral, there is no

guarantee such a method will yield a reasonable solution. Also, the combinatorial complexity

of the bids V themselves are difficult to work with. Later in this section we propose a method

to simplify representational complexity.

Another problem with this formulation is that there isn't an incentive compatible mech-

anism to induce bidders to bid truthfully. In other words, they could lie about the function

Vi to get a better outcome. In order to eliminate this possibility we as the auction designers

need to develop a way to design payments to fix this. The most common way this is done is

through a payment structure known as a VCG mechanism. Suppose we have solved the inte-

ger program above to get a solution y* and total utility V. Then suppose we solve the same

problem without firm k to get an optimal value V-k. In this case, the system would charge

agent k the price V-k - (V - E Vk(S)y*(S, k)) which is precisely the difference in total util-
SCM

ity of the system (other than firm k) with and without k's participation. In this case agent

k's utility becomes E Vk(S)y*(S, k) - V-k - (V - E Vk(S)y*(S, k)) = V -V-k > 0
SCM SCM

since the addition of agent k can only increase the value of the optimal solution. Finally,

this is incentive compatible since if agent k lies, the total value of the allocation calculated

will be V' < V and his own personal utility will be V' - V-k < V - V-k so there is no incen-

tive not to report truthfully. The problem with this is that calculating the prices involves

actually solving the above integer program exactly multiple times. Furthermore, there are

results showing that if you calculate valuations and solutions approximately, the same VCG

mechanism may not be incentive compatible.

One nice result is that in the case of one data set and n firms, the VCG mechanism

is exactly the generalized second price auction have previously been using. Additionally,

in the case of separable data, the mechanism we use is also a VCG mechanism. For more

complicated cases though, there exist fewer results.

4.1.1 Representational Complexity

In combinatorial auctions, the representational complexity of bids is a problem. In our case,

this is compounded by the fact that the system itself has to calculate these bids in order to

utilize them. This means that, in the case that n and m are even moderately large, the task
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of solving for the V's will become computationally infeasible. Generally in the literature this

is solved by either stating that bidders are so called "single minded" in that they only want

a single subset S or there is some other structure imposed limiting the complexity of bids.

In our case, if we consider the case of separable data above, we see that the value functions

Vj(S) are given by V(S) = E aj where aj are fixed parameters of the system. This is fine if
jES

data has no complementary or substitutive value structures, however, this is more than likely

too strong an assumption. One extension of this to allow for such complementary effects

would be to measure pairwise "complementaryness" of different data sets. In other words,

one might calculate V(di) + V(d 2 ) - V(di U d2 ) to get an estimate of how much two pieces

of data overlap. Suppose there were only two data sets di, d2 , then each valuation function

must take on 4 values for 0, di, d2 , di U d2 . Here represent V as the function V(zi, z2) where

zi is an indicator function associated to including data set i in the allocation to the firm.

Then we can write V(zi, z2 ) = a1 z1 + a2z 2 + aCziz 2 where aI = V(1, 0), a 2 = V(0, 1) and

a3 = V(1, 1) - Vi (1, 0) - Vi (0, 1). This example extends to the following proposition:

Proposition 28. Any valuation function V(zi,..., Z.), where zi is an indicator function

associated to data set i, can be written as an n degree polynomial in the zj's where any term

with z' for p > 1 has coefficient 0.

Proof. We prove this by induction on the number of data sets m. If m = 1 we easily

see this is true. Now suppose this holds for m < k. When m = k, consider such functions

gs(zs1 , ... , Zs,, 1 ) on all subsets of m of size m -1. If we set the coefficient a corresponding to

the term z1 z2...zn we can calculate a = V (zi, ... , zrn) - E gs(zs 1, ... , M1). Then, combining

this with the previously calculated functions (which by construction agree on intersecting

terms) we obtain the desired polynomial. l

This gives us another way of describing the valuation functions. Suppose also that the

data has some regularities in that learning is submodular. It is reasonable to assume then

that taking the above polynomial and getting rid of all terms higher than degree two should

reasonably approximate the value firm i has for different sets. This is good since it still

captures some of the complementaries and substitution effects of data learning while being

reasonably computable. In essence then, our system has to calculate only the individual

value of the data sets to the firms and then some pairwise values in order to write down an

estimate i of the true valuation.

This brings us back to incentive compatibility. Given the above parametrization of the Vi

functions, can we design an incentive compatible mechanism that works efficiently? Does this
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parametrization somehow give the integer program above some structure we may exploit?

All of these are intriguing questions.

