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Abstract

In this thesis, we present a robust generalization of the synthetic control method.

A distinguishing feature of our algorithm is that of de-noising the data matrix via

singular value thresholding, which renders our approach robust in multiple facets: it
automatically identifies a good subset of donors, functions without extraneous covari-

ates (vital to existing methods), and overcomes missing data (never been addressed in

prior works). To our knowledge, we provide the first theoretical finite sample analysis

for a broader class of models than previously considered in literature. Additionally, we

relate the inference quality of our estimator to the amount of training data available

and show our estimator to be asymptotically consistent. In order to move beyond point

estimates, we introduce a Bayesian framework that not only provides practitioners

the ability to readily develop different estimators under various loss functions, but

also equips them with the tools to quantitatively measure the uncertainty of their

model/estimates through posterior probabilities. Our empirical results demonstrate

that our robust generalization yields a positive impact over the classical synthetic

control method, underscoring the value of our key de-noising procedure.

Thesis Supervisor: Devavrat Shah
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

The past two years have been an amazing journey, thanks to all the people I have

met along the way. I would like to begin by thanking my advisor, Devavrat Shah,

for taking a gamble on me and giving me the opportunity to join his research group.

Devavrat has been incredibly patient with me, giving me both time and encouragement

to overcome my numerous shortcomings. In fact, rather than inundating me with

research my first semester, Devavrat encouraged me to focus on my courses and attend

talks to build a solid foundation, and he did so in his own unique way, asserting that

"there is no use going into war with forks and knives" - anyone who knows Devavrat

knows he has quite the way with words. Beyond his patience, Devavrat has morphed

the way I think, teaching me how to approach and break down complex problems,

and helping me realize the elegance of simplicity.

Observing that my research interests were taking a random walk, Devavrat wisely

put me under the mentorship of his more senior students. Quite frankly, this thesis

would definitely have not been possible without my collaborator, Jehangir Amjad.

Throughout our time working together, Jehangir proved to be a tremendous mentor:

helping to fix my proofs and bouncing ideas with me. I am also thankful to be

living with Dogyoon Song, a walking encyclopedia. I thank Dogyoon for answering

all of my math questions and for motivating me to be healthy.. .most of the time.

Overall, I am grateful to everyone in Devavrat's SSPIN research group for both their

thought-provoking and fun discussions.

Although he probably doesn't remember me (and understandably so), I am indebted

to Professor Alan Oppenheim for being so kind to me before, during, and after the

EECS visit days. Professor Oppenheim's genuineness is a large reason as to why I

traveled across the country to pursue my graduate studies in Boston, the city that

unfortunately hosts all the sports teams I loathe the most.

I am thankful to several funding agencies that supported my research, including

the National Security Agency and Draper Laboratory.

I am also grateful for Boston Cares, which has provided me the opportunity to

not only give back to my community, but also gain perspective of how blessed my life

has been. Thank you for giving me a higher purpose and for helping me meet such

wonderful and caring role models.

As with many great adventures, mine began because of a girl - my high school

sweetheart, girlfriend, and best friend of 7 years, Jana. Throughout our entire time

together, Jana has kept me rooted, ensuring that I maintain perspective on the most

5



important things in my life - besides herself. She's available when I need her most,
cheers me on (even when there's not much to be proud of), and encourages me to

venture beyond my comfort zones. Despite not sharing the same affinity for my field

of study, she also indulges me by listening to me geek about my work. Jana is my

greatest source of happiness, always.

Literally and figuratively, I would not be here today without the undying love

and support of my other two best friends, my parents. At every stage of my life, my

parents have undoubtedly been my most loyal and passionate fans. I can never thank

them both enough for allowing me to pursue and find my own interests. Although

I don't often say or show it, I deeply appreciate all of my dad's stories and advice,

and for making me laugh, particularly when he knows more about what is happening

around campus than I do. I am beyond thankful that I have a mom who listens to

all of my pointless stories and rants, helps me rediscover my roots in art and music,
and, more importantly, cooks and sends the most delicious food/care packages. My

parents anchor my life and everything I accomplish is because of their love.

6



Contents

1 Introduction

1.1 M otivation . . . . . . . . . . . .

1.2 Overview of Main Contributions

1.2.1 Robust algorithm . . . .

1.2.2 Theoretical performance

1.2.3 Experimental results . .

1.3 Related Literature . . . . . . .

1.4 Organization of the Thesis . . .

2 Preliminaries

2.1 Setup. ............... ..

2.1.1 Notation . . . . . . . . .

2.1.2 M odel . . . . . . . . . .

3 Algorithm

3.1 Parametrized Algorithm . . . .

3.1.1

3.1.2

3.1.3

3.1.4

Bounded entries transformation

Choosing the hyperparameter, p.

Scalability . . . . . . . . . . . . .

Remarks on low-rank hypothesis .

4 Summary of Main Results

4.1 Pre-intervention analysis . . . . . . . . .

4.1.1 General result . . . . . . . . . . .

4.1.2 Goldilocks Principle . . . . . . .

4.1.3 Asymptotic Consistency . . . . .

4.2 Post-intervention analysis (static rank) .

7

15

. . . . . . . . . . . . . . . . . . 1 6

. . . . . . . . . . . . . . . . . . 1 7

. . . . . . . . . . . . . . . . . . 1 7

. . . . . . . . . . . . . . . . . . 1 7

. . . . . . . . . . . . . . . . . . 1 8

. . . . . . . . . . . . . . . . . . 1 8

. . . . . . . . . . . . . . . . . . 2 0

21

. . . 21

. . . 21

. . . 22

25

. . . . . . . . . . . . . . . . 2 5

. . . . . . . . . . . . . . . . 26

. . . . . . . . . . . . . . . . 2 7

. . . . . . . . . . . . . . . . 2 7

. . . . . . . . . . . . . . . . 2 7

29

. . . . . . . . . . . . . . . . 3 0

. . . . . . . . . . . . . . . . 30

. . . . . . . . . . . . . . . . 3 1

. . . . . . . . . . . . . . . . 3 1

. . . . . . . . . . . . . . . . 3 3



5 Experimental Results 35

5.1 Basque Country . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.2 Placebo tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 California Anti-tobacco Legislation . . . . . . . . . . . . . . . . . . . 39

5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Placebo tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Synthetic simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.2 Training error approximates generalization error . . . . . . . . 43

5.4.3 Benefits of de-noising . . . . . . . . . . . . . . . . . . . . . .. 44

6 Regularization 45

6.1 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Ridge Rigression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Pre-intervention analysis . . . . . . . . . . . . . . . . . . . . . 47

6.2.2 Post-intervention analysis (static rank) . . . . . . . . . . . . . 47

6.3 Ridge Regression Generalization Error . . . . . . . . . . . . . . . . . 48

6.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.3 Our setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Choosing the Regularization Hyperparameter, n . . . . . . . . . . . . 52

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5.1 Ridge regression . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5.2 LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Bayesian Synthetic Control 55

7.1 A Bayesian Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.1 Maximum a posteriori (MAP) estimation . . . . . . . . . . . . 56

7.1.2 Fully Bayesian treatment . . . . . . . . . . . . . . . . . . . . . 57

7.1.3 Bayesian least-squares estimate . . . . . . . . . . . . . . . . . 58

7.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2.1 Basque Country . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.2 California Anti-tobacco Legislation . . . . . . . . . . . . . . . 61

7.2.3 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8



A Useful Theorems

B Linear Regression

B.1 Pre-intervention analysis . . . . . . . .

B.2 Consistency: block partitioning . . . .

B.3 Post-intervention analysis (static rank)

C Regularization

C.1 Derivation of A . . . . . . . . . . . . .

C.2 Pre-intervention analysis . . . . . . . .

C.3 Post-intervention analysis (static rank)

D A Bayesian Perspective

D.1 Derivation of posterior parameters . . .

9

69

. . . . . . . . . . . . . . . 71

. . . . . . . . . . . . . . . 77

. . . . . . . . . . . . . . . 79

83

83

83

86

87

87

67



10



List of Figures

5-1 Trends in per-capita GDP between Basque Country vs. synthetic

Basque Country. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5-2 Trends in per-capita GDP for placebo regions. . . . . . . . . . . . . 37

5-3 Per-capita GDP gaps for Basque Country and control regions. . . . . 38

5-4 Per-capita GDP gaps for Basque Country and control regions: results

by [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5-5 Trends in per-capita cigarette sales between California vs. synthetic

C alifornia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5-6 Placebo Study: trends in per-capita cigarette sales for Colorado, Iowa,

and W yom ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5-7 Per-capita cigarette sales gaps in California and control regions. . . . 40

5-8 Per-capita cigarette sales gaps in California and control regions: results

b y [11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

5-9 Treatment unit: noisy observations (gray) and true means (blue) and

the estimates from our algorithm (red) and one where no singular value

thresholding is performed (green). The plots show all entries normalized

to lie in range [-1, 1]. Notice that the estimates in red generated by

our model are much better at estimating the true underlying mean

(blue) when compared to an algorithm which performs no singular value

thresholding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5-10 Same dataset as shown in Figure 5-9 but with 40% data missing at

random. Treatment unit: not showing the noisy observations for clarity;

plotting true means (blue) and the estimates from our algorithm (red)

and one where no singular value thresholding is performed (green). The

plots show all entries normalized to lie in range [-1, 1]. . . . . . . . 43

6-1 Trends in per-capita GDP between Basque Country vs. synthetic

Basque Country. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11



6-2 Trends in per-capita GDP between Basque Country vs. synthetic

Basque Country. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7-2 Trends in per-capita GDP between Basque Country vs. synthetic

Basque Country. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7-3 Trends in per-capita cigarette sales between California vs. synthetic

C alifornia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

12



List of Tables

5.1 Training vs. generalization error . . . . . . . . . . . . . . . . . . . . . 44

5.2 Impact of thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . 44

13



14



Chapter 1

Introduction

Consider a typical comparative case-study where a legislative body is interested in

measuring the impact of a policy (e.g. gun control through crime-rate) on a "treated"

unit (e.g. California). Unlike the setting of "randomized control" a la A/B testing, the

population of such a comparative case-study is limited to a single unit, forcing one to

choose an unaffected unit as a "control" (e.g. New York). Historically, such selection

was left to the discretion of domain experts. In their seminal work, Abadie and

Gardeazabal [4] introduced the concept of "synthetic control", where the control unit

is a convex combination of unaffected units (e.g. 80% New York, 20% Massachusetts).

Theirs and various subsequent works proposed to learn the synthetic control by

applying domain expertise to carefully select the candidate "donor pool" of control

units, and utilizing supplementary covariates (e.g. employment rates) to learn the

convex relationship.

As the main result of this work, we propose a "robust" approach to finding the

synthetic control, wherein we first "de-noise" the observation data and then use the de-

noised data to learn a linear relationship. The de-noising step is a distinguishing feature

from prior approaches as it renders the selection of the synthetic control robust in two

senses: one, it does not require the assistance of covariates or domain "experts"; and two,

it can handle missing and/or noisy observations, an aspect that has not been previously

addressed. Under a more general framework that encompasses existing models, we

provide finite sample analysis and, subsequently, establish asymptotic consistency,

which has been absent from literature. We also analyze the synthetic control method

from a Bayesian perspective, which allows our algorithm to go beyond point estimates

in expressing our uncertainties through posterior probability distributions. Using real-

world datasets, we showcase the robustness of our algorithm by reproducing existing

case studies without the benefits of additional covariates or domain knowledge, and in
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the presence of missing information. Finally, we generate model-driven synthetic data

to validate the efficacy of our algorithm.

1.1 Motivation

On November 8, 2016 in the aftermath of several high profile mass-shootings, voters in

California passed Proposition 63 in to law [8]. Prop. 63 "outlaw[ed] the possession of

ammunition magazines that [held] more than 10 rounds, requir[ed] background checks

for people buying bullets," and was proclaimed as an initiative for "historic progress

to reduce gun violence" [25]. Imagine that we wanted to study the impact of Prop.

63 on the rates of violent crime in California. Randomized control trials, such as

A/B testings, have been successful in establishing effects of interventions by randomly

exposing segments of the population to various types of interventions. Unfortunately,

a randomized control trial is not applicable in this scenario since only one California

exists. Instead, a statistical comparative study could be conducted where the rates

of violent crime in California are compared to a "control" state after November 2016,

which we refer to as the post-intervention period. To reach a statistically valid

conclusion, however, the control state must be demonstrably similar to California sans

the passage of a Prop. 63 style legislation. In general, there may not exist a natural

control state for California, and subject-matter experts tend to disagree on the most

appropriate state for comparison.

As a suggested remedy to overcome the limitations of a classical comparative study

outlined above, Abadie et al. proposed a powerful, data-driven approach to construct

a "synthetic" control unit absent of intervention [1, 4, 2]. In the example above, the

synthetic control (synthetic control) method would construct a "synthetic" state of

California such that the rates of violent crime of that hypothetical state would best

match the rates in California before the passage of Prop. 63. This synthetic California

can then serve as a data-driven counterfactual for the period after the passage of Prop.

