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Abstract

The importance of taking model uncertainties into account during controller design is

well established. Although this theory is well developed and quite mature, the worst-

case uncertainty descriptions assumed in robust control formulations are incompatible

with the uncertainty descriptions generated by commercial model identification soft-

ware that produces time-invariant parameter uncertainties typically in the form of

probability distribution functions. This doctoral thesis derives rigorous theory and

algorithms for the optimal control of dynamical systems with time-invariant proba-

bilistic uncertainties.
The main contribution of this thesis is new feedback control design algorithms

for linear time-invariant systems with time-invariant probabilistic parametric uncer-

tainties and stochastic noise. The originally stochastic system of equations is trans-

formed into an equivalent deterministic system of equations using polynomial chaos

(PC) theory. In addition, the -2- and '-4o-norms commonly used to describe the

effect of stochastic noise on output are transformed such that the eventual closed-

loop performance is insensitive to parametric uncertainties. A robustifying constant

is used to enforce the closed-loop stability of the original system of equations. This

approach results in the first PC-based feedback control algorithm with proven closed-

loop stability, and the first PC-based feedback control formulation that is applicable

to the design of fixed-order state and output feedback control designs. The numerical

algorithm for the control design is formulated as optimization over bilinear matrix

inequality (BMI) constraints, for which commercial software is available. The effec-

tiveness of the approach is demonstrated in two case studies that include a continuous

pharmaceutical manufacturing process.
In addition to model uncertainties, chemical processes must operate within con-

straints, such as upper and lower bounds on the magnitude and rate of change of

manipulated and/or output variables. The thesis also demonstrates an optimal feed-

back control formulation that explicitly addresses both constraints and time-invariant

probabilistic parameter uncertainties for linear time-invariant systems. The 7-12-

optimal feedback controllers designed using the BMI formulations are incorporated
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into a fast PC-based model predictive control (MPC) formulation. A numerical case

study demonstrates the improved constraint satisfaction compared to past polynomial

chaos-based formulations for model predictive control.
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Title: Edwin R. Gilliland Professor of Chemical Engineering

2



Acknowledgments

Sergio Lucia, Yiming Wan, and Rolf Findeisen are acknowledged for their collabora-

tions in some of the research. Financial support from Novartis@ is acknowledged.

3



Contents

1 Introduction 1

2 PCE-based Optimal Design 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Proposed Approach ....... ............................ 9

2.4 C ase Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Optimal Design of a Batch Chemical Reactor with a Series Re-

action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Optimal Design of a Tubular Reactor with Five-Species Reac-

tion Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 C onclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Stochastic Optimal Control 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Polynomial chaos approximation to stochastic linear system ..... 41

3.3.1 Polynomial chaos expansion . . . . . . . . . . . . . . . . . . . 41

3.3.2 Galerkin projection for stochastic linear system . . . . . . . . 42

3.3.3 Error analysis of PCE-approximated dynamics . . . . . . . . . 45

3.4 Static output-feedback synthesis using polynomial chaos . . . . . . . 47

3.4.1 712 static output-feedback synthesis . . . . . . . . . . . . . . . 47

3.4.2 W2 guaranteed cost static output-feedback synthesis . . . . . . 50

3.4.3 Post-analysis of stability and parameter tuning . . . . . . . . 52

4



3.5 Dynamic output-feedback synthesis using polynomial chaos . . . . . . 54

3.5.1 W2 dynamic output-feedback synthesis . . . . . . . . . . . . . 54

3.5.2 W2 guaranteed cost dynamic output-feedback synthesis . . . . 55

3.6 Comparison with Monte-Carlo sampling based 'H12 output-feedback

synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Case Study ........ ................................ 58

3.7.1 A numerical example . . . . . . . . . . . . . . . . . . . . . . . 58

3.7.2 A continuous pharmaceutical manufacturing example . . . . . 60

3.8 W,,, static output-feedback control . . . . . . . . . . . . . . . . . . . . 62

3.8.1 PCE expanded system . . . . . . . . . . . . . . . . . . . . . . 62

3.8.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 63

3.8.3 PCE-based control with constant bounds on uncertainty . . . 63

3.8.4 PCE-based guaranteed cost control . . . . . . . . . . . . . . . 65

3.8.5 A synthesis condition . . . . . . . . . . . . . . . . . . . . . . . 67

3.8.6 PCE-based control with decaying bounds on uncertainty . . . 71

3.9 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Stochastic Model Predictive Control 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Background on Dynamic Matrix Control . . . . . . . . . . . . . . . . 85

4.3.1 Finite impulse response . . . . . . . . . . . . . . . . . . . . . . 85

4.3.2 Finite step response . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.3 State prediction with finite impulse and step responses . . . . 90

4.3.4 Rewriting the model-based control optimization . . . . . . . . 97

4.4 PCE-based M PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1 Potential effects of parametric uncertainties . . . . . . . . . . 101

4.4.2 Background on Polynomial Chaos Expansions . . . . . . . . . 103

4.4.3 Transformation of the original system of equations using PCE 104

5



4.4.4 Mathematical formulation of PCE-based MPC with embedded

feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Conclusions and Future Directions 115

6



List of Figures

2-1 The convergence plot for the batch reactor case study: the highest

degree of the Legendre polynomials in T' was based on the convergence

of the optimal temperature for a = 0.25. . . . . . . . . . . . . . . . . 29

2-2 The pareto-optimality plot for the batch reactor case study that shows

how Ekio,k2 0 [CB(tf, k10, k20 , T)] changes with Vark,0 ,k2 0[CB(tf, k10 , k 20 , T)]-

A value of a of 0.25 is located at the knee of the curve. . . . . . . . . 30

2-3 Comparison of the distributions of the intermediate concentration CB(tf, kio, k 20 , T)

at the nominal and polynomial chaos-based optimal temperatures for

the batch reactor case study constructed from 104 Monte Carlo simu-

lation sam ples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

38
2-4 Chemical reaction network for tubular reactor. . . . . . . . . . . . . 32

2-5 The pareto-optimality plot for the tubular reactor case study show-

ing the tradeoff between Elog1QAi,1og1 0 A, [C4 (logiOA1 , logIOA 4, tres)] and

Varogj0 Aj,Iogj0 A4 [C4 (logiOA1 , loglOA4 , tres)] for different values of a. . . 33

2-6 Comparison of the probability distribution functions of the intermedi-

ate concentration C4 (logiOA1 , logjOA4 , tres) from the nominal and the

polynomial chaos-based optimal residence times for the tubular reactor

case study, constructed from 104 Monte Carlo simulation samples. . . 34

2-7 Comparison of the probability distribution functions of C1 (log1 OA1 , logiOA4 , tres)/Ci0

from the nominal and the polynomial chaos-based optimal residence

times for the tubular reactor case study, constructed from 104 Monte

Carlo simulation samples. . . . . . . . . . . . . . . . . . . . . . . . . 35

7



3-1 The numerical example in Section 3.7.1: the dependency of both com-

ponents of the SOF controller on the order of the PCE approximation.

The control gain converges for a 10th-order expansion. . . . . . . . . 74

3-2 The numerical example in Section 3.7.1: the dependence of both com-

ponents of the SOF controller on the number of Monte-Carlo samples

(circles: the average of 100 trials with different samples of ; error bars:

the standard deviation of 100 trials). The control gain converges when

using 104  sam ples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3-3 The numerical example in Section 3.7.1: comparison of the number of

decision variables for the PCE-based and the Monte-Carlo-simulation-

based control synthesis problems. . . . . . . . . . . . . . . . . . . . . 76

3-4 The numerical example in Section 3.7.1: comparison of distributions

of W2 norms generated by different controls; (a) the standard nominal

control, the worst-case robust control, and the PCE-based controls

using a 10th-order PCE without accounting for PCE truncation errors;

(b) the worst-case robust control and the PCE-based controls using a

10th-order PCE and different p's. . . . . . . . . . . . . . . . . . . . . 77

3-5 The CSTR studied in Section 3.7.2: the objective is to convert the

reagent A to the desired pharmaceutical D. . . . . . . . . . . . . . . 78

3-6 The CSTR studied in Section 3.7.2: comparison of distributions of W2

norm under the nominal control and the PCE-based control with a

2rd-order PCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3-7 The W7-4,-norm distribution of the linear system described by Eqn. (3.83)

with SOF controller derived from nominal optimization for = 0. . . 80

3-8 Comparison of different i-(,-norm distributions of the linear system

described by Eqn. (3.83) with SOF controllers derived from nominal

optimization for = 0 and PCE-based 7-,,-norm minimization with

various pX 's. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4-1 Finite impulse response. . . . . . . . . . . . . . . . . . . . . . . . . . 108

8



4-2 Finite step response. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4-3 DMC for the nominal system results in the system state reaching its

set point without constraint violation . . . . . . . . . . . . . . . . . . 110

4-4 DMC based on the nominal system is unable to satisfy the state con-

straint when the control is applied to the actual system, illustrating

the effect of model uncertainty for a control system that does not take

that uncertainty into account. . . . . . . . . . . . . . . . . . . . . .. 111

4-5 PCE-based MPC converges the state to its set point without constraint

violation, even with significant model uncertainty. . . . . . . . . . . . 112

9



List of Tables

2.1 Optimal polynomial expansions for some probabilistic distributions. 50  23

2.2 Parameters for the batch-reactor case study. . . . . . . . . . . . . . . 24

2.3 The highest degrees of the Legendre polynomials in k'o, k' 0 , and T'

and the number of the Gauss-Legendre quadrature points used to ap-

proximate the integral in (2.18) for the batch reactor case study. . . . 25

2.4 Averages and standard deviations of 104 samples for the nominal and

the polynomial chaos-based optimal temperatures for the batch reactor

case study.......................................... 26

2.5 Parameters for the tubular reactor case study.3 8 . . . . . . . . . . . . 27

2.6 The highest degrees of the Legendre polynomials in log1 OA1, loglOA4 ,

and tres and the number of the Gauss-Legendre quadrature points used

to approximate the expansion coefficients for the tubular reactor case

study. ........ ................................... 28

4.1 Parameters for the example system in Section 4.4.1. . . . . . . . . . . 109

4.2 Parameters for the example system in Section 4.4.2. . . . . . . . . . . 113

10



Chapter 1

Introduction

The importance of taking model uncertainties into account during controller design

is well established, which has motivated the generation of a large literature on robust

control theory. Although this theory is well developed and quite mature, the worst-

case uncertainty descriptions assumed in robust control formulations are incompatible

with the uncertainty descriptions generated by commercial model identification soft-

ware (e.g., AdaptX, System Identification Toolbox), which produce time-invariant

parameter uncertainties that belong to probability distribution functions.

The objective of this doctoral research is to derive rigorous theory and algorithms

for the optimal control of linear time-invariant systems with time-invariant probabilis-

tic uncertainties. Below is a summary of the main results obtained in the doctoral

research, organized in a way consistent with the organization of the chapters within

the thesis.

Chapter 1 motivates the objective of the thesis and summarizes its content.

Chapter 2 describes a new algorithm for the design of nonlinear dynamical sys-

tems with probabilistic parameter uncertainties. The dependence of the design objec-

tive and constraints on uncertainties is quantified by a polynomial chaos expansion

(PCE), while the relationships between the design parameters and the design objec-

tive/constraints are parameterized by Legendre polynomials. In two case studies, the

polynomial chaos-based algorithm reduces the number of system evaluations required

by optimization by order of magnitude. In addition, quantifying the dependence on

1



parametric uncertainties via PCEs and including the quantification in the design op-

timization improve the distribution of the performance index and the probability of

constraint fulfillment.

Chapter 3 describes a new feedback control design algorithm for linear time-

invariant systems with time-invariant probabilistic parametric uncertainties and stochas-

tic noise. The originally stochastic system of equations is transformed into an equiv-

alent deterministic system of equations using a PCE, which an appropriate transfor-

mation of an 1 2 -control objective so that the closed-loop performance is insensitive to

the parametric uncertainties. A drawback of existing PCE-based control algorithms is

that the truncation errors due to the use of PCE approximation can cause instability

for the original system of equations. To address this issue, a robustifying constant

derived from the small gain theorem is included in the existing PCE-based 71 2-norm

minimization to enforce the closed-loop stability of the original system of equations.

This approach results in the first PCE-based feedback control algorithm with proven

closed-loop stability, and the first PCE-based feedback control formulation that is ap-

plicable to the design of fixed-order state and output feedback control designs. The

numerical algorithm for the control design is formulated as optimization over bilinear

matrix inequality constraints, for which commercial software is available.

The effectiveness of the approach is demonstrated for a numerical example and

a continuous pharmaceutical manufacturing process. The inclusion of the robustify-

ing constant is shown to stabilize the original system of equations over all possible

values of uncertain parameters. The PCE-based N 2-optimal controller leads to bet-

ter distributions of the R2 norms compared to controllers optimized for the nominal

system of equations and based on a worst-case strategy, and the PCE-based method

significantly reduces the problem size compared to a Monte-Carlo-simulation-based

method, in terms of the number of variables in the optimizer. Similar results are also

derived for the N, norm, which quantifies the amplification of the system output

due to noise and disturbances when both inputs and outputs are quantified in terms

of integral squared error over time. These latter results are the first PCE-based feed-

back control design algorithm derived for the R, control objective, and the theory
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satisfies similar rigorous stability proofs.