4.1.2 Iterative Auctions

One method proposed in the combinatorial auction literature to assign an allocations is an

iterative auction. There are two main flavors of these methods. The first has bidders assign

prices they are willing to pay for different bundles of goods, tentatively creates an allocation,

and allows bidders to change their valuation to increase their utility. Here it is the bidders

that change how much they value the goods. The other case posts a set of prices pi for

the goods with which bidders can evaluate which bundle is most valuable to them given

these prices. They release this optimal bundle to the auctioneer who increases or decreases

the price of goods in order to clear the market. This paradigm seems most useful for our

purposes and could be an efficient way, particularly given some structure on the valuation

functions, of approximating an optimal allocation.

Note that here our goal is to set prices in order to maximize social welfare measured

by total learning. There is an intrinsic relationship between the price of a data set and the

optimal data bundle demanded by each firm. Assume each firm values data independently of

the allocation to others and that there exist functions V1 , ... , V, describing the utility of each

data bundle S C {1, ... , m}. In order to formalize the problem, let's consider the following

integer program:

n
max >3 >3 I(S)y(i, S)

=11 ~3 s {,.. }s.t. E E y (i, S) < kj Vj E {1, ..., m}
i=1 sljES

Sy(i, S) 1 Vi C {1, ... , n}
SC{1,...,m}

y(i,7 S) E 0, 1} VS, t

This integer program describes the problem of creating a data allocation in order to

maximize E E V(S)y(i, S). Nowhere in this problem are prices mentioned, however,
i=1 SC{1,...,m}

it is well known that the dual of such a problem has dual variables that can be interpreted

as prices. There is a problem with this in that the dual of such an integer program will
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not be an easily solvable optimization in general. To solve this, we introduce the following

relaxation of the above integer program:

max
z=1 sg{1,..m}

Vi(S)y(i, S)

n

SAt. y (i, S) < kj Vj Ez {1, ..., m}
i=1 SlIES

y(, S) < 1 Vi E {1, ... , n}
SC{1,... }

y(Z, S) E [0, 1] VS, Z

which allows the variables y(i, S) to range between 0 and 1. One possible interpretation of

this relaxation is that variables y(i, S) now represent probabilities that firm i will get subset

S in some randomly realized allocation. We assume that the expected number of copies of

each data set sold is less than or equal to kj and that total learning, or social welfare is

maximized in expectation. Other than that, this relaxation allows us to approximate some

optimal solution to the integer program above. This allows us now to consider the following

optimization:

Z(A) = max E E
i=1 SC{1,...,m}

s.t.>3

Sg {1,..,

Vi(S)y(i, S) + EA kj
j=1

-~ > yG, S)
S=1 slIeS

y(i, S) E [0, 1] VSi

It is easy to solve this using traditional linear programming techniques in the case that

A = {Aj} is fixed. It is also useful to rewrite the objective function of this optimization as
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n Mn

V (S)y(i, S) + A k - y(Z, S)
= {. j=i (k = sljs Yl iS)

= Ak + E(Vi(S)y(i, S) - Ajy(i, S))
=1 i=1 i=1 SC{1,...,m}

St. jES

= Ak + E E y(i, S) (VS) - 5 A)
j=1 i=1 SC{1...,m} iES

Now if we interpret the Aj as prices for the different data sets, the values (S) - E Aj
jeS

can be interpreted as the profit of firm i from the set S given some set of prices. In this case

then, using tools from linear and integer programming, we have that minimizing the above

maximization with respect to A will give the prices associated to the optimal assignment of

the y(i, S). Note that given a set of prices A the firm will want to set y(S, i) to a positive

value when the term (S) - E Aj is maximized for all S. In this way, firms choose one
jES

(or several) optimal bundles S for each pricing A, following the discussion earlier in the

section. Finally, finding the optimal prices A simply involves solving min Z(A) which, since
A>O

the objective

SAk + E E y(i, S) V(S) - E A)
j=1 i=1 SC{1 ... ,m} jES

is piecewise linear and convex in A, can be accomplished through the subgradient algorithm.

This algorithm states that in order to minimize Z(A), we initialize A to Ao, then update

At -+ At + Oi(Vy - k) where y is the vector of the y(i, S) and V is the (n2') x m matrix

with entries in the jth row corresponding to sets S and bidders i that are 0 if j g S and

is Vi(S) otherwise. k is the vector [ki, ... , km]T. This gives us another way to calculate the

price of the data sets, however, since the matrix V (and other terms in the optimization)

are exponentially large it is still tough from a computational perspective. Additionally, since

we're solving the dual to a relaxed integer optimization, the solution will be an upper bound

on the actual integer program we would like to solve. However, it gives us a good sense of

how valuable different data sets are and in specific cases may give unique optimal prices.