63. Abadie et al. propose to construct such a synthetic California by choosing a convex

combination of other states (donors) in the United States. For instance, synthetic

California might be 80% like New York and 20% like Massachusetts. This approach

is nearly entirely data-driven and appeals to intuition. For optimal results, however,

the method still relies on subjective covariate information, such as employment rates,

and the presence of domain "experts" to help identify a useful subset of donors. The

approach may also perform poorly in the presence of non-negligible levels of noise and

missing data.
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1.2 Overview of Main Contributions

In this work, we revisit the study of synthetic control from a robust perspective in

order to address the limitations described above. As the main result, we propose a

simple, two-step robust synthetic control algorithm, wherein the first step de-noises

the data and the second step learns a linear relationship between the treated unit and

the donor pool under the de-noised setting. The algorithm is robust in two senses:

first, it is fully data-driven in that it does not require domain knowledge or the use of

supplementary covariate information; and second, it provides the means to overcome

the challenges presented by missing and/or noisy observations. As another important

contribution, we establish analytic guarantees (finite sample analysis and asymptotic

consistency) - that are missing from the literature - for a broader class of models.

1.2.1 Robust algorithm

A distinguishing feature of our work is that of de-noising the observation data via

singular value thresholding. Although this spectral procedure is commonplace in the

matrix completion arena, it is novel in the realm of synthetic control. Despite its

simplicity, however, thresholding brings a myriad of benefits and resolves points of

concern that have not been previously addressed. For instance, while classical methods

have not even tackled the obstacle of missing data, our approach is well equipped to

impute missing values as a consequence of the thresholding procedure. Additionally,

thresholding can help prevent the model from overfitting to the idiosyncrasies of the

data, providing a knob for practitioners to tune the "bias-variance" trade-off of their

model and, thus, reduce their mean square error (MSE). From empirical studies, we

hypothesize that thresholding may possibly render auxiliary covariate information

(vital to existing methods) as a luxury as opposed to a necessity.

In the spirit of combatting overfitting, we further extend our algorithm to include

regularization techniques such as ridge regression and LASSO. We also move beyond

point estimates in establishing a Bayesian framework, which allows one to quantitatively

compute the uncertainty of their results through posterior probabilities.

1.2.2 Theoretical performance

To the best of our knowledge, our exposition is the first to analyze both the efficacy

of the synthetic control estimator with respect to the MSE and the effect of missing

data on the algorithm's performance. Previously, the main theoretical result from the
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synthetic control literature pertained to asymptotic unbiasedness for a linear factor

model; however, the proof of the result assumed that the latent parameters, which

live in the simplex, have been perfectly discovered. We provide finite sample analysis

that not only highlights the value of thresholding in balancing the "bias-variance"

trade-off, but also proves that the efficacy of our algorithm degrades gracefully with an

increasing number of randomly missing data. Further, we show that a computationally

beneficial pre-processing step allows us to establish the asymptotic consistency of

our least-squares estimator in generality. Using results from the statistical learning

theory literature, we provide post-intervention/generalization error bounds under the

regularized (ridge regression) setting.

Additionally, we prove a simple linear algebraic fact that justifies the basic premise

of synthetic control, which has not been formally established in literature, i.e. the

linear relationship between the treatment and donor units exists in the pre- and post-

intervention periods. Finally, we introduce a latent variable model, which subsumes

many of the models previously used in literature (e.g. econometric factor models).

Despite this generality, a unifying theme that connects these models is that they all

induce (approximately) low rank matrices, which is well suited for our method.

1.2.3 Experimental results

We conduct two sets of experiments: (a) on existing case studies from real world

datasets referenced in [1, 2, 41, and (b) on synthetically generated data. Remarkably,

while [1, 2, 41 use numerous covariates and employ expert knowledge in selecting their

donor pool, our algorithm achieves similar results without any such assistance; addi-

tionally, our algorithm detects subtle effects of the intervention that were overlooked

by the original synthetic control approach. Since it is impossible to simultaneously

observe the evolution of a treated unit and its counterfactual, we employ synthetic

data to validate the efficacy of our method. Using the MSE as our evaluation metric,

we demonstrate that our algorithm is robust to varying levels of noise and missing

data, reinforcing the importance of de-noising.

1.3 Related Literature

The study of synthetic control (synthetic control) has received widespread attention

ever since its conception by Abadie and Gardeazabal in their pioneering work [4, 1].

It has been employed in numerous case studies, ranging from criminology [261 to
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health policy [23] to online advertisement to retail; other notable studies include

[3, 9, 5, 7]. In their paper on the state of applied econometrics for causality and
policy evaluation, Athey and Imbens assert that synthetic control is "one of the most

important development[s] in program evaluation in the past decade" and "arguably

the most important innovation in the evaluation literature in the last fifteen years"

[6]. In a somewhat different direction, Hsiao et al. introduce the panel data method

[20, 21], which seems to have a close bearing with some of the approaches of this

work. In particular, [20, 21] only uses data for the outcome variable and solves an

ordinary least squares problem in learning synthetic control. However, [20, 21] restrict

the subset of possible controls to units that are within the geographical or economic

proximity of the treated unit. Therefore, there is still some degree of subjectivity

in the choice of the donor pool. In addition, [20, 21] do not include a "de-noising"

step, which is a key feature of our approach. For an empirical comparison between

the synthetic control and panel data methods, see [19]. It should be noted that [19]

also adapts the panel data method to automate the donor selection process. [15]

relaxes the convexity aspect of synthetic control, and allows for an additive difference

between the treated unit and donor pool, similar to the difference-in-differences (DID)

method. In an effort to infer the causal impact of market interventions, [12] introduce

yet another evaluation methodology based on a diffusion-regression state-space model

that is fully Bayesian; similar to [1, 4, 20, 21], their model also generalizes the DID

procedure. Due to the subjectivity in the choice of covariates and predictor variables,
[181 provide recommendations for specification-searching opportunities in synthetic

control applications.

Matrix completion and factorization approaches are well-studied problems with

broad applications (e.g. compressed sensing, recommendation systems, etc.). As shown

profusely in the literature, spectral methods, such as singular value decomposition

and thresholding, provide a procedure to estimate the entries of a matrix from partial

and/or noisy observations [13]. With our eyes set on achieving "robustness", spectral

methods become particularly appealing since they de-noise random effects and impute

missing information within the data matrix [22]. For a detailed discussion on the topic,

see [14]; for algorithmic implementations, see [24] and references there in. We note that

our goal differs from traditional matrix completion applications in that we are using

spectral methods to estimate a low-rank matrix, allowing us to determine a linear

relationship between the rows of the mean matrix. This relationship is then projected

into the future to determine the counterfactual evolution of a row in the matrix

(treated unit), which is traditionally not the goal in matrix completion applications.
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Despite its popularity, there has been less theoretical work in establishing the

consistency of the synthetic control method or its variants. [1] shows that the synthetic

control method can produce an asymptotically unbiased estimator, but under restrictive

settings; their analysis relies on the assumption that there not only exists a perfect

"convex" match between the pre-treatment noisy outcome and covariate variables

for the treated unit and donor pool, but that the algorithm has also discovered the

true "convex" weights. In contrast, our analysis does not assume that the estimator

has discovered the true set of linear weights and is truly assumption free. [17 also

relaxes the strong assumption in [11, and derives conditions under which the synthetic

control estimator is asymptotically unbiased. To our knowledge, however, no prior

work has provided finite-sample analysis, analyzed the performance of these estimators

with respect to the mean-squared error (MSE), established asymptotic consistency, or

addressed the possibility of missing data, a common handicap in practice.

1.4 Organization of the Thesis

The rest of this work is outlined as follows: Section 2 describes our notation, setting,

and proposed data model. We present the two-step algorithm in Section 3 with

the corresponding theoretical and experimental results in Section 4 and Section 5,

respectively. We then extend our framework to incorporate regularization methods in

Section 6, and finish with a Bayesian treatment of synthetic control in Section 7. All

proofs and derivations are unveiled in the appendices.
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Chapter 2

Preliminaries

2.1 Setup

In this section, we define the necessary notation and describe the setting.

2.1.1 Notation

We will denote R as the field of real numbers. For any positive integer N, let

[N] {1, ... , N}. For any vector v E R', we denote its Euclidean (f2) norm by

11 V12, and define IIvI1= E, 1V. We define its infinity norm as IIv 11, = maxi IviI. In

general, the f, norm for a vector v is defined as ||vjj = (z P2il) . Similarly, for

an m x n real-valued matrix A = [Aij], its spectral/operator norm, denoted by J|Al 2,
is defined as JAIL2 = max<is<k jail, where k = min{m, n} and cx are the singular

values of A. The Moore-Penrose pseudoinverse At of A is defined as

k

At = (1/a)yix[, (2.1)

where

k

A T Xi y, (2.2)

with xi and y, being the left and right singular vectors of A, respectively.

Let b be a random vector that is an estimate of v. Then one choice for the measure

of error in estimation is the average mean-squared error, denoted as MSE(b), and
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defined as

MSE() = -IIV - I. (2.3)
n 2

We will denote the root mean-squared error, RMSE(), as the square root of the MSE.

Since we will frequently use the f2 and spectral norms, we will adopt the shorthand

notation of |HJI - || for both cases by often dropping the subscript. Finally, to avoid

any confusions between scalars/vectors and matrices, we will represent all matrices in

bold, e.g. A.

2.1.2 Model

The data at hand is a collection of time series with respect to an aggregated metric of

interest (e.g. violent crime rates) comprised of both the treated unit (X1 ) and the

donor pool (X) outcomes. Suppose we observe N > 2 units across T > 2 time periods.

We denote To as the number of pre-intervention periods with 1 < To < T, rendering

T - To as the length of the post-intervention stage. Without loss of generality, let the

first unit represent the treatment unit - exposed to the intervention of interest at time

t = To + 1. The remaining donor units, 2 < i < N, are unaffected by the intervention

for the entire time period [T] = {1, ... , T}.

In order to distinguish the pre- and post-intervention periods, we use the following

notation for all (donor) matrices: A = [A~, A+], where A- = [AijI2 iN,jE[To] and

A+ = [Aij]2iN,To<j T denote the pre- and post-intervention submatrices, respectively;

vectors will be defined in the same manner, i.e. Ai = [A-, At], where A- = [Ait]te[ToI

and A = [Ait]To<t T denote the pre- and post-intervention subvectors, respectively,

for the ith donor. Moreover, we will denote all vectors related to the treatment unit

with the subscript "1", e.g. A1 = [A-, Af].

Let Xit denote the measured value of metric for unit i at time t. We posit

Xit= Mit + Eit, (2.4)

where Mit is the deterministic mean while the random variables Eit represent zero-mean

noise that are independent across i, t. Following the philosophy of latent variable

models, we further posit that for all 2 < i < N, t E [T]

Mit = f(Oi, Pt), (2.5)
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where 6 E Rd, and pt E Rd2 are latent feature vectors capturing unit and time specific

information, respectively, for some dj, d 2 > 1; the latent function f : Rd x - R

captures the model relationship. We note that this formulation subsumes popular

econometric factor models, such as the one presented in [1], as a special case with

(small) constants di = d 2 and f as a linear function.

The treatment unit obeys the same model relationship during the pre-intervention

period. That is, for t < To

Xi = M + Ci, (2.6)

where Mit f(01, pt) for some latent parameter 01 E R . If unit one was never

exposed to the intervention, then the same relationship as (2.6) would continue to

hold during the post-intervention period as well. In essence, we are assuming that the

outcome random variables for all unaffected units follow the model relationship defined

by (2.6) and (2.4). Therefore, the "synthetic control" would ideally help estimate

the underlying counterfactual means Mi= f(01, pt) for To < t < T by using an

appropriate combination of the post-intervention observations from the donor pool

since the donor units are immune to the treatment.

To render this feasible, we make the key operating assumption (as done in literature)
that the mean vector of the treatment unit over the pre-intervention period, i.e. the

vector M7 = [Mlt]tTO, lies within the span of the mean vectors within the donor

pool over the pre-intervention period, i.e. the span of the donor mean vectors

Mi- = [Mit]2 iN,tTo '. More precisely, we assume there exists a set of weights

13 E RN-1 such that for all t < To,

N

M = 3 i3Mit. (2.7)
i=2

This is a reasonable and intuitive assumption, utilized in literature, hypothesizing

that the treatment unit can be modeled as some combination of the donor pool. In

fact, the set of weights # are the very definition of a synthetic control.

In contrast with the classical synthetic control work, we allow our model to be

robust to incomplete observations. To model randomly missing data, the algorithm

observes each data point Xit in the donor pool with probability p E (0, 1], independently

'We note that this is a minor departure from the literature on synthetic control starting in [41 -

in literature, the pre-intervention noisy observation (rather than the mean) vector X1 , is assumed to

be a convex (rather than linear) combination of the noisy donor observations. We believe our setup

is more reasonable since we do not want to fit noise.
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of all other entries.
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Chapter 3

Algorithm

We will begin by providing intuition behind our proposed algorithm: (1) we begin

by de-noising our data via singular value thresholding, a distinguishing feature from

prior approaches. Since the singular values of our observation matrix, X, encode

both signal and noise, we attempt to find a proper low rank approximation of X that

only incorporates the singular values associated with useful information; simultane-

ously, this procedure will naturally impute any missing observations. (2) using the

pre-intervention portion of the de-noised matrix, we learn the linear relationship be-

tween the treatment unit and the donor pool prior to estimating the post-intervention

counterfactual outcomes. Since our objective is to produce accurate predictions, it

is not obvious why the synthetic treatment unit should be a convex combination of

its donor pool as assumed in [1, 4, 3]. In fact, one can reasonably expect that the

treatment unit and some of the donor units may exhibit negative correlations with

one another. In light of this intuition, we learn the optimal set of weights via linear

regression, allowing for both positive and negative elements.

