
Robust Stability Assessment for Future Power

Systems

by

Hung Dinh Nguyen

Submitted to the Department of Mechanical Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

Author ....................... Signature redacted
Department of Mec ical Engineering

Oct 11, 2017

Certified by...................Signature redacted
L AKon antin Turitsyn

Associate Professor
Thesis Supervisor

Accepted by....................Signature redacted
RoTTIn Abeyaratne

Quentin Berg Professor of Mechanics; Graduate Officer

MASSCF ISTTE

FEB 0 9 21

LIBRARIES
ARCHIVES



77 Massachusetts Avenue
Cambridge, MA 02139

Mff ibraieshttp://Iibraries.mit.edu/askM ITLibraries

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

Some pages in the original document contain text
that is illegible.

(faint numerical figure notations)





Robust Stability Assessment for Future Power Systems

by

Hung Dinh Nguyen

Submitted to the Department of Mechanical Engineering
on Oct 11, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Loss of stability in electrical power systems may eventually lead to blackouts which,
despite being rare, are extremely costly. However, ensuring system stability is a
non-trivial task for several reasons. First, power grids, by nature, are complex non-
linear dynamical systems, so assessing and maintaining system stability is challenging
mainly due to the co-existence of multiple equilibria and the lack of global stability.
Second, the systems are subject to various sources of uncertainties. For example, the
renewable energy injections may vary depending on the weather conditions. Unfortu-
nately, existing security assessment may not be sufficient to verify system stability in
the presence of such uncertainties. This thesis focuses on new scalable approaches for
robust stability assessment applicable to three main types of stability, i.e., long-term
voltage, transient, and small-signal stability.

In the first part of this thesis, I develop a novel computationally tractable tech-
nique for constructing Optimal Power Flow (OPF) feasibility (convex) subsets. For
any inner point of the subset, the power flow problem is guaranteed to have a feasible
solution which satisfies all the operational constraints considered in the correspond-
ing OPF. This inner approximation technique is developed based on Brouwer's fixed
point theorem as the existence of a solution can be verified through a self-mapping
condition. The self-mapping condition along with other operational constraints are
incorporated in an optimization problem to find the largest feasible subsets. Such an
optimization problem is nonlinear, but any feasible solution will correspond to a valid
OPF feasibility estimation. Simulation results tested on several IEEE test cases up to
300 buses show that the estimation covers a substantial fraction of the true feasible
set.

Next, I introduce another inner approximation technique for estimating an attrac-
tion domain of a post-fault equilibrium based on contraction analysis. In particular,
I construct a contraction region where the initial conditions are "forgotten", i.e., all
trajectories starting from inside this region will exponentially converge to each other.
An attraction basin is constructed by inscribing the largest ball in the contraction
region. To verify contraction of a Differential-Algebraic Equation (DAE) system, I
also show that one can rely on the analysis of extended virtual systems which are
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reducible to the original one. Moreover, the Jacobians of the synthetic systems can
always be expressed in a linear form of state variables because any polynomial sys-
tem has a quadratic representation. This makes the synthetic system analysis more
appropriate for contraction region estimation in a large scale.

In the final part of the thesis, I focus on small-signal stability assessment under
load dynamic uncertainties. After introducing a generic impedance-based load model
which can capture the uncertainty, I propose a new robust small signal (RSS) stability
criterion. Semidefinite programming is used to find a structured Lyapunov matrix,
and if it exists, the system is provably RSS stable. An important application of the
criterion is to characterize operating regions which are safe from Hopf bifurcations.

The robust stability assessment techniques developed in this thesis primarily ad-
dress the needs of a system operator in electrical power systems. The results, however,
can be naturally extended to other nonlinear dynamical systems that arise in different
fields such as biology, biomedicine, economics, neuron networks, and optimization.

As the robust assessment is based on sufficient conditions for stability, there is
still room for development on reducing the inevitable conservatism. For example, for
OPF feasibility region estimation, an important open question considers what tighter
bounds on the nonlinear residual terms one can use instead of box type bounds. Also,
for attraction basin problem, finding the optimal norms and metrics which result in
the largest contraction domain is an interesting potential research question.

Thesis Supervisor: Konstantin Turitsyn
Title: Associate Professor
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Chapter 1

Introduction

Electrical systems are a critical infrastructure which provides essential services to

modern societies. Even though people probably have known electricity since ancient

times, the uses of electricity was very limited before Micheal Faraday discovered the

principle of electricity generation based on electromagnetic induction in 1831 [.

Since then the electricity revolution has commenced a global civilization in which

electricity renovated many aspects of human's live, for instance, communication, en-

tertainment, work, transportation, etc. Nowadays, all essential technologies, from

sophisticated space stations to household fans, need electrical energy to function.

Electric power systems are still and continue to be the backbone of modern life until

after people can find more clean and convenient alternatives.

Designed to continuously transfer power from power plants that are typically cen-

tralized and reside in remote areas to wide-spread industrial and residential customers,

power systems are undoubtedly one of the biggest and most complex man-made ma-

chines. Interconnected power systems may be extraordinarily large in size and may

span across several countries or even continents. They may consist of millions of

devices and components equipped with complicated hierarchical controls. That said,

most of the time power systems are surprisingly stable and reliable. In US and

Canada, the generally accepted Expected number of days per year of loss of load

which is also known as Loss of Load Expectation (LOLE) is 1 day in 10 years [- I.
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1.1 Motivation

At the same time, power systems are considered both fragile and vulnerable. Over

the last decades, there were several major blackouts over the world caused billions

dollars worth of damage and loss of life. For example, the 2003 North American

blackout contributed to 12 deaths and cost an estimated $6 billion, and the 1996

WSCC power outages cost up to $3 billion. More importantly, most major blackouts

relate to instability phenomena such as voltage collapse in the 2003 North American

and 2004 Athen blackout events, or small signal instability in the 1996 WSCC power

outages. Instability issues have been increasingly recognized as a serious concern for

the future of power systems.

There are different factors can contribute to the vulnerability of power systems

and pose harsh challenges in ensuring the system stability. First, power systems,

by nature, are complex nonlinear dynamical ones so to assess and maintain the sys-

tem stability is challenging mainly due to the co-existence of multiple equilibria and

the lack of global stability. Second, the systems are subject to various sources of

uncertainties and disturbances which become especially pronounced at a high level

of renewable penetration. Such uncertainties may jeopardize the system security by

altering the equilibrium and the associated stability. Hence, if the issue of stability

is not addressed thoroughly, the integration of renewable resources will be restricted.

Third, typical power systems that are of an enormous size may consist of millions of

variables; hence the operation and control problem becomes even impossible due to

computational limitations and time constraints. For the same reason, many analyti-

cally elegant theories may only perform well for "small enough" systems.

Also, current stability assessment used in power system operation routines is

mostly deterministic and only admits uncertainties to a limited extent. Typically,

when it comes to uncertainties, the assessment will be performed on the so-called

credible list consisting of a number of scenarios which are deemed most probable.

This credible scenario based analysis may be competent if it engages most critical

scenarios. For example, system operators can ensure N-1 security most of the time by
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merely using an N-1 contingency list created based on practical experience. However,

this approach is neither efficient nor effective in the case of continuous uncertain-

ties, for example, uncertain injections, due to an infinite number of scenarios and the

inability to pinpoint the most critical ones. These challenges motivated me to de-

velop new robust feasibility and stability assessment techniques applicable to practical

power systems under most common uncertainties.

1.2 Power system modeling, analysis, and stability

assessment

Being a dynamical system, stability analysis of a power system inevitably involve the

three fundamental questions below:

* Whether the system has (at least) an equilibrium?

" If an equilibrium exists, will it be (linearly) stable?

" If the equilibrium is (linearly) stable, whether the system is able to converge to

it after transient?

Smal signa t

Transient

Long term voltage stability

Figure 1-1: Three main types of stability
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The three questions correspond to three different types of stability, i.e., long-

term voltage, small-signal, and transient stability. Figure 1-1 shows the relationships

among three notions of stability in which the concept associated with the inner oval

implies that of the outer one. These relations can be seen by answering those questions

backward.

To address these fundamental questions, we will rely on the DAE representation

which consists of two following categories of equations. The first type is differential

equations which describe the dynamics of dynamical components in the system, for

instance, governors, generators, AVRs, FACTS, and loads, etc. The other category is

algebraic equations which correspond to conservation laws, namely, Kirchoff laws. I

consider a general form of DAE systems as the following.

i = f(x, y), (1.1)

0 = g(x, y) (1.2)

where x E R" and y E Rm be the states and the algebraic variables. Note that the

DAE system (1.1) and (1.2) can be viewed as a special case of singular perturbed

systems below

5 = f(x, y), (1.3)

6y= g(x, y) (1.4)

as the time constant E goes to zero. In other words, DAE systems typically appear

as a singular perturbation reduction of a multiscale differential system.

An important class of DAEs exclusively explored in the thesis is quadratic sys-

tems. The associated Jacobians linear in the system states offers many advantages for

robust analysis, in particular, makes the proposed techniques scalable. Notably, the

condition for small-signal stability can be cast as LMI problem which is supported by

powerful SDP solvers. By the same token, linear programming based optimization

formulation can be applied.

18



For a power system, a quadratic system appears naturally when rectangular rep-

resentation is used, i.e., each quantity such as a nodal voltage or line current is rep-

resented by its real and imaginary parts. Nevertheless, the quadratic form is rather

generic and is not restricted to rectangular form. A system in the polar coordinate,

which contains trigonometric terms, can also be transformed to polynomials by in-

troducing new variables. For example, one can introduce x = sin() and y = cos(O),

along with extra relation x2 + y2 = 1. The new polynomials then can be further re-

duced to a quadratic system by, for instance, applying the theory of quadratic forms

with Q-coefficients was developed by H. Minkowski.

1.2.1 Steady state analysis

In steady state analysis, the problem of interest is to examine the equilibrium behavior

of a power system where all dynamical transient already dies out. Such analysis can

be simplified further by ignoring the details of the dynamical components, and at

the same time, replacing those with aggregated models. Typical aggregated models

are constant power, constant current, and constant impedance. By making these

assumptions, one implicitly assumes that each device is equipped with an internal

control which regulates the device to achieve a given reference input, for example,

a fixed power consumption level. The simplified problem, which is so-called power

flow problem, focuses on the interaction between the network and the aggregated

components in steady state.

Power flow problem is a basic analysis typically appears in the form:

Si = VYV, (1.5)

if the constant power model is used, with Y is the admittance matrix and V is the

nodal voltage vector. The power flow equation essentially describes the power con-

servation law applying to one node, or bus, of the system: the right-hand side is the

total power coming out of the node. The solution to the power problem is impor-

tant to other essential functions in power systems, in particular, operational planning

19



problems. The power flow equations are nonlinear so that they may have multiple

solutions or no solution. The disappearance of solution indicates that the reference

power level, which the component attempts to achieve, exceeds the maximum level

dictated by the physical network, more specifically, constrained by the power trans-

ferred through the line. In practice, this leads to static voltage collapse and further,

cascading blackouts. Finding such physical limit concerning power transfer becomes

crucial to system operation.

It is difficult to identify such limit analytically, except for sufficient small and

simple systems. In general, the limit is characterized numerically by, for instance, the

notable homotopy method, Continuation Power Flow (CPF). By gradually increasing

power along one direction and keep tracing the solution curve, the method can find the

maximum power in such a direction. However, the maxima search is restricted to one

direction, therefore, it turns out more computationally expensive or even impossible

if all directions are considered in a multidimensional space. In contrast, analytic

approaches provide an alternative solution with a significantly lower computational

burden, thus being more efficient and appropriate approach for time-sensitive tasks.

Analytic methods can be used to certify voltage stability of a single configuration

of injections (point-wise certificates [, I, 1d) or for a set of injections (region-wise

certificates [. , 2, ,%]). Several advantages of the latter have been discussed in [ >1,

including less computational costs and the ability to provide security measures.

Unfortunately, most region-wise approaches suffer from conservatism in which

the characterized sets can become overly small. In recent work, Banach's fixed point

theorem has been successfully applied to distribution systems and shown to construct

large subsets of the stability region [], 1. Among these, the results presented

in [1 1 (denoted WBBP in our paper based on the authors' last names) dominate

all previous results. However, the WBBP's solvability criterion requires a particular

condition on the nominal point around which the solvability region approximation

is constructed. In the regime where this condition is close to being violated, the

estimated regions become conservative.

In Chapter 2, I do not aim to characterize analytic boundaries, but instead, I pro-
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pose an optimization formulation to maximize the estimated regions. The developed

technique is not only scalable but also is capable of constructing non-conservative

sets of injections for which there exists a feasible solution satisfying all operational

constraints.

1.2.2 Small-signal stability

In this section, I focus on small-signal stability (a.k.a linear stability, or exponential

stability, or stability regarding first approximation [i ]) of a dynamical system which

concerns whether the system will be stable under small disturbances. By the way of

explanation, small-signal stability is the local property associated with a particular

equilibrium. Consider a dynamical system as the following:

x, = A( )x (1.6)

where is a vector of parameters. For a given , the system (1.6) is Linear Time

Invariant (LTI). To check the small-signal stability of (1.6) at the 0 equilibrium, I

rely on Theorem 1 below.

Theorem 1 The following statements are equivalent.

" The 0 equilibrium is (globally) asymptotic stable (exponential stable)

" All eigenvalues of the system matrix A have negative real parts

" V Q >- 0, Q = QT, 3!P _ 0, P =PT s.t. ATP + PA = -Q

The second statement is widely used, and linear stability verification often requires

an eigenvalue analysis of the system matrix.

However, if is contains uncertain parameters and belongs to an uncertain set A,

system (1.6) has a linear parameter varying (LPV) form. More importantly, if system

(1.6) is resulted from linerization or virtual displacement differentiation of a quadratic

system, the matrix-valued function A(.) is affine in parameters (in particular, the
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system states), i.e.

A( ) = A, + Z Ai. (1.7)

In addition, LPV system (1.6) admits an polytopic representation if the set A is a

polytope. Such affine polytopic LPV can be used to describe power system when the

operating points vary. The details will be presented in Chapter 3.

It is worth mentioning that eigenvalue analysis is not suitable for a system with un-

certain parameters because the eigenvalues may behave very differently while chang-

ing the parameters. The critical eigenvalues may alter and become non-critical ones.

At the same time, very varying parameters may cause any first order approximation

to fail to predict or track the eigenvalues. On the other hand, the last condition

which requires a solution of Lyapunov equation is more convenient. As long as one

can show the existence of a symmetric definite matrix P, for example, by solving a

semi-infinite LMI problem, the system will be exponential stable. In this thesis, I

therefore leverage the latter condition to develop robust stability assessment.

1.2.3 Transient stability

For a transient stability problem, one needs to verify whether the system can converge

to a stable equilibrium after being subject to a large disturbance. In power systems,

a large disturbance is a sudden even, for instance, a line fault or generator tripped

which causes large power imbalances forcing the system to move away from the pre-

fault equilibrium. After the fault is cleared, normally a new balance state will be

established, and it is important to certify if the system can converge to the new

equilibrium. Failure to converge may place the system in a dangerous situation which

is often, unfortunately, followed by a severe blackout.

Transient stability assessment is a complicated problem mainly due to the non-

linearity of power systems and the lack of the global stability. Therefore, many

assumptions need to make in order to simplify the problem, most notably the volt-

ages are fixed, and the loads' impedances are constant. These assumptions lead to
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the well-known swing equations:

Mo = Pm - Pe (1.8)

where only the rotor angle 6 is considered. The mismatch between the mechanical

power Pm and the electrical power P will govern the generator characterized by the

inertial M.

There are two main approaches currently used for transient stability assessment.

The first one includes numerical techniques which verify stability via time-domain

simulations. This approach is widely used because it can give illustrative results

and it is considered easy to implement on most systems. However, the numerical

techniques may be time-consuming and may need to rerun when some parameters or

conditions change. On the other hand, the second approach, which relies on Lyapunov

or energy functions, can be reused as the parameters change, and it doesn't require

numerical integration. One drawback of the latter approach is that one needs to seek

a good function for each system as a general form may not be available. In Chapter 3,

I present a new method based on contraction analysis for assessing transient stability

without a need to run time-domain simulations or to construct a tailored Lyapunov

function.

1.3 Problem statement & Contributions

To response to the three fundamental issues of power system stability mentioned

above and to put robust stability assessment in power system operation practice, I

will consider the following problems in the scope of this thesis.

1. Characterize feasible injection sets with which the power flow problem has at

least one solution satisfying all operational constraints.

2. Identify robust small-signal stability region in the system state space

3. Construct the contraction region where the initial conditions are "forgotten" in
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the system state space

4. Estimate the invariant region where all trajectories if they start from inside this

region will stay encompassed at all time.

5. Under which condition the system will be small-signal stable will all load dy-

namics.

Each problem will be addressed in details in the subsequent chapters while shining

new light on three major types of stability. Novel sufficient certificate for stability

(worst case scenarios), and scalable techniques for inner approximation are the main

contributions of this work. In particular, they include i) developing a framework

for constructing inner approximation of the OPF feasibility set based on Brouwer's

fixed point theorem, ii) showing that the contraction of a DAE system can be verified

through virtual extended dynamical systems which are reducible to the original one,

iii) proposing scalable techniques for estimating the contraction region in different

norms, iv) proposing a D-stability like condition for robust small-signal stability under

uncertain load dynamics.

An important criterion to follow in this thesis is that the developed approaches

must be i) as general as possible, ii) scalable/tractable, and ii) applicable to industrial

graded systems. The first requirement means that no additional assumptions are

made. For example, I consider the full A/C power flow equations instead of the

linearized D/C ones. Also, the techniques are not restricted to either power flows or

DAEs systems arising in power systems, but are applicable to any quadratic systems.

1.4 Thesis outline

The rest of the thesis is structured as follows. In Chapter 2, I propose a sufficient

condition that guarantees the existence of a power flow solution. Then an optimization

problem is formulated to seek the optimal feasible subsets which result in feasible

power flow solutions. Next, in Chapter 3, I focus on contraction analysis for nonlinear

DAE systems. The contraction in different norms and corresponding contraction
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region techniques are introduced. For 2 norm, I recover the well-known quadratic

stability test and propose a scalable method for solving LPV problem. In Chapter 4,

I revisit the LPV problem in the context of uncertain load dynamics and propose a

robust stability criterion. The last chapter is dedicated to conclusions and discussions

on possible extensions and applications.
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Chapter 2

OPF Feasibility Subset Estimation

This chapter aims to unravel some of the mysteries surrounding the existence of

power flow solutions, in particular, when power flow problem has a feasible solution

satisfying operational constraints. Based on such understanding, I propose a scalable

optimization technique for estimating convex inner approximations of the power flow

feasibility sets. The proposed framework relies on Brouwer fixed point theorem. The

self-mapping property of fixed point form of power flow equations is certified using

the adaptive bounding of nonlinear and uncertain terms. The resulting nonlinear

optimization problem is non-convex, however every feasible solution defines a valid

inner approximation and the number of variables scales linearly with the system size.

The framework can naturally be applied to other nonlinear equations with affine

dependence on inputs. Standard IEEE cases up to 300 buses are used to illustrate

the scalability of the approach. The results show that the approximated regions are

not conservative and cover large fractions of the true feasible domains.

2.1 Introduction

The ACOPF representation of power system forms a foundation for most of the

normal and emergency decisions in power systems. Traditional ACOPF formulation

targets the problem of finding the most economical generator dispatch admitting

a voltage profile that satisfies operational constraints. The ACOPF is solved by
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Indepent System Operators in different contexts on multiple time intervals ranging

from a year for planning purposes to 5 minutes for real-time market clearing. Since

it was first introduced in 1962, the OPF problem has been one of the most active

research areas in power system community. Being an NP-hard problem, it still lacks

a scalable and reliable optimization algorithm [13] although last years were marked

by a tremendous progress in this area [22, 37,6(]

Relaxations of power flow equations provide a means for approximating the non-

convex feasibility sets in voltage/phase domain with tractable convex envelopes. In

many practically relevant situations, the optimization of the relaxed problem provides

the globally optimal solution for the original problem as well. By the nature of outer

approximations, convex relaxations can be naturally used for establishing certificates

of insolvability of power flow equations [77] and can be naturally used to for estimation

of loadability margins. At the same time, the reverse problem of establishing inner

approximations of feasibility sets appears in many contexts and cannot be solved

using traditional convex relaxations of the OPF. Most naturally, inner approximations

of feasibility sets in power injection space can be used to assess the robustness of

a given operating point to uncertainties in renewable or load power fluctuations.

Similar problem formulations also appear in the context of decentralized decision

making where properly shaped approximations of feasibility sets allow for independent

redispatch of power resources in different areas without the need for communication

or other forms of coordination between the areas.