We would like to use the same technique outlined above in a way that utilizes the struc-

ture of the approximations for Vi described in the previous section in order to simplify the

optimization. Consider the case that the have structure (zai, ... , Zim) =E aijzij. This
j=1
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models the case in which there are no complementary or substitutive effects between different

data sets. Here, we can write the optimization in the form

n m

max Y3 E %i zij
i=1 j=1

n

s.t. zi 3  k7 Vj E {1, ... , m}
i= 1

zij E {0, 1} Vilj

This integer program can be transformed in the same way as above to get approximately

optimal prices A3 and is far simpler computationally. However, disregarding the interplay

between learning different data in combination loses much of the character of the problem.

In order to include this, we could rewrite

Vi( I, ..., Zim) =3 %i Z + E E /
3iAkZijZik

j=1 j=1 k=j

where the terms 3 iyjkZiiJZk model substitutive or complementary effects of learning both

pieces of data. For example, for firm fi if learning data d, and d2 accomplish roughly

the same thing then /ijk should be set to a negative value such that Vi (1, 1, 0, 0, ... , 0) =

CN1 + cN2 - 3 ijk max{aii, af 2 }. So the sign and magnitude of !ijk indicates the pairwise

substitutive/ complementary effects of learning two data sets dj and dk. As previously noted,

if we assume learning is submodular and hence that a firm won't demand more than a small

number of data sets that overlap in information, this structure on Vi should give us an

effective way of estimating any such valuation function. With this in place, we can rewrite

Vj(zji,Z...,zim) as the quadratic form V (zi, ... , zirn) = z[(Qi)zi where Qj is the symmetric

m x m matrix with entries Qkj = O/3k/2 for k # j and Qjj = aij. With this, we can rewrite

the entire optimization as

max zT(Q)z

s.t. Az < k

zjE {0, 1} Vi,j

where A is the (nm) x m matrix whose ith row has Aij = 1 for j i mod n, k is the
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vector of data limits k = [k 1, ..., km]T, z is the concatenation of the zis and Q is the block

diagonal matrix with blocks Qi. Note that it isn't overly difficult for a system to empirically

calculate the Qi for each firm by simply "learning" each data set independently and then

pairwise.

Definition 29. In a data valuation problem, call the empirically calculated matrix Qi which

estimates V, the quadratic approximation of i's valuation Vi.

With this, we can state the following theorem:

Theorem 30. Suppose the matrices Qi are all strictly diagonally dominant. Then there

exists a polynomial time algorithm to approximate optimal prices for data sets d 1 , ... ,d.

Proof of this fact follows from Q, which must positive definite by our assumption, hence,
the relaxed quadratic programming problem (and thus its dual) are solvable in polynomial

time. This relates to our previous notion of e separable data in that the condition of the

theorem essentially means that Vi(di) + Vi(d 2) V(di, d 2 ) which was what our previous

separability notion was trying to formalize. It is an open question how large the gap is

between the integral and relaxed solutions of the primal problem, but this process still gives

us a way to estimate good prices for data.

Even without the assumptions of this theorem, we could try to use gradient descent to

find locally optimal A. We just don't have as many convergence guarantees.

Using the system above, we are able to efficiently get an estimation of the value of each

data set by solving the dual optimization problem. This is nice in that it gives a clear way

to value data sets in general, but it does not necessary provide a method which we may use

to allocate data. One simple way to do this would be to first, given information from firms

and vendors, calculate the prices {pj} using the quadratic approximation technique. Then,
given these prices, the system decides which firms get allocated which data by solving the

optimization Si = argmax (V(S) - E p) . In this way, the system allocates data to firms
SE[m] jES

that maximize their net utility. Such an allocation, called a take it or leave it mechanism,
will be studied in more detail in the next chapter.

Firm Competition

In the above formulation of the data valuation problem, it was assumed that there exist

some exogenous limits on data reproduction. It was also assumed that firms utilities are

independent of one another. In reality, this is an assumption we would like to relax to
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analyze the situation in which one firm's learning impacts another firms utility. One simple

way to do this would be to associate a row vector ai =< ai 1 , .ai > with each firm fi such

that their utility, instead of being simply Vi(Si) now becomes E aijVj(Sj). Now, the entries
j=1

of ai encode how much each firm cares about the success of others and this modification

makes the game something closer to a zero sum game. Now, note that in the case of no

competition, if there are no limits on data reproduction, the socially optimal allocation is to

give all data to every firm. In the case there is competition, the integer program becomes

n n

max Eaij E y(j, S)Vj (S)
j=1 i=1 SC[m]

s.t. y(j, S) 1 Vj C {1, ... , n}
SC [rn]

y0j, S) E to, 1} Vj (E f{1, .. , n}, S C [m]

Note that the above problem does not include any constraints on the number of times

vendors reproduce data, however, given some structure on the vectors ai, it is no longer

optimal to give all data to everyone.