In addition to model uncertainties, chemical processes must operate within con-

straints, such as upper and lower bounds on the magnitude and rate of change of

manipulated and/or output variables. The purpose of Chapter 4 is to demonstrate

an optimal feedback control formulation that explicitly addresses both constraints

and time-invariant probabilistic parameter uncertainties for linear time-invariant sys-

tems. This chapter incorporates the Ri2-optimal feedback controllers in Chapter 3

into a fast PCE-based model predictive control formulation. When the constraints

are inactive, the manipulated variables are close to those computed by the PCE-based

feedback control system from Chapter 3. When the constraints become limiting, the

new model predictive control algorithm shifts the manipulated variables in an optimal

manner to satisfy the constraints. A numerical case study demonstrates the improved

closed-loop performance compared to past polynomial chaos-based formulations for

model predictive control.

Chapter 5 summarizes the main results and points out some future directions.
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Chapter 2

PCE-based Optimal Design

2.1 Introduction

Models for real systems have associated uncertainties, which can influence the system

performance and/or constraint satisfaction.3 7 2 It is well established that ignoring

uncertainties during design optimization can produce designs that are highly sensitive

to uncertainties. The potential consequences of ignoring uncertainties during design

include large variability in product quality15 ,32 and higher total costs. 36

Such studies have motivated the development of numerical algorithms that include

uncertainties in optimal design problems. A popular strategy is to optimize designs

based on a worst-case objective, which ensures that each system within an uncertainty

set has the same or better objective than in worst case.39 A design optimized for

the worst-case uncertainty can result in poorer product quality or higher costs for

more representative uncertainties than designs that do not consider the effects of

uncertainties or that weigh more equally the effects of all uncertainties. 12,31 Worst-

case design can be very conservative in practice, especially for systems in which the

worst-case uncertainty has a vanishingly low probability of occurrence.

This chapter considers the optimal design of nonlinear dynamical systems with

parametric uncertainties described by probability distribution functions (aka "prob-

abilistic uncertainties"). For this type of uncertainty, the dominant strategy is to

optimize the distribution of the objective and to satisfy constraints within speci-

5



fied probabilities. This strategy often requires estimation of the expected values

and/or the variances of the objective and the constraints. 15,28,30,41,49 The Monte-

Carlo-simulation-based method, which samples the probabilistic distributions and

propagates these samples through the system models, is a common approach to esti-

mate the expected values and the variances 2 but has a slow convergence rate on the

order of 1/Vf, for which n is the number of samples. As a result, the Monte-Carlo-

simulation-based method, which requires a large number of system simulations to

accurately estimate the expected values and variances, is computationally expensive.

More efficient sampling techniques, such as the Latin hypercube sampling 2 1 and the

Hammersley sequence sampling,8 have convergence rate on the order of 1/n.

Another way to take uncertainties into account during design optimization is to

employ Gaussian quadrature to estimate the integrals for the expected values and the

variances.15 , 20 These integrals are estimated each time that the optimizer accesses

a new set of design inputs (the term 'design inputs' is used instead of 'design pa-

rameters' in the remainder of this chapter to avoid potential confusion with model

parameters). Consequently, the number of system evaluations required by the opti-

mal design calculations depends on the details of the optimizer and the closeness of

the initial guesses for the design inputs to the optimal solution.

Another method to account for uncertainties is via polynomial chaos (PC) theory

that uses polynomial expansions to approximate the dependence of system outputs

on probabilistic uncertainties. 50 The polynomial expansions that achieve the fastest

convergence rate have been derived for a wide variety of distributions (see Table 2.1),

meaning that these expansions have the highest accuracy among all polynomial ex-

pansions of the same order, and require the smallest number of terms to achieve a

specified accuracy. With the optimal choices of polynomials in Table 2.1, the conver-

gence rate is exponential, and it is straightforward to estimate means and variances.

Due to its low computational cost, the application of PC to chemical engineering and

system design problems has become of interest in recent years. 1,12,18,19,23,28,32

This chapter proposes a new PC-based algorithm for optimizing design inputs

for systems with probabilistic uncertainties. To make the number of required sys-

6



tern evaluations independent of the optimization algorithmic details and the initial

guesses, this algorithm parameterizes the dependence of the optimization objective

and constraints on design inputs with the Legendre polynomials. In addition, the

impacts of uncertainties on the objective and constraints are quantified by PC expan-

sions and included in the optimization. Computational efficiency of the design input

parameterization and the robustness of polynomial chaos-based optimal designs are

demonstrated in two case studies.

2.2 Problem Statement

Consider a nonlinear dynamical system described by differential-algebraic equations,

dx = f (t, x, u, k, q) (2.1)
dt

x(t = 0) = x0 (2.2)

0 = z(t, x, u, k, ), (2.3)

for which t is time, x is the vector of system states, u E R"'X is the vector of design

inputs, k is the vector of certain parameters (e.g., heat capacities), q is the vector of

parameters with probabilistic uncertainties, f and z are algebraic functions, and xO

is the initial condition. The design inputs can include controller design parameters,

initial conditions, and/or a parameterization of continuous-time trajectories such as

temperature profiles. Although not explicitly treated here, the methodology described

in this chapter can be directly extended to distributed parameter systems. To simplify

the notation, the dependency on k is suppressed in all functions subsequently defined

in this chapter, but can be explicitly included without loss in generality.

The design optimization objective g and constraint function h E R"' are func-

tions of the design inputs and uncertain parameters, i.e.,

g = g(u, n) (2.4)

h = h(u, 1). (2.5)

7



For example, a typical optimization objective for a batch design problem is

g(u, q) = #[x(t, u, n)] dt + (tf, u, n),

for which to is the initial time, tf is the final time, and # and are algebraic functions.

Typical constraints are defined on the states evaluated at specific points in time or

on integrals of the states over time, with some examples given in the case studies.

With this nomenclature, the nominal optimal design problem is

min g(u, 7nominai) (2.6)
uEU

s.t. U = [Ui,iower, Ul,upper] X ... X [Unower, Un,upper]

h(u, 7lnominai) < 0.

The design inputs are assumed to have known finite bounds. Typically such bounds

can be specified via knowledge about the phenomena (e.g., that the mixing speed in a

bioreactor must be less than some value to avoid cell damage) and/or thermodynamic

and/or kinetic arguments (e.g., that the heat transfer system limits the temperature to

be within some range). Solutions to this optimization can result in a wide distribution

of the objective and/or a high probability of constraint violation in the presence of

probabilistic uncertainties in q. A well-known formulation of the design problem that

reduces the effects of probabilistic uncertainties is

min E,[g(u, n)] + ao Var,[g(u, n)] (2.7)
UEU

s.t. U = [Uiiower, U1,upperl X ... X [Uniower, Un,upperj

En [h, (u, ?)] + a, Var, [h1 (u, 1)] < 0

E, [h2(u, q)] + a2 Var,[h 2 (u, q)] 0

E,[hm(u, 17)] + a, Var,7[hm(u, ri)] < 0,

for which E. and Var, are the expected value and the variance computed from in-
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tegration with respect to 7j and the set of scales {ai} controls the tradeoffs between

the expected values and the variances.1 This optimization requires inexpensive and

accurate estimates for

1. the functional dependence of g(u, 71) and hi(u, il) on ri to quantify the effects

of probabilistic uncertainties on the expected values and the variances;

2. the functional dependence of E,[g(u, n)], Var, [g (u, n)], E,[hi(u, 71)], and Var [hi(u, 1)]

on the vector of design inputs u.

2.3 Proposed Approach

The first step of the approach is to approximate the dependence of the optimization

objective and constraints on uncertainties with polynomial expansions, 50

No

g(u, q) gj (U)# (7)
j=0
Ni

hi (u, q) ~7 hijy (u)#Oj(,q),
j=0

for which the optimal polynomials j (rq) depend on the distributions of 77 and are

given in Table 2.1, and Ni's are positive integers for all i's. The polynomials in Table

2.1 have been proven to be optimal, as they minimize the L 2 norm of the residual

from using finite terms in the polynomial expansion and have exponential conver-

gence in the corresponding Hilbert functional space. 50 This property of exponential

convergence results in accurate approximations even with a relatively small number

tFor a design objective written as a maximization, the second term in (2.7) is multiplied by
minus one.
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of terms in the expansion. The polynomials are orthogonal and satisfy

(0 (,q), #j (n)) =H Oi(,q)#Oj(n) dp (n)

(2 (71)) if i=j;

0 otherwise,

for which H is the support for r, and p(q) is the weight function for #i(rl).

result of (2.8),

(9 ( () =(u, q), Oj (W)).

Also, the expected value and the variance, which are computed from integration

respect to uncertainties q, can be estimated once the expansion coefficients have

computed:

(2.8)

As a

(2.9)

with

been

E, [g(u,) =,)dp(1)

No

~ gj (u)#Oj(n) dp(,q)
j=

No

= gi (U) #HOj(n) dp (n)
j=0
No

= gj (U) (O(W), 1)
j=0

=go (U) (0(n),)

= go(u) (2.10)
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Var7 [g(u, i)] E17[g2 (u, i)] - E2[g(u, r)]

g2(U, n) dK(q) - g2(u)

No

~ g3 (U) (# (77)) g02 (U)
j=0

No

= gj (U) #J (77)) (2.11)
j=1

The above approach is described in several papers on PC-based design. 28 For this

approach, estimation of the expected values and the variances requires the computa-

tion of PCE coefficients. For simple systems, PCE coefficients can be computed via

intrusive Galerkin projection, which takes the inner product of (2.1)-(2.3) with each

basis function to obtain a system of equations for the expansion coefficients. 50 For

more complex systems, to which Galerkin projection cannot be applied, non-intrusive

methods are used, such as tensor-product quadrature, which estimates the integral

for the numerator of (2.9), and linear regression, which solves for the complete set of

expansion coefficients by evaluating the original system for selected values for uncer-

tainties. 10

A drawback of using (2.10) and (2.11) in (2.7) is that the expansion coefficients

g,(u)'s and hi,(u)'s have to be evaluated for every new u that the optimizer accesses.

Since the evaluation of the expansion coefficients requires system evaluations, i.e.,

simulations of (2.1)-(2.3), the computational cost of the optimization is influenced

by the choice of initial guesses and the effectiveness of the optimizer for the particular

optimization. We propose to resolve this issue by approximating the dependence of

the objective and constraints on the design inputs with an expansion of the Legendre

polynomials:

ro mo

g (U, 'q) g::9 k#Oj(1) Pk (U) (.12
j=0 k=0

ni mi

hi (u, q) hijk (7) Pk(U), (2.13)
j=0 k=O
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for which Pk(u) is the Legendre polynomial in u of degree k, and ni's and mi's

are positive integers for all i's. (2.12) and (2.13) are referred to as design input

parameterization in this chapter.

In (2.12) and (2.13), the dependence of the expected values and the variances on

the design inputs can be inexpensively computed, once the expansion coefficients gYjk's

and hijk's have been found:

E, [g (u, n)] = g(u, n) dp_(n)'H

no mo

~Z gjkPk(U) IH (n)dp(n)
j=O k=O
no mo

~ gjk Pk (u) (#j (TI)) (2.14)
j=O k=O

Var,[g(u, q)] E,[g 2 (u, 77)] -- E[g(u, 7)]

no mo 12

IlL S gjkqj()Pk(u) dp(rl)
H .=O k=O I
no mo 2

- : E gjkPk (u) (#. ()) (2.15)
j=O k=O .

The novelty of the proposed representation of the design inputs is the one-time evalu-

ation of the expansion coefficients gjk's and hijk's before (2.14) and (2.15) are sent to

the optimizer. The other novelty of (2.14) and (2.15) is the polynomial dependence

of the optimization objective and the constraints on the design inputs. Therefore,

the computational cost of the optimization, which mainly depends on the number

of system evaluations, is fixed. In summary, the proposed approach for designing

systems with probabilistic uncertainties consists of three steps:

1. compute the expansion coefficients g9k's and hijk's;

2. express the expected values and the variances of the optimization objective and

constraints as polynomial functions of the design inputs using (2.14) and (2.15);

3. send these functions to the optimizer to find the optimal design inputs.

12



2.4 Case Studies

This section applies the proposed approach to two chemical reactor design problems.

Tensor-product quadrature was used to determine the PCE coefficients. 10 All opti-

mizations were solved with fmincon of MATLAB@®.

2.4.1 Optimal Design of a Batch Chemical Reactor with a

Series Reaction

Consider a series reaction in a batch reactor,

A B - C,

for which

r kio exp (ElT) CA,

r2= k2oexp( 'T) CB,

R is the gas constant, T is the reaction temperature, Ei are the activation energies,

and kio are the prefactors. Table 2.2 lists the parameters used in the simulation. The

design objective is to find the reaction temperature T that maximizes the concentra-

tion of the desired product B, which is produced from species A but consumed by the

chemical reaction that converts species B to species C. The nominal optimization of

the reaction temperature, which does not consider the dependence of CB(tf, k1 o, k20 , T)

on the uncertainties in the prefactors k1o and k 20 , is

max CB (tf, kio,nominal, k20,nominal, T). (2.16)
300 K<T<400 K

The temperature T given by (2.16) is 324.69 K, which produces a maximum CB(tf, T)

of 199.06 M at the nominal values of k1o and k 20 .