Like many other power system problems, the original setting for construction

of power flow feasibility sets was introduced by Schweppe and collaborators in late

70s [ 'I. The first practical algorithms based on fixed point iteration appeared in early

80s [ j. In Soviet Union, the parallel effort focused on the problem of constructing

solvability sets for static swing equations [1 2, J0]. More recently, new algorithms

based on different fixed point iterations have been proposed for radial distribution

grids without PV buses [7, N3, 7, J23] decoupled power flow models equivalent to re-

sistive networks with constant power flows [i and lossless power systems [ , J.

Although more general approaches that don't rely on special modeling assumptions
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have been proposed in the literature [, ], they typically suffer from either poor

scalability or high conservativeness or both.

In this chapter I develop a novel algorithmic approach to constructing power

flow feasibility domains that can be applicable to the most general formulation of

power flow equations without any restrictions on the network and bus types. The

size of the resulting regions is comparable to the actual feasibility domain even for

large-scale models. Unlike many of the other approaches cited above the regions

are not represented by a closed-form expression, but are constructed via a nonlinear

optimization problem that finds the largest region in either power-injection or voltage

space. This optimzation problem, although being non-convex and generally NP-hard,

is a viable alternative to the purely analytic solutions. Any feasible solution of the

optimization, which is guaranteed to exists establishes a region where the solution of

the original power flow is guaranteed to exist and satisfy feasibility constraints. The

complexity of the optimization is a constant times higher than that of the traditional

optimal power flow and many of the relaxations originally developed for OPF can be

potentially extended to the proposed optimization problem as well.

The structure of the rest of the chapter is the following. In section 2.2 I introduce

the general form of the ACOPF and formally define the feasible set. Next, in section

2.3 I develop a solvability criterion for affine-input system based on Brouwer's fixed

point theorem which is used in [ . I also formulate an optimization problem which

maximizes the inner approximation set. In section 2.4, I apply the developed solv-

ability criterion to power flow equations in an admittance base representation, and I

illustrate how to incorporate the operational constraints. Section 2.5 represents an

LP relaxation of the nonlinear optimization problem in section 2.3. In the simulation

section, I demonstrate the construction technique by simulating several IEEE test

cases provided in MATPOWER package.
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2.2 Notation and an OPF formulation

The following set of notation which will be used throughout this chapter.

C : Set of complex numbers

[x] = diag(x) for X E C', Y : Conjugate of ;r E C

1 : Vector of compatible size with all entries equal to 1

I|xII = |1x1100  maxxi for X E Cn

(aiiOA =| =max jAij\ for A E C"*n

f axi axi
-x.= for f : C" F- U"

ax 1 - /X

V : the graph of a system

L, g : the load and generator sets

Vk, 9 k : the voltage magnitude and angle at bus k E V

Pk, Qk : the active and reactive power injecting to the

network from bus k C V

E : a set of unordered lines e = (k, 1) = (1, k); k, 1 e V

from(e), to(e) E V : the sending and receiving bus of line e

ie, Ie, se : the complex current and its magnitude, and power

flow over line e

xOy: For x,y E pr', xOy E R' with [xo y]i =xiyi

I study a general optimal power flow problem (OPF) with the following con-

straints:

Pk +jQk = JVYkIVIexp(-jOe), k E (L,) (2.1)
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mk~in V < Vaxk
Vk' k- k kE (2.2)

min< < e ,0nmax, eES (2.3)

P P k pjax, k E (2.4a)

Q _Qk kx k E (2.4b)

Ie J I" ax, eE& (2.5)

where each bus k E V of the system is characterized by a complex voltage Vk =

Vk exp(0k) and apparent power generation/consumption Pk + iQk. For each edge or

line e connecting bus k and bus 1, I define an angle difference 0 e = Ok - 01. The

complex current ie which flows through the line e has the magnitude of Ie.

The first set of equations (2.1) is the AC power flow equations which present the

local power balance relation at each bus. When such power balance is achieved, the

system is said to be in its steady state. The rest of the OPF constraints are operational

ones which confine the voltage magnitudes, angle separations over branches, power

generations, and current flows within acceptable ranges. Here I assume that all the

operational requirements are box constraints, even though it is possible to extend to

nonlinear ones.

In a typical OPF, the state variables can be the load voltages, generator angles,

and transmitted currents. The set of control/input variables can be either the gener-

ator settings, i.e. the active power outputs and voltage reference values or the loading

levels if an OPF-based load shedding problem is invoked. Even though other discrete

inputs such as tap changer positions also can be incorporated in an OPF, in the

scope of this thesis, I only focus on the power-related inputs, i.e. power generation

and consumption. More compactly, I use the notation u to denote the set of inputs

and use x to denote the others.

In the following, I formally define the main focus of the chapter, the feasible set
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of the OPF problem.

Definition 2 The feasible set of the OPF problem is the set of control variables, u,

with which the power flow equations (2.1) has at least one feasible solution which

satisfies all concerned operational constraints (2.2) to (2.5).

Such OPF feasible set can be non-convex primarily due to the nonlinear power

flow equations. As a result, the OPF becomes a non-convex optimization problem

which is challenging and inefficient to solve. I therefore introduce a framework to

provide "nice"' search space for the OPF. In particular, I inscribe simple convex sets

inside the original non-convex feasible region. To characterize the feasible set, it is

essential to understand the solvability of the power flow equations.

2.3 The solvability of input-affine systems

In this section, I develop our general approach for deriving sufficient conditions for

existence of solution to a nonlinear system within a certain set. Our approach applies

to a broad class of nonlinear systems that satisfy two important properties: they

depend affinely on the input variables, and their nonlinearity can be expressed as a

product of simple nonlinearites (sin/cos/polynomial etc.) that can be bounded easily.

Consider a following set of nonlinear equations on x E R' that depend in affine

way on the vector of inputs u E IRk represented:

Mf(x) - Ru = 0 (2.6)

Here M E Rnxm R E IR"x, and f = [fi, f2,. . . , fm] : R - Rm Assume also that I

am given a base solution u* E IRk, X* E DR' such that Ru* = Mf(x*). Let

J(;) = M L , [J(x)]ij= MikXj (2.7)
19X Xk=1

denote the Jacobian of the system of equations. Furthermore, let J, = J(x*) be the

Jacobian evaluated at the base solution. In the following I assume that this Jacobian

32



is nonsingular, and J;- exists.

In the following paragraphs I will derive a fixed-point point representation of

this system that allows for simple certification of solution existence. This solvability

certificate is based on the bounds on nonlinearity in the neighborhood of the base op-

erating point. Compact representation of the corresponding convex regions in input,

state and nonlinear image spaces are introduced to facilitate our development:

Definition 3 For any differentiable nonlinear map f : R' -+ R' and a base point

x* E IR I define two linear "residual" operators 6f(x) and 62 f(x) as the following

combinations of f(x), base value f* = f(x*) and base Jacobian Of /OxIX*:

Sf(x) = f(x) - f* (2.8)

62f(x) = f(x) - f* - Of (x - x*) (2.9)Ox x=x*

These operators represent the error in the zeroeth order (constant) and first order

(Jacobian based) approximation of the function f(x) around x = x*. The following

corollary allows us to compute the operator for the element-wise product of two

nonlinear functions given the operators corresponding to each function:

Corollary 1 For the element-wise product of two vector functions f(x) 0 g(x) one

has

62 {f g} = 6f G g + 2f ( g*+ f* 62g (2.10)

Proof 1 The proof directly follows the definitions of the two operators 6f(x) and

62f(x).

The defined residual operator allows for compact representation of the original

system (9) in the fixed-point form:

x = x* + J;'R(u - u*) - J;71M62f(x). (2.11)
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or, even more compactly as

= F(i) = J;1 Ril + $(z), (2.12)

where ii = u - u* denote the deviations of the variable and input vector from the

base solution and J() = -J-M62 f (x* + .) represents the nonlinear corrections.

Definition 4 The admissibility polytope family A(L,) defines the following non-empty

polytope for any non-zero matrix of bounds L = [-f-, l] E gR 2.

A(Ex) = f{Jr E Rn A < f 1 (2.13)

where +A < f is shorthand for the following set of inequalities:

{ A i , +-Air < Lx} -- < A.Jr < t

The polytope A(Lf) will be used to establish the neigborhoods of the base op-

erating point where the solution is guaranteed to exist. Extra conditions on Lx can

be then used to impose additional "feasibility" constraints on the solution, such as

voltage and current bounds for power systems. To prove the existence of the solution,

one needs to bound the nonlinear residual terms. Whenever the system is inside the

admissibility polytope, i.e. r E A(Lf), the nonlinear residual terms 62f E IR' can

be also naturally bounded. I assume that these bounds are formalized via another

polytope family:

Definition 5 Given A(Lf) and a base solution x*, the nonlinear map f : IR + R"

satisfies the nonlinear bound polytope family Af(Lf) if

E E A(Lx) => 62f (x* + ;r) E .A(Lx) (2.14)

A simple, though not the most general and tight nonlinear polytope family utilized
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in this thesis has a simple form

Ar(e2) = {z E R"mj Zk 5 J2fk(,)} (2.15)

I often drop the dependence on t, since it is implicit from the context. Given

bounds of the kind above, I can derive bounds on products of nonlinearities appearing

in most common representations of power flow equations:

Lemma 6 Bounds on the products can be characterized in the following way:

62{f 0 g} = max{Sf+ 0 Jg*, Jf- 0 JgT}

+ f* ( 2 g + 62f0 (Dg* (2.16)

which is shorthand for

62{f 0 g} = max{Sf+ D 0g+, f- 0 6g-}

+f* - 29++ 2 f+ . g*

S{f D g} = max{Sf+ 0 g- 6f- 0 Jg+}

+ f* ( 62g + 62f~ ( g*

Our next goal is to prove the existence of solutions to (2.12) with z E A(fz). The

following form of the Brouwer fixed point theorem facilitates this:

Theorem 7 (Self-mapping condition) Suppose there exist bounds fx = [-f-, f+] such

that

(2.17)

Then (2.12) is solvable and has at least one solution V E A(fx).

Proof 2 Condition (2.17) ensures that F maps the compact convex set A(fx) onto

itself. Hence, by Brouwer's fixed point theorem, there exists at least one solution to

(2.1.2) in A(fx).-
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In the above theorem, I assumed that the inputs ii are perfectly known. However,

in the applications targeted by this thesis (OPF with uncertain generation or loads,

for example), the inputs may not be known perfectly. In the following, I assume that

the deviations of the inputs fi belong to a structured box-shaped uncertainty set U

defined as -f- ii <+ & or more compactly as

u(u) = {iiE gRLI ii & .(2.18)

Problem Statement: Construct a region U(fu) C gRL such that

U() 9 U = {ii: (3x : x E A(), = ))} (2.19)

The following Lemma 8 and Theorem 9 establish a central result of this work:

Lemma 8 Given the nonlinear system described by the equation (2.12)

sibility and nonlinear bound polytope families A(ex) and Af(ex), if J Ei

the nonlinear correction term O(J/4) is contained in the polytope A(r(Ex)),

A(r(e)) with r(e) = [-T-(ef),T+( )] E Rx2 given by

T:(er) = C+62 fl( )+ C- 2f (e)

the admis-

A(ex) then

i.e. q$(.) G

(2.20)

where C+ _ C- = -AJ 1 M and C> 0.

Proof 3 This bound generalizes the definition of a matrix oo- norm and follows

directly from bounding the individual contributions to A$(V) with the help of the non-

negativity of 62ff.

Corollary 2 The map r(f') : ORx2 + ix2 is monotone that is, if

-el- < -f <_+< l

then
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The corollary 2 formalizes a trivial observation that increasing the region of variable

variations can only increase the region of possible nonlinear corrections.

Theorem 9 Given all the definitions above, assume that there exists a matrix ex,

such that the matrix r(ex) as defined in the Lemma 8 satisfies f*('e) i. Then, for

any ii such that J;1 RfL E A(tx - r(ex)) there exists at least one admissible solution

* E A(t_) of the equation (2.12).

Proof 4 The right hand side of (2.12) is contained in the polytope A(ex), therefore

the map F(:i) = J;' +q(Ji) maps the compact convex set A(tx) onto itself. Thus,

according to Brouwer's theorem, there exists a fixed point :r* = F(Jr*) inside A(fx).

Corollary 3 The admissible solution J* E A(eG) is guaranteed to exists for every

element ii inside a box-shaped uncertainty set U(fu) whenever the condition

f, > o.I(f,) + : T(e) (2.21)

U-'(fu) = B+&1 + B-e: (2.22)

is satisfied with B+ - B- = AJ;jR and B1 > 0.

Proof 5 Whenever ii E U(fu), one has -a-(ii) K AJ;1 Rft < u+(f), hence the

inputs satisfy the conditions of Theorem 9.

Figure 2-1 illustrates the self-mapping condition (2.21). The > symbol indicates

where the polytopes are.

2.3.1 Optimal certificates

There are many matrices f, and corresponding polytopes A(et) satisfying the condi-

tions of the theorem 9. Each of the corresponding certificates establishes solvability of

different regions in the input space. In most applications, one is interested in finding

the largest region in the input space. However the definition of the region size may

differ depending on the context. Below I formulate several optimization problems that
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Figure 2-1: Self-mapping function for a fixed-point form

define solvability certificates that are optimal with respect to common performance

specifications.

Loadability certificate

A classical problem arising in many domains, including power systems, is to charac-

terize the limits of system loadability. In this case, the only column of the matrix R

defines the stress direction, while the positive scalar u defines the loadability level.

The goal of loadability analysis is to find the maximal level u for which the solution

still exists. According to the corollary 3, all u satisfying -t; < u < f+ are certified

to have a solution, hence the following problem formulation:

max &

subject to :

f, ;> a.*(fu) + -r'(ex)

(2.23a)

(2.23b)
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with r(f.) and a.*(f.) given by the equations (2.20) and (2.22) respectively. Note,

that in accordance to the corollary 2, T is a nonlinear and monotonically increasing

function f2, Hence, the optimization problem is non-convex and is generally hard.

On the other hand, it should be emphasized, that any solution of (2.23), even non-

optimal ones defines a valid and mathematically rigorous certificate. So, the natural

strategy is to solve this problem using local optimization strategies. The local search

is guaranteed to produce some feasible certificate because f, = 0 is a feasible starting

point and the map r(e) characterizes the behavior of second order residuals, and has

superlinear behavior at small enough f. for the properly chosen nonlinear bounds.

Feasibility constraints The problem (2.23) can be complemented with extra

constraints compliant with feasibility requirements to ensure the existence of feasible

solutions. In particular, the voltage level and angle separation limits can be easily

imposed with the element-wise upper bounds on the fixed point variables, i.e., f_ 5 f.

In contrast, the reactive power generation and thermal constraints, that have a power

flow representation, require bounding the fixed point map. To see this, we consider

in the following a more general constraints

g(X) 0 (2.24)

where g(x) can be represented in terms of the nonlinear power flow functions, i.e.

g(x) = Tf(x). Both thermal and reactive power generation constraints can be ex-

pressed in this general form with appropriate constant matrix T. Moreover, using the

definition of the residual operator 62f, yields the below expansion.

g(x) = g,+TLI + T6 2 f

= g, + TLJ,,-R6u + (T - TLB)6 2f (2.25)

where L = 9{j. The second equality can be derived with the help of the fixed point

equation (2.12). Furthermore, let D = TLJ;-R and E = T - TLB. An upper bound

of the function g(x) in constraint (2.24) can be estimated using oo norm type bound
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(2.20) and (2.22). Then instead of the original feasibility constraints (2.24), one can

impose the below conditions on such an upper bound.

D+lf + D-- + E+6 2f+ + E-6 2f -g* (2.26)

Robustness certificate

In another important class of applications the goal is to characterize the robustness

of a given with respect to some uncertain inputs. In power system context it could

be the robustness with respect to load or renewable fluctuations. Assume, without

the loss of generality that the input variable representation is chosen in a way that

all the components of ii are uniformly uncertain around with uncertainty set centered

at zero. In this case the goal is to find the largest value of A, such that the for

any ii satisfying 1ii||OO < A there exists a feasible solution to the original system of

equations. This problem can be naturally solved by maximizing A subject to (2.23b)

and additional uniformity conditions [fule -- A.

Chance constraint certificates

In another popular setting one assumes some probability distribution of the uncertain

inputs and aims to find a polytope that maximizes the chance of randomly sampled

inputs certified to have a solution. This problem can be also naturally represented

in the generic certificate optimization framework. Assume, without major loss of

generality that the inputs are i.i.d. normal variables. In this case, the probability P

of a random sample falling inside the box U(f,) is given by

log P(f') = erf -erf- (2.27)

The maximal chance certificate is established by maximizing log P(eu) subject to

(2.23b) and any additional feasibility constraints.
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2.4 OPF feasibility

In this section we apply the framework developed in previous sections to the power

flow feasibility problem. There are many possible ways to represent the power flow

equations in the form (4.1) amenable to the algorithm application. Moreover, the

representation of the equation and the choice of nonlinear functions and their variables

has a dramatic effect on the size of the resulting regions. We have experimented

with a variety of formulations, most importantly traditional polar and rectangular

forms of power flow equations with different choices of matrix M and function f

in (4.1). In this manuscript we present only one formulation that resulted in the

least conservative regions for large scale systems. This formulation is based on the

admittance representation of the power flow equations and nonlinear terms associated

with power lines. It can naturally deal with strong (high admittance) power lines in

the system that are the main source of conservativeness for most of the formulations.

2.4.1 Admittance based representation of power flow

The power formulation discussed below is based on a non-traditional combination of

node-based variables and edge based nonlinear terms. This representation is naturally

constructed using the weighted incidence type matrices. Specifically, we use yd E CIVI

to represent the diagonal of the traditional admittance matrix, and matrices Yf, Y' E

Clvlxi e as weighted incidence matrices representing the admittances of individual

elements with Yf corresponding to negative admittance of lines startign at a given

bus, and Y' to admittance of lines ending at it. Any power line with admittance ye

connecting the bus from(e) to the bus to(e) contributes to the two elements in the

matrices Yf and Yt, specifically Yom(e),e -y and Ytto(e),e = ye. In this for a bus k

consuming the complex current ik, the Kirchoff Current Law takes the form

k= YkVk + Z kto(e) YkeVfrom(e) (2.28)
e
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Whenever the pq bus is considered with constant complex power injection Sk, one also

has ik = sk/vk. Next, we introduce the logartithmic voltage variables as Pk = log Vk

and pe = Pfrom(e) - Pto(e) and rewrite the power flow equations in the following form:

Yv - = YvetPe+je + y1 e-PE-jOE (2.29)

where yA = g/vk 12. Assuming that the base solution is given by p*, 0* the equations

can be rewritten as

yv - Y ^ = Yv Se6pe+3 65o + ~f - d (2.30)

with 7t - Yt[exp(p*

further simplified to

+ j*)J and Yf = Yf exp(-p* - j*,)]. This equation can be

Yv - YV = Yv+E cosh(SpE + j6OE) + YE sinh(6po + j6O)

with the help of Y' - yt Yf. Finally, using the y - yd = g - jb we obtain

Re(Y+) Re(Y-)

Im(Y+) Im(Y-)

cosh pE G cos 60E

sinh 6po 0 cos J0E

cosh Spc 0 sin 38E

sinh 6pg 0 sin E6E

(2.31)

[gv]

bvj

-Im(Y-)

Re(Y-)

-Im(Y+)]

Re(Y+)

(2.32)
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As with the traditional power flow equations, we use x = (6g, O, pc) and consider

only a subset of all the equations of the form y = Mf(x):

Re(Y,+) Re(Y-)

Re(YAg) Re(YE)

LIm(Yc+g) Im(Y-S)

cosh Jpc 0 cos JOE

sinh 6pg 0 COS 60cs

cosh e pc 0 sin 60E

sinh 6pg G sin 66s

-Im(Y-)

-Im(Yn)

Re(Ye-)

-Im(Y+)

-Im(Y+) .

Re(Y+

Theorem 10 For any fi such that B Vmin e A(ex - r) there exists at least one

admissible solution J* E A(fx) of the equation (2.29).

Proof 6 Since t'k vmin for all bus k, the condition B Vmin Ii E A(x - T) implies

that Bfx E A(f, - -r). This guarantees that (2.33) has a feasible solution, so does

(2.29).

2.4.2 Nonlinear bounds

The bounds on the individual nonlinear terms can be expressed via the following set

of relation:

5t2 {cos 6Oe} = 0

-2 {cos 6e} =max{1 - cos 66, 1 - cos 60-}

6+{sin 6e} = sin 601e

'f sin6Oe} = cW- - sin 60:F

6172 {cosh 6pe} = 0

61 2{cosh pe} = max{cosh 6p+, cosh p~} - 1

6+{sinh 3 Pe} = sinh 6p'

-f{sinh 6pe} = sinh 6p= - 6p:
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Then we use Lemma 6 to bound the products.