To see this, consider the case that a, =< a, -3, -, ... , -1 > where a, # are very large.

With a, 3 large enough, we see that it becomes socially optimal for vendors to simply replicate

data once and give it all to firm fi. Hence, competition, even in this simple formulation, can

endogenously limit reproduction of data.

In this chapter, we described a way to model data valuation as an integer program, and

subsequent methods with which to analyze said program. These approximations are shown

in many cases to be computationally cheap and in simulations perform well.
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Chapter 5

Price Driven Mechanisms

5.1 Greedy Truthful Mechanisms

In the previous chapters, the price of data was determined endogenously to incentivize firms

to report truthfully and to maximize social welfare. This paradigm focuses on the firms

assuming that vendors have very few degrees of freedom. In addition to these results we would

like to understand the dynamics from the vendors perspective as well. The vendors' only

degree of freedom is the price they offer their data for. In general, prices are dynamic values

updated to optimize profit, not necessarily to incentivize truthfulness, although this can

sometimes happen as in the case of the VCG mechanism. Motivated by these considerations,

in this chapter we consider other price centric methods of assigning data allocations.

In [48] and 1491, the authors describe an iterative pricing method used in combinatorial

auctions to assign allocations. In their case, they consider an vector of prices p = {p3 }
provided exogenously to the system with which the bidders must then decide which bundle

of goods optimizes their welfare. Any transaction allocates data sets Si C [m] to firm fi.
Assume that the marginal value of any dataset is nonnegative.

Definition 31. These sets {S1,..., S} are called feasible if, given replication constraints

k1, ... , km for each of the data sets, the sets satisfy the constraint that for all j E [in], E 1 =
ijjESi

kj.

Note that we could have used the constraint 1< kj, however, in our case, with
ijESi

nondecreasing valuations, any socially optimal solution must use all data possible, otherwise,

more social welfare could be obtained.

Definition 32. In a data valuation game, with n firms and m data sets, given prices p = {p,}

for each piece of data, firms can calculate S* = argmax Vi(S) - E pj. If the sets Si are
SC[m] jES
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feasible, the prices p and the sets Si are called a Walrasian equilibrium if Si = S . If some

data set dk is unallocated, set Pk = 0.

Suppose that the system is trying to calculate the best Si to increase total learning.
n

Define OPT(V, p, k) = max Vi (Si). Suppose that social welfare is measured as total
Si feasible

learning 1 V(Si).
i=1

Theorem 33. In a data valuation game any Walrasian equilibrium yields a socially optimal

allocation Si.

Proof. Consider some set of prices p and corresponding allocations {S*}. Suppose that Si

is the optimal feasible allocation given by OPT(Vi, p, k). For each i E [n] we have that

Vt(S,) - E p, > V(Si) - E p3 . Putting this together for all i gives
j~s jESi

Vi(ST) - Zpj > V(SO)-Ypi
i=1 jES i1Ei

V(S) -E pj >OPT(Vi,p,k)- E Ep
i=1 JES i=1 jEgi
n m

Z V1(S,;) - ( k3p3 > OPT(Vi, p, k) - E kSpj
i=1 j=1 j=1

Vt(S;) > OPT(V, p, k)

So {SZ} must be a socially optimal allocation.

The trouble is both guaranteeing that such equilibria exist and finding them. Even

calculating a single set S* could take exponential time, and that is just one part of this

problem. The payment structure may result in negative utility for the firms and hence,
would not be useful in our case. Motivated by this framework, the goal is now to create an

truthful mechanism that attempts to efficiently maximize both learning and profit. Some of

our earlier work utilized a greedy algorithm which auctioned off data sets one at a time. This

works truthfully in the case of separable or E separable data, however, this is a very strong

assumption. In more general settings, such a greedy method could be manipulated by the

bidders who may lie about their valuation functions Vi. In fact, in this case, the mechanism

is highly sensitive to the order that data is auctioned, and in general, it is always possible

to construct examples in which bidders manipulate their values for data sold early, in order

to optimize their wealth with information sold later.
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Instead of iteratively selling the data sets, we might consider greedily allocating datasets

one at a time, minimizing the risk firms manipulate the system in the method described

above. Consider the following. A shopkeeper has m goods dl, ... , d" with prices pi, ... , pm

and over the course of a day, n customers arrive to buy goods. Each customer buys the

bundle of goods that optimize their welfare given the posted prices, and the shopkeeper

would like to adjust the prices to account for demand. As each customer comes in and buys

some subset of goods S C {d, ... , dm}, the shopkeeper takes that as a signal of the demand

for each good and adjusts prices p3 -+ pj + e for j E S and Pk - Pk - 6 for e, 6 > 0. Hence, by

the end of the day, goods that were bought many times should have a higher price than those

that weren't, reflecting their higher value. The algorithm we will use to greedily allocate

data sets will be along a similar vein as this.