The uniformly distributed uncertainties in the prefactors k1o and k 20 in Table

2.2 result in a wide distribution of CB(tf, k1o, k 20 , T) at the nominal optimal reaction

13



temperature, as shown in Figure 2-3. The optimal design problem that takes the

probabilistic uncertainties into account is

max {Ekio,k 2 J[CB(tf, k 10, k20 , T) - cVarkio,k20 [CB(tf, k10, k20 , T)], (2.17)
300 K<T<400 K

for which a quantifies the tradeoff between the maximization of the expected value

and the reduction of the variance for CB(tf, k10 , k 20 , T).

The dependence of CB(tf, k 10 , k20 , T) on the uncertain prefactors k10 and k 20 is

quantified via PC expansions, and their dependence on T is parameterized by the

Legendre polynomials:

N N

CB (tf , k10 , k20, T) ~ Bn (f) On (k10, k20) T Bn (tf) n 10' I fT)
n=0 n=0

where

k'I0  kio - kio,m

kom -k10,upper bound + kiO,iower bound

2

klOd - ki0,upper bound - kiiower bound

2

k20 = k20 - k20,mn-U(I
k20,d

k20,mn k20,upper bound + k20,lower bound

2

k2o,d -k20,upper bound - k20,lower bound

2

T-Tm
T' = T "d U(-1, 1)

Td

TM -Tupper bound + Tower bound

2

Td -Tupper bound - Tower bound

2

N is the total number of basis functions used in the expansion, and On (k' 0 , k' 0 , T')

is the nth basis function that is the product of the Legendre polynomials in k', k' 0 ,

and T'.
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The evaluation of the expansion coefficients CBn(tf)'s uses (2.8):

(CB(tf, kjo, k20, T), n 10'o k0 T)=CBn (tf) 0 iT)
( B ,1 , 2 0 n 1 0

Ctn -fKCB(tf, kok2 oT), On(k%, k' 0, T'))
Bn (f) -2(k'o, k' 0 , T'))

where the numerator is

TCB(tf, k10 , k2 0 , T)n(k' 0 , k' 0 , T')w(k' 0 , k2 0 , T') dk'1 0 dkI0 dT', (2.18)

and the denominator is

n(k'o, ko, T')w(k'o, k%, T') dk'o dktA dT', (2.19)
-1 21 -20

for which

w (k'o, k 0, T') 2 1 (2.20)

(2.19), which is the inner product of the nth basis function with itself, depends only

on the distributions of the uncertain parameters. On the other hand, the integral in

(2.18) can be approximated by the Gaussian-Legendre quadrature, which evaluates

CB(tf, k 10 , k20 , T) for selected values of k 10 , k20 , and T:

(. ) = CB(tf, 10,i, 20jTk n(k10,i, 20j, kk)=(11,i)w(k20j)w k),
i=1 j=1 k=1
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where

Iio,i =the ith root of PI, the Legendre polynomial of degree I

1
w(Ikio,4)=- 2

(1 - koj) [P1 (ki0,g)]2

P (kio,) = the derivative of P, evaluated at kio,i

I20,J =the Jth root of Pj, the Legendre polynomial of degree J

w(k 20J,) 1 2
(1 - Ic~,j) [P'; (Ik20,,)]

P'; (k 2 0j) = the derivative of Pi evaluated at I20J

Tk the kth root of PK, the Legendre polynomial of degree K

-- 1
w(Tk) 2

( - 2) [PK (Tk)]

Pj (Tk) = the derivative of PK evaluated at Tk

CB(tf, k10i, k 2 0,J, Tk) CB(tf) evaluated at ko,i, k2 0 ,J, and Tk

On(kio,i, Ik20,JTk) = On evaluated at k 1io,, k 20 ,J, and Tk

and I, J, K are positive integers. Table 2.3 lists the highest degrees of the Legendre

polynomials in k' 0, k 0o, and T' and the values for I, J, K. If the highest order of

the PC expansion is p, the minimum order of the Gaussian quadrature to accurately

compute all the expansion coefficients is p + 1.10 As using more points to estimate

the integral poses more computational cost, the minimum order of the Gaussian

quadrature of p + 1 was used in both case studies. This case study used the 2nd-order

Legendre polynomial in T', at which the optimal reaction temperature converges

for a = 0.25 (Figure 2-1). Once the expansion coefficients CBn (tf)'s are evaluated,

Ekio,k 2 J[CB(tf, k1o, k 20, T)], Vark,,,k 2 0 [CB(tf, k 1o, k20, T)], and therefore the objective in

(2.17) can be approximated by polynomial functions in T'.

A pareto-optimality plot is a commonly used approach to select values for parame-

ters that trade off multiple objectives. Figure 2-2 shows the pareto-optimality plot for

the expected values and the variances of CB(tf, k1o, k20 , T) with respect to k1o and k 20
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at optimal temperatures computed from (2.17) with different values of a. The opti-

mal a, which should locate approximately at the knee of the pareto-optimality curve,

is 0.25 and gives an optimal reaction temperature of 359.71 K (Figure 2-2). The 35.02

K difference between the optimal temperature for the nominal values of the prefactor

k10 and k2 0 and that from the PC-based optimization results in drastically different

distributions of CB(tf, k 10 , k20 , T) (see Figure 2-3 and Table 2.4). Specifically, the

distribution of CB(tf, k 10 , k 20 , T) for the PC-based optimal temperature has a higher

average and a much smaller standard deviation than that for the optimal temperature

for the nominal values of k10 and k20 . This difference demonstrates the importance

of including the effects of parametric uncertainties in optimal design problems.

The effect of design-input parameterization on computational cost was also exam-

ined. When a PC expansion without design-input parameterization,

M

CB(tf, kjo, k20,T -- Bn(tf, T)On(klo, k20),
n=O

was used to approximate the dependence of CB(tf, k 10 , k20 , T) on the uncertain param-

eters, the expansion coefficients CBn(tf, T)'s were evaluated for every new temperature

the optimizer accessed. With the computed expansion coefficients, Ek 0 ,k 20 [CB(tf, k10 , k20 , T)]

and Varkjo,k20 [CB(tf, k10, k20,T)] were computed from

Varklo,k20 O[CB(tf, k10 , k20 , T)] =Ekjo,k2o [C2(tf, kjo, k 20, T)] - (Eklok20 [CB(tf, k 10, k20 , ) 2

C--B~ rLOCntTq~ko 20 )]-M M

~ > CBn(tf, IT)O (ko, k 2 0 ) - B2 (f, )
n= n=O

M
= C n (02n(#(kio, k20)) - 0 C (tf, T)

= C n(tf, T)(#2(k 1o, k 2 0 )).
n=1

When fmincon of MATLAB® was used to find the reaction temperature that maxi-
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mizes Ekiok2 [CB(tf, k10 , k 20 , T)] - 0.25Varklo,k 2O[CB(tf, k10 , k20 , T)], the number of sys-

tem evaluations without design-input parameterization was 576, whereas that with

design-input parameterization was 108. For this case study, the design-input param-

eterization reduces computational cost by about a factor of 5.

2.4.2 Optimal Design of a Tubular Reactor with Five-Species

Reaction Network

Molar balances for the five species in the reaction network in Figure 2-4, which carried

out in a microscale automated continuous-flow tubular reactor, are3 8

dC1
d = -k 1 C1 C2 - k 2 C1 C2dt

d = -k 1 C1 C2 - k 2 C1 C2 - k3 C2C3 - k4 C2 C4dt
dC3
d = k1 C1 C2 - k3 C2 C3dt
dC4- = k 2C 1C2 - k4 C2 C4dt
dC5 = k3 C2C3 + k4 C2C4 ,dt

where

ki = Ai exp -

and t is the distance down the reactor multiplied by its cross-sectional area and divided

by the volumetric flowrate of the feed stream. Table 2.5 lists the reaction parameters.

The nominal reactor design problem is to determine the residence time that maximizes

the yield of the desired compound 4 with the remainng limiting reagent, compound

1, to be at most 1% of its starting amount:

max C4(logl0Ai,nominal, log1 0 A4,nominah, tres)
0.5 min<tres 20 min 010

s.t. C, (log1 0 A,nominal, log10 A4,nominal, tres)
C10
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The optimal residence time for the tubular reactor for the nominal values of logiOA1

and log10 A 4 is 0.921 min.

The uncertainties in logiOA1 and log10 A4 lead to distributions of C1 (log1 OA 1 , loglOA 4, tres)

and C4 (logOAI, logiOA4 , tres). Therefore, both uncertainties are taken into account in

the reactor design problem as

m.5 Eio(ininct C4 (logioA1, loglOA4 , tres) Var 10A 1 ,og 1 A C4(logO 1, logOA4 tres)

0m. 5 ElogoAllog 1 "A 4  Cii10 [CarlOl0 AI C1O10 A4,

s.t. Elog 0ie log 1Q44  C1(log ioA , logiOA4, tres) <

Table 2.6 lists the highest degrees of the Legendre polynomials used for approximating

the dependence of the concentrations C1 and C4 on logiOA1 , log1 OA 4 , and tres and the

number of the Gauss-Legendre quadrature points used to estimate the expansion

coefficients.

The pareto-optimality curve for the expected values and the variances of C4 (logOA1 , logiOA4 , tres)

at optimal residence times for different values of a is shown in Figure 2-5. A value

of oz of 115 was selected as a reasonable tradeoff between the expected value and

the variance and gives an optimal residence time of 8.32 min. Figures 2-6 and 2-7

show that the PC-based optimal residence time has 100% constraint satisfaction for

Cwithout significantly reducing 0 whereas there is approximately 18% chance of

constraint violation for the optimal residence time for the nominal values of log10 A 1

and log10A 4 .

The effect of design-input parametrization on computational cost was also exam-

ined. The number of system evaluations without parameterization of tres was 2100,

where that with parameterization of tres was 125, representing a reduction of more

than one order of magnitude in computational cost.

In general, the relative computational cost of using design-input parameterization

versus not using design-input parameterization depends on the highest order of the

Legendre-polynomial expansion in design inputs necessary to accurately approximate

the dependence of the robust optimization objective and/or constraints on design

inputs. If a very high order of the Legendre-polynomial expansion is required, design-
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input parameterization often no longer has the advantage of reducing computational

cost.

Both case studies have uniformly distributed uncertain parameters. Replacing the

uniform distributions with other types of distributions involves replacing the Legen-

dre polynomials for the uncertain parameters with other polynomials in Table 2.1. As

in the case studies that had uniformly distributed uncertain parameters, the compu-

tational cost will be a function of the highest order of the PC expansion in uncertain

parameters and the highest order of the Legendre-polynomial exapnsion in design

inputs.

2.5 Conclusions

This chapter proposes a PC-based approach for the design of nonlinear dynamical

systems with probabilistic uncertainties and bounds on design inputs. The two char-

acteristics of this design approach are

1. the dependence of the optimization objective and constraints on design inputs

is parameterized with the Legendre polynomials;

2. the effects of probabilistic uncertainties on the objective and constraints are

quantified by the PC expansion.

The designs of batch and continuous-flow chemical reactors were optimized with this

method in the presence of uniformly distributed uncertain parameters.

For a batch reactor with a series reaction, the reaction temperature was optimized

to maximize the concentration of a desired species in the presence of two uncertain

kinetic parameters. Compared to the optimal reaction temperature from the nomi-

nal optimization, the PC-based optimal temperature produced a distribution of the

desired-species concentration with a higher average and a smaller standard devia-

tion. In addition, parameterizing the dependence of the desired-species concentration

on the reaction temperature with the Legendre polynomials reduced the number of

system evaluations required by optimization by a factor of 5.
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For a continuous-flow tubular chemical reactor with five species, the residence time

was optimized to maximize the concentration of a desired species in the presence

of two uncertain kinetic parameters. In addition, this reactor design problem is

subject to a constraint that the remaining limiting reagent should be no greater

than 1% of its starting amount. With similar distributions of the desired-species

concentration at the nominal and the PC-based optimal residence times, the PC-

based optimal residence time resulted in 100% constraint fulfillment, whereas the

nominal optimal residence time resulted in 82% constraint fulfillment. Furthermore,

design-input parameterization reduced the number of system evaluations required by

optimization by a factor of 17.

The design-input parameterization significantly reduced the number of system

evaluations required by optimization in both case studies. Also, including the effects

of uncertainties in the optimal design problems via the PC expansions produced design

inputs that improved distribution of the optimization objective for the batch reactor

case study and increased the probability of constraint fulfillment for the tubular

reactor case study.