Note: To simplify the exposition, we assume the entries of X are bounded by one in

absolute value, i.e. IXiti ; 1.

3.1 Parametrized Algorithm

The algorithm utilizes the thresholding hyperparameter p > 0, which serves as a

knob to effectively trade-off between the bias and variance of the estimator. We

discuss the procedure for determining the parameter p soon after the description of

the parametrized algorithm.
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Step 1. De-noising the data

1. Define Y = [Yi] with

if Xij is observed

otherwise.

2. Compute the singular value decomposition of Y:

N-1

S TY = seii.

3. Let S {i : si > p} be the set of singular values above the threshold p.

4. Define the estimator of M as

NI =siuivf Ti E s [

PiES

where P denotes the fraction of observed entries in X.

Step 2. Learning and projecting

1. Let 3 be the estimate of /3 obtained by solving the least-squares problem

3 = arg min Y1- -( ) 2
vERN-1

2. Define the counterfactual means for the treatment unit as

1'1 = AIT .

(3.4)

(3.5)

3.1.1 Bounded entries transformation

Several of our results, as well as the algorithm we propose, assume that the observation

matrix is bounded such that IXit I < 1. For any data matrix, we can achieve this by

using the following pre-processing transformation: suppose the entries of X belong

to an interval [a, b]. Then, one can first pre-process the matrix X by subtracting

(a + b)/2 from each entry, and dividing by (b - a)/2 to enforce that the entries lie in
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the range [-1, 1]. The reverse transformation, which can be applied at the end of the

algorithm description above, returns a matrix with values contained in the original

range. Specifically, the reverse transformation equates to multiplying the end result

by (b - a)/2 and adding by (a + b)/2.

3.1.2 Choosing the hyperparameter, it

Here, we discuss several approaches to choosing the hyperparameter p for the singular

values. If it is known a priori that the underlying model is low rank with rank at most

k, then it may make sense to choose p such that ISI = k. A data driven approach,

however, could be implemented based on cross-validation. Precisely, reserve a portion

of the pre-intervention period for validation, and use the rest of the pre-intervention

data to produce an estimate 3 for each of the finitely many choices of p (S..., SN-1)-

Using each estimate /, produce its corresponding treatment unit mean vector over the

validation period. Then, select the 1t that achieves the minimum MSE with respect to

the observed data. Finally, [14] provides a universal approach to picking a threshold.

As discussed in Section 5, we utilize the data driven approach for producing our

results.

3.1.3 Scalability

In terms of scalability, the most computationally demanding procedure is that of

evaluating the singular value decomposition (SVD) of the observation matrix. Given

the ubiquity of SVD methods in the realm of machine learning, there are well-known

techniques that enable computational and storage scaling for SVD algorithms. For

instance, both Spark (through alternative least squares) and Tensor-Flow come with

built-in SVD implementations. As a result, by utilizing the appropriate computational

infrastructure, our de-noising procedure, and algorithm in generality, can scale quite

well.

3.1.4 Remarks on low-rank hypothesis

The factor models that are commonly used in the Econometrics literature, cf. [1, 2, 4],

often lead to a low-rank structure for the underlying mean matrix M. When f is

nonlinear, M can still be well approximated by a low-rank matrix for a large class

of functions. For instance, if the latent parameters assumed values from a bounded,

compact set, and if f was Lipschitz continuous, then it can be argued that M is
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well approximated by a low-rank matrix, cf. see [14] for a very simple proof. As the

reader will notice, while we establish results for low-rank matrix, the results of this

work are robust to low-rank approximations whereby the approximation error can be

viewed as "noise". Lastly, as shown in [27], many latent variable models can be well

approximated (up to arbitrary accuracy E) by low-rank matrices. Specifically, [27]

shows that the corresponding low-rank approximation matrices associated with "nice"

functions (e.g. linear functions, polynomials, kernels, etc.) are of log-rank.

28



Chapter 4

Summary of Main Results

In this section, we derive the finite sample and asymptotic properties of the esti-

mator, M1 . We begin by defining necessary notations and recalling a few operating

assumptions prior to presenting the results, with the corresponding proofs relegated

to the Appendix. To that end, we re-write (2.4) in matrix form as X = M + E,
where E = [Eit]2<i<N,tE[T} denotes the noise matrix. We shall assume that the noise

parameters Eit are independent zero-mean random variables with bounded second

moments. Specifically, for all 2 < i < N, t E [T],

E[Ect] = 0, and Var(Eit) < 02. (4.1)

We shall also assume that the treatment unit noise in (2.6) obeys (4.1). Further, we

assume the relationship in (2.7) holds.

As previously discussed, we wish to evaluate the accuracy of our estimated means

for the treatment unit with respect to the MSE, i.e. the deviation between M{_

and M7 measured in f2-norm. Additionally, we aim to establish the validity of our

pre-intervention linear model assumption (cf. (2.7)) and investigate how the linear

relationship translates over to the post-intervention regime, i.e. if M- = (M-)TI3 for

some 3, does M1+ (approximately) equal to (M+)Tf3 and if so, under what conditions?

We now present our results for the above two aspects.
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4.1 Pre-intervention analysis

The performance metric of interest is the average mean squared error in estimating

ME using Mi-. Precisely, we define

MSE(Mi-) = E[ (Mu - Mi)2. (4.2)
TO t=1

We say that M(- is a consistent estimator if (4.2) approaches 0 as To -+ oo. In what

follows, we first state the finite sample bound on (4.2) for the most generic setup

(Theorem 4.1.1). As a main Corollary of the result, we specialize the bound in the

case where M is low-rank. (Corollary 4.1.1). Finally, we discuss a minor variation

of the algorithm where the data is pre-processed, and specialize the above result to

establish the consistency of our estimator (Theorem 4.1.2).

4.1.1 General result

We provide a finite sample error bound for the most generic setting.

Theorem 4.1.1. The pre-intervention error of the algorithm can be bounded as

MSE( -) < +Yp2 To E(A* + Y -pM1 + 1(p -p)M-11) I/#2 + (4.3)

+ C2 (N - 1)I10112 e-p(N-1)T (4.4)

Here, A, . . . , AN- 1 are the singular values of pM in decreasing order and repeated by

multiplicities, with A* = maxios A ; C1, C2 and c are universal positive constants.

Let us interpret the result by parsing the terms in the error bound. The last term

decays exponentially with (N - 1)T, as long as the fraction of observed entries is

such that, on average, we see a super-constant number of entries, i.e. p(N - 1)T > 1.

More interestingly, the first two terms highlight the "bias-variance tradeoff" of the

algorithm with respect to the singular value threshold p. Precisely, the size of the set

S increases with a decreasing value of the hyperparameter p, causing the second error

term to increase. Simultaneously, however, this leads to a decrease in A*. Note that A*

denotes the aspect of the "signal" within the matrix M that is not captured due to the

thresholding through S. On the other hand, the second term, ISl.2 /To, represents the

amount of "noise" captured by the algorithm, but wrongfully interpreted as a signal,

during the thresholding process. In other words, if we use a large threshold, then our
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model may fail to capture pertinent information encoded in M; if we use a small

threshold, then the algorithm may overfit the spurious patterns in the data. Thus,

the hyperparameter p provides a way to trade-off "bias" (first term) and "variance"

(second term).

4.1.2 Goldilocks Principle

With an appropriate choice for the hyperparameter p (and hence S), we state the

following result for the specialized setting whereby the signal matrix M is low rank.

Corollary 4.1.1. Let rank(M) = k for some 1 < k < N - 1. Let the choice of P be

such that |SI = k. Suppose cr2p + p(l - p) > T-1 + for some ( > 0. Let T < aTo for

some constant a > 1. Then

Ci 1,31I 2lim MSE(Mj-) < (a + (1 - p)). (4.5)
To--oo p

By adroitly capturing the signal, the resulting error bound simply depends on

the variance of the noise terms, ou2 , and the error introduced due to missing data.

Ideally, one would hope to overcome the error term when To is sufficiently large. This

motivates the following setup.

4.1.3 Asymptotic Consistency

We present a straightforward pre-processing step that leads to the asymptotic consis-

tency of our algorithm. The pre-processing step simply involves replacing the columns

of X by the averages of its columns. This admits the same setup as before, but with

the variance for each noise term reduced. An implicit side benefit of this approach is

that required SVD step in the algorithm is now applied to smaller size matrix.

Partition the To columns of the pre-intervention data matrix X- into T = /ToJ
blocks, each of size r except potentially the last block. Let B, = {(j - 1)T + f : 1 <

S< T} denote the column indices of X- within partition j c [T]. This may leave up

to 2V7- - 1 columns at the end, which we shall ignore for theoretical purposes; in

practice, however, the remaining columns can be placed into the last block. Next, we

replace the T columns within each partition by their average, and thus create a new

matrix, X~, with T columns and N - 1 rows. Precisely, X [Xij]2 i<N,jr with

Xij S Xit. (4.6)
T

t EBj
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Let M- = [MRij1 2i N,1 ja< with

li = : Mit. (4.7)
7tEBj

We apply the algorithm to X- to produce the estimate M- of M-, which is sufficient

to estimate 3. This 3 can be used to produce the post-intervention synthetic control

means Mj = [Mit] To<t in a similar manner as before 1: for To < t < T,

N

1t = E ixit. (4.8)
i=2

For the pre-intervention period, we produce the estimator M-= [M 13 ]1j<r :: for

< j < T,

N

i / = iMij. (4.9)
i=2

Our measure of estimation error is defined as

MSE(M;) =-E (Mi3 - Mi9)]. (4.10)
1<j<Tr

We state the following result.

Theorem 4.1.2. Let rank(M-) = k for some 1 < k < N - 1. Let the choice of p be

such that |SI= k. Then

lim MSE(M7) = 0.
To-*oo

We note that the method of 14, Sec 2.3] learns the weights (here /) by pre-processing

the data. One common pre-processing proposal is to also aggregate the columns,
but the aggregation parameters are chosen by solving an optimization problem to

minimize the resulting prediction error of the observations. In that sense, the above

averaging of column is a simple, data agnostic approach to achieve a similar effect,

and potentially more effectively.

'In practice, one can first de-noise X+ via step one of Section 3, and use the entries of MI+ in
(4.8).
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4.2 Post-intervention analysis (static rank)

The key assumption of our analysis is that the treatment unit signal can be written as a

linear combination of donor pool signals. Specifically, we assume that this relationship

holds in the pre-intervention regime, i.e. Mj- = (M-)T/3 for some 3 E RN-1 as stated

in (2.7). The question still remains, however, does the same relationship hold for the

post-intervention regime and if so, under what conditions does it hold? We state a

simple linear algebraic fact to this effect, justifying the entire approach of synthetic

control. It is worth noting that this important aspect has been amiss in the literature,

potentially implicitly believed or assumed starting in the work by [4].

Theorem 4.2.1. Let (2.7) hold for some /. Let rank(M-) = rank(M). Then

= (M+)TI3.

If we assume that the linear relationship prevails in the post-intervention period,

then we arrive at the following error bound.

Theorem 4.2.2. Assuming rank(M-) = rank(M), the post-intervention error is

bounded above by

RMSE(M+) < E A* +1Y - pM 1 + ( p)M+ + E - 3
pP T-To VT -TO
C2VTo(N - 1) ep(N-1)T+ e

ft

Here, A,..., AN-, are the singular values of pM in decreasing order and repeated by

multiplicities, with A* = maxios Ai; C1 , C2 , and c are universal positive constants.

Let us interpret the post-intervention error bound by decomposing the RMSE into

two error terms (we will ignore the third expression since it decreases exponentially

fast with the size of the training set): the first error term derives from the de-

noising/estimation error from Step one of our robust algorithm, and the second term

captures the learning algorithm's error (in this case, linear regression) from Step two.

Similar to the pre-intervention error, there is a trade-off between "bias" and "variance",
which is dictated by the choice of the threshold value M. To see this, we analyze

the key information ratio A*/p within the first term. As p increases, our de-noising

process uses less singular values (smaller set S), rendering A* - the signal not captured

in the thresholding process - to also increase. On the flip side, if we use a small

threshold, then we are utilizing most of the data matrix's singular values, yielding A*
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to also decrease. In either case, there is a tension that exists due to the thresholding

procedure since A* and p are positively correlated.

The second error term, which is controlled by the expression i -- 3 , is a function

of the learning algorithm used to estimate /. As we will shortly see, using regularization

can decrease the MSE between / and the true, underlying /, thus reducing the overall

post-intervention error.
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Chapter 5

Experimental Results

We begin by exploring two real-world case studies discussed in [1, 2, 4] that demon-

strate the ability of the original synthetic control's algorithm to produce a reliable

counterfactual reality. We use the same case-studies to showcase the "robustness"

property of our proposed algorithm. Specifically, we demonstrate that our algorithm

reproduces similar results even in presence of missing data, and without knowledge of

the extra covariates utilized by prior works. We find that our approach, surprisingly,

also discovers a few subtle effects that seem to have been overlooked in prior studies.

For the purposes of this section, we refer to the algorithm presented in Section 3

as robust synthetic control (linear). Additionally, we introduce a variation to our

proposed algorithm by restricting / to have non-negative components that sum to

one; we refer to this variation as robust synthetic control (convex) 1.