Consider a data valuation game where the data sets are given initial prices p(O) = {},
and suppose that the optimization problem S* = argmax V(zis) - E pj can be calculated

SC[m] jeS
efficiently for each firm. Note that in general this is a strong assumption and will be relaxed

in later discussion. With this, we randomly permute the n firms fi, initialize prices, and set

demand increments 6, e > 0. Imagine in this case that there are no reproduction limits kj

and that data vendors would like to extract as much profit as possible from valuable data.

Now, consider the first firm fi selected from our random ordering. Given prices, p(O) this

firm can calculate S* = argmax V1,(S1)) - > pj, and is allocated the set S*, while paying
SC [M] jES

pj for each data set dj such that j E S*. Then we may update the prices p(O) - p(l) such

that if j E Si*, p. - p 3 + e and if j 0 S*, pj -+ pj - 6 . We can do this for each data

set in the ordering to obtain an allocation Si for each fi and corresponding payments to

the vendors. Note that, as mentioned above, the more valuable data sets will be bought

more often, yielding both higher prices and higher purchase rates and hence at the end of

the process will attain the most revenue. Thus the gross revenue of each vendor at the end

of the algorithm gives an estimate of the relative value of each data set. This process is

summarized by the following:

Theorem 34. In a data valuation game the Iterative Allocation Mechanism defined above

is truthful.

Proof. To show that this is truthful, suppose a firm provides a valuation function i in-

stead of their true valuation V. In this case, they will be allocated S according to S=

argmax i(zis) - E pj compared to the set Si = argmax Vi(zis) - E pj they are allocated
SC[rM] jES S [,M] jES

when honest. However, by construction

Vi(zis) - EPJ > V(zig) - Zmp
jEsi jgs
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Algorithm 4 Iterative Allocation Mechanism
Input: V1, ... , Vn: valuation functions; di, ... , dn: datasets; e, 6 > 0 increments; Pi, ... , PM

initial prices.

1: Randomly permute the set {1, ... , n}.
2: for i from 1 to n do
3: Calculate Si = argmax Vi(S) - E pj

SC[m] jES
4: Allocate Si to firm fi
5: Update prices
6: Vj E S,, p- p7 +e
7: V3 j S,,, P, P, - 6

8: Return: Allocation {Sj}, prices pj(i) where pj(i) is the price paid for j E Si by firm i.

and hence, truthfulness is a dominant strategy.

Thus, firms who participate in such a system have no incentive to lie about their val-

uations of any data. Assuming that the maximization max Vi(zis) - E p can be quickly
SC[m] jes

calculated, this gives us a truthful, efficient way to allocate data among firms for prices that

reflect demand. This is already good and yields several other related results. If we initialize

prices uniformly, the prices at the end of the process should give an estimate of value for.

individual data.

Corollary 35. Consider a data valuation game using the iterative allocation mechanism to

assign allocations using uniform initial price p(O) =0, . Assume that the marginal value of

data set d1 is always greater than C1 and that the marginal value of every other data set is

less than C2 with C2 < C1. Finally, suppose e = 6. In this case, the final price p(n) has the

property that pi Pk for all k $ 1.

Proof. We can show this fact by induction on the number of firms. In the case n = 1 we

see that pi = Pk e for all k E [m]. Assume this holds for n < k and consider the case

n = k. By our induction hypothesis we see that p(k - 1) has pi > Pk for all k 7 1. In this

case there are two possibilities. If at time k - 1 we have pi > Pk for some k $ 1, then even

if dk is allocated and d, isn't we have that pi > Pk at time k. On the other hand, if at time

k - 1 pi = Pk for some k $ 1, then dk will never be allocated when dj. To see this, suppose

P1 = Pk and dk is allocated and d, is not. Then if S = argmax Vk-1(zk-ls) - Z pj, such that
SC[m] jES

62



1 #' we have that

Vk_1(zk-_9) - Emp
jE5

< C2 - 01 + Vk-l(zk_1S\{k}u{1}) - p
jE5\{k}U{1}

< V-1(zkl\{k}U l}) - p
iE5\{k}U{1}

which violates the maximality of 5 and therefore if dk is allocated, d, must be allocated
as well. However in this case at time k, Pi Pk as well, finishing the proof. El

Note that the same result holds if 6 = 0. Additionally, as was the case of our previous
greedy algorithm on separable data, we have that there is a relationship between the resulting
allocation and socially optimal allocations.