2.5 Extension using LP relaxation

The nonlinear bounds above may cause the construction technique non-scalable. I

then relax the bounds to linear ones to form an LP. The optimal solution of the LP can

be fed into the original nonlinear optimization problem as a initial guess. Hereafter,

I constraint all the angles to the range within t0U, say OU = 7r/3, and all logarithmic

voltages p to tpU, say pu = 1. Let define 60"' = max{JO6} and Jp' = max{6pl}.

where I use the following inequalities for 0 <0 0 <0 U < r/2, Om = max{0*}, and

0<p<K<1.

1 - cos(0) <_ (1 - cos(OU))m (2.35)

sin(x) < (OU - sin(U)) 0  (2.36)

cosh(p) - 1 < (cosh(pU) - 1) (2.37)
P

sinh(p) 5 sinh(p) )-- (2.38)
P

For product terms, we need McCormick envelopes:

y U L UL (2.39a)

Xy XyU + X y - L yU (2.39b)

2.6 Simulations

For our algorithm validation and simulations, I relied on transmission test cases in-

cluded in the MATPOWER package, constructing the corresponding regions for all

the cases up to 300 buses. While most operational constraints are provided in the

test case data, the thermal limits, which mostly depend on the cable materials, tem-

perature, and voltage levels, are not available. For simplicity, I assumes that the

44



- 0.15
- -- Inner approx. -Feas. boundary * Base oper. point

2 0.1

0.05

0-

-0.05

-0.1
0.8 1 1.2 1.4 1.6 1.8 2 2.2

Active power at load bus 18 (P 18)

Figure 2-2: Feasibility set of an OPF for IEEE 39-bus system

maximum current level is double the corresponding value of the base case. The al-

lowed voltage derivation range is 10% around the nominal level of 1p.u., and the

angle separation is limited within -7r/2 and wr/2 radians. I do not consider the re-

active power constraints associated with the generators. In other words, I assume

that the generators are capable of maintaining the terminal voltages at the reference

values.

Specific choices of matrix R determine how the input variations ii enter the prob-

lem. This allows us to tailor the set of control inputs, for example, to focus on a

certain dispatching/loading pattern. In the following simulations, I am interested in

the inputs associated with the loading injections from a pair of non-zero load buses.

For example for IEEE 39-bus system shown in Figure 2-2, the chosen pair of buses is

(18, 12), and the inputs are f1 k = Pk/Vk2 - Pk,/V where k E (18,12). Moreover, for

optimal certificates, I consider uniform bounds on the injection input perturbations

by assuming that e = &f. Therefore, the estimated feasible sets in the input space

are hypercubes. Such hypercubes, once constructed, need to map back to the loading

injection space, where the OPF actually searches for the optimal settings, by applying

Theorem 10. The resulted polytopes are plotted in blue in Figures 2-2 to 2-5,

To illustrate the performance of the inner approximation technique, I plot and

compare the real feasible set and the estimation. In most cases, as shown in Figures
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Figure 2-3: Feasibility set of an OPF for IEEE 57-bus system

2-2 to 2-5, the approximated sets cover a large fraction of the true feasible domains.

Moreover, along some loading directions, the gap between the two boundaries is

almost zero.

2.7 Conclusion

In conclusion, this chapter intends to develop a novel framework to estimate OPF

feasible subsets. Remarkably, the proposed technique is applicable to transmission

systems and more general power systems of arbitrary topology structures. The frame-

work is based on Brouwer fixed point theorem, which is applied to polytopic regions

in voltage-angle space. Unlike previous work which focuses on analytic approaches,

our framework relies on nonlinear optimization procedures to find the largest sets

that possess the self-mapping property. Additional constraints can be imposed on

the admissible region to ensure the feasibility of the resulted solutions.
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Chapter 3

Attraction Basin Estimation for

Nonlinear DAE Systems: Contraction

Approach

This chapter studies the contraction properties of nonlinear differential-algebraic

equation (DAE) systems presented in (1.1) and (1.2). A given DAE system may

result from the reduction of many different "synthetic" differential ones. Here, I un-

cover an important property of a contracting DAE system: the reduced system always

contracts faster than the corresponding synthetic system. Furthermore, there always

exists a synthetic system with contraction rate arbitrarily close to that of the DAE

one. Synthetic systems are useful for the analysis of attraction basins of nonlinear

DAE systems. Any polynomial DAE system can be represented in quadratic form.

For quadratic DAEs the Jacobian of the synthetic system is affine in the system vari-

ables. This property allows for scalable techniques for construction of the attraction

basin approximations based on the uniformly negative matrix measure conditions for

synthetic system Jacobian. The proposed construction algorithm is illustrated with

a power system example in the context of transient stability assessment.

Associated with this work, a manuscript entitled "Contraction Analysis of Non-

linear DAE Systems" has been submitted to Transactions on Automatic Control and

is currently under review.
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3.1 Introduction

Differential-algebraic equations (DAE)-a generalization of ordinary-differential equa-

tions (ODE)-arise in many science and engineering problems, including networks,

multibodies, optimal control, compressed fluid, etc. [99. Typically, algebraic con-

straints result from multiple time-scale perturbation theory, when the fast degrees of

freedom are assumed to stay on equilibrium manifold. In typical electrical and me-

chanical applications the algebraic relations represent the interconnection constraints,

which can be considered static on the time-scales of system evolution. However, alge-

braic relations may be also useful for lifted representations of the purely differential

systems. For instance, additional variables and relations can be used to represent any

polynomial nonlinearity in a quadratic DAE form. Hence, DAE systems provide a

powerful framework for studying nonlinear systems of very general structure. This

work is motivated by the DAE representations of the power system models, but the

results are presented in a general form.

The specific problem that motivates our study is the problem of approximating

the region of attraction of DAE equilibrium points. The normal operating points of

modern power systems lack global stability because of the nonlinearities naturally

appearing in these systems. Characterization of the attraction region and more gen-

erally assessment of the system security, i.e. its ability to sustain all kinds of faults

and disturbances, is an essential task of modern power system operations. As will be

shown throughout the chapter, the contraction provides a natural framework for con-

structing the approximations of the attraction region for a broad range of nonlinear

DAE problems, such as those arising in power systems.

Transient stability analysis is a common engineering procedure referring to the

ability of the system to converge to a stable post-fault equilibrium after being subject

to disturbances. The incremental stability introduced in [67] suggests an alternative

way to look at the convergence of the post-fault trajectories. In the light of contrac-

tion theory, the virtual displacements of the states tend to zero as the time goes to

infinity, or in other words, all the trajectories shrink and converge to the nominal
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Vector norm, 11-11 Matrix measure, y,(M)
11x1 = EZ 1 xil p 1 (M) = maxj (m3 3 + Z j 1mI)

lIx112 = (E IX221/2 2(M) = maxi(Ai{M )
I1xlL0 = maxi lxil pi(M) = maxi(mei + EZ I mij)

Table 3.1: Standard matrix measures

one. Contraction analysis becomes a powerful tool for nonlinear analysis and con-

trol [6-, 9" , 5, 11. The key property of the contraction is the preservation under

different system combinations, which is advantageous in network analysis.

In this chapter I focus on the contraction analysis for nonlinear DAE systems.

Specifically I develop a practical way of constructing the attraction regions by de-

termining the relation between the contraction rates of the original DAE systems

and its extension to virtual "synthetic" dynamics in differential-algebraic space. The

extended system can be thought of as a virtual differential system that reduces to a

given DAE after the restriction of a subset of variables to their equilibrium manifold.

There can be multiple extensions of a given DAE system, each characterized by dif-

ferent contraction rates. However, I show that the contraction rate of the reduced

system is always higher, and on the other hand, there always exists an extension with

a contraction rate arbitrarily close to the original DAE system. Our results hold for

the most commonly used 1, 2, and infinity norms, but can likely be extended to more

general cases. I use the theoretical results to develop a scalable technique for con-

structing inner approximations of contraction regions from the 2 norm and infinity

norm contraction metrics. I illustrate the technique with a practical example from

power systems.

3.2 Contraction theory

I start this section by defining the logarithmic norm or the matrix measure. The

matrix measure p,(M) of a matrix M is defined as yi(M) := lim -(|11 + hMIlp - 1)
h-+0+h

following [.1 1J. The standard matrix measures as well as vector norms are listed in

Table 3.1.
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In contraction analysis, I consider the deterministic systems of the form x =

f(x, t) in fR" with a smooth nonlinear function f. The system is contracting in the

contraction region C, if the distance between two arbitrarily trajectories, starting

from two different initial conditions, decay exponentially to zero. In other words,

the two trajectories converge exponentially to each other. Moreover, the generalized

contraction analysis often considers the distances associated with a metric 6(x) via a

change of variables. A sufficient condition for contraction is introduced in the below

theorem.

Theorem 11 The system 5 = f(x, t) is contracting in C, with respect to an invertible

metric 0(x) if there exists a matrix measure y such that for all x E C,, one has

yp (#0-1 + 6(f /Nx)6-1) -3 with some 0 > 0.

Proof 7 A sketch of proof for 1, 2, and oc norm is shown in section 3.7(iii) in [6?]

(also in [95]). Below I provide a proof for more general p norm.

To show the contraction behavior, I derive the following differential relation 6i =

(Of /Ix)6x where 6x is a virtual displacement (an infinitesimal displacement at fixed

time). Define 6v = O6x. One has 6x = 0'Sv and 6v = + 0(0f /x)) 0 1 6v where

0 = (aO/ox)f(x, t).

Let consider a Lyapunov candidate function V = ||6v||, which measures the dis-

tance between two different trajectories of the system. Using the same reasoning for

matrix measure results introduced in , ] and noting that lim sup = inf sup
h-+O+ h>O+ 0+<t<h

one takes upper Dini derivative of V to yield:

D+ 116v(t)ll,

= lim sup - ||1v(t + h)J|, - I6v(t)II)
h->0+h

= lim sup- 11 6v(t) + h 64(t) 6v(t) + 0(h) liI - 116v(t)I i)
h->0+h

1(
<lim sup- J 1+h( + 0(af/8) 6~ - 1 IIv(t)Iph-+O+ )

= p (#061 + O(pf/ax)0-1 ||Jv(t) lip (3.1)
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If there exists some / > 0 such that , (6i-i + O(pf /x)01) -, (3.1) leads to

iI6v(t)I| | II6v(0)||,exp(-t) for all t > 0. This result implies that the distance

between any two trajectories will converge to zero, thus the system is contracting [. J.
Q.E.D.

3.3 Main results

As motivated by the dynamics of electrical power systems, I constrain ourselves to

semi-explicit index 1 structural form as below:

x = f(x, y), (3.2)

0 = g(x,y). (3.3)

In this representation, vector x E R" corresponds to dynamic state variables, y E R"

refers to algebraic variables (whose dynamics is assumed to be fast/instantaneous rel-

ative to the dynamics of the state variables). For this class of systems, it is impossible

to obtain equivalent ODEs.

For convenience, reduction techniques are widely used to eliminate the algebraic

variables. Yet this practice may prohibit one from exploring the underlying structure

of the DAE form. To that end a number of works in the literature concentrate on the

original systems rather than the reduced ones, for instant, in the context of stability

analysis of the descriptor form as below:

Ez = h(z), (3.4)

with zT = [XTYT], hT - [fT, gTI and E being a diagonal R(n+m)x(n+m) matrix with

E= 1 for i < n and Ei = 0 otherwise [ , , J2, _[].

For any given differential state x the equation (3.3) may have multiple or no

solutions for y. In engineering and natural systems that motivate this study, disap-

pearance of all the solutions is usually an indicator of inappropriate modeling that
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should be fixed accordingly, typically by introducing the fast dynamics of the alge-

braic states in the model. I don't consider this scenario in our work, and I assume that

for every x there exists at least one solution Y(x) of the algebraic system of equa-

tions (3.3). For every solution branch I can naturally define the domain x E R where

such a solution exists and can be tracked via homotopy/continuation procedure. This

domain is characterized by non-singularity of the algebraic Jacobian:

R = x : det (Lg I .O}0 (3.5)
\ aY y=Y(x)/)

I restrict our analysis only to such a domain associated with a specific solution branch.

For a system of differential-algebraic equations (3.2), (3.3) I introduce the Jacobian

defined as

J(x, y) = I / (3.6)
[ag/ax ag/OyJ

To simplify the notations I also define its restriction to the algebraic manifold (3.3)

as follows:

A B
J (x, Y (x)) = .(3.7)

C D

One of the primary goals of this chapter is to provide a characterization of the con-

traction and invariant regions in the state space of a DAE system. I formally define

the contraction domains C, as set of differential states x for which there exists an

invertible metric 9(x) E R.X such that the differential equation x = f(x, Y(x)) is

locally contracting with respect to this metric with some rate fi > 0. Given that for

any infinitesimal displacement 6x we have 6y = -D~ 1 C6x the standard contraction

arguments presented in [, tK] lead to the following Proposition.

Proposition 1 The DAE system (3.2) (3.3) is contracting with respect to the metric

6(x) in the domain C, if for all x E Cp one has p (F,) ; -3 with some 3 > 0 and

Fr = 90-1 + 9(A - BD-1 C)0- 1 . (3.8)
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The term 6 in (3.8) represents the derivative of the metric along the trajectory and

is formally defined for DAE systems as

= ( ) f(x, Y(x)). (3.9)

The proof of Proposition 1 directly follows that of Theorem 11 by using the relation

aflo8x = A - BDC.

The proof of proposition I directly follows from the contraction analysis for dy-

namical system presented in [ 7}. The matrix F, appears naturally from the dynamic

equation on 6v = 06x given by 6v = Fr6 v. Hereafter I refer to F, as the generalized

reduced Jacobian matri.

The standard contraction theory arguments suggest that for any two trajectories

x 1 (t), x 2 (t) that both remain within the contraction region C, during the interval

[ti, t2] satisfy d(x1 (t2 ), x 2 (t2 )) d(xi(ti), x2(ti)) exp(-O(t2 - t1 )) where d is the dis-

tance associated with the metric 0. The assumption that both of the trajectories stay

within the contraction region is critical for this result and can be verified only after

showing the existence of an invariant domain 1p C Cp satisfying:

x(t) E 1 ==> Vt' > t: x(t') E I,. (3.10)

Constructing invariant regions is usually a difficult aspect of applying contraction

theory to systems which are not globally contracting. One straightforward strategy

for constructing invariant regions exists for systems that have an equilibrium point

x* inside the contraction domain satisfying f(x*, Y(x*)) = 0. In this case, any ball

B, = {x : d(x, x*) < r} that lies within the contraction region C, defines an invariant

region, i.e. B, C Cp ==> B, C 1p. By construction, such a ball also provides an inner

approximation for the attraction region of x* and can be naturally used in a variety

of practical applications such as security assessment of power systems [ .1. In this I

develop a general framework for constructing such invariant regions for a broad class

of nonlinearities, and I present a specific power system example in sections 3.4. The
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key challenge in using the function F, directly is its highly nonlinear nature. Even

for simple polynomial nonlinearities of f, g the function F, involves an inversion of

the matrix D(x). From a practical perspective, it is therefore desirable to formulate

conditions equivalent to contraction as defined in Propostion 1 that do not involve any

inversions of matrices A, B, C, D which are nonlinearly dependent on x. In order to

achieve this goal I derive equivalent representation of the contraction condition that

doesn't require elimination of the local variables and is more suitable for analysis. I

introduce the generalized unreduced Jacobian matrix as follows:

Fr +ORTCO-1 ORTD p- 1

F = .~ ~- (3.11)
QT CO-1 QT Dp-1

The generalized unreduced Jacobian F depends on the metric 0 defined as in the

previous discussion, another metric p associated with the y variable and two auxiliary

matrices Q E Imxm and R E Rmxn. By selecting specific auxiliary matrices, i.e.

R = D-TBT and Q = PT, one can recover the standard generalized unreduced

Jacobian, [0,p]J(x,Y(x))9-1 ,p-1[.

Formally, this new Jacobian matrix may be associated with a virtual synthetic

ODE representation of the original system of the form

JV = FrSv + ORT(C-16v + Dp-'6u), (3.12)

6U = QT(C6-16v + Djp 16u). (3.13)

where 6u = poy and so the expression CO-16v + Dp-6u = C6x + D6y = 0 defines

the algebraic manifold. Whenever the dynamics of 6u can be considered fast, the re-

striction of the 6u variables to their equilibrium manifold results in the original DAE

systems. Therefore, this representation provides a family of synthetic representations

that reduce to the same original system. It will be shown that this representation

is useful for characterization of the contraction and invariant regions. It is worth

mentioning that there are different ways to represent F. To analyze the relationship

between the original system and the extended ones, the form of (3.11) is more con-
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venient because the generalized unreduced Jacobian, F, can be represented in terms

of the reduced one, F. However, this representation is not suitable for constructing

a contraction region since F, consists of highly nonlinear terms induced by the in-

version operation. Instead, one should use the other forms of F, for example, (3.31)

for 2 norm, and (3.40) for 1 and infinity norms which do not contain F, but linearly

variable-dependent terms.

The key property important for the analysis is defined in the following relation:

F6w= F, +O RTC9-1 O RT DP- 1 [6x
QT CO-1 QT Dp-1 _p6y

= + .ORT(C3X D~y) (3.14)
0 QT(C6x + D6y)

where we have introduced the new variables vector Jw J [V . This observation
6U

allows us to formulate the following central results of this work.

3.3.1 Forward theorems: from virtual extended systems to

reduced ones

Lemma 12 Define

[6v+ hFrvl 6v]
-y = V +- E J - (116v + hFr6vl|p - ||5vllp)

6U P JU P

where h > 0. Then for all p 1, -y > 0 if the following condition holds.

Sv + hFrSv (Svl

L P [u I < 0. (3.15)

The proof of Lemma 12 is as the following. For fixed Jv and hFrSv, y depends solely

on 6u. Taking partial derivative of y with respect to 16uji using the definition of p
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norm for a vector, i.e. JjvIjp = (EZ Ivjj) 11 2, yields the following:

a-Y Jv + hFr J ~ o ~
=|u'-1_' 1 V u1iP1( [61rj). (3.16)

On the other hand, the assumption p 1 leads to 1 - p < 0. This together with

(3.15) and (3.16) concludes a > 0 for all j = 1,..., m. In other words, -y is indeedaI~uj I -

a monotonically increasing function with respect to the absolute value of each entry

6uj. Moreover it can be seen that y vanishes when 6u = 0. Therefore for any non-zero

5u, y is non-negative.

For infinity norm one can prove the non-negativity of the partial derivatives a-

by taking the limit as p goes to infinity and exploiting the assumption presented by

(3.15). Alternatively -y can be directly evaluated using the matrix measure expression

associated with infinity norm listed in Table 3.1.

With Lemma 12 I introduce the first central result as the following.

Theorem 13 For the system x = f(x, Y(x)) and metric function 0(x), and con-

tracting extended system F with pp(F) < 0 characterized by the matrices Q, R, p, the

following relation holds:

P (Fr) : pp(F) vp(H). (3.17)

in which S = pD-1C0-1, H = [ , and
S

vp(H) = min IIHvIIP. (3.18)
||1V1,,=1

Note that for invertible H, one has vp(H) = 1/ H-1 11,.

Proof 8 The matrix induced norm definition IIM|| = max IIMv|| implies that for each
I1v1I=1

positive scalar h, there exists 6vh with ||6Vhlip > 0 satisfying the following equality:

116vh + hF6Vhlip - 1I6vhall _1 + hFjlp - 1
h JjJ=h Pp. (3.19)
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The logarithmic norm is then defined as

yp(Fr) = lim lI6Vh + hFr6Vhlip - Ii6Vhllp
h-+0 h lI6vhll,

Lemma 1 implies that this expression can be also rewritten as

tWh+ h

iIP(F) lim
h-+0

Fr6Vh 
- Wh lip

0 l

h 11Vhp

On the other hand, applying the property defined by (3.14) we have that

SWh + h FVh 1

0

= Wh + hF6Wh - h
E RT(C6xh +D 6 yh)

QT(C6Xh + D6 yh)

= 6 Wh + hFJwh (3.22)

where 6Xh -1 6v and 6y = -D 1 Coxh. Combining (3.21) and (3.22), we have

that

ytp(Fr) lim
h-+O

=lim
h-+O

I|1wh + hF6wh ll - || 6Whlip
h 11 vh lip

||1wh + hFwh llp -
h i|wh6 lp

i6h Wlip kwhllip

IIJVh l,

6Wh = V =H,
6Uh

(3.24)

SO || 6Whii, vp(H) II6 vh|p, and by combining this with the assumption pu(F) < 0, I
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can rewrite (3.23) as the following

(Fr) < li m hFwhlip - 1IWh lip(H)h-+O h I||oWhll

:5 pp(F)vp(H). (3.25)

Q.E.D.