PC expansions are most effective when the objective and constraints are smooth

functions of the uncertain parameters, which are expected to occur in most chemical

process design problems. When the objective and constraints are not smooth func-

tions of the uncertain parameters, accurate approximation via the PC expansions will

require a larger number of terms in the expansions and more system evaluations to

compute the expansion coefficients, and efficient sampling methods can be less com-

putationally expensive. 7 PC expansions are also most effective when each objective or

constraint is sensitive to a relatively small number of uncertain parameters, e.g., less

than ten. Properties of interest such as concentrations and yields for most chemical

reaction networks and reaction-transport networks depend strongly on only a small

number of key parameters, which are associated with rate-limiting steps.4 7 A param-

eter sensitivity analysis can be conducted to determine which parameters to include

in PC expansions for the design objective and each constraint. For process design

problems that have larger numbers of sensitive uncertain parameters, the Smolyak
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sparse grids can be used to reduce the number of function evaluations required to

compute the PC expansion coefficients. 10

Since the objective and constraints in the PC-based optimization are represented

by polynomials, the resulting optimizations are polynomial programs. Although this

chapter used local optimization, the polynomial dependencies mean that the opti-

mization can be solved using any local or global optimization algorithms developed

for the solution of polynomial programs. 17,40
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Uncertainty distributions q Optimal polynomials Oi(bq)

Gaussian Hermite

Uniform Legendre

Gamma Laguerre

Beta Jacobi

Table 2.1: Optimal polynomial expansions for some probabilistic distributions. 50
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k (s_1 uniformly distributed between 100 and 1000;
nominal value at 550

E1/R (K) 2400

k (s_1 uniformly distributed between 100 and 1000;
k 20 (s) nominal value at 550

E2/R (K) 4800

Reaction time tf (s) 20

Reaction temperature T (K) between 300 and 400

Initial CA (M) 200

Initial CB (M) 0

Initial Cc (M) 0

Table 2.2: Parameters for the batch-reactor case study.
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Highest degree of the Legendre polynomials in k' and k' 0  5

Iand J 6

Highest degree of the Legendre polynomials in T' 2

K 3

Number of system evaluations for computing PCE coefficients 62 - 36
for a new T without design input parameterization

Number of system evaluations for computing PCE coefficients 62 x 3 = 108
with design input parameterization

Table 2.3: The highest degrees of the Legendre polynomials in k'O, k'O, and T' and the
number of the Gauss-Legendre quadrature points used to approximate the integral in
(2.18) for the batch reactor case study.
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Optimization Temperature (K) Average (M) Standard deviation (M)

Nominal 324.69 194.12 11.03

PCE 359.96 196.17 2.51

Table 2.4: Averages and standard deviations of 104 samples for the nominal and the

polynomial chaos-based optimal temperatures for the batch reactor case study.
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C10 (M) 0.150

C20 (M) 0.375

T (K) 373.15

tres (min) between 0.5 and 20

R (J/mol-K) 8.314

logiOA1 ; uniformly distributed within [3.0, 3.8];
Ai (M-Is- 1 ) nominal value at 3.4

EA1 (kJ/mol) 27

logjOA2  3.5

EA2 (kJ/mol) 32.1

logiOA3  4.9

EA3 (kJ/mol) 60.0

uniformly distributed within [2.6, 3.4];
log1 0 A4  nominal value at 3.0

EA4 (kJ/mol) 45

Table 2.5: Parameters for the tubular reactor case study. 38
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Highest degree of the Legendre polynomials 4
in logioA1 and logIOA4

Number of quadrature points 5
for each uncertain parameter

Highest degree of the Legendre polynomials in tres 4

Number of quadrature points for tres 5

Number of system evaluations for computing PCE coefficients 52 = 25
for a new tres without design input parameterization

Number of system evaluations for computing PCE coefficients 52 x 5 = 125
with design input parameterization

Table 2.6: The highest degrees of the Legendre polynomials in log1 OA 1 , logjOA 4 , and

tres and the number of the Gauss-Legendre quadrature points used to approximate

the expansion coefficients for the tubular reactor case study.
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Figure 2-1: The convergence plot for the batch reactor case study: the highest de-
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temperature for a = 0.25.
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of 0.25 is located at the knee of the curve.
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Comparison of the distributions of CB(tfk1, k20,T)

e nominal and the PCE-based optimal T's (104 samples)

Distribution of C B(
at the PCE-based 1

Distribution of CB(tf,k
at the nominal T optima

wp N I
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I4

tf k10'k 20'T

optimal

1-4-i -,20'T

190 200

Figure 2-3: Comparison of the distributions of the intermediate concentration

CB(tf, k10 , k20 , T) at the nominal and polynomial chaos-based optimal temperatures

for the batch reactor case study constructed from 104 Monte Carlo simulation samples.
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Figure 2-4: Chemical reaction network for tubular reactor.'38
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Comparison of the distributions of C 4(log 0 A1,log,A4,tres)
from the nominal and the PCE-based optimal tres's (104 Samples)
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Figure 2-6: Comparison of the probability distribution functions of the intermediate
concentration C4 (logiOA1, logiOA4 , tres) from the nominal and the polynomial chaos-
based optimal residence times for the tubular reactor case study, constructed from
104 Monte Carlo simulation samples.

34

.0
0-
IL



Comparison of the distributions of Cl(logA1 , log 1 4,t res)/C10
from the nominal and the PCE-based optimal tres's (104 Samples)
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Chapter 3

Stochastic Optimal Control

3.1 Introduction

The closed-loop stability and performance obtained by state- and output-feedback

control systems can be sensitive to model uncertainties, which has motivated numer-

ous studies on the synthesis of robust control insensitive to uncertainties, e.g.,. 3,9,26,29,34

The static or reduced-order dynamic output-feedback control synthesis problem for

both nominal and uncertain systems is NP-hard, 4 which implies that standard linear

matrix inequalities (LMIs) and other convex optimization formulations do not exist.

The vast majority of the output-feedback and broader control literature adopts

a worst-case design strategy to ensure stability and achieve a desired performance

bound for all possible uncertainties. This worst-case approach tends to produce highly

conservative performance because the worst-case scenario may have vanishingly low

probability of occurrence. In addition, most worst-case robust control approaches

are limited to a few uncertainty structures only, such as norm-bounded, affine, poly-

topic, and integral quadratic uncertainty. 34 A general nonlinear uncertainty structure

cannot be effectively addressed without introducing overbounding.

In contrast to a worst-case performance bound, the practical interest in the perfor-

mance variation or dispersion across the uncertainty region has motivated recent re-

search on probabilistic robustness. 3 4 The design objective either relaxes the worst-case

performance bound to a probability-guaranteed performance bound,' 5 or optimizes
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the averaged performance at the expense of a slightly worst performance bound.5 ' 4

Most of this research is limited to polytopic uncertainty, 5' 51 or affine dependence on

multiplicative white noises." The randomized algorithm proposed in4 5 can address

general nonlinear dependence on uncertain parameters, but can be computationally

demanding since a large number of samples is often needed.

The above observations have further led to robust control research that aims at

addressing averaged performance in the presence of general nonlinear dependence

on probabilistic time-invariant real parametric uncertainties. Such a uncertainty de-

scription is commonly generated by parameter identification techniques, but is poorly

suited for any existing robust control design methods mentioned above. This ro-

bust optimal control design is non-trivial because uncertainty propagation in such

an uncertain system is no longer a Markov process. 3 3 As a computationally efficient

non-sampling approach for quantifying uncertainty propagation, polynomial chaos

(PC) theory builds the foundation of a recent promising solution to this problem.22

PC theory allows characterization of the evolution of probability distributions of the

underlying stochastic system states by a high-dimensional expanded deterministic

system describing the evolution dynamics of the polynomial chaos expansion (PCE)

coefficients. Thus the control synthesis problem can be solved by using the expanded

system. Up to now, the existing PCE-based control methods have been restricted

to stability analysis', 8 ' 2 7 and state-feedback control.' 2 3 3 The publications did

not simultaneously address both time-invariant random parametric uncertainties and

time-varying stochastic external disturbances, because the required number of PCE

terms goes to infinity as time grows. 2 4 Moreover, due to trunction errors introduced

by using finite-order PCEs, stability and performance derived for the expanded sys-

tem may not be automatically achieved by the original system. 27 Although increasing

the PCE order can alleviate the effect of PCE truncation errors, it may result in sig-

nificant increase in computation complexity as the state dimension of the expanded

system factorially grows with the PCE order.

In this chapter, PCE-based 7H 2 static and dynamic output-feedback controls are

investigated subject to general nonlinear dependence on probabilistic time-invariant
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parametric uncertainties. The developed PCE-based expanded system includes the

effect of probabilistic parametric uncertainties as well as white process and measure-

ment noises. Moreover, the approximation errors introduced by the PCE truncations

are captured by time-varying norm-bounded uncertainties whose bound is used as a

robustifying tuning parameter. Based on the above expanded system, a nominal W2

synthesis approach is proposed when neglecting PCE truncation errors, while a N 2

guaranteed cost control is adopted to cope with PCE truncation errors. The use of a

robustifying parameter enforces closed-loop stability without resorting to a high-order

PCE, thus avoiding high computational complexity due to a large number of PCE

terms. In the synthesis and post-analysis iterations, a bisection algorithm is proposed

to find the smallest robustifying parameter that ensures probabilistic closed-loop sta-

bility. In contrast, further analysis shows that the Monte-Carlo sampling based N 2

synthesis is much less computationally efficient, and converges to imposing conserva-

tive worst-case stability constraints as the number of samples grows to infinity.

This chapter also extends the results to the N control objective, which is the

first time that a rigorous theoretical framework has been developed for that objective.

The same approach to ensuring closed-loop stability is applicable, and similar results

are observed for a case study as was obtained for the N 2 control objective.

This chapter is organized as follows. Section 3.2 states the probabilistic robust

N 2 control problem. Section 3.3 reviews preliminaries on PC theory and analyzes the

effect of PCE truncation errors. Our proposed static and dynamic output-feedback

control synthesis approaches are presented in Sections 3.4 and 3.5, respectively. Sec-

tion 3.6 compares the approaches to Monte-Carlo sampling based synthesis. Section

3.8 extends the results to the No control objective. The simulation studies in Sections

3.7 and 3.9 demonstrate the advantages of using PC-based N 2 and N optimization

methods, respectively. Finally, some concluding remarks are presented in Section

3.10.

39



3.2 Problem Statement

Consider the linear time-invariant dynamical system described by

5(t, i) = A(q)x(t, n) + B,(q)w(t) + B(i)u(t, r) (3.1a)

z(t, 77) = Czx(t, i) + DZ.w(t) + Dzu(t, 17) (3.1b)

y(t, q) = C(r)x(t, 7) + Dw(n)w(t) (3.1c)

where x E Rin is the state, u E R' is the control input, w E R'- is the stochastic

disturbance or noise, y E R"" is the measured output, and z E R'- is the controlled

output related to the performance of the control system. Since A, B,, B, C, and

Dw in (3.1) are general nonlinear functions of a random parameter vector 77 E R"C,

the system state x, control input u, measured output y, and controlled output z all

depend on q. Note that C7, D , and Dz in (3.1b) are independent of the uncer-

tain parameter vector q, because (3.1b) is determined by the control performance

specifications. The objective of this chapter is to design

(i) a static output-feedback (SOF) controller

u(t, r) = Ky(t, ') (3.2)

(ii) a dynamic output-feedback (DOF) controller

5K(t, 7) = AKXK (t, i) + BKy(t, 7)

u(t, q) = CKXK (t, n) + DKy(t, 7)

that minimizes the averaged 72 norm of the closed-loop system 'T% (17) from the noisy

input w to the controlled output z, accounting for the time-invariant probabilistic

parametric uncertainties 77, i.e.,

min E, {H|w (1)11 }. (3.4)
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The finiteness of the W2 norm of T(,q) requires D., + DZKD, = 0 for the SOF

case and D., + DZDKD, = 0 for the DOF case.

The above problem cannot be effectively addressed by most existing worst-case

robust control methods due to the general nonlinear uncertainty structure. Inspired

by12 and citations therein, the PC theory is adopted to quantify the dependence of

the squared -2 norm 11,-(q)|112on 77. Specifically, the substitution of state x, control

input u, controlled output z, and measured output y with their PCE approximations

transforms the original stochastic system (3.1) into a high-dimensional expanded sys-

tem describing the dynamics of PCE coefficients. The -2 control synthesis is then

solved by using the transformed expanded system.

The proposed approach aims at improving the existing PCE-based control de-

sign methodology by (i) explicitly taking into account stochastic disturbance w; (ii)

proposing systematic design procedures with a robustifying parameter to cope with

PCE approximation errors which could destabilize the closed-loop system if neglected.

3.3 Polynomial chaos approximation to stochastic lin-

ear system

This section provides a brief introduction of polynomial chaos approximation to the

stochastic linear system (3.1) using Galerkin projection, and then shows how the PCE

truncation errors affect the PCE-approximated closed-loop dynamics.

3.3.1 Polynomial chaos expansion

For a random vector q, a function 0 (77) : RN -> R with a finite second-order moment

admits a PCE 0
00

-g = @bbi(r), (3.5)
i=0

where {i} denotes the expansion coefficients, and {#2(,q)} denotes the multivariate

PC bases in terms of 77. By using the Askey scheme of orthogonal polynomial bases,

the above expansion exponentially converges in the L2 sense, which results in accurate
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approximations even with a relatively small number of terms.50 These basis functions

are orthogonal with respect to the probabilistic distribution jj(ij) of the random vector

,q, as shown in (2.8). Throughout this chapter, qi($q)'s are normalized such that

In practical computations, a PCE with an infinite number of terms (3.5) needs to

be truncated to a finite degree p,

Np

( ~ ) = i (77). (3.6)
i=O

The total number of terms in (3.6) is Np + 1 , (nE+p)! depending on the dimension

n of and the highest order p of the retained polynomials {si(?)}$_P'.

3.3.2 Galerkin projection for stochastic linear system

Let si denote the ith component of a vector s. The scalar s2(t, ij) is expressed as

Si (t, ) =s(t, n) + i (t, I),I

where
Np

si (t, 71) = sij M(t)#((1) (3.7)
j=0

is a truncated PCE with a degree p, and si(t, q) represents the truncation error.