Corollary 36. Consider a data valuation game using the iterative allocation mechanism to
assign allocations with initial price p(O) and suppose c 6 = 0. In this case, if we consider
the resulting allocation {Si} of data sets to firms and define kj to be the number of times
dj is allocated, we have that {Si} maximizes social welfare under replication restrictions
E I = kj for all j C [m].

ilJESi

Proof. Proof of this follows from the fact that the prices remain fixed and each firm is
allocated their optimal set Si under these prices, hence p(O) and Si form a Walrasian equi-
librium. 0

Simulations show that with a large number of firms, over time prices settle down into
equilibrium. Additionally, the total profit passing through the system increases steadily.
This is seen in Figure 5-1.

Simulations using general valuation functions also exhibit similar profit increases using
this method. Figure 5-2 was generated by first creating a model as in the end of Chapter
2. Then, valuation functions V were calculated and the iterative allocation mechanism was
implemented. The graph clearly shows that over time, prices adjust in order to maximize
profit.

Even with all of these results, calculating the
maximization problem

-- Profit

S; =argmax Vi (zis) - SP
SC[m] 

Es
0.5
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Price Evolution Using Greedy Algorithm Increases in Profit
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Figure 5-1: Prices and Profit Over Time

is generally hard. We would like to introduce

a framework to simplify this component of the

algorithm. With this in mind, note that in Wal-

rasian equilibria, it was assumed that data ven-

dors artificially limit the supply of all data sets

by raising prices in order to increase their rev-

enue.

If a price pj were so low that each firm is

allocated dj, the vendor might want to raise the

price to increase profit possibly reducing the number of times it is sold. Here prices and

supply are inversely correlated. Additionally it can be shown that using a VCG mechanism

if kj = n for all k c [m] each person be allocated all data and would pay nothing. This is

clearly suboptimal for vendors. Thus it is in their interest to limit access to their data. In the

previous cases this limitation was provided by the number of times a data set was replicated,
however, it could equally have been done by only partially allocating data to firms. In other

words if the data set dj consists of thousands of labeled points and firm fi is allocated zij = ,

they would be randomly assigned 60 percent of the data in dj. This effectively smooths out

the function Vi in such a way that the optimization S7 = argmax V(zis) - E pj becomes
SC[m] jes

more tractable.

Definition 37. A data valuation game with fractional allocations is a data valuation game

in which an allocation randomly assigns a given percentage of a data set dj to a firm fi.

In these games it is reasonable to assume that due to the randomness in the assignment
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of data, the functions V (zji, ... , zim), where zij E [0, 1], are differentiable. Furthermore, due

to the fact that additional data gives diminishing accuracy returns, we may assume that

the Ii's are strictly concave. With these two assumptions in place, instead of the hard

combinatorial maximization problem we had for firms before, we can now calculate, given
m

a set of prices p = {pj}, the maximization max Vi(zei, ... , zim) - E zijpj. By assumption
ziE[O,1]m

the objective V(zil, ... , Zim)- E zijpj is concave for any p over the compact set [0, 1]' and
j=1

thus has a unique maximizer. More over, this maximization can be done in a short amount

of time using either KKT conditions -or something like stochastic gradient ascent. Thus, we

can now run our greedy truthful algorithm efficiently. There is one caveat to this and that

is when the prices are updated, they should take into account the amount of the data set

that was allocated. In other words, we set 6 = 0 and for all prices, pj -+ pj + zijc after data

is allocated to firm fi.

Algorithm 5 Efficient Iterative Allocation
Input: V1 , ... , Vn: differentiable strictly concave valuation functions; dl, ... , dm: datasets;

e > 0 increment; pi, ... , pm, initial prices.

1: Randomly permute the set {1, ... , n} via o.
2: for i from 1 to n do

3: Calculate z = argmax V(Za(i)l, ... , Zoj)m) - zo(j)jpy
zo )jE=0,1]m 1

4: Allocate z*( to firm f0 g) and update prices p -+ p3 + z*igc

5: Return: Allocation {zi}, prices pj(i) where p3 (i) is the price paid for the percentage zij
of data dj by firm i.

Note that the above algorithm, due to the randomized sampling, is only truthful in

expectation, however, this is a small price to pay for the huge increase in efficiency.

5.2 Competitive Pricing

The problem of evaluating the proper price for data and information is difficult on many

levels. One reason for this difficulty is that it is difficult for firms and vendors alike to predict

the outcome of processing data and information without having access to it. Without buying

the information, one cannot know how much it's worth. It would be akin to someone buying

property blindfolded, knowing only after the transaction occurs how much the home is worth.