The purpose of introducing H is to show an important property of a DAE system:

if an extended system is contracting, the reduced system is also contracting, but with

a faster rate. As a result, the contraction rate of the synthetic system can be used as

a lower bound of the reduced one. Note that even though H still involves a matrix

inversion, if the contraction rate of the reduced system is not of primary interest,

there is no need for an explicit construction. An example of this is the contraction

region approximation procedure in section 3.4.

The below corollary of Theorem 13 provides the explicit expression of vp(S) with

p=2.

Corollary 4 (2 norm) Assuming that all assumptions of Theorem 13 are satisfied,

the contraction rate associated with the reduced system can be bounded as below

ii2 (Fr) /1 2 (F) 1 + ui,(S) (3.26)

in which -mirn(S) denotes the minimal singular value of the matrix S.

The proof of Corollary 4 follows from Theorem 13 and note that for p = 2, we have

that v2 (H) = 1 + min I|SvI|= N1 + O.2n(S)
IIvII=1

3.3.2 Converse theorems

Theorem 14 (2 norm) For a contracting system x = f(x, Y(x)) and metric func-

tion 6(x, t) with P2 (Fr) < 0 and any e > 0 there exists an extended system F

characterized by the matrices Q, R, p contracting with the contraction rate satisfying

P2(F) 5 P2 (Fr)/(1 + E).
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Proof 9 This theorem can be proven by explicit construction of the matrices Q, R, p,

which ensures fast enough contraction of F. The matrix p is chosen to be small

enough, so that oa(5) <e and R = 7 7DT pTpDlCO-1, Q = -ID-p", where

77 = p 2 (Fr)/(1 +o (S)). This choice of R and Q ensures that the symmetric part

of F is block-diagonal, so the following inequality follows from (3.14):

T 1 Tj r Oj 1

W = 6x I Fr +TSTS =6x

-p~y 0 -771 pjy-

= T (F+ 77STS) 6v - 771|U12

<( 2(Fr).+O (S)) 116vI2I-I 77116U112

=-6W112 + (+ +2 (Fr)+r j(S)) 116v112

= -7116W112. (3.27)

Since this inequality holds true for any 6w, I conclude that P2(F) -n P p2(Fr)/(1+

e).

The counterpart of Theorem 14 for 1 norm and oc norm are presented below.

Theorem 15 (1 norm and oo norm) For a contracting system x = f(x, Y(x))

and metric function 9(x, t) with pp(Fr) < 0 and any e > 0 there exists an extended

system F characterized by the matrices Q, R, p contracting with the contraction rate

satisfying p,(F) < pp(Fr)(1 - E) where p = 1, oo.

Proof 10 Similar to proof 9 we need to construct an appropriate tuple of matrices Q,
R, p. Below I only present oo norm, but 1 norm can be considered in the same way.

Choosing R = 0, Q = p0 (Fr)D-TpT, and metric p small enough so that |ISI|K 5 E,

leads to a diagonally dominant matrix F below:

F = Fr 0 ,(3.28)
Ko(Fr)S po(Fr)]
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then we have the following relation:

p.(F) = max{py(Fr),
n

max {p,(Fr) + S Iioo(Fr)SijJ}}n+l5iin+m
j7=1

<max{p.(Fr), p.(Fr) + Ijpto (Fr) IISI0o}
<poo(Fr)(1-). (3.29)

Q.E.D.

3.3.3 Relation to other works

In this section I first discuss the relation to linear stability of DAE systems. The DAE

systems have been studied extensively under "descriptor" forms [ 2,.72, 06, 119 as

well as singular systems in ]. In fact if there exists a matrix Z that satisfies the

Lyapunov inequality (3.32) in section 3.4 with J, at an equilibrium z, and # = 0, then

the descriptor system is asymptotically stable. Theorem 14 not only suggests that

the existence of such matrix Z is indeed the sufficient condition for linear stability,

but also provides an explicit construction of the certificate. The relation between the

two notions of contraction and linear stability is further discussed below.

Contraction analysis and linear stability are closely related for autonomous sys-

tems. As discussed in section 3.4.3 if there exists a stable equilibrium that lies within

a ball-like invariant region inscribed in the contraction region, all the trajectories of

the systems starting inside the ball will shrink towards each other and merge to the

nominal trajectory associated with the equilibrium; hence, the system is linearly sta-

ble at such equilibrium. In other words, if the system is linear stable at a particular

equilibrium, there exists a contraction region centered at the equilibrium. This is true

for ODEs as observed in [61. The converse theorems 14 and 15 provide an explicit

construction for DAEs.

From the contraction and linear stability comparability, the inner approximated

contraction region constructed below in section 3.4 is indeed a robust linear stability
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region in the variable space associated with the nominal operating point. Speaking

of robust linear stability region, any equilibrium, if it exists and lies in such region, is

a linearly stable one. Moreover as motivated by applying contraction analysis to the

power systems which can be represented in DAE form, incremental stability implies

convergence and vice versa. For the distinctions between the two concepts, interested

readers can refer to I, 4].

Singularly perturbed systems are also related to DAE systems as the time constant

E -4 0. [, 1 revisit some key results of singular perturbations using contraction

tools, where the fast and slow sub-systems are assumed to be partially contracting.

Our approach here, on the other hand, doesn't require the systems to be partially

contracting in the algebraic variable y. In comparison to the key theorems from

[, J1, our results provide explicit conditions on the Jacobian matrices that can be

applied to any system. However, to our knowledge, neither of our previously reported

results on contraction of singularly perturbed systems dominate each other.

With respect to the contraction condition, the condition introduced in [2] can be

recovered under our framework when c goes to 0, as follows. Consider the standard

singular perturbation system:

= f(x, yt, Ey = g(x, y, ) E ;> 0. (3.30)

Assume that the system (3.30) is partially contracting in x and in y with respect

to transformation metrics 6 and p. For simplicity let the transformation metrics be

constant. Let's consider a Lyapunov function V = |l [6x p6 y]Tj| then the system

(3.30) is contracting if the generalized Jacobian Fig = KAai IBp] has
pCO-11c pDp-11E

a uniform negative matrix measure. Therefore if I select Q = pT/, R - D-TBT,

then Fing = F. This implies that the central theorem 1.3 applies to the DAE system

associated to the system (3.30).

In ['7, a similar class of systems was analyzed, where the linear constraints were

imposed on the differential systems. The key conclusion that contraction of the orig-
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inal unconstrained flow implies local contraction of the constrained flow is consistent

with our results. However, apart from being constructive, our results also don't di-

rectly follow from the observations made in [(7 as in our case the contraction of the

synthetic system is not restricted to the algebraic manifold.

3.4 Inner approximation of contraction region

In this section I constraint ourself to the class of DAE systems which can be rep-

resented by quadratic equations in variables z. As a result the Jacobian J depends

linearly on z. As identifying the real contraction region is challenging and even impos-

sible in many practical situations, I introduce two scalable techniques for constructing

inner approximations of the contraction region centered at a given equilibrium: an

LMI formulation for 2 norm, and a robust linear programing for 1 and infinity norms.

The approximated region has its merits of determining transient stability in electrical

systems as shown in the application section.

Proposition 2 The DAE system (3.2) and (3.3) is contracting in the contraction

region Cp if there exists transform 6(x, t) such that 3 > 0, Vx E C,, yp(F) <; -0.

Proof 11 pp(Fr) is negative follows from Theorem 13. The definition of contraction

region in (3.8) then concludes the proof.

An important application of Proposition 2 is to construct the contraction region

by analyzing the extended systems. In the following subsections I present the con-

struction for both 2 and infinity norms.

3.4.1 Inner approximation in 2 norm and LPV problem

Since the generalized unreduced Jacobian matrix introduced in (3.11) is not suitable

for LMI formulation, I rewrite the Jacobian in more convenient form as below with

a constant metric 9, R = f + D-TBT and Q = Q, and p = I so that the system
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contracts in y with respect to the identity metric:

- -jT r - -

wTF~w = 6x j PA+ fTC 1TD+PB x

6y QT C QT D Jy

= 6Z TzTj(Z)jZ, (3.31)

P 0
with a lower block diagonal auxiliary matrix Z = . Such matrix Z also is

R Q
used in linear stability assessment for descriptor systems. This is discussed in details

in section 3.3.3. With the new representation, the problem of solving P2(F) < #

reduces to the following Lyapunov bilinear inequality in Z and J(z):

ZTJ(z) + J(z)TZ - -311. (3.32)

LPV problem Note that the Jacobian matrix is affine in states, i.e. J(z) = J, +

Zk ZkJk. Hence, if the states belong to a compact set, the equality (3.32) is a semi-

infinite LMI problem: find a matrix Z such that (3.32) holds true for all states in this

compact set [ , ]. One can then rely on a relaxation scheme which particularly is a

relaxation of affine parameter-dependent LMI to transform the semi-infinite problem

into finite ones [ ,. . However, from a power engineering perspective this approach

has two main drawbacks: i) such compact set may not be available, and ii) even if

the set of states is given, solving the resulted finite LMI problems associated with a

large-scale power system may be computationally prohibited.

I therefore consider a different problem: for a given nominal matrix Z, find a set

of states which satisfies the inequality (3.32). This iterative approach, which often

applies to bilinear problems, can be implemented in the following 2-step procedure.

First, for a fixed point, say the equilibrium z, which without loss of generality can

be assumed zero, one sets J(z) = J, then solves (3.32) for Z. Let Z, be the solution

of the first step, then the metric 0 can be determined as the Cholesky decomposition

of P.

Next I fix Z = Z, perturb the system around its equilibrium z, and then iden-

65



tify an acceptable perturbation region. For any fixed Z the equation (3.32) defines

a spectrahedral region where the system is provably contracting. The invariant re-

gion around equilibrium point could have been constructed by inscribing the ball

(ellipsoid) associated with the metric 6, p inside this region. However, inscription of

ellipsoids inside spectrahedra is a NP-hard problem not scalable to the large power

systems. Instead, I propose an alternative procedure, where I construct an intermedi-

ate polytopic region inscribed in a spectrahedron in which I inscribe the contracting

ball.

The polytopic region is constructed in the variable space in which Z, is the com-

mon matrix satisfying (3.32) for all inner points. Particularly, we need to find varia-

tions z satisfying the following LMI:

J(z)TZ* + ZfJ(z) + 01 - 0. (3.33)

Note that (3.33) holds at the equilibrium. This leads to the following:

ZTJ, + JTZ* + 01 = -UTU -<0. (3.34)

Moreover for non-singular U one can symmetrize (3.33) by multiplying on the left

and the right by U-T and U- 1 , respectively. As a result we have that

-1 + E U - T Zk(Z* Jk + JkTZ*)U- 1 
- 0. (3.35)

k

For each coefficient matrix Jk, using SVD decomposition, yields the following:

U-T(ZTJk + JTZ*)U- 1 = AeT (3.36)
h

Then it's sufficient to conclude that (3.35) holds if the following condition satisfies:

Umax zk Akh ee i)< 1, (3.37)
k h
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which then can be formulated as the following:

max E Zkj Akh (VTekh)2
11V12=1 k h

<max IZkAkhljmax (Z Th~ l
-k,h LEehl

1,h

<1. (3.38)

A box-type bound of the variation Zk can be estimated as

1
maxlzkl < (.9

- (maxh IAkhIl)Jmax(Zl,h elhe7O (33'

which defines the bounds on each variable variation Zk thus identifying the inner

approximated contraction region. It can be seen that the explicit bound defined by

(3.39) depends on the uniform upper-bound of the contraction rate # and matrix Z,.

The bounds become more conservative for a large value of 3. Since there is an infinite

number of choices of Z, satisfying p2 (ZTJ,) -,3, it's essential to understand which

Z* would correspond to the least conservative bounds. The bounds obtained from

(3.39) can be also improved by deploying a better estimated upper bound in (3.42).

3.4.2 Inner approximation in 1 and infinity norms

A similar inner approximated contraction region can be also constructed based on 1

and infinity norms. To verify contraction, pp(F) < 0, both norms require diagonally

dominant generalized Jacobian, so the associated constructions are alike. Below I

present only the procedure for infinity norm.

Closely following the reasoning used for the construction for 2 norm, we need

to exclude the high nonlinear terms in the generalized Jacobian. By choosing R =

D-TBT and QT = p, we have the standard unreduced generalized Jacobian:

F = A01  6Bp' (3.40)
pC6-1 pDp- 1
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An important property of this representation is that, for.fixed metrics, the generalized

Jacobian is linear in states. This fact allows us to proceed with the two-step procedure.

In the first step, for a fixed point z, we need to find the nominal metrics 0, and

p, which make the generalized Jacobian diagonally dominant, thus ,.(F) < 0. In

general, finding such metrics is not trivial. One possible approach is to make the two

off-diagonal submatrices vanish at the nominal point. In particular, for the upper right

submatrix with B term, I can select a metric 6 which has a sufficiently small infinity

norm. The lower left submatrix associated with C term will become zero if I replace

the algebraic variable perturbations, 6y, with mixed variables 6p = C,6x+D,6y where

C* = CI,=z, and D* = Dlz=z.. The algebraic relations can be reduced to -J = 0,

thus yielding a new generalized Jacobian which is of the form F = [r ]. A
0 -1

natural following step is to find a metric 6 with which Fr is negatively diagonally

dominant. If the system is overdamped, the Schur complement of the Jacobian,

Jr = A - BD-C, has only negative real eigenvalues, and is thus diagonalizable. The

metric 6 then can be simply chosen to consist all eigenvectors of Jr. Moreover, for

the new form of F, all invertible metrics p would work, but for simplicity, let p be an

identity metric.

Once the metrics are obtained, I continue with the second step where I fix the

metrics and perturb the states. The admissible range of state perturbations which

maintains negative p,(F) defines an inner approximation of the contraction region.

As many practical engineering systems require all physical quantities to be in compli-

ance with specified operational constraints, I propose to use box constraint construc-

tion. I shall inscribe a box inside the spectrahedron by allowing some variability to

the coordinates

Zk Zk5 k (3.41)

in all the directions k = 1,... n + m. The following robust linear programing is
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formulated to certify that the box region indeed lies in the contraction region.

minimize (3.42)
V

subject to max (F) + E (i=1,.. . n + m
Zk!<Zk ZTk

max (-Fij)- (, <0 ij= 1,...-n + m
Zk Zk<Zkk

max (Fij) - (, i i, j = 1, .. .n + m
Zkzk<Zk

where (ij associates with the absolute value of the off-diagonal entry Fi, i 5 j. If the

optimal value of the objective function in (3.42) is negative, the box is certified.

3.4.3 Invariant set construction

In this section I describe the procedure for constructing an invariant set 12 that lies

in the contraction region C2 .

Assume that an inner approximation of the contraction region, C2 , constructed

from section 3.4 is a convex region defined by a set of linear inequalities efx < bi, for

i = 1, ... , 2(n + m), and the equilibrium x, = 0. ei is a unit vector with the non-zero

element either +I or -1 due to the box-type constraints. bi > 0 represents the bound

on the variation along each direction, and bi is set to infinity if the corresponding Gk

vanishes. The linear transformation with metric 0 prompts a corresponding contrac-

tion region in v space, i.e. C2 v = {vle[91 v < bi}, for i = 1, ... , 2(n + m). Then to

construct an invariant set I find the largest Euclidean ball centered at the equilibrium

where v, = Ox, = 0 that lies in C2 v. The problem can be formulated as the following

LP:

maximize r
r
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where the constraints be

qi(r) = sup e[O-1 (v, + ru)

= r 1e29-1 I2 (3.44)

(3.44) follows from the Cauchy-Schwarz inequality, i.e. for a nonzero vector x, the

vector u satisfying lull2 !; 1 that maximizes xTu is x/|xll 2. It also can be seen that

the LP (3.43) admits the optimal solution rma = min{bi/ JIeT-1||2}-

3.5 Transient stability of power systems

In this section I demonstrate how the developed techniques can be applied to the

problem of constructing inner approximations of the contraction regions applicable

to transient stability analysis of power systems modeled in DAE forms.

3.5.1 Large-disturbance stability

Large disturbance stability or transient stability is defined as the ability of the sys-

tem to maintain synchronism after being subject to major disturbances such as line

failures or loss of large generators or loads. Unstable systems will exhibit large angle

separation or voltage depression which lead to system disintegration [ ]. The objec-

tive of transient analysis is to determine whether the system can converge to a feasible

post-fault stable equilibrium for a given pre-fault stable operating point and a trajec-

tory along which the system evolves during the fault, the so-called fault-on trajectory.

Assuming that all operational constraints or feasibility conditions, and stability con-

ditions are satisfied at the post-fault equilibrium, I then go into the convergence of

the post-fault trajectory.

There are two main approaches to transient stability analysis including time-

domain simulations and energy based or direct methods [19.]. An alternative based

on inner approximated contraction region is then proposed. This doesn't require

intensive computation efforts like the time-domain approach while still providing a
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reasonably non-conservative stability region in the state space. As long as the initial

point of the post-fault trajectory lies inside such region, the convergence to post-fault

stable equilibrium is guaranteed.

The salient features of the contraction approach include scalibility, online analysis

facilitation, and it does not require tailored energy function construction. The heav-

iest computational tasks are solving Lyapunov inequalities and SVD decomposition,

which even of large scale problems, are ready to be solved with existing algorithms

in regular processors. The contraction approach also allows the analysis be free from

post-fault trajectory numerical integration which is time consuming and prevents on-

line assessment. The third feature makes a key distinction between the contraction

approach and the direct methods. Indeed the direct methods rely on energy func-

tion construction which doesn't have a general form in lossy networks and there is a

need for finding critical energy levels based on which a stability region is identified.

The contraction approach, on the other hand, just requires the transform 0 and p

under which the system is contracting. Once the transform is found through solving

Lyapunov inequalities a corresponding sub-region of the contraction region can be

constructed.

It's worth mentioning that the inner approximated contraction region is also a

robust linear stability region so that the post-fault equilibrium is stable if it is an

interior point. By construction the feasibility of the constructed region is easily

validated as well. More importantly based on the inner approximated region one

can either gain insight about the system stability "degree" or preliminarily compute

"sufficient" critical clearing time (sCCT) which is more strict than the actual CCT,

the maximum allowed fault-on duration. Hence if the fault is cleared before sCCT,

the fault-on trajectory won't escape or exit the invariant region and the post-fault

trajectory will converge to a post-fault stable equilibrium inside the invariant region.

For more details on CCT one can refer to [1 , J.
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3.5.2 A 2-bus system

The applications of approximating the contraction region are discussed above. In this

section I illustrate the procedure by constructing one for a two-bus system as shown

in Figure 3-1 [ i 2]. The 2-bus system includes one slack bus, and one generator

Slack bus Line Vx +j Vy2 Generator

Xd , x e'd2, e42

r, x, b

1 /0

L oad V 2 <_ V

Exciter

PL+jQL

Figure 3-1: A 2-bus system

bus with a load residing at the same bus. The slack bus voltage is specified, i.e.

V = 1.04/0. The generator, modeled with a high order generator model, maintains

the voltage at bus 2 and generates active power at specific levels, i.e. V2 = 1.025p.u.

and PG= 0.8p.u.. The load consumes fixed amount of powers, PL = 1.63p.u. and

QL = 1.025p.u.. Note that hereafter I use r to denote the line resistance.

The sets of differential equations x = f(x, y) which describe the dynamics of the

generator are listed below. The details are introduced in [77].

d / PI T 'x1 TAA
Tjoeq2 = - - (d -' - (- X'))id2 + (1 - -V2)

TjO = -2 + eq2 - (x'd -x"- (T/ - X'))id2 + V2

d I T 0 x
T d2= -e'd2 + (xq -x' - -

Xq))iq2, TqOXq
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d TqO Xq
Toqt ed2 =T 2 + e' 2 + (X' - X' T' (xq - ( - 2,

d
-sin 6 = 27rf, cos6 (-1 +2),
dt

d
M-W 2 = Pm - td2Vd2 - 2Vq2- D(-1 + W2 ). (3.45)

dt

Algebraic equations, g(x, y) = 0, are composed of the relations describing the

generator, the network, and the load, that can be stated as follow:

0 = - e' '2 + x'2id2 +Vq2,

0 = -e'2- Xq'q2 + Vd2,

0 = -q2 + cos 6 
Vx2 + sin vy 2 ,

0= -vd2 + sin 6 2 Vx2 - cos 6vy 2 ,

0 = (cos62)2 + (sin 62)2 _ 1,

bvy 2  rV10=cos6oiq2+id2sin62 + +2 r 2 +x 2

Xy2

r2  - Px2 x2 QLVy2,

0 = -cOS 6id2 + iq2 sin 62 - rvy2

r2  x2

r2 + x2 + QLVx2 - PLVy2,

2 V_ 2  20 = V2 -VX2 - Vy2. (3.46)

For the 2-bus system, the set of variables includes 6 states, x = [E'2 , E"2 , E/ 2 , E

sin(6'), W 2 ]T, and 8 algebraic variables, y = [i2, sq2, V2, Vq2, V2, 1 x2, 1 y2, cos(62)]T,

where the subscript 2 indicates bus number 2. The system parameters are given as

the following: Tdo = 0.6, TdO = 0.02, Xq= 0.8 95 8 , x' = 0.1969, x' = 0.1, T'0 = 0.535,

T" = 0.02, M = 12.8, D = 20, TAA = 0.002, Pm = PG, r = 0.01938, x = 0.05,

b = 0.0528, fa = 60. All parameters are in p.u. except time constants in seconds and

frequency in Hertz.