Define

T

s 7(t, ) = [s(t,77) s2(t, I) ... -s,, (t, )]

S(t, ) = 1 (t,77) 2(t, l) - - ,, (t, 7) ,

Si siO0t si,1(t) .. '' si,Ny Mt

O>9 =#T (77) #T (77) .. OT -#(7)

SPCE (t S I (t) ... Sn, (t ,
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then the PCE approximation of the vector s(t, 77) can be written as

s(t, n) = s(t, n) + g(t, 'q) = SPCE M)(n) + ' (tI n). (3.8)

Let vec(-) represent the vectorization of a matrix, then define the PCE coefficient

vector

S(t) = vec (SPCE(t)) - (3-9)

With s representing x, u, y, or z, the PCE coefficient vectors X, U, Y, and Z are

defined as in (3.9).

In the Galerkin projection, the PCEs of x(t, i) and u(t, r7) in the form of (3.8)

are inserted into (3.1a) to give

ipEE~t#9= A9)PCEMO #( + Bv(n)w(t)

+ B(n)upCE Mt (n))+ x (t, n),

r x (t, X) =-(t, il) + A (77)R(t, n) + B (n) il(t, n).

(3.10)

(3.11)

Note that the high-order term rx(t, r) results from the PCE truncation errors R(t, j)

and ii(t, 71). Then, transposing (3.10) and multiplying on the left by P gives

( )#-T ()PCE(t ) XPCE(t)A T 7)

+ #()w T (t)BT (n) + #()q5T (T)uPCE(t)BT (1)

+ q()r T(t, q). (3.12)

With 9 representing the Kronecker product, vectorizing (3.12) results in

[Ix 0 (## T)]X = [A 0 (## T )IX + (Bw 0 #)w

+ [B 0 (9#4)]U + vec(#r ), (3.13)
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according to the following property of Kronecker product: 6

vec(ABC) = (CT 0 A)vec(B). (3.14)

The dependence on t and 71 in (3.13) is not explicitly expressed for the sake of brevity.

By taking the expectation with respect to 77 on both sides of (3.13), it follows that

the expanded system

X AX + Bww + BU + Rx(t), (3.15)

describes the dynamics of the PCE coefficient vector X, with

A = El{A 9 (##T)}, Bw = E fB o }, (3.16)

B E 7{B 9 (O T )}, Rx(t) = E, 7{vec (q5()rT(t,ij))}. (3.17)

The above equation is obtained since Ea7{In ®(g##T)} is an identity matrix according

to (2.8). Note that A, B, and B are time-invariant matrices, while Rx(t) is a time-

varying error term since the high-order term rx(t, 7)) is not orthogonal to the low-order

PC basis vector 0(,q).

Following similar procedures, the controlled output equation (3.1b), the measured

output equation (3.1c), the SOF controller (3.2), and the DOF controller (3.3) can

be transformed into

" expanded controlled output equation

Z = CzX + Dzww + DzU, (3.18)

" expanded measured output equation

Y = CX + Dww + RY(t), (3.19)
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" expanded SOF controller

U = ICY, (3.20)

" expanded DOF controller

K AKXK + BKY
(3.21)

U =CKXK + DKY

respectively, where

CZ = Cz 0 INp+l, DZw = D INP+1, (3.22)

Dz = Dz 9 INP+1, C =E{C 0 (T )} (3.23)

DW = E1{D, #}, K = K 9 INP+l, (3.24)

AK = AK 0 INp+1, BK = BK 0 INp+, (3.25)

CK CK 0 INp+1, DK DK 0 INp+1, (3.26)

Ry(t) represents the error term similar to Rx(t) in (3.15), as a result of the PCE

truncation errors. Note that (3.18), (3.20), and (3.21) are exact equations, because

the matrices in the controlled output equation (3.1b), the SOF controller (3.2), and

the DOF controller (3.3) do not depend on the uncertain parameters q, and then the

high-order terms of these equations are orthogonal to the low-order PC basis 4(I).

As the uncertain system (3.1) has general nonlinear uncertainty structure depend-

ing on q, the matrices A, B,, B, Cz, Dzw, Dz, C, and Dw defined in (3.16), (3.17),

(3.22), (3.23), and (3.24) are time-invariant, and can be obtained via numerical inte-

gration.50

3.3.3 Error analysis of PCE-approximated dynamics

Most existing PCE-based control design methods, e.g.,, 12 relied on the expanded

system (3.15)-(3.21) but neglected the error terms Rx(t) and Ry(t) therein. In this

case, even though the expanded system is stabilized, the closed-loop system might
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be unstable due to perturbations from the neglected error terms R"(t) and Ry(t), as

will be analyzed in the following.

Combining the expanded open-loop dynamics (3.15) and the expanded SOF con-

troller (3.20) gives the expanded closed-loop system

X = (A + MCC) X + (B + BKD) w

+ Rx(t) + BKARY(M (3.27)

Z = (Cz + DzKC) X + (DZw + DZKDW) w

+ DzKRY (t).

Since the error terms Rx(t) and Ry(t) are determined by the PCE truncation errors

R(t, r), il(t, r), and y(t, ij) which are dynamically coupled with the truncated PCE

x(t, 2), it is reasonable to introduce time-varying matrices F,(t) and 7y(t) such that

Rx (t) = Fx (t) X(t), Ry (t) = Ty (t) X(t).

Then the expanded closed-loop system (3.27) can be written as

A + BKC + Fx(t) + BK.Fy(t) BW + WD - (3.28)
CZ + DZ KCC + Dz JCFy (t ) Dzw + Dz]KDw

With similar procedures, the expanded closed-loop system under the expanded DOF

controller (3.21) is

A+DKC+Yx(t)+B'KFy(t) !3CK Bw+BDKDw

izw =3KC+BKTy(t) AK BKLw (3.29)

CZ+DZDKC+DZDKFy(t) DZCK DZw+DZDKw

In (3.28) and (3.29), the effect of the PCE truncation errors is described by the

multiplicative uncertainties T,(t)X and Ty(t)X. They would destabilize the closed-

loop system in certain cases if completely neglected. Note that Yx(t) and Fy(t) are

impossible to be quantified before the control design since the PCE truncation errors
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are determined by the closed-loop system dynamics. Still, the introduction of FT(t)

and Fy(t) in (3.28) and (3.29) allows a systematic robust control design in Sections

3.4.2 and 3.5.2 to explicitly account for the PCE truncation errors.

3.4 Static output-feedback synthesis using polyno-

mial chaos

In this section, two W2 synthesis methods are proposed for the SOF problem formu-

lated in Section 3.2, using the PCE-based expanded systems (3.15)-(3.20).

3.4.1 'W2 static output-feedback synthesis

For the above purpose, the following time-domain characterization of the N 2 norm is

adopted: 4 3 5 3

nw 00 '

11'T ( ) 2||Izk(t, 2)|dt : w(t) = ek6(t) ,(3.30)
k=1

where Zk(t, 71) denotes the output response to the impulse disturbance w(t) = ek 6 (t),

with 6(t) representing the unite impulse and ek the kth column of an identity matrix

Iw. Such a time-domain interpretation is related to the impulse-to-energy system

gain, and allows generalizing the ' 2 norm from linear time-invariant systems in the

frequency domain to time-varying systems, see Section 4.7 of. 4 3 By substituting (3.30)

into (3.4) and interchanging the order of expectation, summation and integration, the

cost function (3.4) is rewritten as

m nw j Eui{Izk(t, n) 11} dt : w(t) = ek6(t)}. (3.31)
k=1 

According to (3.8) and the property (3.14), the measured output z(t, q) can be
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written as

z(t, q) vec (Z4CE(t)4(q)

= (OT () 9 In) vec (ZCET

by neglecting the truncation error i(t, i). This leads to

E2,{z(t, q)|} ~vec (zCE(t)) T Wvec (PCE )

= vecT (ZPCE(t)) vec (ZPCE (t)) (3.32)

= IIZ(t)11|

since

W =E O { (qT)) IIn) ( 7) ) } =In,(Np+1)

as a result of (2.8) and the normalized PCE basis functions. From (3.32), the cost

function (3.31) can be approximated by

min { jZk(t)I12dt: w(t) = ek6(t) (3.33)
k=1

where Zk(t) is the PCE coefficient vector of the output response zk(t, 77) in (3.31). By

doing so, the original SOF problem (3.31) of minimizing the averaged W 2 norm with

respect to probabilistic uncertainties is transformed into a standard nominal W 2 SOF

problem (3.33) for the linear time-invariant expanded system (3.15)-(3.20), when the

error terms R,(t) and Ry(t) are neglected.

The problem (3.33) aims at minimizing the W 2 norm of the expanded closed-

loop system (3.28) from the disturbance w to the measured output Z. Note that

DZw + DZKCDw = 0 is required to obtain a finite W2 norm. Then it follows standard

procedures to convert (3.33) into the following optimization problem

min trace (,PWSB

s.t. P, > 0, ACPS + PAe + CsCzcs < 0
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where
Acs = A + 3KC, 13,cs = B + l3KTDw,

(3.34)
Cz,cs = Cz + TDzKC,

and the subscript "cs" indicates that all three matrices are for the closed-loop system

under SOF. This above problem can be equivalently transformed into

min trace (Q8)AS,QS,K

s.t. Q> 0 ) (.35
Bw + BKDw AS- (3.35)

He{(A + BKC)A} * 1
I< 0,

(Cz + Dz KC)As -I

using A, = Ps', and K defined in (3.24), according to the Schure complement lemma.

He{.} denotes the sum of a square matrix and its transpose. As in any standard

SOF problem, the second matrix inequality in (3.35) is a bilinear matrix inequality

(BMI) 46 due to the multiplication between A, and K as well as the special structure

of K = K 9 IN,+1- The BMI problem (3.35) can be solved by numerical solvers such

as PENBMI.25

The above 'L 2 synthesis problem extends the PCE-based linear quadratic regula-

tion method proposed in' 2 by including the additive stochastic disturbance w. It has

the same limitation as12 as a result of neglecting the PCE truncation errors, i.e., the

above synthesis might fail to stabilize the original dynamics (3.1a). Specifically, the

accuracy of the PCE approximation degrades over time, and the perturbation from

the neglected error terms R.(t) and Ry(t) in the closed-loop system (3.28) grows.

When the control action does not provide sufficient compensation for such a model-

plant mismatch, the system state would diverge. Few existing PCE-based control

designs explicitly address this problem. The commonly adopted remedy in literature

is the use of higher-order PCE approximations at the cost of larger computational

burden when solving (3.35). However, as the PCE degree p increases, the number of

PCE terms increases factorially, and then the involved computational burden rapidly
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grows and easily become prohibited.

3.4.2 72 guaranteed cost static output-feedback synthesis

In order to compensate for the error terms of the PCE-approximated system without

significantly increasing the PCE degree, the expanded closed-loop system (3.28) with

norm-bounded time-varying uncertainties |IFT(t)JJ < px and JJFy(t)I < py is consid-

ered, where 11-11 represents the spectral norm of a matrix. Tuning of these robustifying

parameters will be discussed in Section 3.4.3.

First, the expanded closed-loop system (3.28) is rewritten as

X, = AcsX + 9sws + B.w,csw

z = Cz csX + LSWS
(3.36)

LO'S = AX~t 0 187 pJXI

) Ay(t) py

with Acs, Bw,cs, and Cz,cs defined in (3.34), and

s =I BC] , Ls = 0 DzK] , (3.37)

A*(t) = , I|A(t)JI < 1, * presents x or y. (3.38)

With the same procedures in Section 3.4.1, the design objective (3.31) is transformed

into (3.33).

Theorem 1. The closed-loop system (3.36) is quadratically stable for all IIA(t) < 1

and IIAy(t)| I 1 if and only if there exist P, > 0 and a scalar p, > 0 such that

ACisp PsAes + ps(p+ 2) *

-Pj 
(3.39)

CT
+ zCS [Cz,cs Ls < 0.
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Suppose the above statement holds, then the 2 cost function (3.33) is upper bounded

by trace { BCsPsw,cs}.

Proof 1. According to the small gain theorem (Theorem 4.7.1 and Definition 4.7.3

in43), the system (3.36) is quadratically stable if and only if there exist P, > 0 such

that
Aa (Ps + PsA + (p2+p)I *1[ACS Cs++< 0. (3.40)

The above inequality is equivalent to

S + PsAcs + (p, + p )I

gsT P8 -I

+ E [Cz,cs Ls < 0,

for a sufficiently small c > 0. Dividing the left-hand side by e, and defining P =

Ce P8 > 0 and pa = 1 > 0, (3.39) is derived.

Define a quadratic Lyapunov function V(X) = XT PSX. By multiplying (3.39)

with [XT WIT to its left and with XT wT to its right, we have

V(X) < -Z T Z + 1 (w;Tws 8-4'T> ).

Let Xk(t), Zk(t), 4',k(t), and W,,k(t) denote the impulse responses to the unit-

impulse input w(t) = ek 6 (t) in the kth coordinate of w. Integrating both sides from

t = 0 to oo leads to

+Ips/ ||4s,k (t)| - IIus,k (t )H2 dt

j > Zk(t)| 1dt
b or

by using ||Jps,k (t)|11 > I I L,,k(t)||1 according to (3.38). Since the impulse response to
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the unit-impulse w(t) ek 6 (t) is equivalent to the initial state response under the

initial condition Xk(0) = B,cek, the upper bound of the -2 cost function (3.33) is

IZk(t)||2 dt < =VO(X(0)

k=O k=O

= Z(Bw,csek )TPsBw,csek
k=O

= trace{B ,CP8 BWcs}.