As described in [1, 2, 3], the synthetic control method allows a practitioner to

evaluate the reliability of his or her case study results by running placebo tests. One

such placebo test is to apply the synthetic control method to a donor unit. Since the

control units within the donor pool are assumed to be unaffected by the intervention

of interest (or at least much less affected in comparison), one would expect that

the estimated effects of intervention for the placebo unit should be less drastic and

divergent compared to that of the treated unit. Ideally, the counterfactuals for the

placebo units would show negligible effects of intervention. Similarly, one can also

perform exact inferential techniques that are similar to permutation tests. This can be

done by applying the synthetic control method to every control unit within the donor

pool and analyzing the gaps for every simulation, and thus providing a distribution of

estimated gaps. In that spirit, we present the resulting placebo tests for the Basque

'In the Econometrics literature, an emphasis has been placed on having [ being "convex" as it

provides an intuitive interpretation: the treatment unit is proportionately like the donor units.
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Country and California Prop. 99 case studies below to assess the significance of our

estimates.

5.1 Basque Country

The goal of this case-study is to investigate the effects of terrorism on the economy

of Basque Country using the neighboring Spanish regions as the control group. In

1968, the first Basque Country victim of terrorism was claimed; however, it was not

until the mid-1970s did the terrorist activity become more rampant [4]. To study

the economic ramifications of terrorism on Basque Country, we only use as data

the per-capita GDP (outcome variable) of 17 Spanish regions from 1955-1997. We

note that in [41, 13 additional predictor variables for each region were used including

demographic information pertaining to one's educational status, and average shares

for six industrial sectors.

5.1.1 Results

Figure 5-la shows that our method (both linear and convex) produces a very similar

qualitative synthetic control to the original method even though we do not utilize

additional predictor variables. Specifically, the synthetic control resembles the observed

GDP in the pre-treatment period between 1955-1970. However, due to the large-scale

terrorist activity in the mid-70s, there is a noticeable economic divergence between the

synthetic and observed trajectories beginning around 1975. This deviation suggests

that terrorist activity negatively impacted the economic growth of Basque Country.

One subtle difference between our (linear and convex) synthetic control and that

of [4] is between 1970-75: our approach suggests that there was a small, but noticeable

economic impact starting just prior to 1970, potentially due to first terrorist attack in

1968. Notice, however, that the original synthetic control of [4j diverges only after

1975.

To study the robustness of our approach with respect to missing entries, we discard

each data point uniformly at random with probability 1 - p. The resulting control for

different values of p is presented in Figure 5-1b suggesting the robustness of our (linear)

algorithm. Finally, we produce Figure 5-1c by applying our algorithm without the

de-noising step. As evident from the Figure, the resulting predictions suffer drastically,

reinforcing the value of de-noising. Intuitively, using an appropriate threshold P

equates to selecting the correct model complexity, which helps safeguard the algorithm

36



from potentially overfitting to the training data.
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(a) Comparison of methods. (b) Missing data. (c) Impact of de-noising.

Figure 5-1: Trends in per-capita GDP between Basque Country vs. synthetic Basque
Country.

5.1.2 Placebo tests

We begin by applying our robust algorithm to the Spanish region of Cataluna, a

control unit that is not only similar to Basque Country, but also exposed to a much

lower level of terrorism [2]. Observing both the synthetic and observed economic

evolutions of Cataluna in Figure 5-2a, we see that there is no identifiable treatment

effect, especially compared to the divergence between the synthetic and observed

Basque trajectories. We provide the results for the regions of Aragon and Castilla Y

Leon in Figures 5-2b and 5-2c.

12 Placebo study: Cataluna Placebo study. Aragon Placebo study: Castilla Y Leon
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(a) Cataluna. (b) Aragon. (c) Castilla Y Leon.

Figure 5-2: Trends in per-capita GDP for placebo regions.

Additionally, we performed the exact inferential test on all control regions and

plotted the resulting per-capita GDP gaps in Figures 5-3a and 5-3b, whereby Figure

5-3b excluded two control regions; the purpose behind this action will be made clear in

the following paragraph. The resulting figures suggest that there is a low probability

of obtaining a large economic divergence similar to that of Basque Country, when we

reassign the intervention to the donor regions.
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Since there is no ground truth, we continue to use the seminal results of [2] as a

baseline. We begin by noting that [2] removed the plots of all five regions that had

a poor pre-treatment period fit (regions with a mean-squared error, with respect to

some pre-intervention validation period, that is five times greater than that for Basque

Country); we display their resulting figure for the 12 remaining regions in Figure

5-4a as a visual reference. As a result, we removed the two regions - Balearic Islands

and Madrid - that were mentioned in [2]. Thus, Figure 5-3a represents the result

of our inferential test on all control regions while 5-3b excludes the Balearic Islands

and Madrid. Even though [2] used 13 additional covariates and excluded more "bad"

regions from their permutation placebo test, we observe that our results are nearly

identical. This reinforces the robustness of our algorithm, highlighting the profound

impact of de-noising.

Placebo Study. Basque Country Placebo Study: Basque Country

05 / 05

196. 5 ....... S-. .........>
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(a) Includes all control regions. (b) Excludes 2 regions.

Figure 5-3: Per-capita GDP gaps for Basque Country and control regions.

WO 92 tiMa 190

(a) Excludes 5 regions.

Figure 5-4: Per-capita GDP gaps for Basque Country and control regions: results by [2].
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5.2 California Anti-tobacco Legislation

We study the impact of California's anti-tobacco legislation, Proposition 99, on the

per-capita cigarette consumption of California. In 1988, California introduced the

first modern-time large-scale anti-tobacco legislation in the United States [1]. To

analyze the effect of California's anti-tobacco legislation, we use the annual per-capita

cigarette consumption at the state-level for all 50 states in the United States, as well

as the District of Columbia, from 1970-2015. Similar to the previous case study, [41

uses 6 additional observable covariates per state, e.g. retail price, beer consumption

per capita, and percentage of individuals between ages of 15-24, to predict their

synthetic California. Furthermore, [4] discarded 12 states from the donor pool since

some of these states also adopted anti-tobacco legislation programs or raised their

state cigarette taxes, and discarded data after the year 2000 since many of the control

units had implemented anti-tobacco measures by this point in time.

5.2.1 Results

As shown in Figure 5-5a, in the pre-intervention period of 1970-88, our control

(linear and convex) matches the observed trajectory. Post 1988, however, there is a

significant divergence suggesting that the passage of Prop. 99 helped reduce cigarette

consumption. Similar to the Basque case-study, our estimated effect is qualitatively

similar to that of [4]. As seen in Figure 5-5b, our (linear) algorithm is again robust to

randomly missing data.

Tobacco case study ,Missing at random: Califomia Tobacco Study
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(a) Comparison of methods. (b) Missing data.

Figure 5-5: Rends in per-capita cigarette sales between California vs. synthetic California.

5.2.2 Placebo tests

We now proceed to apply the same placebo tests to the California Prop 99 dataset.

Figures 5-6a, 5-6b, and 5-6c are three examples of the applied placebo tests on the
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remaining states (including District of Columbia) within the United States.
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trends in per-capita cigarette sales for Colorado, Iowa, and

We again apply the iterative inferential technique to all 50 states and the District

of Columbia. Unlike the case of [1], our estimated effects shown in Figures 5-7a and

5-7b are produced without the benefits of any covariates and without the elimination

of "bad" states or years post-2000. Note that we plot the predicted effects for all donor

units in Figure 5-7a, but we exclude the twelve states that were discarded during

the learning process of [11 in Figure 5-7b. For comparison, we display the resulting

estimated effects for the 38 states used in the estimation process of [1] in Figure

5-8. We find that our inferential placebo test results are again similar to that of [1].

However, even though our algorithm was "handicapped" by using only the time series

of data for the outcome variable (per-capita cigarette sales), we observe a noticeable

difference in estimated effects during the pre-intervention period of 1970-1988. In

particular, in both 5-7a and 5-7b, our estimated gaps are bounded roughly between

[-15, 10], while some of the estimated gaps of [1] diverge greatly outside of that

interval, indicating a poor pre-treatment period fit.

Placebo Study

-20c

(a) Includes all donors.

20

320
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YMe

(b) Excludes 12 states.

Figure 5-7: Per-capita cigarette sales gaps in California and control regions.
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Figure 5-8: Per-capita cigarette sales gaps in California and control regions: results by [1].

5.3 Discussion

Although the experimental results suggest that our robust algorithm performs on

par with that of the original synthetic control algorithm, we want to emphasize that

we are not suggesting that practitioners should abandon the use of any additional

covariate information or the application of domain knowledge. Rather, we believe

that our key algorithmic feature - the de-noising step - may render covariates and

domain expertise as luxuries as opposed to necessities for many practical applications.

If the practitioner has access to supplementary predictor variables, we propose that

step one of our algorithm be used as a pre-processing routine for de-noising the data

before incorporating additional information. Moreover, other than the obvious benefit

of narrowing the donor pool, domain expertise can also come in handy in various

settings, such as determining the appropriate method for imputing the missing entries

in the data. For instance, if it is known a priori that there is a trend or periodicity in

the time series evolution for the units, it may behoove the practitioner to impute the

missing entries using "nearest-neighbors" or linear interpolation.

5.4 Synthetic simulations

We conduct synthetic simulations to establish the various properties of the estimates

in both the pre- and post-intervention stages.

5.4.1 Experimental setup

For each unit i E [N], we assign latent feature 6O by drawing a number uniformly

at random in [0, 1]. For each time t E [T], we assign latent variable pt = t. The
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mean value mit = f(6, pt). In the experiments described in this section, we use the

following:

f(0i, pt) = 6i + (0.3 - O -pt/T) * (expP/T)+

cos(fi7r/180) + 0.5 sin(f27r/180) + 1.5 cos(f37r/180) - 0.5sin(f4 * 7r/180)

where fi, f2, f3, f4 define the periodicities: fi = pt mod (360), f2 = pt mod (180), f3 =

2 - pt mod (360), f4 = 2.0 - pt mod (180). The observed value Xit is produced by

adding i.i.d. Gaussian noise to mean with zero mean and variance a.2 . For this set of

experiments, we use N = 100, T = 2000, while assuming the treatment was performed

at t = 1600.

0 250 500 750 1000 1250 1500 1750 2000

Figure 5-9: Treatment unit: noisy observations (gray) and true means (blue) and the
estimates from our algorithm (red) and one where no singular value thresholding is performed
(green). The plots show all entries normalized to lie in range [-1, 1]. Notice that the estimates
in red generated by our model are much better at estimating the true underlying mean (blue)
when compared to an algorithm which performs no singular value thresholding.
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Observed 60%: Hidden and Predicted Means

- Predicted Means - No thresholding (Treatment Unit)
Predicted Means- Our Algorithm (Treatment Unit)
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Figure 5-10: Same dataset as shown in Figure 5-9 but with 40% data missing at random.
Treatment unit: not showing the noisy observations for clarity; plotting true means (blue)
and the estimates from our algorithm (red) and one where no singular value thresholding is
performed (green). The plots show all entries normalized to lie in range [-1, 1].

5.4.2 Training error approximates generalization error

For the first experimental study, we analyze the relationship between the pre-intervention

MSE (training error) and the post-intervention MSE (generalization error). As seen

in Table 5.1, the post-intervention MSE closely matches that of the pre-intervention

MSE for varying noise levels, a 2 . Thus suggesting efficacy of our algorithm. Figures

5-9 and 5-10 plot the estimates of algorithm with no missing data (Figure 5-9) and

with 40% randomly missing data (Figure 5-10) on the same underlying dataset. All

entries in the plots were normalized to lie within [-1, 1]. These plots confirm the

robustness of our algorithm. Our algorithm outperforms the algorithm with no singular

value thresholding under all proportions of missing data. The estimates from the

algorithm which performs no singular value thresholding (green) degrade significantly

with missing data while our algorithm remains robust.
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Table 5.1: Training vs. generalization error

Noise Training error Generalization error

3.1 0.48 0.53

2.5 0.31 0.34

1.9 0.19 0.22

1.3 0.09 0.1

0.7 0.027 0.03

0.4 0.008 0.009

0.1 0.0005 0.0006

5.4.3 Benefits of de-noising

We now analyze the benefit of de-noising the data matrix, which is the main contribu-

tion of this work compared to the prior work. Specifically, we study the generalization

error of method using de-noising via thresholding and without thresholding as in prior

work. The results summarized in Table 5.2 show that for range of parameters the

generalization error with de-noising is consistency better than that without de-noising.

Table 5.2: Impact of thresholding

Noise De-noising error No De-noising error

3.1 0.122 0.365

2.5 0.079 0.238

1.9 0.046 0.138

1.6 0.032 0.098

1 0.013 0.038

0.7 0.006 0.018

0.4 0.002 0.005
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Chapter 6

Regularization

"Suppose there exist two

explanations for an occurrence. In

this case the simpler one is usually

better."

Occam's Razor.

6.1 Overfitting

One weapon to combat overfitting is to constrain the learning algorithm to limit

the effective model complexity by fitting the data under a simpler hypothesis. This

technique is known as regularization, and it has been widely used in practice. To

employ regularization, we introduce a complexity penalty term into the objective

function (3.4), redefining the learning procedure in Step two of our algorithm. For a

general regularizer, the objective function now takes the form

2 N-1
argmin Y- - (-)Tv Z+ F, (6.1)
vERN-1

for some choice of positive constants 17 and q. The first term measures the empirical

error of the model on the given dataset, while the second term penalizes models that are

too "complex" by controlling the "smoothness" of the model in order to avoid overfitting.