A dynamic simulation and analysis package is developed in Mathematica 10.3.0.0

taking PSAT dynamic models [7I as the input. I also use CVX in MATLAB for
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solving Lyapunov inequalities.

0.31

0.30f

-~ 0.29

c> 0.28

0.27

0.26"

0 5 10 15 20
t [S]

Figure 3-2: The state sin (6') of the generator simulated to 20 s

As shown in Figure 3-2, the system will converge to the nominal equilibrium if

the gaps between the initial values of states, i.e. sin 62 in this case, and the nominal

values do not exceed the maximum distance that corresponds to the maximum radius

rmax and the metric 0 as discussed in the invariant set construction in section 3.4.3.

Figure 3-3 shows the contraction region in state space which is an ellipsoidal

region corresponding to the ball-like invariant set as discussed in section 3.4. The

convergence of all inner trajectories confirms that if the system starts from inside the

ball, the corresponding trajectory is contained at all times. This can be interpreted

as the following: if the post-fault equilibrium and the initial point of the post-fault

trajectory both are a part of the region inside the ball, the system is transient stable.

It also can be seen that the constructed invariant region touches the approximated

contraction region boundary which associates with the state sin 62. By assigning non-

uniform weights to variables z in (3.42), the invariant region can be stretched along

other directions as well.

In addition to 2 norm, I present the contraction results for infinity norm. As

discussed in section 3.4.2, I consider an overdamped system. The new system is almost

identical to the above 2-bus system, except for the synchronous machine inertial and

the damping coefficient, i.e. M = 4 and D = 200. Figure 3-4 shows the evolutions
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ed2
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Figure 3-3: The ellipsoidal invariant region

r~ ~v'-0.03-

-0.04

-0.05

-0.06

0 0.5 1. 0 1.5
t [s]

2.0

Figure 3-4: The state sin (6) of the generator
system

simulated to 2 s in an overdamped

of the state sin (6) up to 2 s starting from different initial conditions. Figure 3-5

illustrates a blue polytopic invariant region, the largest "ball" in infinity norm inside

the contraction sub-region which is in brick brown. It can be seen that all trajectories

starting from inside this ball will stay encompassed and eventually converge to the

stable equilibrium.
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Figure 3-5: A polytopic invariant region

3.6 Conclusion

In this chapter the contraction properties of Differential-Algebraic Systems were char-

acterized in terms of the contracting properties of the synthetic Jacobian representing

the virtual differential system that reduces to a given DAE under singular perturba-

tion theory analysis. I established the relations between the contraction rates of the

extended ODE and reduced DAE systems and used these relations to develop a sys-

tematic technique for constructing inner approximations of the attraction region for

quadratic DAE systems.

76



Chapter 4

Robust Small-Signal Stability

Assessment for Load Dynamics

Uncertainty

Dynamic response of loads has a significant effect on system stability and directly

determines the stability margin of the operating point. Inherent uncertainty and

natural variability of load models make the stability assessment especially difficult

and may compromise the security of the system. I propose a novel mathematical

"robust stability" criterion for the assessment of small-signal stability of operating

points. Whenever the criterion is satisfied for a given operating point, it provides

mathematical guarantees that the operating point will be stable with respect to small

disturbances for any dynamic response of the loads. The criterion can be naturally

used for identification of operating regions secure from the occurrence of Hopf bifurca-

tion. Several possible applications of the criterion are discussed, most importantly the

concept of Robust Stability Assessment (RSA) that could be integrated in dynamic

security assessment packages and used in contingency screening and other planning

and operational studies.

@2016 IEEE. Reprinted, with permission, from Hung Nguyen, Robust Stability

Assessment in the Presence of Load Dynamics Uncertainty, IEEE Transactions on

Power Systems, March 2016.
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4.1 Introduction

Loss of stability of power systems usually results in some of the most dramatic sce-

narios of power system failure and has played an important role in most of the recent

blackout. The dynamic of response of loads affects the voltage and to lesser extend

angular stability in most important way [60]. The loads affect the overall system be-

havior and may lead to loss of stability because of insufficient damping [7G]. Typically

the loss of stability of the system occurs via Hopf bifurcation [I 1,2.1,291, when some

part of the upper branch of the nose curve becomes unstable. The load response was

shown to play a major role in this scenario for example in [ 8, 97, 7, 112. Hereafter,

whenever I mention stability, I mean small-disturbance stability that associates with

a particular operating point.

Loads, by definition, represent an aggregate of hundreds or thousands of individ-

ual devices such as motors, lighting, and electrical appliances [7i]. Load modeling has

been a subject of intensive research for several decades [2i, 4, 6, 4, i; however,

it is still a rather open subject. Even though some certain types of loads such as

aluminum or steel plant, and pumped hydroelectric storage are considered as well-

identified ones [51.; due to its natural complexity and uncertainty, load dynamics,

in general, may be never known completely in operational planning, operation, and

control [ , .7. The lack of knowledge about the dynamic characteristic of each indi-

vidual component due to poor measurements, modeling, and exchange information,

as well as the uncertainties in components/customers behaviors via switching events

contribute to load uncertainties. Hence, loads are the main source of uncertainty [I 3'
that undermines the accuracy of the power dynamic models used by system operators

all over the world.

Incorporation of the uncertainty into existing models is essential for improving the

system security usually defined as the ability of the system to withstand credible dis-

turbances/contingencies while maintaining power delivery services continuity [8 , J.
The future power systems will likely be exposed to higher levels of overall stress and

complexity due to penetration of renewable generators, and more intelligent loads,
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deregulation of the system, and introduction of short-time scale power markets. Se-

cure operation of these systems will necessarily require the operator to track the

voltage stability boundary with new generation of security assessment tools provid-

ing comprehensive, fast and accurate assessment [J. This work addressed the need

in "robust" security assessment tools that can provide security guarantees even in the

presence of modeling uncertainty.

In [2, > 31., several techniques were developed that rely on transversality con-

ditions for quantifying the distance to various types of bifurcation including Hopf

bifurcation in multidimensional parameter space. These techniques ensure robust

stability of the equilibrium associated with nominal parameter A0 . Although they

could be naturally extended to an uncertainty in small subspace of parameters, there

extension to situations when the space of uncertain parameters has high dimension.

In this chapter, I provide robust stability certificate in multidimensional space of cer-

tain system parameters. Unlike the works mentioned above I do without tracking

the most dangerous direction, rather I indicate whether such directions exist or not.

Hence, I do not attempt to find the unstable points associated with some certain

critical parameters.

The existence of robust stability certificate and whole region of operating points

that are certified to be robust stable provides new practical alternatives for dealing

with load dynamics uncertainty. It has been noted in [121 that traditional "voltage

collapse" instability is not affected by the load dynamics as it corresponds to saddle-

node bifurcation, where the equilibrium point disappears altogether. At the same

time for the more common Hopf bifurcation it was argued in [41] that sensitivity

analysis of the system trajectories may provide enough information to assess the

risks associated with common disturbances. Moreover, whenever the system operates

in the robust stability regime, the stability can be certified even without knowing

the dynamic characteristics of the load altogether. The stability of the system can be

certified simply by analyzing the static characteristics of the loads in combination with

well-understood dynamic models of generators. In this sense, I argue that accurate

modeling of the loads is essential only when the system operates in the intermediate

79



regimes of the nose curves or the PV curves, between the robust stability region and

the saddle-node bifurcation on the nose tip.

The structure of the chapter and the main contributions are summarized below.

After introducing our modeling assumptions in 4.2.2 I derive the novel robust stability

criterion in section 4.3. Then, I propose a practical algorithm RSA for robust stability

certification. In section 4.5 I perform various simulations with several test cases from

2-bus system to WSCC 3-machine, 9-bus system and the IEEE 39-bus New England

system to illustrate the concept of robust stability and RSA. The dynamic simula-

tions are implemented in SystemModeler 4.0 and the computations are performed in

Mathematica 10 and with the help of CVX program, a package for convex program-

ming. Then in section 4.4 I discuss the proposed applications of the algorithm, and

possible extensions to other kinds of uncertainty. Finally, the non-certified robust

stability region is discussed in section 4.6.

4.2 Voltage stability and load dynamics

4.2.1 Voltage stability

While the power system operates in stressed heavily loaded regime it may be prone

to subject to voltage stability problems. The secure operating region is confined by

voltage stability boundary. As a common practice, static voltage stability criteria

is widely used by system operators [ 1, 21]. Moreover, it has been argued that

static analysis is preferred over dynamic approach [7 I. At the same time it has been

reported in many works that Hopf bifurcation may destabilize the system before it

reaches the static stability limits (].

Under some particular conditions, Hopf bifurcation may not occur [20] but typi-

cally, Hopf bifurcation determines the stability margins of most common systems [1 4

when the system exhibits Hopf bifurcation before it reaches the saddle-node bifurca-

tion point or the tip of the nose curve. This situation can happen in the quasi-stable

Hopf bifurcation region shown in Figure 4--1. The term quasi-stability used in power
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Figure 4-1: Qualitative visualization of Hopf bifurcation [>J

engineering is related to the oscillatory behavior of the system that is observed after

the occurrence Hopf Bifurcation [>8]. Detecting the loadability limits associated with

the bifurcation is a much more complicated problem in comparison to the static sta-

bility analysis associated with the saddle-node bifurcation [1, 1. Some realistic

examples of finding Hopf bifurcation point can be found in [,1 and related works.

In this context, the key contribution of this work is an alternative approach based

on robust stability. Whenever the robust criterion criterion is satisfied, the system is

mathematically guaranteed that Hopf bifurcation cannot occur.

4.2.2 Dynamic load modeling

The stability of any operating point and the position of the Hopf bifurcation on the

nose curve depends on the dynamical behavior of loads on individual buses. Tradi-

tional models of load dynamics are based on combination of differential and algebraic

equations for the load state. In steady state the loads can be characterized by their

static characteristics P'(V, w) and Q8(V, w) which describe the dependence of the

active and reactive power consumption levels P, Q on the load bus voltage level V
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and system frequency w. The dynamic state of the loads is typically characterized by

single state variable x that represents the internal state of the system, for example

the average slip of the induction motors. Whenever the composition of the loads on a

single bus is highly heterogeneous, it may be represented by a parallel interconnection

of several components characterized by different models. At any moment of time the

load consuming active power P and reactive power Q can be characterized by the

effective conductance g = P/V2 and susceptance b = Q/V2 . The first order dynamic

model for the conductance representing the dynamics of the internal state of the load

can be than written in a general form as:

S= F(g, V,w) (4.1)

The right hand side of this equation is not arbitrary and should have the equilibrium

point corresponding to the steady state characteristic of the load. Hence whenever

the active power consumption is equal to steady rate, so P = gV2 = P(V, w), the

right hand side of (4.1) should vanish, so F(PS(V, w)/V2 , V, w) = 0. Any function F

that satisfies this relation can be rewritten as F = T--(Ps(V, w) - gV2 ). In this form,

the factor -r generally depends on voltage and frequency and can be interpreted as

instant relaxation rate of the load. Whenever the load is stable when connected to

an infinite slack bus, the factor r can be trivially shown to be positive, so r > 0. The

same mathematical form and analysis also apply to the load susceptance.

This discussion allows us to conclude that for the purposes of small-signal stability

studies the first order models of the loads can be represented as

TFgkk -(gkVk - Pks), (4.2)

Tbkbk = -(bkVk2 - Qk)- (4-3)

Here the index k runs over all load buses in the system, the factors rgk, Tbk represent

the uncertainties in the dynamic models, that can be also interpreted as relaxation

time. The factors Pk' and Qs represent the voltage dependent static characteristic of
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the loads.

This type of load model is also introduced in [' , 17, 1091, typically for thermo-

static loads. However as we have argued in [K2] this model can naturally be used to

represent the standard models for thermostatically controlled loads, induction motors,

power electronic converters, aggregate effects of otherwise unmodelled distribution

Load Tap Changer (LTC) transformers etc. The static loads can be also naturally

modeled within this framework by taking the limit rFk -+ 0. Obviously, the range of

time constants is wide, ranging is from cycles to minutes and can introduce a lot of

uncertainty in the modeling process.

I finish this section by comparing the model to the two other classical load mod-

els. Equations (4.2) are just another form of the traditional dynamic load models

introduced originally in [ ,

Pd + f(Pd, V). = g(Pd, V) V (4.4)

Here Pd is the instantaneous power, that is denoted by Pk = gkV in our notations

and V is the bus voltage magnitude, referred to as Vk in equations (4.2). The more

specific form of these equations, known as exponential recovery model was introduced

in [2,: :

T #d + Pd = Ps(V) + kp(V) V (4.5)

I can recover the model (4.4) from equation (4.2) by taking the derivative of 9kJVk 2.

This results in the following expression:

Pk-Pk( Vk) 2  LPkd

___k + k -k _ - Vk (4.6)
Tg k Vk dt

Another equivalent model was introduced in [ I and [

dx
Tp- = P8(V) - P; P = x P(V) (4.7)

dt

TQy =Q(V) - Q; Q = y Q(V) (4.8)
qdt
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where x is the state; subscript s and t indicate steady state and transient values,

respectively; P(V) = V', PS(V) = PO Va; Qt(V) = VO, QS(V) = Qo Vb. This model

is equivalent to (4.2), (4.3) with x = g and y = bk when a = 3= 2.

The proposed load model can naturally represent the most common types of loads,

such as induction motors, thermostatically controlled loads. Hence, I believe that the

form of the load model is rather general and can be used in a variety of practically

relevant problems.

For example, below I show how the induction motor model can be embedded in

our generic modeling framework. The induction motor depicted in Figure 4-2 can be

PXQ m R

IM M XM
1-s R
s Rm

C X

Figure 4-2: Induction motor load model [4-2

described as [42:

1 Pm

W-Pd) (4.9)

where s is the motor slip, wo is the base frequency, I is the rotor moment of inertia,

Pm is the mechanical power, and Pd is the electric power given by

V 2 Rm s
Pd= 2  =V2 h(s) (4.10)

R2 + X2

Since Pd = h(s) V2 , from (4.10), I can represent the motor as the dynamic inductance

with

g = h(s) (4.11)

In normal operating regime, this relation can be also reversed so that s = h 1 (g).
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Differentiation of the two sides of (4.11) with respect to time yields the following

expression:
dh Pm

g= a -( "M - gV2 ) (4.12)
ds I - s

where a = . As long as s can be expressed in terms of g I reproduce the general

form (4.1). Similar approach can be applied to most of the other types of loads,

like thermostatically controlled loads, static loads behind Under-Load Tap Chang-

ers (ULTCs), and certainly the static loads which are described in more detail in

Appendix in [1 I.

From (4.11) and (4.12), the induction motor load can be modeled in the form of

(4.1). More importantly, the proposed dynamic load model not only is convenient

for static analysis even in non-conventional power flow regime ['2 but also satisfies

all fundamental requirements for load models in voltage stability studies which are

mentioned in [79].

4.3 Stability theory

In this section I address the question of the small-signal stability of an operating point

by first reviewing the classical stability criteria applied to the problem of voltage

stability of modern power system models in subsection 4.3.1 and then introduce the

central result of the chapter: robust stability criterion in 4.3.2.

4.3.1 Linear stability

Consider again the nonlinear differential algebraic equations (1.1) and (1.2). More-

over, for convenience, one can decompose the state variables two sets, i.e. generator

xg E OR' and load states xc E R"E. Here nc and ng are the total number of states

associated with loads and generators, respectively. Also, I assume that the subset of

algebraic variables y represents the bus voltages, including the voltages on load buses.

Under the assumptions above it is possible to represent (1 .1) and (1.2) in terms of xg
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and xc as:

xg = f'(xg, y) (4.13)

xt = T_1 f' (x, y) (4.14)

0 = g(xg, x', y) (4.15)

where T is a diagonal matrix with the size of nc x nL whose diagonal entries are

the time constants of corresponding loads as introduced in (4.2); f9 and fL are the

functions associate with the sets of generators and the loads, respectively. Note, that

in this representation the functions fG, fL and G can be assumed to be known and all

the uncertainty is aggregated in the matrix T. This assumption is reasonable in the

situations when the network characteristics are known, generator models are verified

and static load characteristics are understood better than their dynamic response

which is the case in practical situations. Note, also, that in the equations (4.13)

and (4.14) there is no direct coupling between the dynamics of generators and loads,

as the individual load components interact only indirectly via algebraic bus voltage

variables.

Small signal stability can be characterized by considering the linearized version of

the equations for the deviations of state and algebraic variables from their equilibrium

values.

6xg f f f xgxg X y Y

6xr = T-1 fL T-1 ff T 1 f L xc (4.16)

L0 g g eL gy j. y

where the subscripts of xg, xL, and y indicate the partial derivatives with respect

to the corresponding states and variables. Away from saddle-node bifurcation the

algebraic variables 6y can be eliminated from (4.16) yielding

6x] [A x1 f9 - f% G;1Gxg -f G 1G , 1 6xg

6xx -- A [[T Y-f1G1G. T-1(ft - f'G Gx- ) 1xG

This expression can be more conveniently decomposed as A = AJ in the following
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form

A = Ar = .gg& (4.17)
[0 T-- JCg J '

where 1 is the identity matrix of size ng x ng.

The key advantage of this decomposition is the separation of the matrix A in an

uncertain diagonal matrix T and the Jacobian matrix J that does not depend on the

uncertain load time constants, and depends only on the properties of the steady state

equilibrium point defined in load and generator variables.

Notably, for load models considered in this work the second row depends only

on the steady-state behavior of the load, i.e. it can be computed given the load

levels and voltage/frequency dependence of the steady-state active and reactive power

consumption.

According to the Lyapunov direct method, the system described by b = Ax is

stable if and only if there exist a symmetric positive definite matrix Q = QT >- 0 such

that

QA + ATQ < 0 (4.18)

where superscript T is used for transpose operator. However, existence of a Q matrix

for a given A merely implies the system stability for some specific load dynamics.

In the next section, I introduce the concept of robust stability that guarantees the

stability of the system stability for any load time constant uncertainty, i.e. any

positive definite diagonal matrix A.

4.3.2 Robust stability

As discussed previously, in this work, I assume that the operator has reliable informa-

tion about the generator models and settings, and the corresponding Jacobian matrix

row Jg is available for analysis. At the same time, I assume that the grid model and

all the algebraic equations characterized by G are known with high accuracy. For the

load model I assume that the matrices fL and fj describing the static characteris-
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tics of loads are known with high accuracy, however the matrix T representing the

dynamic response is not. The goal of robust stability certificate is to guarantee that

the operating point is stable for any positive definite T >- 0.

It is important to distinguish between two categories of load uncertainties, i.e.

load level uncertainty and load dynamic uncertainty. The former relates to load

level fluctuations due to various factors such as individual consumer behavior or

variations in the production output of DGs. This type of uncertainty is considered

in [II, 44, 46, 4, -7. On the other hand, load dynamic uncertainty concerns the

unpredictability of the dynamic response of the load to small fluctuation in voltage

and frequency. In this work, I only focus on the latter type of uncertainty and do not

discuss the uncertainty in load variations assuming that the operating point is known.

However, the regions of robust stability can be also used to account for uncertainty

in load consumption levels.

There are many sources of uncertainty in load dynamics. Apart from the natural

uncertainty related to composition of power consumption devices, the level of uncer-

tainty may increase dramatically in coming years when more small scale generators,

i.e. DGs, are integrated to the systems, especially on the distribution level. When

the penetration level becomes very high the traditional static voltage stability may

be insufficient to assess the system security [Y2,84l]. On the other hand, the approach

proposed in this work is valid, at least for non-synchronous DGs that can be modelled

as a negative loads with dynamics in the form of (4.2) and (4.3).

The robust stability criterion developed in the thesis is directly linked to the

concept of D-stability [5 , that are extended to model the uncertainty in a subset

of state variables.

In the following theorems I denote the set of positive definite matrices of size n x n

as Pn and set of diagonal positive definite matrices of size n x n as Dn. The following

theorem is central to the robust stability certification of power systems.