According to Theorem 1, the robust 'H 2 control synthesis aims at minimizing the

performance upper bound trace {B ,sP 8 wcs under the constraint (3.39), which can

be written as

min trace (Q.)
P8 ,K,pt

s.t. Q8> 0,
PS(Bw + BICDw) PS-

Ps

ICTL3TP

Cz +DEzCC

with p2 = P

between P, and

(3.41)

-psI * *
<0

0 -psI *

0 DzIC -I

p . Both inequalities in (3.41) are BMIs due to the multiplication

K as well as the structure of C = K 0 INp+1-

3.4.3 Post-analysis of stability and parameter tuning

Since the PCE-based control is actually affected by the uncertainty matrices F(t) and

Fy(t) in the closed-loop system, the norm bounds of these uncertainty matrices cannot

be quantified before a control law is designed. Even with the closed-loop dynamics

given, it is still extremely difficult, if not impossible, to verify these norm bounds

over an infinite time horizon. Due to the above reasons, the robustifying parameter

2 = may notp PX +pY ma not be verified, thus the controller generated by (3.41) doseno
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necessarily imply stability of the original system. However, it is clear that tuning

the robustifying parameter p involves trade-offs between stability and performance:

by setting a larger p, the resulting controller enhances stability in the presence of

larger PCE approximation errors, but it suffers from reduced performance due to the

conservative bound p.

Considering the above facts, a nominal PCE-based synthesis (3.35) is first com-

puted, and the resulting closed-loop system is analyzed for its stochastic stabil-

ity. Here, stochastic stability is tested by computing the probability that A(iq) +

B(T)KC(ij) is Hurwitz. Such a probabilistic stability analysis is used here, because

stochastic stability in the presence of random parameters allows a set of unstable

modes with measure zero, and it enables a probabilistic relaxation to the robust sta-

bility problem that is known to be NP-hard.4 8 The probabilistic stability analysis

proposed recently by15 is adopted, which is a semi-definite program relaxation using

moments of the uncertain parameters.

If the closed-loop system generated by (3.35) is stable with a probability higher

than a predefined level -y, a stabilizing PCE-based control is found. Otherwise, the

robust PCE-synthesis (3.41) is used, and a bisection algorithm is proposed to find

the smallest parameter p such that the resulting closed-loop system is stable with a

probability higher than -y, see Algorithm 1. Note that after m iterations, PU - PL

Algorithm 1 Bisection method for tuning p in (3.41)

Initialization: PL <- 0, pu +- po, where po > 0 ensures that the closed-loop system

resulted from (3.41) with p = po is stable with a probability higher than y

repeat

P -+ PL + PU)
if the closed-loop system resulted from (3.41) with p is stable with a probability

higher than y then

Pu P
else

PL P
end if

until Pu - PL <

2 -'po. Finite number of iterations are needed to achieve the predefined accuracy c.

Due to the use of the robustifying parameter p, certain conservativeness is intro-
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duced. Such conservatism can be reduced by moderately increasing the PCE order

p and accordingly reducing p. This is achieved at the cost of significantly higher

computational load, since the size of the synthesis problem grows factorially with the

PCE order.

3.5 Dynamic output-feedback synthesis using poly-

nomial chaos

In this section, BMI synthesis conditions are derived for the PCE-based 7-2 DOF

controller by reducing it to a SOF problem.

3.5.1 72 dynamic output-feedback synthesis

When neglecting the PCE truncation errors, the cost function (3.33) is considered in

the DOF synthesis for the expanded closed-loop system (3.29), i.e.,

KZ+Z'Xe Dzw+T)-z/)W 1

.. 1(3.42)
Acd Bw,cd

Cz,cd 0

where
_ A 0 _ BW 8 0

A= ,6 Bw8,B
0 0 0 0 I

z =Cz o], 0 zw DZw, Pz [Dz 01, (3.43)

C 0 DW DK CK
C = ,Dw= ,K=

-II [ BK AK

AK, BK, CK, DK are defined in (3.25) and (3.26), the subscript "cd" indicates the

closed-loop system matrices under DOF, and bzw + zkw = 0 is required to obtain

a finite 72 norm. Comparing (3.42) with (3.28), it can be seen that the above DOF
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synthesis problem is reducible to the SOF synthesis problem. Therefore, similarly to

(3.35), the DOF synthesis problem is formulated as

min _ trace (Qd)
Ad,Qd,!C

s.t. Qd> 0,st[w +W 'zw Ad1  (3.44)

[HeW+; d} *] <0
Hef A +BICCAdl < 0,

(Cz + Dz IC) Ad -I

using notations in (3.42) and (3.43). The second inequality in (3.44) is a BMI with

respect to the decision variables. In the conventioal output-feedback synthesis, the

additional structure in a full-order DOF controller allows the use of congruence trans-

formation and change of variables to obtain a LMI synthesis problem. 42 The same

strategy, however, does not work for the above PCE-based DOF synthesis conditions

using the expanded controller (3.21) because of the special structure of controller

parameters as shown in (3.25) and (3.26). Therefore, a BMI solver is needed for

(3.44).

3.5.2 'R2 guaranteed cost dynamic output-feedback synthesis

By following Section 3.4.2, the effect of PCE truncation errors captured by F.(t)

and Ty(t) in (3.29) is regarded as time-varying norm-bounded uncertainties, i.e.,

|IFx(t)I < px and flFy(t)jj < py. With the notations in (3.43), the expanded closed-

loop dynamics (3.29) and the expanded output equations (3.18)-(3.19) can be rewrit-

ten as

Xd = AcdXd + gdwd + 13w,cdW

Z = CZ,c X -ECd d
(3.45)

Ax~t 0 pI Xd

0 =A A0(t) 'Odd pyI 0
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with Xd [XT XTK , Acd, Bw,cd, and CZ,cd defined in (3.42), Ax and Ay defined

in (3.38), and

!d[ I BDK , = [d DZDK]. (3.46)
0 BK

By directly applying Theorem I to the system (3.45), the robust 12 DOF synthesis

is formulated as as

min _ trace (Qd)
Pd,QdAC

s.t. Qd> 0,
[Pd (Sw + 3Tzw) Pd] (3.47)

He{Pd(A +,BC)}+ p2  * *1
g9TPd -PdI * < 0

Cz + zke d -]

with 4d and Ld defined in (3.46), and p2  pX + p .

3.6 Comparison with Monte-Carlo sampling based

72 output-feedback synthesis

By following 4 and, 45 a Monte-Carlo based method is briefly reviewed here, to compare

with the PCE-based synthesis proposed in the previous sections. For the sake of

brevity, only the SOF case is discussed, and similar conclusions are applicable to the

DOF case.

When applying the standard W2 synthesis conditions, the averaged N 2 SOF prob-

lem stated in Section 3.2 can be formulated as

min E, {trace (Bc(rj)P(j)Bwc())}
P(),K(3.48)

S.t. P(TI) > 0, E' I{x T(t, n)T(q)x(t, n)} < 0,
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where P(ij) E Rfl X - is a predefined function of 17, and

Ac A(rq) + B(n)KC(i),

Bw,c () Bw(n) + B(n)KDw(n),

C2,c(, ) Cz + DzKC(77),

T(n) A' (n)P(s() + P(n)Ac (n) + Cc (n)C,( (3.49)

The Monte-Carlo-simulation-based approach uses a finite number of realizations of q

to recast the above problem as

1 N

min - trace(Qj) (3.50a)
Al,...,AN, N .

Qi,.,QN,K 1

s.t.+ A()A < 0, (3.50b)
Cz,c(i) Ai -I

Q~> 0, Ai > 0, 1i= 1,*o --N,
BWc(71) Ai

where {77} are sampled from the probability distribution of q, N is the number of

samples, and each pair of Ai and Qj is applied to a different sample. The inequalities

in (3.50) are converted from B < Qi and T(g) < 0 by using A=

P7, with T(qi) defined in (3.49).

To achieve a satisfactory approximation to the original problem (3.48), a large

number of samples are necessary, as analyzed in Sections 8.3 and 10.3 of. 45 Moreover,

the solution of (3.50) is actually random due to its dependence on random samples. A

large sample size is also necessary so that the variance of the solution is reduced to a

satisfactory level. This leads to heavy computational load when solving the problem

(3.50), as illustrated by a numerical example in.4 In contrast, the PCE approximation

exponentially converges with its order increasing, thus usually a relatively small order

is needed. As a result, solving the PCE-based synthesis problems derived in Sections

3.4 and 3.5 can be much more efficient. Even when a small PCE order results in

57



PCE truncation errors to be accounted for, not only the PCE order p but also the

robustifying parameter p introduced in Sections 3.4.2 and 3.5.2 are available to en-

hance our proposed PCE-based design without significantly increasing computational

complexity.

Another limitation of the Monte-Carlo-simulation-based approach lies in replacing

the stochastic stability condition E, {xT(t, TI)T(,q)x(t, I)} < 0 in (3.48) by (3.50b).

This is conservative, because (3.50b) converges to a worst-case robust stability con-

straint as the sample size increases.

3.7 Case Study

In this section, both a numerical example and a continuous pharmaceutical manu-

facturing example are adopted to illustrate the efficacy of the proposed PCE-based

W2 control compared to the standard nominal -2 control and the Monte-Carlo based

approach in Section 3.6. Due to the page limit, only the results of SOF controls are

presented.

3.7.1 A numerical example

Consider the system (3.1) whose parameters are as below:

[ 0.2 + 0.2 3 -0.4 1 I [0.2
A(()=, Bw=L, B= , I

0.1 0.5 1 0.2

Cz =12, Dzw= DZ (3.51)
0 v/ I

0.1 0.1 0
C=- ,DW= ,

0.3 0.4 0

with the uncertain parameter ( uniformly distributed over the interval [-1, 1].

Four (2 SOF control synthesis methods are implemented for comparisons: (i)

standard nominal control synthesis; (ii) worst-case robust control synthesis; (iii)
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Monte-Carlo sampling based control synthesis; (iv) our proposed PCE-based control

synthesis. The standard nominal controller is KnO = [270.4, -87.20] for the nominal

system with = 0. The worst-case guaranteed cost controller Kw, = [607.8, -188.5]

accounts for the polytopic uncertainty 3 E [-1,1] in (3.51) by solving13

min trace(Q)
P,Q,K

He{P(A( j) + BKC)}
s.t. < 0, Z = 1, 2,

CZc -I

Q > 0,
P(Bw + BKDw) P

with -1 and 2 = 1, respectively. To cope with the probabilistic uncertain

parameter (, the PCE-based control synthesis (3.35) is applied with different PCE

orders. As illustrated in Figure 3-1, the two components of the controller converge to

KPC = [310.6, -98.50] as the PCE order increases to 10. The Monte-Carlo sampling-

based formulation (3.50) converges to Kmc = [310.9, -98.58] for N = 104 samples, as

shown in Figure 3-2. Figure 3-3 shows how the problem size in terms of the number

of variables changes with the number of Monte-Carlo samples in (a) and the PCE

order (b). The PCE-based control synthesis has a significantly reduced number of

variables, approximately by two orders of magnitude.

In Figure 3-4(a), the standard nominal control fails to stabilize the system when

the uncertain parameter becomes close to 1. Both the worst-case robust control

and the PCE-based control with a 10th-order PCE succeed in stabilizing the system

for all possible parametric uncertainties. It can be also seen that although the PCE-

based control gives a slightly larger worst-case performance bound for = 1, it indeed

achieves a smaller averaged performance than the worst-case robust control.

With the same PCE order as above, the robustness to PCE truncation errors is

further investigated by introducing a robustifying parameter p. When setting p = 0,

p = 0.75 x 10 4 , and p = 1.5 x 10- 3 , the robust PCE-based control synthesis (3.41)

gives almost the same controller as that from solving (3.35), Kpc = [353.0, -111.0],
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and KPC = [432.9, -134.7], respectively. As shown in Figure 3-4(b), the PCE-based

control with p = 0.75 x 10-4 achieves both a smaller worst-case performance bound

and a better averaged performance than that with p = 0. A larger p, i.e., p =

1.5 x 10-1 for this example, further reduces the worst-case performance bound while

increases the '-2 norm for 's far from 1.

3.7.2 A continuous pharmaceutical manufacturing example

As illustrated in Figure 3-5, a continuous stirred-tank reactor (CSTR) in a pharma-

ceutical manufacturing process includes four reactions among five species A, B, C,

D, and E. The CSTR has two inlet flows of reagents A and B, whose flow rates are

q, = 1.1 L/sec and q2 =1 L/sec, respectively. The control objective is to produce the

pharmaceutical D at a desired concentration CD,ref by manipulating the inlet concen-

tration CA,in of reagent A as the control input. The inlet concentration CB,in= 3.5 M

of reagent B is much larger than CA,in. Thus the reactor concentration C of reagent

B remains approximately constant, i.e., CB ~ CB,in. According to the kinetics of

reactions in, 38 the system dynamics relevant to the above setpoint tracking problem

is

d CA '(k+k2)CB _-l-q2 0 CA

d CD - kCn k4C3 2 -1 CD2
- . . (3.52)

[q1

+ V (CA,in + ACA,in),
0

where V = 5 L is the reactor volume, ACA,in denotes noises in the input channel,

and the reaction rates k 3 and k4 are 3.264 x 10-3 and 0.01591 sec- 1 M- 1 , respectively.