However, it might be possible to have a third party do such a valuation (which is what the

above work is concerned with.) Also, one might be able to evaluate the value of a data set by

examining a proxy dataset that has similar properties. In this case, the notion of differential
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privacy would become highly invaluable. Another reason why valuing data is so difficult has

to do with the combinatorial complexity of the problem. Even if firms and vendors knew

exactly how much obtaining data would help them, it is unclear how competition between

vendors affects prices. This section intends to focus on precisely this problem. In other

words, assuming firms know exactly how they would benefit from information, what should

prices be set to in equilibrium?

One interesting property of data is its low marginal cost for reproduction. In this respect,
it is similar to other electronic goods such as software. There is some economic literature

dealing with how to price such goods [501 but no current research considers competition

between different vendors. One could imagine selling a single data set d, to n firms fi, ... , fn
who each have value V > V2 > ... > V for that data. If the data set's price is set to p E R>o

then any firm fi with Vi > p will buy the data, yielding a profit of E p. In this case,
iV1%>p

the optimization problem on the side of the vendor selling the data becomes max E p and
PERii>p

solving for the optimal p* E R yields the correct price for the data set d1 . Specifying such a

p* automatically results in an allocation in which all fi with Vi > p receive the data.

The story gets more complicated when more data sets are considered. Consider the same

example as above, however with the addition of another data set d2 . Here, we suppose that

each firm has value Vi(K) E R>o for different combinations of the two data sets. Vi takes the

subset , C {1, 2} that fi is allocated. Now, suppose that there exist prices p = [p1, P2] for the

two data sets. Each firm, in order to maximize utility, will optimize the following expression

max Vi(K) - E pj in terms of , given the prices P1, P2. Knowing this will be the behavior of
KC{1,2} jEK

the firms and leveraging the fact that the values V(K) remain fixed allows the vendors of the

two data sets to adjust their prices accordingly. In particular, denote the optimal subset of

{1, 2} chosen by firm fi given value function Vi and prices p = [PI, P2] as K(Vi, P, P2 ). Then

note that each vendor of the data sets would like to optimize max E i1 E K(Vi,Pj,p-j)p.
PiER

Then we define a price of data sets d, and d2 to be a Nash equilibrium p C R 2 . We may,
if we would like, alter the above optimization to include a lower bound on possible prices

offered, representing the cost of data production and processing. Regardless, even in the

case with two data sets, it is clear this problem is becoming more and more computationally

challenging.

We may now state the problem in full generality. Suppose we have n firms and m vendors

Definition 38. Define a competitive pricing game as a game such that there are m

vendors of data sets d1 , ... , d, who may set prices pi,...,pm for this information. Addition-

ally, there exist firms with valuation functions Vi(K) C R>o that dictate how much util-

ity firms obtain when they are allocated some subset K C ({1, ... ,m}) of the data. With
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this, given actions p = [p1, ... ,pM], vendor j obtains utility E pj where r,(Vi, p)
iIjEK(V,pj,p-j)

argmax Vi (K) - E pj.
KC{1,...,m} jEV

Note that the only agents in this game are the vendors who determine the price of their

data set. The firms have fixed responses given fixed prices and are hence non strategic. This

leads us to our definition for competitive pricing.

Definition 39. Given an competitive pricing game, the competitive prices for data d1 , ... , dm

are the actions of the data vendors at equilibrium.

In other words, data should be priced in such a way that no individual vendor selling

a data set has the incentive to change their price. If such an equilibrium can be found, it

should give an idea of the value of particular pieces of information in the market structure.

However, converging to such an equilibrium is not trivial. There is no clear algorithm to

perform the optimization necessary, and worse, there is the possibility of reaching multiple

equilibria. From the brief discussion above, this may not be a problem since the value of

one good might be intrinsically linked with the price of another good. For example if d,

is only really useful with d 2 and d2 's price P2 is incredibly high, then the d, will not be as

valuable. This game models the dynamics from the vendor's perspective and gives a sense of

how complementary and substitutive effects among different data sets influence competition

and can therefore impact prices. To see how such a system might work in a simple case

consider the following.

Example 40. Suppose we have separable data d1 ,..., d, and firms fi,..., f" with valuations

V(dj) for each firm fi and data set dj. In this case, given a set of prices p = {pi}, the

optimization performed by the firms buying some bundle of data becomes

K(Vi, p) = argmax V (,) - E pj
. . .{...,m}

= argmax E V(dj) - p_
KC{1...,m}

={jE{, ... ,m}s.t. V (dj) - pj > 0}.