Theorem 16 Assume that there exists block-diagonal positive definite block diagonal
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matrix Q, such that

Q = 0(4.19)
0 QL_

with positive definite matrix Qg E P,, and diagonal positive definite matrix QC G Dn,

that satisfies

QAr + ATiQ -< 0 (4.20)

for some T > 0. In this case the system is robust stable, i.e. in other words, for any

diagonal T G Dnf there exists Q >- 0 such that QA- + ATQ -< 0

Proof 12 Consider the matrix Q = QT = QTT-i . Due to block-diagonal structure

of Q we have QAt = QAr and at the same time ATTQ = AQ, so QAt + ATQ

QAr + ATIQ -< 0.

Note, that the condition (4.20) first reported in the framework of D-stability

7J only establishes a sufficient criterion for robust stability. To our knowledge

no computationally tractable necessary and sufficient criteria reported for D-stability

have been reported in the literature. The only exception is the set of results on the

so-called positive matrices [ ] for which the existence of diagonal Lyapunov function

is a necessary condition for stability. Positive matrices are characterized by negative

off-diagonal components. The question of whether they can be used to describe power

system dynamics is interesting and worth exploring, but is outside of the scope of this

study.

The problem of checking whether the block diagonal matrix Q exists for given

Ag, AL and T is easy and can be accomplished by solving the following semi-definite

programming (SDP) problem.

max p (4.21)

subject to: QAT + ATQ + pn -< 0

Q >- 0

tr(Q)=1.
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Here the optimization is carried over the matrices Q with structure defined in (4.19).

The condition tr(Q) fixes the overall normalization of the Lyapunov function. When-

ever the resulting value p is positive the system is guaranteed to be robust stable. The

complexity of this procedure is polynomial in the size of the system. In recent years

mathematically similar procedures have been successfully applied in the context of

optimal power flow approaches [.54, 621, and more recently for power system security

assessment purposes [77. It has been shown in a number of chapters, that even large

scale systems admit fast analysis with SDP algorithms [64].

However, from (4.14), one can see that the proposed robust stability criterion

requires the equilibrium to be independent on uncertain parameters, for example the

time constants of the loads. Fortunately, the standard control systems in generators

and other components normally satisfy this requirement. This can be seen by looking

at the equations for the system equilibrium point, like load flow equations and observe

that they don't depend on the dynamic time constants of governors, AVR and loads.

In this work I illustrate the approach by considering the load dynamic uncertain-

ties. In real power systems, the dynamics of generators and Flexible AC Transmission

Systems (FACTS) devices are also the sources of uncertainties [:, 1 5, J ]. The

generators and the system uncertainties cause much difficult in designing effective

Power System Stabilizer (PSS) and other controllers 1, i6]. As mentioned before,

as long as these uncertainties do not alter the system equilibrium, the proposed ro-

bust stability criterion can be applied to access the system stability. In this case, all

known dynamic components can be grouped in set g and unknown dynamic ones can

be classified in set L.

4.4 Proposed applications

In this section I discuss the possible applications of the mathematical techniques

explained above.
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4.4.1 Dynamic Security Assessment (DSA)

DSA are used to analyze the security of power systems and assess various types of sta-

bilities such as voltage stability in Voltage Stability Assessment (VSA) and transient

stability which is assessed in Transient Stability Assessment (TSA). The configura-

tion of the DSA integrated into the Energy Management System (EMS) is discussed

in details in [, (]. Depending on the purpose of the assessment and the time-scale of

the function of interest, the input of DSA may be different. Typical DSA assess the

stability of a given operating state determined either from Supervisory Control and

Data Acquisition (SCADA) or Phasor Measurement Unit (PMU) measurement tools

or constructed in framework of scenario analysis for planning or operation purposes.

Being a fundamental component of DSA toolbox, the main goal of VSA is to certify

pre- and post-contingency voltage stability and calculate the voltage stability margin.

The contingency set typically includes major equipment outages such as generator,

transformer, line tripping. N - 1 security set is normally of interest [,, f, 4].

Brute-force accounting for load dynamics and other uncertainties in traditional

VSA is computationally expensive due to large number of scenarios that need to

be analyzed. An alternative proposed here and discussed in more details in section

4.4.2 is based on the worst case scenario analysis and relies only on the analysis

of static characteristics of the loads and well-understood dynamic characteristics of

the generators. Hence it eliminates the need for computationally expensive dynamic

simulations and stochastic Monte Carlo approached to modeling the uncertainty.

Typically, the objective of the DSA module is to assess the system stability mar-

gins and its behavior in major contingencies. At the input, the DSA module admits

a scenario which includes: i) a power flow base case which describes a snapshot of the

system conditions; ii) dynamic data of the system; iii) set of critical disturbances. The

output from the DSA module is composed of the system stability and corresponding

margins. The work [4IJ describes DSA in more details from the perspectives of both

traditional approaches in off-line analysis as well as intelligent system (IS) based one

for on-line assessments.
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It is worth to distinguish the two main classes of security assessment, i.e. Static

Security Assessment (SSA) and DSA. SSA concerns whether the operating constraints

are satisfied, i.e. whether the post-contingency voltage lies within the acceptable

range, whereas DSA looks for the system stability. In some cases, acceptable voltage

levels may imply that the system is stable. However, in general, this relationship is

not such simple. Therefore, the system stability needs to be assessed thoroughly in

the framework of DSA.

4.4.2 Robust Stability Assessment

The algorithms developed in this work can form the foundation of a potentially more

powerful technique that I call Robust Stability Assessment (RSA). Specifically I pro-

pose to use RSA to develop the fast screening phase of VSA in an online DSA that

is required to be fast enough to either automatically or manually choose the proper

remedial control actions. For an effective and powerful VSA, the accuracy and the

speed of computation are the two most crucial and challenging issues. As previous

mentioned, the accuracy of VSA is affected due to uncertainties. RSA is able to elim-

inate such errors. Moreover, the fast algorithm of RSA is extremely helpful to speed

up the program, especially when it relies on deterministic method that exhaustively

screens contingency and searches for secure limits. Even for intelligent system based

VSA, RSA is still able to help to remove a significant number of possibilities. The

efficiently computational aspect of the proposed algorithm can be easily scale to bulk

systems which is impossible for traditional dynamic approaches while rendering the

meaning of dynamic stability assessment.

Within this approach in RSA, the stability is certified not for a single mathemat-

ical model of a system, but rather for the whole set of systems defined by different

realizations of uncertain elements. The key steps required for performing the Robust

Stability Assessment are explained below:

1. Input The input of RSA is an equilibrium configuration of the system charac-

terized by the levels of load consumption, network model, and dynamic model
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of the generators.

2. Initialization On the initialization stage the algorithm defines the model of the

system by introducing the uncertain model of the load. In the simplest approach

the load buses are modeled as time dependent impedances as discussed in section

4.2.2. In the framework of more advanced approaches it may be reasonable to

separate the actual loads into static components, well-defined dynamic ones

(like aluminum smelters) and finally the uncertain dynamic loads. Only the

uncertain components should be incorporated in the xL part of the dynamical

system descriptions, whereas all the other components should be modeled as

known ones and described by the vector xg.

3. Linearization The dynamic model of the system is linearized and the matrix

Ar is calculated for some arbitrarily chosen load relaxation time constants ma-

trix T. As explained in previous section the choice of initial T does not have

any effect on the outcome of the analysis.

4. Optimization The Semi-Definite Programming problem (4.21) is solved for

the constructed matrix Ar. Whenever the resulting value p is positive the

equilibrium point is certified to be robust stable, i.e. it is provably stable for

any matrix T.

5. Direct Analysis As the condition p > 0 from (4.21) is only sufficient but not

necessary, whenever the result of optimization results in negative p, nothing

can be said about the stability of the system. The user of RSA has to rely

on other probabilistic or deterministic techniques to assess the probability of

having stable system given the uncertainty in load dynamics.

RSA can be naturally incorporated in several planning and operational studies that

are described below.
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4.4.3 RSA for deterministic stability assessment

One specific application of the RSA approach is the deterministic stability assessment

that is regularly performed during power system operation. At any moment of time,

the system operators need to know the following [80].

1. Whether the current state is secure

2. Whether the system will remain secure after the next several minute changes

3. If the system is insecure, what countermeasures need to be carried out

The general deterministic stability assessment answers these questions via the

following sequence of steps [7]:

1. Develop the power flow base cases for the study

2. Select the contingency set

3. Select parameters in the expected operating range

4. Identify security constraint violations

5. Find the security boundary

6. Construct the comprehensive reports like plots or tables by combining all the

security boundaries

Robust stability technique naturally fits in this process without any adjustments to

the logic. The key advantage of the RSA is its ability to certify the stability and secu-

rity of the system even in the presence of dynamic uncertainty naturally expressed as

parameter ranges in step 3) above. The proposed robust stability criterion is compati-

ble with both off-line and on-line security assessments in the presence of uncertainties.

Moreover, it may also provide additional benefits for implementing real-time and dis-

tributed security assessment schemes which are still the main challenge to the current

technologies [ 9. In this framework, the assessment has to be performed without
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access to full model of external entities, and the operator may represent the dynamic

response of these entities via equivalent models with uncertain time-constants. Such

a scheme is more robust to communication system malfunctions and potentially re-

duces the requirements to throughput and latency of sensing, communication and

computation components. In some cases, large enough robust stability region can be

directly applied in operation procedures and used as secure regimes that are displayed

to the operators. Moreover, as mentioned before, RSA can access the system dynamic

stability simply based on static analysis (power flow) and well-understood dynamic

components, the dynamical secure regimes can be constructed in advance. Specific

demonstration of the usage of robust stability in VSA is presented in section 4.5.2

where I examine the N - 1 contingency set of WSCC 3-machine, 9-bus system.

4.4.4 Security Indicator

The optimization problem (4.21) can be used not only to certify the stability of a given

point but also to estimate the stability margin. Indeed, the value of p is naturally

interpreted as the worst case rate of decay of the Lyapunov function defined by xTQx

and can be thus viewed as the worst case stability margin. The security indicator

defined by p can be used for risk monitoring purposes and can assist the system

operators in designing the preventive control strategies. In the latter it is natural

to optimize for control actions that ensure some minimal level of worst-case stability

margin.

With additional research effort invested it should be possible to modify the security

indicator defined by p from (4.21) in a way that it's value reflects the probabilities of

system losing stability in the presence of random factors, such as renewable generators.

To achieve this goal it is necessary to study the sensitivity of matrix A with respect

to random factors, and modify the term p1 in a way that certificate that bounds p

from below can be interpreted in probabilistic way, i.e. probability of system losing

stability bounded from above.
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4.4.5 Stability constrained Planning and Optimization

RSA and security indicator discussed in section 4.4.4 can be also used for planning and

dispatch purposes in the framework of stability or security constrained optimization.

In this case the security indicator can be used as one of the optimization objectives

or constraints. As closed form expression for p does not exist, the corresponding

optimization needs to rely on some iterative heuristics, like genetic algorithms. The

algorithms may need to be complemented with direct approaches as described for

example in [28, 10, ,HI.

4.5 Simulations

In this section I report the results of application of the Robust Stability Certification

to several common models of power systems. Moreover, RSA technique does not

explicitly address the question of feasibility of the operating point, although it could

be trivially extended with any kinds of voltage and current constraints. As these

constraints depend on the operating point, and not on the dynamic equations, they

can be checked separately from the small signal stability. Whenever the small-signal

stability of the operating point needs to be analyzed, and RSA technique allows to

assess stability even in the presence of load modeling uncertainty. As a matter of

fact, in contingency analysis, it is essential to assess the system stability even when

the voltage levels are unacceptable according to normal operating conditions.

4.5.1 A 2-bus system

The rudimentary 2-bus system shown in Figure 4-3 is adopted from [i 2] and is

extended with the dynamic model of the loads. The generator consists of an internal

voltage source behind the transient reactance and an IEEE Type 1 exciter. In this

work, I do not consider angle dynamics but focus solely on voltage dynamics, although

the extension to more general models is trivial. The set of differential equations
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Generator Line Load

E'/6' Xd x'd E c / 6 G

XI

E fd
g + j b/

Er EG
Exciter PO +j Q0

Figure 4-3: A rudimentary system [J J

describing the generator dynamics are the same as described in [121 or [) d:

T ',E = - E' + _ EG cos(6 G - 6') + Efd (4.22)
d d

T fd = -Efd - K(EG - Er) (4.23)

where Xd and x' are the equivalent direct axis reactance and transient direct axis

reactance; TdO is the direct axis transient open circuit time constant; E'Z6' is the

internal source voltage; EGZSG is the terminal voltage; ER is the reference voltage;

Efd is the exciter output voltage (generator field voltage); K and T are the gain

and integral time constant associated with exciter PI control. Generator models are

described in details in [ , , ]. The dynamics of the load is described by (4.2):

T g= -(gV 2 -Po) = -(p-Po), (4.24)

b = -(bV 2 _ QO) _(q - Qo). (4.25)

where T is the load time constant, T = rg = rb; V is the voltage magnitude at the load

bus; PO = PS and Q0 = Qs are the desired demand levels that I assume to be constant

and not depending on the voltage; p and q are the instantaneous power consumptions

of the load. For the rudimentary system, the set of state variables includes 4 states,

i.e. x = [E', Efd, g, b]T which can be decomposed into 2 state vectors xg = [E', E1 d]T

and x: = [g, b]T. Moreover, the diagonal matrix constituted by the time constants of
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the loads is T = diag(r, r). The relations (4.23) and (4.24) form the set of differential

equations.

Algebraic equations, G(x, y) = 0 are composed of relation describing the genera-

tor, the network, and the load can be stated as follow:

E'EG si(c6)+EGV
0 = , sin(JG - J')+ sin(G - 6 )

Id X1

0 =- (EG - EGE'cos(JG - 6))
Xd

1
+ -(Es - EGE cos(6G - 6)

xl

V EG
0 = sin( - 6 G) + p

Xl
1

0 =-(V 2

Xl

(4.26)

(4.27)

(4.28)

(4.29)

(4-30)- EG E cos(6 - 6 G)) + q

p =gV2  (4.31)

q =bV 2  (4.32)

The internal voltage source angle is used as the reference, i.e. 6' = 0. The system

parameters are given as the following: TdO = 5; E, = 1; Xd = 1.2; x' = 0.2; T = 0.39;

K = 10; x, = 0.1. All parameters are in p.u. except time constants in second and

scalar gain K.

1.5 2.0 2.5 3.0
Po (p.u.)

3.5 4.0 4.5

Figure 4-4: Robust stability illustration for rudimentary system

In Figure 4-4 I show the results of stability analysis of different points on the nose
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curve. The system is shown to be robust stable up to point S where P = 2.51 p.u. at

the upper branch of the nose curve of cos # = 0.98. Saddle-node bifurcation (SNB)

corresponding to voltage collapse occurs at Po = 4.2p.u.. The section of the upper

branch between S and SNB cannot be certified to be robust stable, and can be

numerically shown to be unstable for some load time constant r at every point. For

example, at point H where P = 2.6p.u., the system exhibits Hopf bifurcation (HB)

with T = 7.35 s. The eigenvalues of matrix A at point H are shown on figure 4-5.

For the rudimentary system, the lower branch of the PV is unstable for most of

load dynamics.

[ 1 22~I "

~8 -6 -4 -2 0
Re

Figure 4-5: The eigenvalues of A matrix of rudimentary system encountering Hopf
bifurcation

4.5.2 The WSCC 3-machine, 9-bus system

The WSCC 3-machine, 9-bus system with all the parameters is plotted in Figure

4-6. Bus 1 is the slack bus, and bus 2 and 3 are PV buses with specified the active

power outputs and the magnitude of voltages at the terminals. Three PQ loads

are connected to 3 substations residing at buses 5, 6, and 8. The base power is

Sbase = 100 MVA. I assume that load bus 8 works with a constant power factor, i.e.

cos # 8 = 0.894. All branches and transformers data are described in Appendix in [ 1.
To characterize the stability of the system I increase the load at bus 8 while

keeping the other parameters fixed. The system is robust stable up to point S where
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18.0 kv Station C 13.8 kv

Gen 2 1.025 p.u. 230 kV 230 kV 230 kV 1.025 p.u. Gen 3

163 MW 85 MW

j o (T100 MW
35 WVAR

Station A Station B
230kV 7 230 kV

125 MW 90 MW
50 WAR 30 MVAR

230 kW

Gen 1
T16.5 kW

Slack bus (1.04 p.u.

Figure 4-6: The WSCC 3-machine, 9 bus system [ 7]

Ps = 3.0 p.u.. The region from S to SNB where saddle-node bifurcation happens

at P8 = 3.5p.u., the system may become unstable for some time constants. For

example, fixed time constant of load 5 and 6 to be equal 1 s, the system encounters

Hopf bifurcation at point H1 where P8 = 3.36p.u., -r = 15.57 s, or at point H2 where

P8 = 3.45p.u., T8 = 11 s. Voltage oscillation that corresponds to point H2 is shown

in Fig. 4-8.

I SNB0.5- -Robust stable

-Unstable for some r

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
P8 (p.u.)

Figure 4-7: Robust stability illustration for WSCC 3-machine, 9-bus system
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10
t (s)

15 20

Figure 4-8: Oscillatory voltage instability with the WSCC 3-machine, 9-bus system
at H2 where P8 = 3.45 p.u. and T8 = 11 s

In Figure 4-7, V8s is the voltage level when the system is stable for the same level

of power consumption, i.e. P8 = 3.45 s but with smaller time constant, say T- = 9 s.

For less uncertain systems, i.e. when load buses 5 and 6 have fixed 7g = Tb, point S

may extent to higher level of active power at bus 8, P = 3.1 p.u.. This observation is

true for more general situations, i.e. the less uncertainty presents in the system, the

more stable the system is.

1.0

0.5

0.0 0.5 1.0
P8 (p.u.)

1.5 2.0

Figure 4-9: Robust stability illustration for WSCC 3-machine, 9-bus system, corre-
lated loading condition

Also, I consider a more realistic loading scenario with correlated loading condition.

I consider the case when P5 = P = P8 and Q5 = Q6 = Q8. Again, the PV
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curve shown in Figure 4-9 indicates the robust stability region in blue where P8 5

1.86p.u. and the yellow region, from point S to SNB, where the system may become

unstable for some instant relaxation times of the loads. Figure 4-9 resembles Figure

4-7 where no correlated loading scenario is considered. They differ only in loading

conditions at the robust stable point, S, and the saddle-node bifurcation. The lower

critical loading conditions are observed because the power transferred through power

lines increases faster when all buses are loaded at once. Different correlated loading

scenarios considered but not reported in the thesis were characterized by qualitatively

similar results as shown in either Figure 4-7 or Figure 4-9. In the follow-up section

4.5.3 I also report similar studies with more realistic economic load dispatch scheme

that accounts for distribution of the load increase between different generators [ 7].

The behavior observed in that scenario is also qualitatively similar.

RSA for WSCC 3-machine 9-bus system

As mentioned before, in this subsection I demonstrate the application of robust stabil-

ity applied to RSA within N-1 security assessment. Different from off-line assessment

in which an exhaustive list of contingencies is assessed, here I only consider a set of

most dangerous contingencies. This practice, indeed, is more suitable for online as-

sessment. The subset of considered contingencies may include the lines with large

power flows or the lines that are connected to low voltage buses [ 6]. The base case

power flow is chosen as shown in Figure 4-6 except for load bus 8, where P8 = 1.8p.u.,

Q8 = 0.5p.u.. For the WSCC 3-machine 9-bus system, all the voltage levels are close

to 1 p.u.. Therefore, I rely on the total MVA power flows through the line to determine

the most dangerous ones.

Table 4.1: Contingency analysis summary table
Line trip 1-4 2-7 7-8 9-3
Case I Stable Stable Stable Stable
Case II Limit Cycle Stable Stable Stable
Case III Unstable Unstable Limit Cycle Stable

RSA NRS NRS NRS RS
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There are two different situations in contingency analysis, i.e. with uncertainty or

without uncertainty. When there is no uncertainty in the model, consider 3 different

cases of fixed time constants at bus 5, 6, and 8; i.e. r5 = T6 = T8 = r, and T = 1 s

in Case I, 7r = 5 s in Case II, T = 10 s in Case III. The absolute values of the instant

relaxation time are not important because the actual set of the time constants of the

loads may vary over time and may be different from bus to bus. Therefore, the 3

cases are used merely to demonstrate the performance of robust stability analysis. In

contrast, I use RSA in the presence of uncertainty. For each dangerous contingency

and such time constants, the system stability is assessed as shown in Table 4.1.