Note that if r/ = 0, then the complexity penalty is nullified and our objective returns to

its original form. In general, the impact/ trade-off of regularization can be controlled

by the value of the regularization parameter 1 - the choice of this parameter will be
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discussed in a later subsection. Via the use of Lagrange multipliers, we note that

minimizing (6.1) is equivalent to minimizing (3.4) subject to the constraint that

N-i

j=1

for some appropriate value of c. When q = 2, (6.1) corresponds to the classical setup

known as ridge regression . The case of q-= 1 is known as the LASSO in the statistics

literature; the fi-norm regularization of LASSO is a popular heuristic for finding

a sparse solution. In either case, incorporating an additional regularization term

encourages the learning algorithm to output a simpler model with respect to some

measure of complexity, which helps the algorithm avoid overfitting to the idiosyncrasies

within the observed dataset. Although the training error may suffer from the simpler

model, empirical studies have demonstrated that the generalization error can be greatly

improved under this new setting.

6.2 Ridge Rigression

We will now focus our attention on the quadratic regularizer, q = 2, also known

as ridge regression. This particular form of regularization encourages the learning

algorithm to reduce the size of the coefficients to decay towards zero, unless supported

by the data. Although the quadratic f2 penalty adds some bias, the penalty also

reduces the variance of the produced estimator. Additionally, ridge regression possesses

the advantage of maintaining the objective function to be (convex) quadratic in the

parameter, v, so that its exact minimizer can be found in closed form:

S= (1( -) T + 77) M-Y-, (6.2)

where the subscript denotes the dependency on the choice of the regularization

parameter T1. We note that A-(I-)T + rI is a positive definite matrix for any

? > 0, thus its inverse always exists. Consequently, the quadratic regularizer requires

no rank (or dimension) assumptions on the matrix M~ [11]. This highlights another

reason why regularization is a popular heuristic as adding regularization often makes

the problem easier to solve numerically.

'Due to its popularity, the regularization setting of q = 2 has many other names in literature,
including Tikhonov regression and weight decay.
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6.2.1 Pre-intervention analysis

Let us study the finite sample pre-intervention error bound when we substitute ridge

regression in place of ordinary linear regression in learning the regression coefficients,

13.

Theorem 6.2.1. For any q > 0, the pre-intervention error of the algorithm can be

bounded as

MSE(MIf--) E(A* + ||Y -pMI+ (f - p)M-1) )211 2 + 2,72 ,, (6.3)
p 2To TO

+ + C2 (N - 1) I/3 2,-c(N-1)Tp. (6.4)

Here, A1, ... , AN-, are the singular values of pM in decreasing order and repeated by

multiplicities, with A* = maxjgs A2; C1, C2 and c are universal positive constants.

As evident by (C.7), the upper bound on the pre-intervention (training) error

includes an additional error term, Y p11| 2 /To, derived from regularization. Therefore,

as 71 increases, the impact of the regularization also magnifies, driving the learning

algorithm to reduce the model complexity at the expense of a increased bias and

potentially larger training error. However, as frequently demonstrated by empirical

studies, the incorporation of regularization also reduces the the generalization error,

which is the key quantity of interest we aim to reduce.

6.2.2 Post- intervention analysis (static rank)

Before we analyze the general case for the post-intervention (generalization) error, let

us first study the static rank scenario.

Theorem 6.2.2. Assuming rank(M-) = rank(M), the post-intervention root mean-

square error (RMSE) is bounded above by

+ C pI||RMSE(M+) K 1  EA* + 11Y -pMI+ 1(f - p)M+ + E ) - 3
pp-vT - To V"T -To

C2 TO(N- 1) cp(N-)T

Here, A 1,..., AN-- are the singular values of pM in decreasing order and repeated by

multiplicities, with A* = maxios A2; C1, C2 , and c are universal positive constants.
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The post-intervention RMSE bound under the ridge regression setting is identical

to that of linear regression (see Lemma 4.2.2), with the exception of the second

error term, i.e. j, - ,3 . Recall that this error discrepancy arises from the fact

that we are implementing two different algorithms, i.e. linear regression versus

(quadratic) regularized linear regression, to learn the synthetic control. Interestingly,

{16] demonstrates that there exists a regularization hyperparameter r1 > 0 such that

without any assumptions on the rank of I-.

Ultimately, employing ridge regression introduces extraneous bias into our model,

yielding a higher pre-intervention error. However, the sacrifice in the pre-intervention

error returns to us the benefit of a smaller post-intervention error bound (due to

smaller variance), the quantity of interest that we truly care about.

6.3 Ridge Regression Generalization Error

We will now develop generalization (post-intervention) error results under a generic

setting without any assumptions on the relationship between the rank of M- and M.

Throughout this section in introducing definitions and theorems, we will temporarily

adopt the notation established in the statistical learning theory literature before

connecting the borrowed notation to our own framework at the very end. In particular,

we make use of the notations, definitions, and results from 110].

6.3.1 Notations

Let X and Y C R denote the input and output spaces, respectively. We denote our

training dataset of size m as

D = {zi = (x 1, y1), . . . , zm = (x,-m, y.)}1,

where each datapoint zi E Z = X x Y is drawn i.i.d. from an unknown probability

distribution P. A learning algorithm is defined to be a function A that maps from

Zm into F E yX; in other words, a learning algorithm is a mapping from a training

set D onto a function AD (where the subscript makes explicit the dependency of the

mapping on the given dataset), which is itself a mapping from the input space X to

the output space Y.
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From D, we can construct the following datasets by (1) removing the i-th element

D\ = {Z1 , . . ., Zi1, Zi+ 1, Z

and (2) replacing the i-th element

D' = { z1,., zi-1, z ,l zi+1,..., )ZT0}

where the replacement element zj is also assumed to be drawn from the same distribu-

tion P and is independent from D.

We measure the accuracy of the algorithm by defining a loss function; specifically,

for a hypothesis f C F and a datapoint z - P, we denote the associated loss as f(f, z).

In order to accurately assess the performance of our algorithm, we will study the

generalization/testing error, which is defined as

R(A, D) = Ez[f(AD, z), (6.5)

where the subscript z denotes that the expectation is taken with respect to the ran-

domness in the example z. Since P is unknown, we cannot compute the generalization

error without making unrealistically strong assumptions on the form of P, f, or f. As

is often the case, we use the empirical/training error

Remp(A, D) = e(AD, Zi) (6-6)
i=1

as a simple estimator of the generalization error. Therefore, our goal is to use the

empirical error to approximate the true generalization error. To simply matters, we will

often use the following shorthand notations, R = R(A, D) and Remp Remp(A, D).

We will make use of a generalization error bound that depends on the stability of

the algorithm. Since one source of randomness an algorithm has to overcome is the

sampling mechanism by which the data is generated, a way to quantify stability is

to observe how changes in the training set can influence the hypothesis produced by

the algorithm. With this intuition in mind, we now define one particular notion of

stability that can be applied to a large class of algorithms, including regularization

based algorithms.

Definition 6.3.1. (Uniform Stability) An algorithm A has uniform stability a
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with respect to the loss function f if VS E Zm , Vi E [m] the following holds:

It(AD, -) - f(ADV , ') < a.

Definition 6.3.2. A loss function f defined on F x Y is --admissible with respect to

F if the associated cost function c is convex with respect to its first argument and the

following condition holds Vy1, Y2 E R, Vy' E Y,

Ic(yi, y') - c(y 2, y')I 9-1yi - Y21,

where R {y : If E F, ]x E X, f(x) = y} is the domain of the first argument of c.

Remark 6.3.0.1. In the case of a quadratic loss function, for instance, this condition is

verified if Y is bounded and F is totally bounded; i.e., there exists an M < oc such

that

Vf E T, 11f |10_ M

and

Vy E Y, Ky < M.

6.3.2 Results

In order for an algorithm to better generalize when given unseen data, regularization

is often employed to reduce the complexity of the learned function at the expense of a

larger training error. Although uniform stability may appear to be a strict condition,

ridge regression has been shown to exhibit uniform stability, which is controlled by the

regularization parameter. We begin, however, with a result from [10] on the uniform

stability of reproducing kernel Hilbert spaces (RKHS) learning.

Theorem 6.3.1. Let F be a reproducing kernel Hilbert space with kernel k such that

Vx G X, k(x, x) = (<b(x), D(x)) < ,2 < oc. Let f be u-admissible with respect to F.

The learning algorithm A defined by

AD = arg min iE(g, Zi) + 7111g12

has uniform stability a with respect to f with

.2 2
a 2=C-277m'
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In the special case of ridge regression (quadratic complexity penalty term), 1101
provide the following result.

Corollary 6.3.1. The regularized least squares algorithm is defined by

AD = arg min f(g, zi) + q fgI11,

where f(f, z) = (f(x) - y) 2 . The stability bound for this algorithm is

r2,' B

so that for any 6 G (0,1), the generalization error bound holds with probability at least

1 -6,

4 2 B2  8, 2 B 2 2n(1/6)
R < Rernp+ 4,B+ 8,B+ 2B .n(16 (6.7)

TIM 2m

6.3.3 Our setting

Returning to our setup, we have that <b(x) x, yielding k(x, x) =1x 2 and, thus,

K
2 < N - 1. Since we assumed that our entries are bounded by one in absolute value,

we have that B = 2. Plugging in our parameters into Corollary 6.3.1, we obtain the

following proposition:

Proposition 6.3.1. For any 6 E (0,1), the generalization/post-intervention error

bound holds with probability at least 1 - 6,

16(N - 1) 32(N - 1)n )(1/6)R < Remp+ + +T 0  (6.8)
'qT0 r 2To

where R = E[(Yu - M1r) 2 ] for any t > To, and Rep = (1/To) T1 (Yut - [ut)
2.

From (6.8), we observe that the generalization error decreases as the regularization

parameter increases. Again, our gain in the post-intervention regime comes at the

expense of a greater pre-intervention error. However, since our objective is to analyze

the impact of a policy by comparing the post-intervention observed and counterfactual

outcomes, we should prioritize a smaller generalization error over a smaller training

error.
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Moreover, with the exception of the training error term, Remp, of (6.8), all other

terms asymptotically decay to 0. Therefore, our estimator is consistent if the training

error also converges to 0. Following the proof of Theorem 4.1.1 (relegated to the

appendix), we have that

1 - 2
Remp= Y7-M1

TO

- - M I#|2 + -112+ E2

However, if we apply our pre-processing procedure, then our training error converges

to 0 in expectation, i.e. E[Remp] -+ 0 as To -+ 00.

Remark 6.3.1.1. For completeness, we note that our input and output spaces are

X [-1, 1 ]N-1 and Y= [-1, 1, respectively. Similarly, our training data, of size

m = To, takes the form

D {zt = (Y1t,Xit) :2 < i < Nt G {T0]}.

Recall, however, that we will use Step one of our robust algorithm (described in

Section 3) to transform Xit into IIt for all 2 < i < N and t E [To].

6.4 Choosing the Regularization Hyperparameter, rj

From Theorem 6.2.1 and Theorem 6.2.2, we recognize that the regularization parameter

plays a crucial role in learning the synthetic control and influences both the training

and generalization errors. As is often the case in model selection, a popular strategy in

estimating the ideal the regularization hyperparameter, q, is to employ cross-validation.

Under the simplest hold-out cross-validation scenario, an "appropriate" proportion of

the training data (in this case, the pre-intervention data) is set aside as the validation

set, and is not used in the learning process as to prevent data leakage. Using only

the training data not included in the validation set, an estimate /, is produced for

finitely many choices of 71. The choice of n that minimizes the MSE with respect

to the observed values in the validation set is subsequently determined to be the

optimal regularization value, and is used to learn the final 3, with all of the given

training data (validation set included). A simple, but powerful variant to the described

cross-validation method is k-fold cross validation, where the training data is now
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partitioned into k subsets. For each of the finitely many candidates of q, the model

selection process now uses k - 1 of the subsets as the training data and the k-th subset

as the validation set. This process is applied until all k subsets have been used as

the validation set (essentially applying the hold-out method k times), whereby the

validation error is then averaged over all k subsets. When the training data is small,

it is commonplace to choose k = To (the number of datapoints in the training set) -

this method is known as leave-one-out (LOO) cross-validation.

However, since time-series data often have a natural temporal ordering and causal

effect, we recommend employing the forward chaining strategy. Although the forward

chaining strategy is similar to LOO cross-validation, an important distinction is that

forward chaining does not break the temporal ordering in the training data. More

specifically, for a particular candidate of q at every iteration t E [TO], the learning

process uses [Y 11 ... , Yt- 1] as the training portion while reserving Ylt as the validation

point. As before, the average error is then computed and used to evaluate the model

(characterized by the choice of q).

6.5 Experimental Results

We investigate the Basque Country case study through the lens of regularization.

Throughout the experiments, we employ the forward chaining strategy to learn the

regularization parameter q.

6.5.1 Ridge regression

We display the resulting figures after applying ridge regression under varying thresh-

olding scenarios.
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(a) Top singular value. (b) Top two singular values. (c) Top four singular values.