The uncertain reaction rates k, and k 2 are uniformly distributed over [0.1515, 1.001]

and [0.03023,1.065] sec- 1 M-1, respectively, and have their nominal values of 0.5763

and 0.5476 sec- 1 M- 1, respectively. The available measured output includes only the

concentration CD of reagent D, i.e., CDmeas = CD + ACD, with ACD representing

the measurement noise.

In order to achieve zero set-point tracking error, a proportional integral control
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law

CAn = Kp (CD,meas - CD,ref) + Kir

is used, with / CD,meas - CD,ref. This leads to the closed-loop system

d A II q Kpq 1  Kjq 1 1CA
[C D  k2CB -k4CIB- qQ 2  0 CD
d- 0 1 V 0 -

[1 Kpq1 Kpq1

V V ICA,in

+ 0 0 + 0 CD,ref-
] ACD [

The control synthesis problem aims at minimizing the 7- 2-norm of the closed-loop

system from [ACAin ACDIT to

Z (CD - CD,ref) + CA,in

0 WU

0 W, 0 we
CD -CD,ref,

0 [ wKp wKJ [ 1  wKp j

where w, = 1 and wn = 3 are the weights for the setpoint tracking error and the

penalty on the control effort.

The standard nominal W2 control synthesis gives [Kp, K1] = [-34.52, -9.265].

Accounting for the probabilistic uncertain reaction rates k, and k 2 are considered,

the PCE-based W2 control synthesis obtains [Kp, K1] = [-40.85, -12.87], when the

PCE order and the robustifying parameter p are set to 2 and 0, respectively. As

shown in Figure 3-6, compared to the nominal control, the PCE-based control results

in better distributions of W2 norm for small values of k2 without sacrificing the -2-

norm performance for large values of k2 . Note that only p = 0 is used for this

particular example, because it has already ensured sufficiently fast convergence and
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negligible PCE truncation errors. In this case, a positive p would significantly reduce

the 72 performance, although it increases the stability margin.

3.8 'Wt static output-feedback control

This section extends -2 results to the W,, control objective, which is more challenging

to handle theoretically than the -2 control objective. This mathematical framework

is the first theory and algorithms that have been developed for the W"' control ob-

jective with rigorous closed-loop stability guarantees. The theoretical derivation of

the optimization over bilinear matrix inequalities for W-4-optimal control requires a

potentially conservative step compared to the 'H 2 -optimal control derivation, but is

observed to generate similarly good performance in a case study. The same approach

to ensure closed-loop stability for the 712 control objective applies to the 'h" control

objective.

3.8.1 PCE expanded system

Recall that the ordinary differential-algebraic equations for the vectors of polynomial

chaos (PC) coefficients for the state x, controlled output z, and measured output y

including the effects of truncation errors Rx(t) and Ry(t) are

X = AX + Bww + BU + Rx(t),

Z = CzX + Dzww + DzU, (3.53)

Y = CX + Dww + RY(t),

where the truncation errors are described by norm-bounded time-domain perturba-

tions as

Rx(t) = pxAx(t)X, Ry(t) = pyAy(t)X, I|Ax(t)|| < 1, IAy (t)JI < 1. (3.54)

Here this set of equations is called the PCE expanded system.
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The dependency of the state equation for x and the output equation for y on the

uncertain parameters leads to truncation errors in the associated PC coefficients. The

vector z is the controlled output related to control specifications, so the matrices in

z = Cx + Dww + Dzu do not depend on any uncertain parameters. As such, the

equation for the PC coefficients for z in (3.53) does not have any truncation error.

3.8.2 Problem formulation

The optimal control problem for minimizing the expected value of the 'R" norm can

be written as

min 2
K,-y2  

(3.55)

s.t. Eg {J IZ(t, 71)|| ~ }1 < _Y21|W(t) II2

Using IIZ(t) 12[O, to approximate E I|z(t, q)11 this optimization can be

approximated by

min 72
K,y2  

(3.56)

S. t. |Z (t) 11 2~ < _ 2|w(t)11

so the PCE expanded system (3.53) can be used for control synthesis. Due to the

PCE truncation errors, | Z(t)112[O,) is actually smaller than E { I1z(t, n)1 2 ,

thus the resulting L 2-induced norm can be larger than Ho-norm of the expanded

system, i.e., -y in (3.56).

3.8.3 PCE-based control with constant bounds on uncertainty

The values of px and py in (3.54) are specified as constants.

With the control law u(t, ) Ky(t, ) (i.e.,U = KY), the closed-loop PCE

expanded system is

X = (A + BKC + pxAx(t) + pyB3KAy)X + (Bw + BkDw)w, (3.57)

Z = (Cz + DzCC + pyDzKAy)X + (DzW + DzIKDW)w,
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Define the matrices

Ac = A + B/CC + pA,(t) + pyBIA3,

BW,c = Bw + BCD,
(3.58)

Cz,c = Cz + DzICC + PyDZ/kAy,

Dzw,c = Dzw + DzCDw.

According to Definition 2 of,16 the system (3.57) is quadratically stable with an

Hoo-norm bound -y if

2 Dzw,c Dzw,c > 0

PA + ATP + CzcCZ,c + (CzcDzw,c + PBw,c)(721 - Dzw cDzw,c)-(DzT Czc + B3,cP) < 0.
(3.59)

This condition is equivalent to

PA, + ACTp

B ,cP

Cz,c

PBwc CT 1
,C Z,c

-21 DT < 0.

Dzwc -I

This linear matrix inequality forms the basis for a stability test for the closed-loop

uncertain system in terms of the matrices of the PCE expanded system.

Theorem 2. For the uncertainties in (3.54) with constant px and py, the inequality

(3.60) holds if

He{P(A + BCC)} + (,Tx + y)I

(3w + BCDw)Tp

Cz + DzkC

pxP

PyCTBTP

P(Bw + BK3Dw)

-7 21

Dzw + Dz/CDw

0

0

(Cz + DzCC)T

(DzW + DzCDW)T

-I

0

pxP pyPBC

0 0

0 pyDz IC

- I 0

0 -TyI

(3.61)
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Proof. Define yp, = A.(t)X, py = Ay(t)X, and

He{P (A + B3CC) }

p (l3B + BKD)TP

Cz+ DzCc

X

w ,(3.60) implies that

-0

(Cz + DzICC)T

(Dzw + DzICDw) T

-I j
(3.62)

With the norm-bounded uncertainties in (3.54) and the definitions in (3.58), for ar-

bitrary vector x =

XTPX + 2pXTPpx + 2pyXTPBKpy + 2py bTDzICWy < 0 (3.63)

for all (p, and <y such that 4TWp < XTX and pTpY < XTX. According to the

S-procedure, this inequality holds if there exist rx > 0 and Ty > 0 such that

X PX+2pxXTPpx+2pyXTPB ky+2pyOTDZICpY-Tx(CTCpXXXTX) < 0

(3.64)

holds for arbitrary vector [XT wT T pT YT].

(3.61).

This condition is equivalent to

D-

A suboptimal solution to the optimal control problem (3.56) is given by

(3.65)min y 2 s.t. (3.61)
K,P,-y

3.8.4 PCE-based guaranteed cost control

Let V(t, q) = xT (t, q)Qx(t, 1) be a Lyapunov function and let x(t, i) = R(t, 7) +

R(t, ri), where k(t, 17) is the PCE approximation and R(t, i) is the PCE truncation

error.

The inequality E{ Iz(t,
such that

En dV (t, 17)
at

2)I[,) [0
2

0w(t)[) holds if there exists Q > 0

< -Eq{z(t, 7)Tz(t, 77)} + <2 wT(t)w(t). (3.66)
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This equality forms the basis for deriving an upper bound on the closed-loop ',,,

norm (3.55) for the uncertain system.

Theorem 3. The inequality (3.66) holds if there exists a positive-definite matrix Q

such that

Ef{1T(t, ?)Hi(pi, P2, ?)k(t, :) + 2kT(t, n)L1(n)w(t) + wT(t)Si()w(t)} < 0

(3.67)

holds for positive scalars p1 and P2 satisfying

E 7{ RT(t, 1) 11(,q) R(t, 71) } < p1E,{ IrT(t , 7) H(77):k(t, 77) },

E 7 R T (t, 7)7 ) T x( ) i , ]) } : p2E(t, 7) ]p T (17) F x ( ,r): , ) ,

where

H1(pi, P2, 7) = 2(1 + pi)HI() + p2 F (q)FxQr),

iTr(n) = T(7)rw(1),

-(n) = r T (F7)w(1) + S(ij),

1(n) = A T (7)Q + QAc(q) + CTC()C

Fx~~n) Q r(n
( ),c 7(r ) =[Czc~))l

B ,c(1)

Dzw,c(7)-

(3.68)

(3.69)

(3.70)

S(n) = D T c(n)DzWC(?) - 721

Proof. Substituting

dV(t, 77) = (Ac(7)x(t, 7) + BWc(7)W(t))T
dt

Qx(t, 17 )+xT(t, i)Q (Ac(rl)x(t, n) + Bw,c (n)w(t))

(3.71)

into (3.66) gives

Ef{xT (t, 17 )H(g7 )x(t, 77) + 2xT (t, 17))LT (7)w(77)w(t) + wT(t)S(n)w(t) } < 0. (3.72)
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Using (3.68) and (3.69), and

xT (t, )(1) X(t, 71) = (R (t, q) + R (t, 17) )I T (n) (R (t, n) + R (t, n) )

< 2k T (t, n)H(I)k(t, TI) + 2RT(t, 7)H(77)k(t, 77),

2xT(t, ?7)F(,T(I)F (g7)w(t) = 2RT(t, i)FiT(i)Fw(i)w(t) + 2:iT(t, ij)FT (7')Fw(7)w(t)

<2R'(t, gq)FT(?)F(n)w(t) + k' (t, i)F ()L'(Q)k(t, i)

+ (t) T (n)rw(n)w(t),
(3.73)

the inequality (3.66), or equivalently (3.72), is satisfied if (3.67) holds. E

3.8.5 A synthesis condition

Now that stability and performance conditions have been derived for the closed-loop

uncertain system, a synthesis condition can be derived. Let

Np

R(t, TI) = js(t),Dj(n) = AT (gX(t),
j=0

A T (7) = oQi)'nx Ii(z)I,, ... e Npq)I](3.74)

WNp 140(77) 'D1(n ' D Np(

The next result provides expressions for the expected value of various sets of matrices

needed in further analysis.

Proposition 4. Let K be a real matrix and A(7), B(gr), and C(7j) be matrices with

polynomial dependence on rI, which can be expressed as S(77) = ENs Si4bit), where

S represents A, B, or C, and p, is the degree of S(77). All matrices in the below

equations have compatible dimensions. The expected value of two sets of matrices can

be computed from PCE coefficients:

(i) E,{ A(i)KB(7)} = AR, where A A 1 A 2 ... ANIa fT [BT B T ... B ,

and k = 1Na xNpb ® K, lmxn represents a m x n-matrix whose entries are all

1;
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(ii) E,f{A(?)KC(?/)K T B(i7)} = Ak1WCTf, where k1 = 1
Npa xNpa 9 K, R2

1Np, xNPb O K, Tj = Eq {C(q) Di (rq) (1)}, and

To,,0

-TNpa,0

... TONPb

... TNP ,NPb

Proof. (i)

N]a - ~Npb

E,{A (q)KB(r)} = EB Ai (1) K E Bj bj (7)
i=O . j=O

(Npa NPb Np. Npb

E 3 I>AiKBjAbi(>),j(b) = 33 AjKB
i=0 j=0 i=0 j=0

(3.75)

(ii)

(~Npa [NPb
E, I AijA i(i)J KC(i)K T  :0Bj

i=0 .j=

Na NPb

En Yj:AjK [C(n)4(>)(I,(n)] KBj
i=0 j=0

Nya NPb

=: E AiKE, {C(i)<Dj(7)<Dy (?j)} KBj
i=0 j=0

Npa NPb

= >3E Ai KTi,j KBj
i=0 j=0

}(n)I}

(3.76)

ED
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The next set of theoretical results requires a series of definitions:

A1= E,{A.(n)A(q)A T (n)},

Bw,= E, {Ax(n)Bw()},

BT, 2Bw,2 = E7{B T (n) Bw(q)}

= Eg{B T (7) B((),

C1 = E, {Ax (n) C (n) AX}

C2 = E, {Ax (q)C (1)}1,

I 17 fgB 9B9} (3.77)
C -,1 = diag (Cx, - , Cz), Dz,1 = diag (D2, - -, Dz),

'Dw, = diag (Dzw, -.. , ,
NPb Np,

Ax(il)B(,q) = gC(l)A T (TI) = D aDi(n),

L32 = [h - fBNPb , C3 = ''N ',

K1 = 1NPbxNpc 9 K, K2 = IN, & K, K3 = IN K,

MTM1 =NpxNp, 0 (DI Dz), M2- 3 = 0Npc xNp. 9 (DI Dz)
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Proposition 4 and (3.70) imply that we have

E17{fAx (7) 1I11(pi, P2, n) A' (n)}

= E7 {2(1 + pi)Ax(77) (A' (n)Q + QAc(n) + CTC(n)C.,c(?)) AT (n)