0.9

5 10 15 20 0.7 9
t (s) t (s)

(a) Trip line 1 - 4, Limit Cycle (b) Trip line 2 - 7, Stable

5 10 15 20 0. 5 10
t (s) t (S)

(c) Trip line 7 - 8, Stable (d) Trip line 9 - 3, Stable

Figure 4-10: The load voltage evolutions in time-domain simulations in contingency
analysis for Case II, T = 5 s

In Table 4.1, for RSA results, RS and NRS imply robust stable and non robust

stable, respectively. One can observe that if the system is robust stable, for example

when line 9 - 3 is tripped, the non-uncertain stability assessment also indicates that

the system is stable in all cases. In contrast, if the system is not robust stable

according to RSA results, there exists some cases or some set of instant relaxation

times cause the system unstable. This happens when either line 1 - 4 or 2 - 7 is
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S1. 0-
1.0-

0.5-

0.0 5 to i5 20 -0 5 10 15 20
t (s) t (s)

(a) Trip line 1 - 4, Unstable (b) Trip line 2 - 7, Unstable

1.0 .,-

1.0

.10 15 20 o.90 5 10
t (s) t (s)

(c) Trip line 7 - 8, Limit Cycle (d) Trip line 9 - 3, Stable

Figure 4-11: The load voltage evolutions in time-domain simulations in contingency
analysis for Case III, T = 10 s

disconnected. Moreover, in two considered cases, the system is stable if the line 7 - 8

is tripped. For this contingency, RSA result indicates that the system is non-robust

stable. In fact, the system is unstable with T 5 = -r = 1 s and -r8 > 14 s where the

load voltage at bus 8 collapses around t = 60 s.

In considered situations, limit cycles (LC) appear in Case II with line 1-4 tripping

and in Case III with line 7 - 8 tripping. The system will exhibit voltage oscillations

which are unexpected and dangerous because they may limit the power transfers and

induce stress in the mechanical shafts [K]. In such cases, RSA also indicates that the

system is non-robust stable or potentially unstable.

The contingency analysis results, for example in Case II and Case III, can also be

represented with time-domain simulations as in Figure 4-10 and Figure 4-11 where the

red dash-dot, black dash, and blue solid trajectories correspond to the load voltages

at bus 5, 6, and 8, respectively. For r = 5 s and tripping the line 1 - 4, the system

encounters Hopf bifurcation and the voltages keep oscillating but never go beyond

the range from 0.2p.u. to 1.8p.u.. Also, for r = 5 s and tripping the line 2 - 7, the
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system is stable but very lightly damped. The voltages settle around t = 800 s which

indicates that the system is close to Hopf bifurcation point. The first 20-second and

10-second evolutions of the load bus voltages when tripping the line 1 -4 and 2-7 for

Case II are presented in Figure 4-10(a) and Figure 4-10(b), respectively. Moreover,

for Case III, the line 2 - 7 is tripped, the voltage at the load bus 8 collapses around

t = 80 s; hence the system is unstable. Figure 4-11(b) shows the first 20-second time

evolution of the unstable voltage trajectory.

However, RSA does not require any time-domain simulation, thus reduces the

need of storages and the time consuming. In addition, RSA does not provide the

margin to SNB or particular bifurcation points, instead RSA provides another type

of stability margin i.e. robust stability margin which measures the distance between

the current operating point to the robust stability boundary. For example, for the

contingency case in which the line 9 - 3 is tripped, the security indicator discussed in

section 4.4.4, SI = p = 0.004, indicates that the system will work close to the robust

stability boundary after the contingency. Hence, a slight change in parameters will

cause the system move to the non-robust stable region where it may become unstable.

In contrast, the contingency cases with the line 2-7 tripping, even though the system

is non-robust stable, the security SI is very small, i.e. SI = p = -3.4 x 10-5. If

appropriate control is applied, the system will be secure in the robust stability region.

In this sense, RSA with SI can help the system operators in designing emergency

controls.

As aforementioned, it may be impossible to determine the actual values of the

instant relaxation times of the loads. Without making any assumption about the load

responses, RSA is recommended to run first to screen the most dangerous contingency

set. If the RSA certifies that the system is robust stable, no further action is needed;

otherwise, deeper analysis or other probabilistic-based assessments such as Monte

Carlo simulations are required. Therefore, if RSA is used as the very first screening,

the whole process of contingency analysis is expedited.

105

bAwwwww"I _ 6t _- -. ". " 6---_' , -_ _., - ---- I I- -



4.5.3 IEEE 39-bus New England system

'G,
30 .. 37

25 26 28- 29-

2 - - 2 7  y
38-

3 18 17 G

39 y16

15-

4 14 - 24 -- 36

5 13
9 6

12 19

-11 20 22

8 31 - 32 -34-33 -i-35

Figure 4-12: The New England system

In this section, I illustrate the concept of robust stability with the IEEE 39-bus

New England system. The configuration of the system is shown in Figure 4-12.

All generators are identical and have the same set of parameters as the following:

Td0 = 10 s; Xd = 1.0 p.u.; x' = 0.2p.u.; T = 0.39 s; K = 10. Other system parameters

are adopted from [73]. In the considered scenario, all the loads have the same power

factor, i.e. cos(o) = 0.9 lagging; the load bus 29 is chosen as the reference load

and other load levels are increased with the correlated loading factor kc, i.e. P =

kcP29 , where i E L, i = 29. I will consider the situation with identical load power

consumptions or k, = 1. The load increments were picked up by evenly distribution

among all generators.

For the given scenario, the robust stability of the New England system is illustrated

in Figure 4-13 which is similar to that of the rudimentary system and WSCC 3-
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Figure 4-13: Robust stability illustration for the New England system, correlated
loading condition k, = 1

machine, 9-bus system. The system is robust stable up to point S where P29 = 3.5 p.u..

SNB occurs near P29 = 4.67p.u.. Therefore, the margin from S to SNB is around

25.05%.

I also considered another loading scenario where the base loading levels are adopted

from [ J. Then for each load the power factor is kept unchanged while all the load

consumptions are scaled with the same scalar factor k, > 0. In this scenario, SNB

happens at k, = 3.0 and the system is robust stable up to k, = 1.2. This means

that the system can become unstable at some loading level that is above 20% of the

normal operating condition. Moreover, the margin from S to SNB is 60%.

4.6 Investigation of the non-certified robust stability

region

In Figure 4-4, 4-7, 4-9, and 4-13, the non-certified robust stability regions are in

yellow and lie between the robust stable point S and the saddle-node bifurcation point

SNB. Different from the robust stability region, the non-robust stability one is mostly

affected by the load dynamic uncertainty. The system dynamics and behavior may

be very different and complicated because of more pronounced nonlinearity. When
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the system is stressed or is subject to disturbances, the system is likely to operate in

those regions. Therefore, it is important to explore the non-robust stability regions

which may help the system operators to have better understanding of the system. I

will address two important questions in this section, i.e. which parameter determines

the robust stable point S and how the system behaves in the non-certified robust

stability region.

4.6.1 Robust stable point S

The position of point S as well as the robust stability region characterizes the level

of "robustness" of the system. For the same configuration, the size of robust stability

region might vary from case to case, from scenario to scenario.

Effect of loading levels

I reconsider the scenario with correlated loading condition, i.e. P5 = P6 = kc P8

and Q5 = Q6 = k, Q8 where k, is the correlation factor. Table 4.2 illustrates how

the system loading levels affect the robust stability region. The margin in % mea-

sures the distance between point S and SNB compares to the maximum loading level

corresponding to SNB.

Table 4.2: Effect of loading levels on S
k, 0.5 1 2 4

S (p.u.) 2.70 1.86 1.07 0.55
SNB (p.u.) 3.10 2.16 1.22 0.65
Margin (%) 12.90 13.89 12.30 15.38

From Table 4.2, one can see that an increase in the correlation loading factor

resulted in an decrease in the maximum loading level where SNB happens. However,

increasing k, may not necessarily lead to the change in the robust stable point S in

such a way that extends the margin between S and SNB.
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Effect of load power factors

Various power factors were considered in Table 4.3. One can see that as the load power

factors change from lagging to leading, the relative distance between the robust stable

point S and SNB increases. This means that the more lagging the power factor is, the

wider the robust stable region becomes. Therefore, injecting more reactive powers

into the network may shorten the robust stability region relatively.

Table 4.3: Effect of power factor on S
power factor 0.5 lag 0.9 lag 1.0 0.9 lead 0.5 lead

S (p.u.) 0.95 1.86 2.30 2.40 2.20
SNB (p.u.) 1.00 2.16 2.74 3.35 4.80
Margin (%) 5.00 13.89 16.06 28.36 54.17

Effect of exciter gain K

The model of exciter is described in (4.23). In this section, effect of exciter gain K is

analyzed in Table 4.4. As observed in [ ], the sufficient increase of the exciter gain

may lead to instability even for normal loading level. With robust stability analysis,

I now can determine at which loading level the exciter gain cannot affect the system

stability by considering K as an uncertain parameter.

Table 4.4: Effect of exciter gain K on S
K 5 10 20 30 40 50

S (p.u.) 1.60 1.80 1.86 1.87 1.96 1.97
SNB (p.u.) 2.16 2.16 2.16 2.16 2.16 2.16
Margin (%) 25.93 16.67 13.89 13.43 9.26 8.79

As expected, the changing in K does not affect the maximum loading level at SNB

point. However, surprisingly, an increase in K tends to extend the robust stable region

as pushing point S closer to SNB point. When K goes to infinity, point S does not

change much and the system is robust stable up to circa Ps = 2.00 p.u.. This indicates

that exciter gain may affect the system stability in a rather complicated manner which

depends on the interactions between exciters and generators with other dynamic

devices/components; as well as depends on the considered conditions/scenarios.
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4.6.2 The system behavior in the region between S and SNB

Since dynamic voltage stability is normally studied by monitoring the eigenvalues of

the linearized system [ 7, I investigate how these factors alter the system eigenvalues

in the s-plane. The rudimentary system results are demonstrated as below.

Effect of loading levels

-2

-2 -1 0
Re (s)

1 2

Figure 4-14: Critical eigenvalue trajectory under the load changes in the rudimentary

system, r = 7.35 s

For r = 7.35 s, the trajectory of the critical eigenvalue pair, ( -(-(-@, is

plotted in Figure 4-14 as the load power increases from zero to the maximum loading

level. Note, that the enclosed alphanumerics indicate that the corresponding eigen-

values belong to the same system matrix which is related to the same power level

consumption P0 . In Figure 4-14, the pair of critical eigenvalues starts at () with zero

power level consumption and move to the right half plane in the s-plane. When the

trajectory crosses the imaginary axis at ( where PO = 2.6 p.u., the system encounters

Hopf bifurcation. This is also illustrated at point H in Figure 4-4. The eigenvalues
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associated with the power level at robust stable point S in RSA are marked with (S)

which is close to (. As the load power continues increasing, the two critical complex

eigenvalues coalesce at ® on the real axis of the s-plane and become a pair of real

eigenvalues. Then the pair of critical real eigenvalues diverge following the two arrows

towards @. As soon as the one that moves to the left reaches @ at the origin, the

SNB occurs. Since the load power cannot exceed the maximum loading level, the

trajectory ends here at @. The similar trajectory is also described in [97j.

-2 0
Re (s)

Figure 4-15: Critical eigenvalue trajectory under the load changes

3-machine, 9-bus system

20 40-6

-0 20 40 6
t (s)

(a) P8 = 2p.u., Unstable

1.0

~0.5

80 '''0

in the WSCC

- k -,

10 20 30
t (s)

(b) Second Hopf bifurcation, Unstable

Figure 4-16: The load voltage evolutions in time-domain simulations at P8 = 2p.u.
and the second Hopf bifurcation of the WSCC 3-machine, 9-bus system

For the WSCC 3-machine, 9-bus system and the considered scenario with r5 =

6.5 s, T6 = 5.9 s, T8 = 5.35 s; the critical eigenvalue trajectories, (-(&(-@ are plotted

111

2S

0-/ 3

@ @ @

1-: 1.0

Zi0

- I



in Figure 4-15. In this case, as the load level increases from zero to the maximum

loading level, the critical eigenvalue trajectory starts at ( or the point at (-5.7, 0)

which is far to the left, then follows the arrows direction to the origin or Q. The

critical complex eigenvalue pair also crosses the imaginary axis to the right half plane

then returns to the left half plane without coalescency. Along the trajectory the

system encounters Hopf bifurcation twice. At Q where the critical real eigenvalue

reaches the origin, SNB happens. Interestingly, there is a small region between the

second Hopf bifurcation and SNB, the system is stable. However, in that region,

low damping causes the system oscillates under the effect of a disturbance. The

corresponding time-domain simulation also indicates that the initial condition need

to close to the equilibirum state values to ensure that the system will converge to

that equilibirum. This implies that the equilibrium has a small stability region. The

trajectories in Figure 4-14 and Figure 4-15 are the two typical transients from Hopf

bifurcation to SNB that can be observed when scaling the loading level. They may

be different in the region between (S) and Q, but in the end, one single real eigenvalue

reaches the origin at Q.

Effect of load power factors

Qualitatively, the load power factor does not change the trajectory of the critical

eigenvalues of the system within S-SNB. It mostly pushes the point on the real axis

where the critical complex eigenvalues pair merge to the right and widens the distance

between the two points on the imaginary axis at (. The effect on ® is recorded in

Table 4.J for T = 7.35 s.

Table 4.5: Effect of power factor on the critical eigenvalues

power factor 0.89 lag 0.98 lag 1.0 0.98 lead 0.89 lead

I Re(s) @ ( 0.65 j 1.10 1 1.20 1 2.31 1 3.56 1

112



T
2-

-2s

-2 -1 0
Re (s)

Figure 4-17: Critical eigenvalue trajectory under the load changes in the rudimentary
system, r = 1 s

Effect of the time constants of the loads

For -r = 1 s, the trajectory (-&@- of critical eigenvalues of the system is plotted

in Figure 4-17. In this case, Hopf bifurcation will not happen while increasing the

loading level PO, and all eigenvalues lie in the left half plane of the s-plane. At Q, the

system encounters SNB or static voltage collapse. Moreover, the whole upper branch

of the nose curve PV is stable up to SNB.

When the instant relaxation time of the load increases to a large enough value,

for example r > 7.35 s, the trajectory of the critical eigenvalues is similar to that in

Figure 4-14 except point ( on the real axis moves to the right. At the same time, S

also moves towards on the imaginary axis but it never reaches . This phenomenon

can be explained as when the load time constant increases, the system may become

unstable right after the robust stable point S. In this sense, if RSA cannot certify the

system robust stability, the system is indeed non-robust stable.

From our simulations I found that, if other parameters of the system are kept

unchanged, the system is prone to be unstable if the instant relaxation times of the

loads increase. This phenomenon can be understood as the larger time constants of

the loads add more delay to the system which in turn reduces the phase margin [4 1],

finally causes the system to be unstable. In the s-plane, one can see that increasing
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the loads time constants pushes the critical eigenvalues to move close to the imaginary

axis. When the critical eigenvalues cross to the right-half plane, the system is likely

unstable.

4.7 Conclusions

In this chapter I have addressed the problem of uncertainty of load dynamics and

its effect on the stability of the system and in particular on the occurrence of Hopf

bifurcation. RSA developed in this work allows to certify the stability of the power

system without making any assumptions on the dynamic response of the load. When-

ever the system is certified to be robust stable, the system is guaranteed to be stable

for any dynamic responses of the loads involved. The algorithm relies on convex op-

timization and can be applied even to large-scale system models. The regions that

are certified to be robust stable are surprisingly large for models considered in the

thesis which suggest that Robust-Stability regime can be enforced in planning and

operation without compromising efficiency and other economic factors.
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Chapter 5

Conclusion & Future work

5.1 Conclusions

The inherent nonlinearity and the complexity of power systems make them fragile

and vulnerable to disturbances and uncertainties. A severe consequence is a loss of

stability which deemed responsible for major blackouts over last decades in many

countries. Therefore, there is an urgent need to assess stability in the presence of un-

certainties. This thesis proposes such robust stability assessment for three types on

stability including long-term voltage, transient, and small-signal stability in Chapter

2, 3, and 4, respectively. Moreover, inner approximation techniques are developed to

estimate the robust stability regions in either injection space or state space. In par-

ticular, Chapter 2 introduces a scalable algorithm for estimating the OPF feasibility

subsets, and Chapter 3 presents a new approach to construct contraction regions and

corresponding attraction basins.

The robust stability assessment techniques developed in this thesis primarily ad-

dress the needs of a system operator in electrical power systems. The results, however,

can be naturally extended to other nonlinear dynamical systems that arise in different

fields such as biology, biomedicine, economics, neuron networks, and optimization.
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5.2 Future work

For each stability problem considered above, the future extensions are discussed as

follows. First, for OPF feasibility region estimation, an important open question

considers what tighter bounds on the nonlinear residual terms one can use instead of

box type bounds.

Concerning contraction analysis for DAE systems, in the future, I plan to ex-

tend our results to develop a more accurate characterization of the contraction of

systems with strong time-scale separation and explore how the framework can be

used for systematic decomposition of complex and large scale systems for distributed

control/analysis purposes.

For robust small-signal stability assessment with load dynamic uncertainty, there

are several ways of extending the algorithm that I plan to explore. First, I plan to

extend the types of uncertainties that can be handled to uncertainty in static char-

acteristic, load levels, and allow for using the range bounds on the time constants.

Second, I plan to develop algorithms that certify the robust stability of whole regions

in parameter space, eliminating the need for repeating the procedure for every oper-

ating point candidate. Finally, I am interested in applying the algorithm to practical

problems like stability constraint remedial action design, stability constraint planning,

and others.

More importantly, it is possible to certify robust stability in the presence of both

uncertain dynamics and uncertain operating point if block diagonal base metric Z,

exist, i.e.

ZTJ( ') + J(&*) T Z* _ 0. (5.1)

Here we introduce the base parameter ( = (T, x*) where the subscript * denotes

the nominal/base value. By fixing the base metric Z,, one can apply the SVD-

based construction technique represented in Chapter 3 to characterize robust stability

regions in the variable space. Moreover, the block diagonal structure ensures that

the Lyapunov inequality will still hold as the dynamics characterized by the time
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constants T change. Consequently, within such constructed stability regions, the

system is guaranteed to be stable regardless its dynamics.

117



118



Bibliography

[1] F.L. Alvarado. Bifurcations in nonlinear systems-computational issues. In Cir-
cuits and Systems, 1990., IEEE International Symposium on, pages 922-925
vol.2, May 1990.

[2] Z. Aminzarey and E. D. Sontagy. Contraction methods for nonlinear systems:
A brief introduction and some open problems. In 53rd IEEE Conference on
Decision and Control, pages 3835-3847, Dec 2014.

[3] P.M. Anderson, A.A.A. Fouad, Institute of Electrical, and Electronics Engi-
neers. Power System Control and Stability. IEEE Press Power Systems Engi-

neering Series. Ieee Press, 1977.

[4] D. Angeli. A lyapunov approach to incremental stability properties. IEEE

Transactions on Automatic Control, 47(3):410-421, Mar 2002.

[5] Liviu Aolaritei, Saverio Bolognani, and Florian D6rfler. A distributed
voltage stability margin for power distribution networks. arXiv preprint

arXiv:1612.00207, 2016.

[61 Erin M Aylward, Pablo A Parrilo, and Jean-Jacques E Slotine. Stability and
robustness analysis of nonlinear systems via contraction metrics and sos pro-
gramming. Automatica, 44(8):2163-2170, 2008.

[7] Saverio Bolognani and Sandro Zampieri. On the existence and linear approxi-

mation of the power flow solution in power distribution networks. IEEE Trans-
actions on Power Systems, 31(1):163-172, 2016.

[81 Bradley N Bond and Luca Daniel. Stable reduced models for nonlinear descrip-
tor systems through piecewise-linear approximation and projection. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
28(10):1467-1480, 2009.

[9] Gabriel D Bousquet and Jean-Jacques E Slotine. A contraction based, singu-
lar perturbation approach to near-decomposability in complex systems. arXiv

preprint arXiv:1512.08464, 2015.

[10] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakr-
ishnan. Linear matrix inequalities in system and control theory. SIAM, 1994.

119



[111 Corentin Briat. Linear parameter-varying and time-delay systems. Analysis,
Observation, Filtering & Control, 3, 2014.

[121 F.L. Byc, B.B. Kobets, N.G. Nesterenko, and E.I. Zel'manov. An approach
for decentralized evaluation of regimes in power systems. In Fifth international
conference on present day problems of power system automation and control,
Gliwice, pages 297-301, 1989.

[131 Mary B Cain, Richard P OAA2neill, and Anya Castillo. History of optimal
power flow and formulations. Federal Energy Regulatory Commission, pages
1-36, 2012.

[14] Claudio A Caiiizares and Steve Hranilovic. Transcritical and hopf bifurcations
in ac/dc systems. Proc. Bulk Power System Voltage Phenomena III dATVoltage
Stability and Security, pages 105-114, 1994.

[15] A. Chakrabortty and Rensselaer Polytechnic Institute. Estimation, Analysis
and Control Methods for Large-scale Electric Power Systems Using Synchro-
nized Phasor Measurements. Rensselaer Polytechnic Institute, 2008.