Figure 6-1: Trends in per-capita GDP between Basque Country vs. synthetic Basque

Country.
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6.5.2 LASSO

Similarly, we display the resulting figures after applying LASSO under varying thresh-

olding scenarios. Since the LASSO strategy seeks sparse solutions, it is not surprising

that we find that the resulting estimates derived from our regularized robust setting are

nearly identical to that of original synthetic control estimates since the latter method

indirectly learns sparse solutions by enforcing the parameter values to lie within the

simplex. Due to its sparsity, the LASSO solution, also provides an interpretable

solution, which some practitioners may find valuable.
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(a) Top singular value. (b) Top two singular values. (c) Top four singular values.

Figure 6-2: Trends in per-capita GDP between Basque Country vs. synthetic Basque
Country.
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Chapter 7

Bayesian Synthetic Control

7.1 A Bayesian Perspective

We turn our attention to a Bayesian treatment of synthetic control. By operating under

a Bayesian framework, we allow practitioners to naturally encode domain knowledge

into prior distributions while simultaneously avoiding the problem of overfitting. In

addition, rather than making point estimates, we can now quantitatively express our

uncertainty of our model with posterior probability distributions.

We begin by treating # as a random variable as opposed to an unknown constant.

In this approach, we specify a prior distribution, p(/), over 3 that expresses our apriori

beliefs and preferences about the underlying parameter (synthetic control). Given

some new observation for the donor units, our goal is to make predictions for the

counterfactual treatment unit on the basis of a set of pre-intervention (training) data.

For the moment, let us assume that the noise parameter o.2 is a known quantity and

that the noise is drawn from a Gaussian distribution with zero-mean; similarly, we

temporarily assume M- is also given. Let us denote the vector of donor estimates

as M.t = [Mit]2<i<N; we define X.t similarly. Denoting the pre-intervention data as

D {(Yt, M.t) : t E [To]}, the likelihood function p(Y7 I3, M--) is expressed as

p(Y-| 13, MI-) = J((M-) T 3, c21), (7.1)

an exponential of a quadratic function of #. The corresponding conjugate prior, p('3),

is therefore given by a Gaussian distribution, i.e. / - (/3 10o, Eo) with mean /30 and

covariance E0. By using a conjugate Gaussian prior, the posterior distribution, which

is proportional to the product of the likelihood and the prior, will also be Gaussian.

Applying Bayes' Theorem (derivation unveiled in the Appendix), we have that the
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posterior distribution over f is p( 3 D) = .I(D, ED) where

ED = E0+ 12M-(M~)T _ 72

(D = ED( M-- + E 0 1) (7.3)

For the remainder of this section, we shall consider a popular form of the Gaussian

prior. In particular, we consider a zero-mean isotropic Gaussian with the following

parameters: 00 = 0 and Eo = a-'I for some choice of a > 0. Since M- is unobserved

by the algorithm, we use the estimated M-, computed as per step one of Section

3, as a proxy; therefore, we redefine our data as D ={(Yit, M.t) : t E [To]}. Putting

everything together, we have that p( I D) = A( 3 D, ED) whereby

ED=(ai + 1 MAJ(MJ)T) (7.4)1 -2 -Y

/D = ED 71 (7.5)

)1

7.1.1 Maximum a posteriori (MAP) estimation

By using the zero-mean, isotropic Gaussian conjugate prior, we can derive a point

estimate of #3 by maximizing the log posterior distribution, which we will show is

equivalent to minimizing the regularized objective function of (??) for a particular

choice of r1. In essence, we are determining the optimal 3 by finding the most probable

value of f given the data and under the influence of our prior beliefs. The resulting

estimate is known as the maximum a posteriori (MAP) estimate.

We begin by taking the log of the posterior distribution, which gives the form

12
lnp(/3 D) = 2 -y (M-) T3 a IpI12 + const.

2a2 2

Maximizing the above log posterior then equates to minimizing the quadratic regular-
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ized error (??) with r7 = ao2 . We define the MAP estimate, !MAP, as

oMAP= arg maxlnp(3 D)
3ERN--i

1 2 a92

=arg min- Y- (M) T  + 13112
OERN-1 22

(M(M>)T + or2I) -1M-ylg.

With the MAP estimate at hand, we then make predictions of the counterfactual as

T1 = (I7MAP)-

Therefore, we have seen that the MAP estimation is equivalent to ridge regression since

the introduction of an appropriate prior naturally induces the additional complexity

penalty term.

7.1.2 Fully Bayesian treatment

Although we have treated 0 as a random variable attached with a prior distribution,
we must go beyond point estimates in order to be fully Bayesian. In particular, we will

make use of the posterior distribution over o to marginalize over all possible values of

o in evaluating the predictive distribution over Y-. We will decompose the regression

problem of predicting the counterfactual into two separate stages: the inference stage

in which we use the pre-intervention data to learn the predictive distribution (defined

shortly), and the subsequent decision stage in which we use the predictive distribution

to make estimates. By separating the inference and decision stages, we can readily

develop new estimators for different loss functions without having to relearn the

predictive distribution, providing practitioners tremendous flexibility with respect to

decision making.

Let us begin with a study of the inference stage. We evaluate the predictive

distribution over Yit, which is defined as

p(Yt I M.t, D) Jp(Yt I .t, o) p(13 I D) d (7.8)

=K(MT/3, T 2), (7.9)
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where

(7 = . + !DE DD. (7-10)

Note that p( I D) is the posterior distribution over the synthetic control parameter

and is governed by (7.4) and (7.6). With access to the predictive distribution, we move

on towards the decision stage, which consists of determining a particular estimate kit

given a new observation vector X.t (used to determine M.t). Consider an arbitrary

loss function L(Yt, g(Mtt)) for some function g. The expected loss is then given by

E[L] = L(Yt, g(M.t)) -p(Yt, Mtt) dYt dMt. (7.11)

J L(Y(I g(i.t)) -p(Yt I M.t)dYt) p(M.t)dMt, (7.12)

and we choose our estimator y(-) as the function that minimizes the average cost, i.e.,

= arg min E[L(Yt,g(M.t))]. (7.13)
g(.)

Since p(M.t) > 0, we can minimize (7.12) by selecting (kt) to minimize the term

within the parenthesis for each individual value of Yit, i.e.,

kit = xk-t) (7.14)

=arg min L(Y, g(kt)) -p(Yt |. t) dYt. (7.15)
g(-) f

As suggested by (7.15), the optimal estimate Mit for a particular loss function depends

on the model only through the predictive distribution p(Yt I M.t, D). Therefore, the

predictive distribution summarizes all of the necessary information to construct the

desired Bayesian estimator for any given loss function L.

7.1.3 Bayesian least-squares estimate

We analyze the case for the squared loss function (MSE), a common cost criterion for

regression problems. In this case, we write the expected loss as

ZE[L] = J (Y - g(Mt))2 p(Yi .t) dYt) p(ftt) d.t. (7.16)
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Under the MSE cost criterion, the optimal estimate is the mean of the predictive

distribution, also known as the Bayes' least-squares (BLS) estimate:

M I =E[Yt I A.t, D] (7.17)

JYt p(Y Ifl, ID)dYt (7.18)

M /3DT (7.19)

To see why the BLS estimate is the minimizer of a quadratic loss criterion, we analyze

a simple scalar case where we denote x as the given feature vector and y as the target

value. As a refresher, recall that

BLS(X) =argmin (y - a)2p(yx)dy.
a f

Differentiating the above integral, we obtain

a (y - a)2 p(y I x)dy = (y - a)2 p(y I x)dy

-2 (y - a)p(y I x)dy.

Setting the expression to zero at a = yBLS(X) gives us our desired result:

(y - a)p(y I x)dy -BLS y I x)dy - fBLS(X) Jp(y Idy

= E[y I X] - yBLS (X) (y Ix)dy

= E[y I x] - yBLS(X) 0-

A similar derivation applies to vector case.

Remark 7.1.0.1. Since the noise variance o.2 is often unknown in practice, we can

introduce another conjugate prior distribution p(#, 1/u.2 ) given by the Gaussian-gamma

distribution. This prior yields a Student's t-distribution for the predictive probability

distribution.

7.2 Experimental Results

We will now study both the Basque Country and California Prop. 99 case studies under

a Bayesian setting. We estimate the noise variance by using the unbiased correction
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of the maximum likelihood estimate, i.e. .2 = - 1) TO(Y - Y) 2 , where Y

denotes the sample mean. From our results, we will see that our predictive uncertainty,

captured by the standard deviation of the predictive distribution, is influenced by the

number of singular values used in the denoising process. Therefore, we have plotted

the eigenspectrum of the singular values of the two case study datasets below. Clearly,

the bulk of the signal contained within the datasets is encoded into the top few singular

values - in particular, the top two singular values. Given that the validation errors

computed via forward chaining are nearly identical for low-rank settings (with the

exception of a rank-1 approximation), we shall use a rank-2 approximation of the data

matrix. In order to exhibit the role of thresholding in the interplay between bias and

variance, we also plot the cases where we use threshold values that are too high (bias)

or too low (variance).

For each figure, the dotted blue line will represent our posterior predictive means

while the shaded light blue region spans one standard deviation on both sides of the

mean. As we shall see, our predictive uncertainty is smallest in the neighborhood

around the pre-intervention period. However, the level of uncertainty increases as we

deviate from the the intervention point, which appeals to our intuition.

Eigenspectrum of Basque Country dataset Eigenspectrum of Cahfornia Prop. 99 dataset
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(a) Eigenspectrum of Basque data. (b) Eigenspectrum of California data.

7.2.1 Basque Country

We plot the resulting Bayesian estimates in the figures below under varying thresholding

conditions. From previous discussions, we know that a Gaussian prior for the latent

parameter f amounts to estimating / under a ridge regression setting for a particular

choice of q. Therefore, it is not surprising that the posterior mean of our predictive

distribution closely resembles the counterfactual trajectory derived for ridge regression.

Furthermore, it is interesting to note that our uncertainty grows dramatically once
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we include more than two singular values in the thresholding process.
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Figure 7-2: Trends in per-capita GDP between Basque Country vs. synthetic Basque

Country.

7.2.2 California Anti-tobacco Legislation

Similar to the Basque Country case study, our predictive uncertainty increases as the

number of singular values used in the learning process exceeds two. In order to gain

some new insight, however, we will focus our attention to the resulting figure associated

with three singular values, which is particularly interesting. Specifically, we observe

that our predictive means closely match the counterfactual trajectory produced by the

classical synthetic control method in both the pre- and post-intervention periods (up

to year 2000), and yet our uncertainty for this estimate is significantly greater than

our uncertainty associated with the estimate produced using two singular values. As a

result, it may be possible that the classical synthetic control method overestimated the

effect of Prop. 99, even though the legislation did probably discourage the consumption

of cigarettes - a conclusion reached by both our robust approach and the classical

approach.
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Figure 7-3: Trends in per-capita cigarette sales between California vs. synthetic California.

7.2.3 Synthetic data

From the synthetic simulations (figures below), we see that the number of singular

values included in the thresholding process plays a crucial role in the model's prediction

capabilities. If not enough singular values are used, then there is a significant loss of

information (high bias) resulting in a higher MSE. On the other hand, if we include too

many singular values, then the model begins to overfit to the dataset by misinterpreting

noise for signal (high variance). As emphasized before, the goal is to find the simplest

model that both fits the data and is also plausible, which is achieved when four singular

values are employed.
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Appendix A

Useful Theorems

We present useful theorems that we will frequently employ in the following sections to

prove our desired results.

Theorem A.0.1. Perturbation of singular values.

Let A and B be two m x n matrices. Let k = min{m, n}. Let A1 , ... , Ak be the singular

values of A in decreasing order and repeated by multiplicities, and let r1 ,..., Tk be the

singular values of B in decreasing order and repeated by multiplicities. Let 61,...6k
be the singular values of A - B, in any order but still repeated by multiplicities. Then,

max IAi - ri < max 16i .
1<i<k 1<i<k

Remark A.0.1.1. See [14] for references to the proof of the statement.

Theorem A.0.2. Poincar6 separation Theorem.

Let A be a symmetric n x n matrix. Let B be the m x m matrix with m < n, where

B - PTAP for some orthogonal projection matrix P. If the eigenvalues of A are

o-1 < ... < o-n, and those of B are T 1 K ... < rm, then for all j <m+ 1,

9j Tj K (n-m+j -

Remark A.0.2. 1. In the case where B is the principal submatrix of A with dimensions

(n - 1) x (n - 1), the above Theorem is also known as Cauchy's interlacing law.

Theorem A.0.3. Theorem 3.4 of [14]

Take any two numbers m and n such that 1 Km < n. Suppose that A = [Aij]1<i<m,1<j<n

67



is a matrix whose entries are independent random variables that satisfy, for some
J2 E [0, 1],

E[As3] = 0, E[Ai%] 62, and IAjj < 1 a.s.

Suppose that 62 > n- 1+ for some C > 0. Then, for any n c (0,1),

P(IIAII > (2 + i)6v i) < C(()e-cj 2n

where C(() depends only on ri and (, and c depends only on TI. The same result is

true when m = n and A is symmetric or skew-symmetric, with independent entries on

and above the diagonal, all other assumptions remaining the same. Lastly, all results

remain true if the assumption 62 > n-1+ is changed to 62 n- 1 (logn) 6+(.