In this case, ,(Vi, p) is quite easy to calculate and additionally, optimizing prices becomes

an easy task as well since for each vendor, given a set of prices p = {pi}, their optimization

becomes
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max E pj
Pj >0 ir-VjP)

-max E p
Pj > iJVi(dj)-p

3 >0

and the optimizations of the different vendors become totally decoupled. Hence, once

each vendor calculates p* = argmax E p, an optimal Nash equilibria is found with
pER i|v(d)-p>0

competitive prices given by p* {pj}. Note that this is similar to the greedy algorithm used

earlier in this chapter as it simply optimizes a value for a single data set at once.

Note that in this example, it only took one pass through the different data sets, to price

them accurately. In the case of non separable data, once the first set of prices is determined

the vendors might continue to individually adjust their prices. This individual adjustment

takes a particular form. Given prices p= {pj}, vendor vj has the choice of changing pj, all

else being equal. Here, as p, ranges, we see that each firm fi buys dj once p crosses some

threshold tij(p-j). This threshold tij(p-j) can be calculated as the pj that satisfies

argmax Vi () - E Pk
C{1,...,m} kEK
s.t. jEK

argmax V(r,) - Pk.
KC{1,...,m} kEK

S.t. jK

Hence, given prices p= {pj}, each vendor can individually maximize p3 by taking p=

argmax > p3 .
p3 ER i~p<ti(p-j)

There is no guarantee that such an algorithm will converge to a set of prices. In essence

such a system is just a best response algorithm which is efficient if the tij values can be

calculated or estimated quickly.

In this chapter, we've seen how to construct efficient algorithms to allocate data in a way

that maximizes profit. In addition, we have proposed an simulated a model for competition

between information sources. The notion of Walrasian equilibria and the structure of these

kinds of auctions are a good description for this problem and we think would readily extend

to the more complicated setting
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Chapter 6

Conclusion

In this thesis, we studied different methods to value data and information. Up to now,

there did not exist a systematic way to describe the economics of data or a way to value

information. The models, methods and results in this work are a step towards such a system.

If those who use information don't have access to a method to value new information, they

will not be able to fully realize their potential to learn and adapt. By the same token, if

those selling their data cannot price it, they will not be fairly compensated. We have seen

that by putting reasonable structures on how firms learn using data sets, we can calculate

optimal fair allocations of information, revealing the value of different sources of data. Such

allocations may be constructed such that each participant has no incentive to lie and every

incentive to participate. This has clear implications in several different domains including

finance, insurance, and retail where private information is at a premium and has the potential

to significantly increase profits. Our system is superior to those that exist currently which

rely upon blindly choosing collections of data to buy with the hope of improving predictions

and decision making in the future.

In the modern world, sometimes it feels like big brother is always watching. The main

difference between Orwellian notion of a surveillance state and our current climate is that

the entities collecting our information are firms like Google, Facebook and Amazon who use

it for monetary gain. It stands to reason that for their gain we should be compensated for

the loss of our individual privacy. Such compensation, as described in the results of this

research, would both encourage those with sensitive information to share it, and dissuade

firms from collecting too much information and infringing unnecessarily on our privacy. In

this way, we think that this research has policy implications for governments who would like

to preserve privacy while maintaining economic innovation.
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6.1 Directions for Future Work

While the results in this thesis represent a huge leap forward in understanding the economics

of data and information, there are still some holes in our current knowledge. It would be

useful to understand how competition between firms impacts data valuation. In particular, if

different firms would like to monopolize information or simply limit the information gained by

competitors, the problem now isn't simply about their learning, but the learning of others. A

general model for this interaction is elusive, however, in a simple case one could imagine that

firms get utility based on their own learning and are penalized linearly for the learning of the

other firms. Mathematically, if each firm's learning is described by the functions V(S) for

i E [n], the total utility of firm i can be written as U (S1 , ... , Sn) = Vi(Si) + E aiV (Sj). The

acj's could be thought of as representing the amount firm fi cares about the success of firm

fj. In this way, the model for utility is similar to a weighted zero sum game. One question

becomes, if there is some structure on the functions V(Sj) and the matrix A = {ajj}, is

it possible to extend our previous analysis. Note that this is a simple case of competition

between firms and understanding the most general case is an even tougher challenge. It would

also be interesting to analyze the case in which there was some kind of feedback between

the firm's learning and the vendors. In this case, we might say that if by sharing data, you

expose yourself to greater cost in the future, you as a data vendor should be compensated

commensurately. It would also be useful to think about dynamics of data valuation over

time. In reality, goals and priors of firms are changing constantly, therefore the value of

information must change accordingly. Finally, one aspect of the data valuation problem

glossed over in this work was the actual algorithm used to incorporate new information with

existing priors. Generally it was assumed that the firm came in with this algorithm however,
perhaps they simply come in with the goal of learning and the system we have described not

only allocates them data, but recommends the best algorithm they can use to learn.
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