[16] A. Chakrabortty and E. Scholtz. Time-scale separation designs for performance
recovery of power systems with unknown parameters and faults. Control Sys-
tems Technology, IEEE Transactions on, 19(2):382-390, March 2011.

[171 S. Chen and O.P. Malik. Power system stabilizer design using p synthesis.
Energy Conversion, IEEE Transactions on, 10(1):175-181, Mar 1995.

[18] H. D. Chiang and C. Y. Jiang. Feasible region of optimal power flow: Charac-
terization and applications. IEEE Transactions on Power Systems, PP(99):1-1,
2017.

[19] Hsiao-Dong Chiang. Direct methods for stability analysis of electric power sys-
tems: theoretical foundation, BCU methodologies, and applications. John Wiley
& Sons, 2011.

[20] Hsiao-Dong Chiang and F.F. Wu. Stability of nonlinear systems described
by a second-order vector differential equation. Circuits and Systems, IEEE
Transactions on, 35(6):703-711, Jun 1988.

[211 J.H. Chow, F.F. Wu, and J.A. Momoh. Applied Mathematics for Restruc-
tured Electric Power Systems: Optimization, Control, and Computational In-
telligence. Power Electronics and Power Systems. Springer, 2006.

[22] Carleton Coffrin, Hassan L Hijazi, and Pascal Van Hentenryck. The qc relax-
ation: A theoretical and computational study on optimal power flow. IEEE
Transactions on Power Systems, 31(4):3008-3018, 2016.

120



[23] C. Concordia and S. Ihara. Load representation in power system stability stud-
ies. Power Apparatus and Systems, IEEE Transactions on, PAS-101(4):969-977,
April 1982.

[24] R. Cooke and V.I. Arnold. Ordinary Differential Equations. Springer Textbook.
Springer Berlin Heidelberg, 1992.

[25] Domitilla Del Vecchio and Jean-Jacques Slotine. A contraction theory approach
to singularly perturbed systems with application to retroactivity attenuation.
In 2011 50th IEEE Conference on Decision and Control and European Control
Conference, pages 5831-5836. IEEE, 2011.

[26] I. Dobson. An iterative method to compute a closest saddle node or hopf
bifurcation instability in multidimensional parameter space. In Circuits and
Systems, 1992. ISCAS '92. Proceedings, volume 5, May 1992.

[27] I. Dobson, F. Alvarado, and C.L. DeMarco. Sensitivity of hopf bifurcations to
power system parameters. In Decision and Control, 1992., Proceedings of the
31st IEEE Conference on, pages 2928-2933 vol.3, 1992.

[281 Ian Dobson. Distance to bifurcation in multidimensional parameter space: Mar-
gin sensitivity and closest bifurcations. In Bifurcation control, pages 49-66.
Springer, 2003.

[29] Ian Dobson and Hsiao-Dong Chiang. Towards a theory of voltage collapse in
electric power systems. Systems & Control Letters, 13(3):253-262, 1989.

[30] Ian Dobson and Liming Lu. New methods for computing a closest saddle node
bifurcation and worst case load power margin for voltage collapse. Power Sys-
tems, IEEE Transactions on, 8(3):905-913, 1993.

[31] Ian Dobson, Liming Lu, and Yi Hu. A direct method for computing a closest
saddle node bifurcation in the load power parameter space of an electric power
system. In Circuits and Systems, 1991., IEEE International Sympoisum on,
pages 3019-3022. IEEE, 1991.

[32] Dobson, Ian. The irrelevance of electric power system dynamics for the load-
ing margin to voltage collapse and its sensitivities. Nonlinear Theory and Its
Applications, IEICE, 2(3):263-280, 2011.

[33] K. Dvijotham, H. Nguyen, and K. Turitsyn. Solvability regions of affinely
parameterized quadratic equations. IEEE Control Systems Letters, 2(1):25-30,
Jan 2018.

[34] K. Dvijotham and K. Turitsyn. Construction of power flow feasibility sets.
ArXiv e-prints, June 2015.

[35] F. C. Schweppe E. Hnyilicza, S. T. Y. Lee. Steady-state security regions: The
set theoretic approach. Proc. 1975 PICA Conf., pages 347-355, 1975.

121



[361 M.K. El-Sherbiny and D.M. Mehta. Dynamic system stability part i - investiga-
tion of the effect of different loading and excitation systems. Power Apparatus
and Systems, IEEE Transactions on, PAS-92(5):1538-1546, Sept 1973.

[371 Masoud Farivar and Steven H Low. Branch flow model: Relaxations and con-
vexificationhATpart i. IEEE Transactions on Power Systems, 28(3):2554-2564,
2013.

[381 Institute for Energy Research. History of electricitys.

[391 AA Fouad, F Aboytes, VF Carvalho, SL Corey, KJ Dhir, and R Vierra. Dy-
namic security assessment practices in north america. Power Systems, IEEE
Transactions on, 3(3):1310-1321, 1988.

[40] G.F. Franklin, J.D. Powell, and A. Emami-Naeini. Feedback control of dynamic
systems. Number v. 10. Pearson, 2010.

[41] David Gale. The game of hex and the brouwer fixed-point theorem. The Amer-
ican Mathematical Monthly, 86(10):818-827, 1979.

[421 David J Hill, Mk Pal, Xu Wilsun, Yakout Mansour, Co Nwankpa, L Xu, and
R Fischl. Nonlinear dynamic load models with recovery for voltage stability
studies. discussion. authors' response. IEEE Transactions on Power Systems,
8(1):166-176, 1993.

[431 I Hiskens. Significance of load modeling in power system dynamics. In x sym-
posium of specialists in electric operational and expansion planning, 2006.

[441 IA Hiskens and J. Alseddiqui. Sensitivity, approximation, and uncertainty in
power system dynamic simulation. Power Systems, IEEE Transactions on,
21(4):1808-1820, Nov 2006.

[451 IA Hiskens, M. A Pai, and T.B. Nguyen. Bounding uncertainty in power system
dynamic simulations. In Power Engineering Society Winter Meeting, 2000.
IEEE, volume 2, pages 1533-1537 vol.2, 2000.

[46] Guanji Hou and V. Vittal. Cluster computing-based trajectory sensitivity anal-
ysis application to the wecc system. Power Systems, IEEE Transactions on,
27(1):502-509, Feb 2012.

[471 Hou, Guanji and Vittal, Vijay. Trajectory sensitivity based preventive con-
trol of voltage instability considering load uncertainties. Power Systems, IEEE
Transactions on, 27(4):2280-2288, 2012.

[48] JA Huang, A Valette, M Beaudoin, K Morison, A Moshref, M Provencher, and
J Sun. An intelligent system for advanced dynamic security assessment. In
Power System Technology, 2002. Proceedings. PowerCon 2002. International
Conference on, volume 1, pages 220-224. IEEE, 2002.

122



[49] IEEE Task Force. Load representation for dynamic performance analysis [of
power systems]. Power Systems, IEEE Transactions on, 8(2):472-482, May
1993.

[50] IEEE Task Force. Standard load models for power flow and dynamic perfor-
mance simulation. Power Systems, IEEE Transactions on, 10(3):1302-1313,
Aug 1995.

[51] M. Ili6 and J. Zaborszky. Dynamics and Control of Large Electric Power Sys-
tems. A Wiley-Interscience publication. Wiley, 2000.

[52] Marija Ilic-Spong, J Thorp, and M Spong. Localized response performance
of the decoupled q-v network. IEEE transactions on circuits and systems,
33(3):316-322, 1986.

[53] Information Trust Institute (ITI). Publically available power flow and transient
stability cases.

[54] Rabih A Jabr. Radial distribution load flow using conic programming. Power
Systems, IEEE Transactions on, 21(3):1458-1459, 2006.

[55] Charles R Johnson. Sufficient conditions for D-stability. Journal of Economic
Theory, 9(1):53-62, 1974.

[561 D. Karlsson and D.J. Hill. Modelling and identification of nonlinear dynamic
loads in power systems. Power Systems, IEEE Transactions on, 9(1):157-166,
Feb 1994.

[571 E. Kaszkurewicz and A. Bhaya. Matrix Diagonal Stability in Systems and Com-
putation. Birkhduser Boston, 2000.

[58] U.G. Knight and U. G. Knight. Power systems in emergencies: from contin-
gency planning to crisis management. John Wiley, 2001.

[59] Florian Knorn, Oliver Mason, and Robert Shorten. On linear co-positive lya-
punov functions for sets of linear positive systems. Automatica, 45(8):1943-
1947, 2009.

[601 P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares,
N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. Van Cutsem, and V. Vit-
tal. Definition and classification of power system stability ieee/cigre joint task
force on stability terms and definitions. IEEE Transactions on Power Systems,
19(3):1387-1401, Aug 2004.

[61] Prabha Kundur. Power System Stability and Control. New York, 1994.

[62] Javad Lavaei and Steven H Low. Convexification of optimal power flow prob-
lem. In Communication, Control, and Computing (Allerton), 2010 48th Annual
Allerton Conference on, pages 223-232. IEEE, 2010.

123



[63] B.C. Lesieutre, P.W. Sauer, and M. A. Pai. Development and comparative
study of induction machine based dynamic p, q load models. Power Systems,
IEEE Transactions on, 10(1):182-191, Feb 1995.

[64] Bernard C Lesieutre, Daniel K Molzahn, Alexander R Borden, and Christo-
pher L DeMarco. Examining the limits of the application of semidefinite pro-
gramming to power flow problems. In Communication, Control, and Computing
(Allerton), 2011 49th Annual Allerton Conference on, pages 1492-1499. IEEE,
2011.

[65] F. L. Lewis. Preliminary notes on optimal control for singular systems. Unknown
Journal, pages 266-272, 1985.

[661 Hang Liu, A. Bose, and V. Venkatasubramanian. A fast voltage security as-
sessment method using adaptive bounding. Power Systems, IEEE Transactions
on, 15(3):1137-1141, Aug 2000.

[67] Winfried Lohmiller and Jean-Jacques E Slotine. On contraction analysis for
non-linear systems. Automatica, 34(6):683-696, 1998.

[68] KA Loparo and F Abdel-Malek. A probabilistic approach to dynamic power
system security. IEEE transactions on circuits and systems, 37(6):787-798,
1990.

[69] Steven H Low. Convex relaxation of optimal power flowaA'Tpart i: Formulations
and equivalence. IEEE Transactions on Control of Network Systems, 1(1):15-
27, 2014.

[70] Yuri V Makarov, Zhao Yang Dong, and David J Hill. A general method for small
signal stability analysis. Power Systems, IEEE Transactions on, 13(3):979-985,
1998.

[71] Yuri V Makarov, David J Hill, and Zhao-Yang Dong. Computation of bifurca-
tion boundaries for power systems: a new 6-plane method. Circuits and Systems
I: Fundamental Theory and Applications, IEEE Transactions on, 47(4):536-
544, 2000.

[721 Izumi Masubuchi, Yoshiyuki Kamitane, Atsumi Ohara, and Nobuhide Suda.
HALd control for descriptor systems: A matrix inequalities approach. Automat-
ica, 33(4):669 - 673, 1997.

[731 J McCalley, S Asgarpoor, L Bertling, R Billinion, H Chao, J Chen, J Endrenyi,
R Fletcher, A Ford, C Grigg, et al. Probabilistic security assessment for power
system operations. In Power Engineering Society General Meeting, 2004. IEEE,
pages 212-220. IEEE, 2004.

[74] F. John Meyer and K.Y. Lee. Improved dynamic load model for power system
stability studies. Power Engineering Review, IEEE, PER-2(9):49-50, Sept 1982.

124



[75] Federico Milano. Power System Analysis Toolbox Reference Manual for PSAT,
5 2010.

[761 J.V. Milanovic and IA Hiskens. Effects of load dynamics on power system
damping. Power Systems, IEEE Transactions on, 10(2):1022-1028, May 1995.

[77] Daniel K Molzahn, Vikas Dawar, Bernard C Lesieutre, and Christopher L De-

Marco. Sufficient conditions for power flow insolvability considering reactive
power limited generators with applications to voltage stability margins. In Bulk

Power System Dynamics and Control-IX Optimization, Security and Control of

the Emerging Power Grid (IREP), 2013 IREP Symposium, pages 1-11. IEEE,
2013.

[781 GK Morison, B Gao, and P Kundur. Voltage stability analysis using static and
dynamic approaches. Power Systems, IEEE Transactions on, 8(3):1159-1171,
1993.

[79] K. Morison, H. Hamadani, and Lei Wang. Practical issues in load modeling for

voltage stability studies. In Power Engineering Society General Meeting, 2003,
IEEE, volume 3, pages 1392-1397 Vol. 3, July 2003.

[80] K. Morison, L. Wang, and P. Kundur. Power system security assessment. Power

and Energy Magazine, IEEE, 2(5):30-39, Sept 2004.

[811 H.D. Nguyen and K. Turitsyn. Robust stability assessment in the presence of
load dynamics uncertainty. Power Systems, IEEE Transactions on, PP(99):1-

16, 2015.

[821 Hung Nguyen, D. and Konstantin Turitsyn. Voltage multistability and pulse
emergency control for distribution system with power flow reversal. arXiv

preprint arXiv:1407.1355, 2014.

[83] Hung D Nguyen, Krishnamurthy Dvijotham, Suhyoun Yu, and Konstantin Tu-

ritsyn. A framework for robust steady-state voltage stability of distribution
systems. arXiv preprint arXiv:1705.05774, 2017.

[841 Nguyen, Hung D and Turitsyn, Konstantin S. Appearance of multiple stable
load flow solutions under power flow reversal conditions. In PESGM. IEEE,
2014.

[85] Ontario Hydro . Voltage stability/security assessment and on-line control: Vol-
umes 1-4, May 1, 1993.

[861 S.S. Oren. Risk management vs. risk avoidance in power systems planning and
operation. In PESGM 2007. IEEE, pages 1-3, June 2007.

[87] Thomas J Overbye and Christopher L De Marco. Voltage security enhance-

ment using energy based sensitivities. Power Systems, IEEE Transactions on,
6(3):1196-1202, 1991.

125



[881 TJ Overbye. Effects of load modelling on analysis of power system voltage stabil-
ity. International Journal of Electrical Power & Energy Systems, 16(5):329-338,
1994.

[89] AD Patton. A probability method for bulk power system security assessment,
i-basic concepts. IEEE Transactions on Power Apparatus and Systems, (1):54-
61, 1972.

[90] Power Systems Engineering Research Center. Estimation of synchronous gener-
ator parameters from on-line measurements. PSERC Publication 05-36, 2005.

[91] P.B. Reddy and I.A. Hiskens. Limit-induced stable limit cycles in power sys-
tems. In Power Tech, 2005 IEEE Russia, pages 1-5, June 2005.

[92] I.C. Report. Excitation system models for power system stability studies. Power
Apparatus and Systems, IEEE Transactions on, PAS-100(2):494-509, Feb 1981.

[93] A. Rudkevich. Locational assessment of resource adequacy and co-optimization
of generation and transmission expansion. the FERC Technical Conference
on Increasing Real-Time and Day-Ahead Market Efficiency through Improved
Software, June 26, 2012.

[94] Bj6rn S Riiffer, Nathan van de Wouw, and Markus Mueller. Convergent systems
vs. incremental stability. Systems & Control Letters, 62(3):277-285, 2013.

[95] Giovanni Russo, Mario di Bernardo, and Jean-Jacques E Slotine. A graphical
approach to prove contraction of nonlinear circuits and systems. IEEE Trans-
actions on Circuits and Systems I: Regular Papers, 58(2):336-348, 2011.

[96] Andrija T Saric and Aleksandar M Stankovic. Applications of ellipsoidal ap-
proximations to polyhedral sets in power system optimization. IEEE Transac-
tions on Power Systems, 23(3):956-965, 2008.

[971 P.W. Sauer and A. Pai. Power System Dynamics and Stability. Prentice Hall,
1998.

[98] S.C. Savulescu. Real- Time Stability Assessment in Modern Power System Con-
trol Centers. IEEE Press Series on Power Engineering. Wiley, 2009.

[99] Steffen Schulz. Four lectures on differential-algebraic equations. Technical re-
port, Department of Mathematics, The University of Auckland, New Zealand,
2003.

[1001 Olivier Sename, Peter Gaspar, and J6zsef Bokor. Robust control and linear
parameter varying approaches: application to vehicle dynamics, volume 437.
Springer, 2013.

[101] John W Simpson-Porco. A theory of solvability for lossless power flow
equations-part i: Fixed-point power flow. IEEE Transactions on Control of
Network Systems, 2017.

126



[1021 John W Simpson-Porco. A theory of solvability for lossless power flow
equations-part ii: Conditions for radial networks. IEEE Transactions on Con-
trol of Network Systems, PP(99):1-1, 2017.

[1031 John W Simpson-Porco, Florian D6rfler, and Francesco Bullo. Voltage collapse
in complex power grids. Nature communications, 7, 2016.

[104] Jean-Jacques E Slotine. Modular stability tools for distributed computation
and control. International Journal of Adaptive Control and Signal Processing,
17(6):397-416, 2003.

[1051 Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 60.
Prentice-Hall Englewood Cliffs, NJ, 1991.

[1061 Kiyotsugu Takaba, Naoki Morihira, and Tohru Katayama. A generalized lya-
punov theorem for descriptor system. Systems & Control Letters, 24(1):49 - 51,
1995.

[1071 C.W. Taylor, N.J. Balu, and D. Maratukulam. Power System Voltage Stability.
EPRI PES series. McGraw-Hill Education, 1994.

[108] Dy-Liacco Tomas Enciso. Control of power systems via the multi-level concept,
1968.

[109] Thierry Van Cutsem and Costas Vournas. Voltage stability of electric power
systems, volume 441. Springer, 1998.

[110] V.P. Vasin. Regions of power system operating point existence and their analytic
estimates. internal report of Energoset'proekt (in Russian), 1985.

[111] D. Del Vecchio and J. J. E. Slotine. A contraction theory approach to singularly
perturbed systems. IEEE Transactions on Automatic Control, 58(3):752-757,
March 2013.

[112] V. Venkatasubramanian, H. Schattler, and J. Zaborszky. Voltage dynamics:
study of a generator with voltage control, transmission, and matched mw load.
Automatic Control, IEEE Transactions on, 37(11):1717-1733, Nov 1992.

[1131 George Verghese, Bernard Lvy, and Thomas Kailath. A generalized state-space
for singular systems. IEEE Transactions on Automatic Control, 26(4):811-831,
1981.

[1141 M Vidyasagar. On matrix measures and convex liapunov functions. Journal of

Mathematical Analysis and Applications, 62(1):90 - 103, 1978.

[115] M. Vidyasagar. Nonlinear Systems Analysis. Society for Industrial and Applied
Mathematics, second edition, 2002.

127



[116] Vijay Vittal, Wenzheng Qiu Mustafa Khammash, Chuanjiang Zhu, Rod Holland
Peter Young, and Christopher DeMarco. Robust control of large scale power
systems. PSERC Publication 02-43, 2002.

[117] Cong Wang, Andrey Bernstein, Jean-Yves Le Boudec, and Mario Paolone. Exis-
tence and uniqueness of load-flow solutions in three-phase distribution networks.
IEEE Transactions on Power Systems, 2016.

[118] Felix F Wu and Sadatoshi Kumagai. Steady-state security regions of power
systems. Circuits and Systems, IEEE Transactions on, 29(11):703-711, 1982.

[119] Hansheng Wu and K. Mizukami. Stability and robust stabilization of nonlin-
ear descriptor systems with uncertainties. In Proceedings of 1994 33rd IEEE
Conference on Decision and Control, volume 3, pages 2772-2777 vol.3, Dec
1994.

[120] Le Xie, Yang Chen, and Huaiwei Liao. Distributed online monitoring of quasi-
static voltage collapse in multi-area power systems. Power Systems, IEEE
Transactions on, 27(4):2271-2279, Nov 2012.

[121] Le Xie, J Ilic, and MD Ilic. Novel performance index and multi-layered informa-
tion structure for monitoring quasi-static voltage problems. In PESGM, 2007.
IEEE, pages 1-7. IEEE, 2007.

[122] Wilsun Xu and Y. Mansour. Voltage stability analysis using generic dynamic
load models. Power Systems, IEEE Transactions on, 9(1):479-493, Feb 1994.

[123] S. Yu, H. D. Nguyen, and K. S. Turitsyn. Simple certificate of solvability of
power flow equations for distribution systems. In 2015 IEEE Power Energy
Society General Meeting, pages 1-5, July 2015.

[124] Yuan Zhou and V. Ajjarapu. A fast algorithm for identification and tracing of
voltage and oscillatory stability margin boundaries. Proceedings of the IEEE,
93(5):934-946, May 2005.

128