Remark A.0.3.1. The proof of Theorem A.0.3 can be found in [14] under Theorem 3.4.
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Appendix B

Linear Regression

Throughout the proofs in this chapter (and the appendix in general), we denote C1,

C2 , and c as universal positive constants that depend on the choice of 1 E (0, 1), if

applicable. The values for C1 , C2 , and c may change from line to line or even within a

line.

To simplify the following exposition, we assume that Mi 1 and IXjjj < 1.

Recall that all entries of the pre-intervention treatment row are observed such that

Y- = X- = M- + e--. On the other hand, every entry within the pre- and post-

intervention periods for the donor units are observed independently of the other entries

with some arbitrary probability p. Specifically, for all 2 < i < N and j E [T], we

define Yij = Xi1(xj observed), where 1 is the indicator function. Under this model, for

all units in the donor pool and across all time periods,

E[Yij = pMij.

Recall that P denotes the proportion of observed entries in the data matrix X. We

define the event E1 as

E := {IP -p rp/z}, (B.1)

for some choice of rq c (0, 1) and z > 0. By Bernstein's inequality, for any t > 0,

-pI>t)<2 exp{ 3(N -- )Tt2

Forcncre s we ai tr y coex - 6p( - p) + 2t

For concreteness, we arbitrarily choose z =_ 20 in the proofs of the Lemmas and
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Theorem 4.1.1. As a result, we have that

P(E1 ) > 1 - 2ec(N-)TP

Finally, we assume that the total number of units N, and hence the size of the donor

pool, is sublinear in T, i.e. N = o(T). However, for the sake of analytical simplicity,

we proceed with our analysis under the assumption that N is fixed. In other words,

the only dimension that increases is the number of pre-intervention periods To.

We begin by proving a useful lemma that allows us to bound the spectral norm

of a child submatrix, e.g. A, by the spectral norm of the larger, parent matrix, e.g.

C= A BI.

Lemma B.O.1. Suppose C is an m x n matrix composed of an m x p submatrix A

and an m x (n - p) submatrix B, i.e., C = [ A B ]. Then, the spectral (operator)

norms of A and B are bounded above by the spectral norm of C,

max{IIAjI, IIBII} < IICII.

Proof. Without loss of generality, we prove the case for HAIl < ICII, since the same

argument applies for JBJ|. By definition,

CTC= [.AA ATB
SBT A BT B

Let o-1, . . . , a be the eigenvalues of CTC in increasing order and repeated by multi-

plicities. Let m1, .. ., rT be the eigenvalues of ATA in increasing order and repeated by

multiplicities. By the Poincar6 separation Theorem A.0.2, we have for all j < p + 1,

Uj a Tj < -n-p+j.

Thus, r < o-,. Since the eigenvalues of CTC and ATA are the squared singular

values of C and A respectively, we have

Wer~ = \tp b p a idical agumn= .

We complete the proof by applying an identical argument for the case of |IBIJ. M
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B.1 Pre-intervention analysis

In this section we prove Theorem 4.1.1 and Corollary 4.1.1 (restated below).

We now prove the following two key Lemmas, which, when amalgamated, provide

us with a universal upper bound on the pre-intervention MSE for any general noise

model that satisfies the conditions described in section ??. Moreover, the following

Lemmas allow us to express the pre-intervention MSE in a way that highlights the

inherent bias-variance tradeoff of the algorithm with respect to the choice of p.

Remark B.1.O.1. To ease the notational complexity of the following Lemma B.1.1

proof, we will make use of the following notations for only this derivation:

Q =(M-)T (B.2)

Q : (MI-)T (B.3)

such that

W := Q, (B.4)

W1-:= W#. (B.5)

Lemma B.1.1. Let 3 be defined as the vector of weights such that AM- = (M-)T3 and

has minimum norm (since / may not be unique). Then, the universal, unnormalized

pre-intervention MSE is bounded above as

E -- M- <E M- M |112 + 2U 2iSI. (B.6)

Proof. Recall that for the treatment row, Y7 = ME + 61- with M- = Q,3. Since 3,
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by definition, minimizes YI- - 0v for any v E RN-, we subsequently have

S- N =(Y?-)-Q

Y1 -Q/3 + (-E) 2

Y1 - Q + 2 + 2 Y -

(Q + Ei) - e 2 -|12 + 2(-cl Y- - Q/)

(Q -- +) 2 - + - 2 (-El-, Yi- -

(Q - Q)q3 + 21 E2 + 2(Ec, (Q - ()0) + 2(-E,YC - Q/)

Q - Q j2102 +211 E-2 + 2(-, (Q - Q)3) + 2(-cj , Y7 -

where the last inequality from the submultiplicative property of induced norms. Taking

the expectation, we arrive at the inequality

E {1- - M7- E Q - Q I2I 2+2EI -112+2E[(e-, (Q--O))]+2E[(-E-, YC-(OS)].
(B.7)

We will now deal with the two inner products on the right hand side of equation (B.7).

First, observe that

E[(E-, (Q - 0)0)] =E[(Ei)']QO - E[(-) T O]f
= -[(E )T]E[O)#

=0,

since the additive noise terms are independent random variables that satisfy E[Eij] = 0

for all i and j by assumption, and M := - depends only on the noise terms for

i $ 1; i.e., the construction of Q := AI~ excludes the first row (treatment row), and

thus depends solely on the donor pool.

For the other inner product term, we begin by recognizing that (E--)T Itei- is a

scalar random variable, which allows us to replace the random variable by its own

trace. This is useful since the trace operator is a linear mapping and is invariant under
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cyclic permutations, i.e., tr(AB) = tr(BA). As a result,

E[(6-)TQ(fe6) = E~tr((ec-)TQQtfl]-

E[tr(QQtf (el-) T)]

=tr (E[(0tc,-(, )T]

=tr (E[(2(2]E[E--(6 1)TI

<tr (E[QQI]cr2I)

U2 E[tr(Q(f)]

(a 2 E[rank(o)]

< a2ISI,

where (a) follows from the fact that QQt is a projection matrix. As a result, 0(t has

rank(Q) eigenvalues equal to 1 and all other eigenvalues equal to 0, and since the trace

of a matrix is equal to the sum of its eigenvalues, tr(QQf ) = rank(Q). Simultaneously,

by the definition of Q := M-, we have that the rank of Q := M- is at most ISI.

Returning to the second inner product and recalling /3 = QtY-,

IE[-Cp, Y17 - Qi3) E[(-) T(l - E( 1)T Y]

=E[(E-)TQ 2ty-- _ [ () T ]M- - E[(E-)T

= F[(E-)TQ)t]M- + E[(61-) T Qt Cj] - E[(6-) T 61

E[(ei-) T QO()t]M + E[(e- 1)T(2 0 I-~] - I E-I

< 0-2 1S, _E1C 112,

where (a) follows from the same independence argument used in evaluating the first

inner product. Finally, we incorporate the above results to (B.7) to arrive at the

inequality

El*- - M E2 - |211|3112 + 2E|E--11 2 + 2(U 2 |S| - E||E-|| 2 )

=IEl - Q I|312 + 2 21SI

= I E -- M- |12 +2U 21S.

U
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Lemma B.1.2. Let A 1,..., AN-, be the singular values of pM in decreasing order

and repeated by multiplicities, with A* = maxjts Aj. Then assuming E1 occurs,

M -M C- (A*+ |Y - pM + 1(fi - p)Mi 1). (B.8)

Proof. Recall that s1 , .. . , sN-1 are the singular values of Y in decreasing order with

repeated multiplicities. By Theorem A.0.1, we have si A Ai + lY - pMAI for all i.

Thus, assuming E1 occurs

pM- - M C14 S- - M-

C1 PA- - pM- + CI - p)M

C1 Y- - 3M- + Ci|Y--pMlo-- || + C1|(|-p) M-|
(a)

01 Y -CM + 1 |Y - pM-|| + C1|f - p)M- |
= C1 maxsj + C1 ||Y- -pM~| + Ci (f -p)M~1I

ZOs

C1 max (AHi + |Y -pMll) + C1 |jY -pM-| + C|(|P -p)M-||

(b)
" CimaxA + (C 1+1)ffY -pM11+ Ci(p -p)M-||igS

" C1 (A* + flY - pMf + 11(P - p)M-

where (a) and (b) follow from Lemma B.0.1. Note that we have absorbed (N - 1)#113112

into the universal constant C2 since N is assumed to be fixed. The resulting form is

also more aethestically appealing to display, hence the absorption. U

Theorem (4.1.1). The pre-intervention error of the algorithm can be bounded as

MSE(Mj-) p E(A* + |Y -pMf + I(f - p)M-1 lIl2 113112+ (B.9)
p 2To TO

+ C2 (N - 1)||||2 e-cp(N-1)T. (B.10)

Here, A1 ,..., AN- 1 are the singular values of pM in decreasing order and repeated by

multiplicities, with A* = maxjes A2; C1, C2 and c are universal positive constants.

Proof. We invoke Lemmas B.1.2 and B.1.1 and apply the total law of probability to
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arrive at the inequality

E M--- M = E[ M - _ M- 2 E,] P(E1) + E [1 -A- _M- 1 I Ec P(Ec)

E -- -| EI +_ E_ M- 2 E~ P(Ec)
<CE(A* + Iy-p +1) + -pM J-E[I M 21
< , E(*+|Y-pMI| + 11(fi - p)M- + IN - M- 121Ec P(Ec)

< CE(A* + IIY - pMIj + (f - p)Mj) + C2 (N - 1)ToP(Ec)
p21

< _ E(A* + ||Y - pM\\ + ||(i p)--1)2 + C2(N - 1)Toe-c(N- 1)Tp

where Ec denotes the complementary event of E1 . Dividing throughout by To gives

the desired bound:

MSE(Mg) < E M~- - M- ||#0|2 +2 2SI
TO TO

< p * + || - -t| lE -+11p)MI|I |2 II 2S + C2e-c(N- 1)TP.

Note that we have absorbed (N - 1)113112 into the universal constant C2 since N is

assumed to be fixed. The resulting form is also more aethestically appealing to display,

hence the absorption.

Corollary (4.1.1). Let rank(M) = k for some 1 < k < N - 1. Let the choice of p be

such that |SI = k. Suppose u2p + p(l - p) > T- 1+1 for some 4> 0. Let T < aTo for

some constant a > 1. Then

lim MSE( -) < (C1  2 +2
To- oo p

Proof. For the rest of this proof, let z = N in (B.1), which is assumed to be a fixed

constant. As a result, note that the exponent in the rightmost term of (B.12) is now

C 2 e-CPT, where the 1/N factor has been absorbed into c. Further, recall that Ai are

the singular values of pM in decreasing order with repeated multiplicities. Thus,

assuming rank(M) = k and ISI = k,

A = max Ai = 0.
igS
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Consequently, we have that

MSE(M-) _ C1II# 2E (+ 1(-p)M-
p2 T

C1| 2I E (Y - pM| + (fi - p)M- 1)

S2a21SI + C2e--pT
TO

+TO + C2 e~.

Observe that for 2 < i < N and j E [T],

Var(Yi) =EY] - (E[Yj]) 2

= pE[Xj] - (pMij) 2

< p(0 2 + Mj) - (pM j)2

= pU2 + pM(i - p)

Consequently, we define the event E2  {|Y - pM| < (2 + j7/2)6VT} where we also

define j2 -P 2 + p(l - p). By Theorem A.0.3, we have that P(E2 ) > 1 - 2e-c, 2
T for

J2 E [0, 1].

Assume E1 and E2 occur. Since IM-11 (N - 1)To, we have that

IE (|Y - pM| -(fi - p)M-) < (2 +q/2)3v/7. - IE||(f - p)M 1|

< (2+/23xTP M--
N

(2 +n/2)6p
N

< (2 + r/2)6rpT
-IN -1

V(N - 1)To

(2q + q 2 /2)6pT

N - 1

Simultaneously, note that E(fi - p)2 = p(i - p)/(N - 1)T. As a result,

IEI|(p - p)M-||2 = ||M j2]E(i -_P)2

< A1 - p)T
-- T

Applying the above inequalities into the first term on the RHS of (B.12) and using
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the total of probability, we have that

E (IY -<pM|| | -P)M-|| C3
2T+p( --p) + (4 + 7 2)6pT + C4 (N - 1)Te- 2 T

E(11 - M11+ 10- PM-1) -v1N -- 1

whereby C3 depends on the choice of q, and C4 depends on both ( and rl. Thus,

dividing by To gives

I E(|Y -pM|| + 2(p -0P)M C62 + (4n + 772)6p p(I _ p +C 4 (N - 1)eC6 2T

T - IN-I To

Clearly, the last two terms go to 0 in the limit as To -+ oo. Returning to (B.12), we

subsequently have

lim MSE(M7j-) 2 C2I C1(4j + i2)/ -2  (B.13)
To--oo p2  2 N - I

C1(U 2p+ p( -- p))|p112  C1(4 2) + g2p . p(l _pIji3H

p 2  pN- 1
(B.14)

CI(oa 2+ (1 -p))p11 2 + C(4T + T2) o.2 + (1 - 2p)LB (B.15)
P Vp(N-1)

C113 112 (U 2 + (1- p) (47 + q2) 02 + (l-p) (B.16)

S+N- I -

Since the second term of (B.16) depends on the choice of 77 E (0, 1), we can essentially

render it as a negligibly small quantity by choosing a small enough q. Therefore, the

asymptotic error bound of (B.16) is dominated by the first term. In addition, if we

let N = o(T) grow without bound, then the term also disappears in the asymptotic

regime. Note that the exponential term of (B.12) still decays to 0 when we choose

z = N and let N -+ 00, so long as N = o(T). As a result, we only display the first

term in the theorem above purely for aesthetic purposes.

B.2 Consistency: block partitioning

Theorem (4.1.2). Let rank(I-) = k for some 1 < k < N - 1. Let the choice of p

be such that |SI= k. Then

lim MSE(M-) = 0.
To-+o
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Proof. We prove Theorem 4.1.2 following the proofs of Theorem 4.1.1 and Corollary

4.1.1, using the block partitioned matrices instead. We first define E~ = [Kij]2 i NjrT

with entries

sig ( st.(B. 17)

We define 61, for j E [r] in the same manner as (B.17). Consequently, for all i E [N]

and j E [T], we maintain the generalized factor model relationship, Xjj = Mij + ig. As

a byproduct, we have in matrix form, X- = M- + E-. Under this construction, the

noise entries remain zero-mean random variables: E[Kis] = 0. However, the variance of

each noise term is now rescaled by 1/T,

Var( i,) = 1 Var(it) =
T T

For notational purposes, let 32 = Var( jj). We now show that the key assumption

of (2.7) still holds under this setting with respect to the newly defined variables. In

particular, for every partition j E [T] of row one,

Mi3 = Mit
tEBj

N

tEBj k=2

N

=Z/3k(-ZMkt
k=2 tEBj
N

k=2

As a result, we can express M-= (M-)T3 for the same / as in (2.7).

Following the same setup as before, we define - = [Yij]2 i N,j r where Yij= Xjj

if Xjj is observed and 0 otherwise. In most practical cases, the proposed averaging

pre-processing step would produce a matrix X- without any missing entries. However,

for the sake of completeness, we will analyze the case where X I is observed with some

arbitrary probability p. Concretely, we define p = 1 - (1 - p)' since Xij is unobserved

only if all Xit for t G B are unobserved. From the model setup, we assume that

each Xit is observed, independently of all other entries, with probability p; hence, the
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definition of p. We now proceed with our analysis in the exact same manner with the

only difference being our newly defined set of variables and parameters.

In that spirit, we define the event El :={ {f - p < qp/N} where ' now refers to

the proportion of observed entries in X-. Let A, denote the singular values of pM-

in decreasing order and with repeated multiplicities, whereby A* = maxjgs Aj. With

minor variations to the proofs of Lemmas B.1.1 and B.1.2, we arrive at the inequality

. C1||1||2 _2 +C2c-pN+2&2 k
MSE(M1-)< FE(k + |Y -PM-| + ||(p) -||) +Tck

p2 T

Since rank(M-) = k and ISI = k, we have that A* = 0. Thus,

MSE(M7-) < C Y -pME - (P-P)M~|| + C2ecP/1N ) T

Similarly, we define the event E2 := {WY- - pA-j1 <; (2+r/2)6V%/-} where we define
62 p&2 + p(1 - p). After a careful massaging of the proofs, we arrive at the familiar

inequality:

i SC1i c 1 112 & 2 + (1 - p) (47 +q2) / 2 + (1-lim MSE(M1 ) < lim +
7--+o ~ 7-+o 00 /N -I

. C1I2 ac2/T + (1 - p) (4 + 972) /r.2/T (1 - )
-_0 V/P VI V sN - I

< lim+N-
< lim C9 2fhI ( / T + ( 1 - p ) + _ _ _ _ _ _ __+_I _ _p

~/ VrP4 v/N - 1

-0,

since p =1 and a2 /T = 0 as T -+ o. Therefore, by pre-processing the data in the

proposed manner, our estimator is asymptotically consistent.

B.3 Post-intervention analysis (static rank)

Theorem (4.2.1). Let (2.7) hold for some E RN-1. Let rank(M-) = rank(M).

Then M1+ = (M+)T3.

Proof. Suppose we begin with only the matrix M-, i.e. M = M-. From the
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assumption that M- = (M-)T3, we have for t < To

N

Mt= Z jMjt.
j=2

Suppose that we now add an extra column to M- so that M is of dimension

N x (To + 1). Since rank(M-) = rank(M), we have for j E [NJ

To

MjT0 +1 = 7rt MtI
t=1

for some set of weights 7i E RTo. In particular, for the first row we have

TO

M1,T 0+1 = 7rtMAit
t=1

To N

= L7t (Z 3,M,
t=1 j=2

N TO

j=2 t=1
N

NZ/3aMj,To+1.
j=2

By induction, we observe that for any number of columns added to M- such that

rank(M-) = rank(M), we must have M1+ - (M+)T where M+ = [Mit]2 i N,To<t T-

Lemma B.3.1. Assuming E1 occurs, the (un-normalized) post-intervention error is

bounded above by

lj - Mj < C1T (A* +||1Y - pM11|+||1(P - p)M+1) + (M+)T ( _ 3)1
p/p

Here, A1,..., AN-, are the singular values of pM in decreasing order and repeated by

multiplicities, with A* = maxjgs Ai; C1 , C2 , and c are universal positive constants.

Proof. Observe that (M+)t = I/(minies si). However, by definition of the set S,

80



all singular values within S satisfy si > p, yielding (M+)t < 1/p. Therefore,

1 (r+ _ M+11 )7 - (M+) T '3 MM

(+)T - (M+)T + (M+) T _ (M+ T

$+-M+ T $ + (M+)T( _ J

< + _ M+ 1 + (M+)T (3,-fl)

< + - M+ (M+)t||Y;| + 11 M+)T

<'o I+ - MI + (M+)T(_3- 11
(a) CJ
< p A*/ +|Y-pM||+j(P-p)M+|

_ 3)

+ (M+) TC3

where (a) follows from a minor adaptation of Lemma B.1.2.

Theorem (4.2.2). The (unnormalized) post-intervention root mean-square error

(RMSE) is bounded above by

TE (* +Y - pM11 + 1(P - p)M+|I
ppVT -To

RMSE(M1) + IM -T E 3- 31
VT -T0

C2 VTo(N - 1) ep(N-1)T+ e

Here, A1,..., AN-1 are the singular values of pM in decreasing order and repeated by

multiplicities, with A* = maxios A 2; C1,C2, and c are universal positive constants.

Proof. The proof follows from a simple application of B.3.1 and the total law of

probability. Specifically,

+E M+ - M+ EcP(Ef)

_ *+

_< C* +
p

I|Y -pM||+|(P -+

I\Y - pMII + ( -

P)M) + E[ + - M+J 2 EjP(ED)

p)M+||) + C2 (N - 1)(T - TO)e-p(N-1)T.

Merging the above result with B.3.1 gives our desired result.
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Appendix C

Regularization

In this chapter, we will prove our results for the ridge regression setting.

C.1 Derivation of j

We derive the closed form solution for e under the new objective function with the

additional complexity penalty term:

Y - (-) T V + 711V 2 = (y7y1 - 2vTMY- + VTA,-(A -)TV + r;VTV.

(C.1)

Setting the gradient of (6.1) to zero, and solving for v, we obtain

(M %) 2 2 -2M-Y- + 2M-(M-)Tv + 2v = 0

-= -= ( (M-)T+ -Y1~.

C.2 Pre-intervention analysis

Remark C.2.0.1. To ease the notational complexity of the following Lemma C.2.1

and Theorem 6.2.1 proofs, we will make use of the following notations for only this

derivation: Let

(C.2)

(C.3)
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such that

M-:= QW (C.4)

*_ := W5. (C.5)

Lemma C.2.1. Let Pn = Q(QT Q + r,)-lQT denote the projection matrix under

the quadratic regularization setting. Then, the non-zero singular values of P are

si/(s? + 7) for all i E S.

Proof. Recall that the singular values of Y are si, while the singular values of Q
are those si > p. Let Q UEVT be the singular value decomposition of Q. Since

VVT = I, we have that

P Q(QTQ + TI)

=U EVT(V E2VT + 7I)-lVEUT

= UEVT(V 2 VT +, VVT)-1V UT

=UEVTV(E2 aIglVTVEUT

=UE(E 2 + r)-1EUT

=UDUT,

where

D diag 12 1i ... , 0 .0s__+_ sisI+9

Theorem (6.2.1). For any i1 > 0, the pre-intervention error of the algorithm can be

bounded as

C, 2 1112 2"
MSE('M) < E(A* +|"Y - pM + 1(p - p)M-11lflhl2+ (C.6)

p 2To TO

+ TO + C2 (N - 1)||3I|2e-c(N-1)Tp. (C.7)

Here, A1,..., AN-i are the singular values of pM in decreasing order and repeated by

multiplicities, with A* = maxios Ai; C1, C2 and c are universal positive constants.

Proof. The following proof is a slight modification for the proofs of Lemmas B.1.1 and

Theorem 4.1.1. In particular, observe that #, minimizes Yi- - Qv + nI|vII 2 for any
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v E RN-i. As a result,

$1-2 _ M1 N=(Y_ - E_-) - 0 qjj + T/pI1

= (Y- - Q ) + (-1) + 2

- Y_- Q 2 + + 1 + 2(-6-, Y - 0 ,)

2 Y - Q/ - + I le2 
2+ 2 + 2(-j-, Y- - Qg?)

= (Q +e-) - 2 + ||1||2+ e ||2+2(-ef, Ye - #)
= 1 (Q - ) +eQ- + T110312 + 11 - 2(- , -

= (Q -- Q),3 + T11p12 +2- 12I-12 + 2(, (Q -- 0)3) + 2 (-e-, Y- --

5 Q - Q 12 + 111+311 2 + + 2(-, (Q - Q)3) + 2(-c , Y- -

Taking expectations, we have

M 2 <2 2

E Mg - Mg E Q - Q ||2 113112 + 2E||ei||2 + 2E(Qe, (Q - Q),3) + 2E(-Ce, YI -

As before, we have that E(E-, (Q - Q)3) = 0 by the zero-mean and independence

assumptions of the noise random variables. Similarly, note that

S1 )To&$4] = E [(E1 ) T + )-I) 1Q TY7I

= E[(E -)TQ(Q(T + 7)-'Qf]M- + E[(e) TQ(QQT + 7I7)-QTE-

E[(E-) T O(OT O + 1I)- 1 Tc1

E[tr((E-)T(Q ( T  + hI)~10eTE-

E[tr(Q(QTQ + rI- 1Q T E I(eIT)]

=tr(E4Q(Q TQ+ I)-1'C7(--)")

= tr(E[O(O T Q + ?I)-10TjIEf(6j)])

< U21E[tr(( (TO -+ ?I)-l()T)
(a) 2

<or E[tr(00f)]

= a rank(O)

< aolSI,

where (a) follows from Lemma C.2.1, and as before, (b) follows because Q~t is a
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projection matrix. The rest of the proof follows as in the proof of Lemma B.1.1 by

employing Lemma B.1.2. U

C.3 Post-intervention analysis (static rank)

Theorem (6.2.2). Assuming rank(M-) = rank(M), the post-intervention root mean-

square error (RMSE) is bounded above by

RMSE(M+) < C V E (A* + |Y - pM|1+11(P - p)M+/11 + E-/
pptT - To VT - TO

C2vTo(N - 1) -cp(N--1)T

Here, A 1,..., AN-, are the singular values of pM in decreasing order and repeated by

multiplicities, with A* = maxies Ai; C1, C2, and c are universal positive constants.

Proof. The proof follows exactly from the proofs of Lemma B.3.1 and Theorem 4.2.2,

and by observing that /3,7 /3 due to the complexity penalty term. 0
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Appendix D

A Bayesian Perspective

D.1 Derivation of posterior parameters

Suppose we are given a multivariate Gaussian marginal distribution p(x) paired with

a multivariate Gaussian conditional distribution p(y I x) - where x and y may have

differing dimensions - and we are interested in computing the posterior distribution

over x, i.e. p(x I y). We will derive the posterior parameters of p(x I y) here. Without

loss of generality, suppose

p(x) =P(x p, A-)

p(yI x) = (y Ax + bE-1),

where p, A, and b are parameters that govern the means, while A and E are precision

(inverse covariance) matrices.

We begin by finding the joint distribution over x and y. Ignoring the terms that

are independent of x and y and encapsulating them into the "const." expression, we
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obtain

ln p(x, y) = ln p(x) + In p(y | x)

= -- (x - p)T A(x - p) - -(y - Ax - b)T E(y - Ax - b) + const.
2 2

-
2 xT(A + AT EA)x -
- -- ]T[AA A
I x_ A+A TEA

2 y -EA

= ZTQz + const.,

where z = [x, y]T, and

1
2 +

1XT ATEy + const.
2

-AT1 x
+ const.

E y

A A+ATZJA
Q = E

-AT ]
- SE 

I

is the precision matrix. Applying the matrix inversion formula, we have that the

covariance matrix of z is

Var(z) = Q =
A1

AA-'

A-1AAT

E1+ AA-1A T

After collecting the linear terms over z, we find that the mean of the Gaussian

distribution over z is defined as

E[Z] Q -1Ap - A TEb]EF[z] = Q-1 [. Yb
Eb

Now that we have the parameters over the joint distribution of x and y, we find that

the posterior distribution parameters over x are

E[x y] = (A + AT EA)-'{ATE(y - b) + Ap}

Var(x y) = (A + AT E A)-.
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