+p 2Ax(q) (Q 2 + CTC(7)Cz,c(rj)) AT (q)}

E1 {2(1 + pi)Ax (7) (AT (77)Q + QAc(7)) A T (1)

+(2 + 2pi + P2)Ax(n)CZc C )(n) + P2Ax( )QA(

E7 12(1 + pi)A x(7) (A T (q)Q + QA(7j)) Ax(q)

+ 2(1 + pi)Ax(77) (CT (7)K TBT(7q)Q + QB(q)KC(n)) A T (n)

+ (2 + 2pi + P2)Ax() C T CzA T (7)

+ (2 + 2p, + p2)A x(,) (CTDKC(77) + CT (7)K TD T Cz) A T()

+(2 + 2 p1 + p2)Ax(,q)CT (,)K TDTDzKC(ir)AT (,q) + p2Ax()Q 2A T (T)}

E7 {2(1+ p ) (Ax(7q)AT (i)AT(,) Q + QAx('q)A(7)AT (n))

+ 2(1 + pi) (A x (1)CT (n)K TB T (i)A T (q) Q + QA x(q)B(n)KC(7r)A T (n))

+ (2 + 2 pi + p2)Ax (q)CT CA T (n)

+ (2 + 2p1 + p2)A x() (CTDzKC(ii) + CT (7)K TD T Cz) AI (T)

+(2 + 2p, + p2 )Ax (n)CT (,)K TD TDzKC(7)A T(q) + p2Ax(q)Q 2AIT()7)}

- 2(1 + pi) (ATQ + QA1 + C3K TB2 Q + QL32 1CI) p2 Q2

+ (2 + 2p, + P2) (CZ1 ,C,1 + C ki Dz,1K 2 C1 + C7D2 ,C 1 + C3K3JMTM1 3C3 )
(3.78)
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= E1{Ax(i) (QB ,Wc(7) + CTC (q)Dwz,c (7))

= E1 {Ax(i) (QBw(?,) + QB(?)KDw + CITDw + CTDzKDW

+-CT(i)KTDI Dzw + CT(?)KTDZIDzKDw)}

= En {QAx(l)Bw(l) + QAx(?)B(n)KDw + Ax(7j)CT Dzw (3.79)

+ Ax()CT-DzKDw + Ax(7i)CT (i)KTDITDzw

+ Ax(7l)CT (7)KTIDTDzKDw}

QBw,1 + QBw, 1KD T + E7{Ax(77)}CID. + ECT

+ C2KT D Dzw + C2TK TD DzKDW

E,{S1(i)} = E,{BwjC(i)B,c(?) + - 211

= E 7 {BT (7)Bw(71) + He{B T ()B(,r)KDw} + DTK T BT (,)B(77)KD,

+2DZWDzw + 2He{DIWDzKDw} + 2D KTDT DzKDw - 21

=3, 2Bw,2 + He{SKDw} + D T K TBTS1KDw

+ 2DZWDzw + 2He{DZWDzKDw} + 2D K DIDzKDw - ?21

(3.80)

This derivation can be easily extended to the parameter-dependent Lyapunov

function: V(t, ij) = xT(t, n)Q(n)x(t, 71) with Q(q) = Eo QJ.D2(7), Q, > 0.

This guaranteed cost formulation avoids using Galerkin projection, which avoids

the limitation of using Galerkin projection for long-term uncertainty propagation.

3.8.6 PCE-based control with decaying bounds on uncertainty

As the system states converge to zero, the truncated PCEs better approximate the

original states, thus the truncation errors also converge to zero. Therefore, the above

analysis that assumes that the truncation error is bounded by a constant can be

conservative when the closed-loop system drives the states to a steady state. The

decaying trunctation errors can be addressed by assuming that the robustifying pa-

rameters decay over time, i.e., Px = oxpx and ,y = aypy with ax < 0 and oy < 0.
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Consider the control law u = (K + pxKx + pyKy)y whose PCE approximation

is U = (C + pxCx + py/Cy)Y where px(O), ax, py(O), and ay are tuning parameters.

Given these tuning parameters, px(t) and py(t) are available to the controller.

The closed-loop expanded system is

X = AX + Bw,cw,

X = aXPX, (3.81)

Z = Cz,cX + Dzw'cw,

with definitions

Ac = A + BCC + pxBkC + pyl3yC + pyxA(t) + pyB]CAy + pxpy BKxAy + py2B YA,

B.,c = Bw + BKCDw,

Cz,c = Cz + Dz/kC + pyDzkAKy,

Dzw,c = Dzw + DzKDw.

(3.82)

The theoretical analysis for constant robustifying parameters can be extended to this

more complicated system.

3.9 Case Study

Consider a linear system, the system matrices of which are

A--5.01 + 5 0 1 =3 1 B

0 -111

0 0 1 0
Dz = I Dzw = I C = (3.83)

1 0 0 0.1

1 0 0.2

0 1 0.2
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for which is uniformly distributed between -1 and 1. As shown in Fig. 3-7, the W...

norm peaks at = 0.611, because one of two eigenvalues of the closed-loop system

matrix A is 0.0043.

PCE-based W,,-norm minimization discussed in the previous section addresses

this sensitivity to the value of . As shown in Fig. 3-8, the maximum value of 74-

norm from SOF controller optimized by PCE-based method is much smaller than

that by nominal optimization. Furthermore, as p, increases, the peak value of 71,,

norm decreases near ( = 1; however, for other values of , the W" norm does increase

as p, increases.

3.10 Conclusions

Polynomial chaos based -2 static and dynamic output-feedback control synthesis

methods are presented for systems subject to time-invariant probabilistic parametric

uncertainties and white noises. The effect of polynomial chaos expansion trunca-

tion errors is captured by a time-varying norm-bounded uncertainty, and explicitly

taken into account by adopting a guaranteed cost control approach. This strategy

enforces the closed-loop stability, which may not be achieved by existing PCE-based

controls due to neglecting these truncation errors. In contrast to nominal control and

worst-case robust control, the proposed PCE-based guaranteed cost synthesis allows

a trade-off between the worst-case performance bound and the averaged performance

by tuning the introduced robustifying parameter, as illustrated by the simulation

results.
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Chapter 4

Stochastic Model Predictive Control

4.1 Introduction

Chapter 3 derived a rigorous theoretical framework for the optimal control of lin-

ear time-invariant systems with time-invariant parameters described by probability

distribution functions. These optimal control formulations assume that the manipu-

lated variables are not constrained in magnitude or rate. Chemical process systems

typically operate in the presence of constraints on the manipulated variables, and

the purpose of this chapter is to derive an optimal control formulation that explictly

takes both time-invariant probabilistic parameters and actuator magnitude and rate

constraints into account.

This chapter builds a PCE-based model predictive control (MPC) formulation

that combines the fast MPC formulation of Joel A. Paulson with the optimal control

formulation from Chapter 3. This integated algorithm combines the strengths of

both optimal control formulations to have the same low online computational cost of

Joel Paulson's algorithm while having the closed-loop optimality of the algorithms in

Chapter 3 when the constraints are not active.

A statement of the online optimal control problem is followed by its derivation

and application in a case study. To simplify the presentation, the process states are

assumed to be measured.
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4.2 Background

Consider the linear time-invariant system

. = Ax + Bu. (4.1)

The nominal optimization objective J for deriving the control inputs Au for this

system is

p c-1

min J = min SIxS.P.(k + i) - k(k + i)1 -+ rE IAu(k + i)II2 , (4.2)
Au(k) Au(k) 2 i=O

S.t. Xmin < i < Xmax

Umin < U < Umax (4-3)

AUmin < Au < AUmax.

for which

1. Au(k) = [Au(k), Au(k + 1), Au(k + 2),.. . , Au(k + c - 1)]T is the vector of

control inputs of length c that minimizes the objective function J in (4.2);

2. p is the prediction horizon, which is the number of predicted states taken into

consideration when computing the objective function J;

3. xs-P.(k + i) = [xs'p'(k + i), xs*4(k + i),.. . ,x (k + i)]T is the set point for the

measured state vector x, which is the desired value for the measured state vector

to reach at k + i instant;

4. k is the sampling instant E Z, is related to real time t by t = kTs, for which Ts

denotes the sampling time;

5. r is the relative importance of the cost caused by deviation from the state set

point to that caused by changes in control input;

6. c is the control horizon, which is the number of changes in control input taken

into consideration when computing the objective function J;
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7. Xmin and xmax are the lower and upper bounds, respectively, for the predicted

state vector x;

8. Umin and umax are the lower and upper bounds, respectively, for the control

input;

9. Aumin and Aumax are the lower and upper bounds, respectively, for the change

in control input.

As in Chapter 3, the optimal control problem that takes time-invariant probabilistic

parameters into account is the same as in except that the optimal control objective

is replaced by its expected value with respect to the probabilistic parameters.

A central issue that should be addressed to solve Problem 4.2 or its expected value

extension is to predict the future state vector given some control input. This chapter

uses the dynamic matrix control (DMC) formulation for making this prediction, which

is described in the next section.

4.3 Background on Dynamic Matrix Control

DMC is a model predictive control formulation for linear time-invariant systems in

which the model is formulated in terms of either a finite impulse response or finite

step response. The steps in the derivation of DMC are reviewed here, to provide

background for the formulation of a PCE-based extension to MPC presented later in

this chapter.

4.3.1 Finite impulse response

Consider an impulse input,

U = [1, 0, 0,...,0O]T,

i.e. u(O) = 1 and u(j) = 0 for j > 0. The values of the process output for such an

input for a finite number of future time instances is called the finite impulse response,
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with each value represented by hi(j) where j is the time index and i is the index for

the state variable. These values can be collected into a matrix that lists the current

and future values of all states for all future time as

0

0

0

hi(1)

h2 (1)

hn (1)

... hi (n)

... h2(n)

... hnx(n)

T

0,0,...

0,0,...

for which nx denotes the number of system

h is

hi(1) ...

h2(1) ...

hnx(1)

for which two assumptions are made:

states. The finite impulse response matrix

T

(1) the system does not immediately react to the impulse input, i.e. h(0) = 0;

(2) the system decays to its original state after n instants, i.e. h(n+1) = h(n+2) =

-.- = 0 (Figure 4-1).

To relate the finite impulse response of a system to the response of the system to any

design input, the vector of manipulated variables at time t

u(t) = [u(0), u(1), u(2), u(3), . .]T

can be re-written as

u(t) = [1,0, 0,... ]u(0) + [0,1,0,.. .]Tu(1) + .... (4.4)
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Therefore, the general expression for the system states

Xi(O)

X2(0)

Xnx(0)

X,(1)

X2(1)

Xn,(1)

xi(2)

X2(2)

Xn,(2)

based on a given design input is

0 hi(1)

h2 (1)

hnx(1)

0 hi(1)

0 h2 (1)

0 hnx(1)

0 hi(1)

0 h2 (1)

0 hnx(1)

hi(1)u(0)

h2(1)u(0)

hn. (1)u(0)

... hi(n) 0,0,...

h2 (n) 0,0,...

hnx(n) 0,0,..

hi(n) 0,..

... h2 (n) 0,..

hi (n) 0,0,..

h2(n) 0,0,..

h2,((n) 0,0,..

hi(2)u(0) + hi(1)u(1)

h2(2)u(0) + h2 (1)U(1)

T

u(0)

T

u(1)

T

u(2)

T

In other words,

n

xj(k) h,(i)u(k - i).
i= 1
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4.3.2 Finite step response

For a step design input,

U = [1, 1, .. ]T, (4.5)

the current and future values of the step response cooefficients can be collected into

the matrix

T

0

0

0

sl(1) ... s1(n) s1(n) ...

S2(1) ... S2(n) S2(n) ...

sn., (1) ... sn,(n) sn. (n) ...

for which two assumptions are made:

(1) the system does not immediately react to the step input, i.e. s(0) 0;

(2) the system reaches steady state after n instants, i.e. s(n + 1) = s(n + 2) -

s(oo) (Figure 4-2).

Since (4.5) can be rewritten as (4.4) with

u(0) = u(1) = u(2) =---=1,
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the matrix of finite step responses is related to the matrix of finite impulse responses

by

T

0

0

0

hi(1) hi(2)+hi(1)

h2 (1) h2(2) + h2 (1)

hnx(l) hnx(2) +hn,(l)

k

s s(k) = h(i)
i=1

h(k) =s(k) - s(k -- 1)

(4.6)

(4.7)

On the other hand, any design input

u = [u(0), u(1), u(2), ... ]T

can be re-written in terms of step inputs as

U =[I, 1, 1, 1, '...]TU(0) + [0, 1,) 1, 1, .... .]T [U() - U(0)] + [0, 0, 1, 1, ... ]T [u(2)

=[1, 1, 1, 1,.. .]Tu(0) + [0, 1, 1, 1, .. .]TAU(1) + [0, 0, 1, 1,.. .]T Au(2) +

for which

Au(k) { u(0), for k = 0

u(k) - u(k - 1), for k > 1

Consequently, the resulting vectors of current and future values of the outputs can
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be written in the form of a matrix as

0

0

0

0 0

0 0

0 0

0 0 0
0 0 0

0 0 0
000

0 0 0

si(1)

S2(1)

s.,(1)

s1(1)

S2(1)

sn, (1)

s1(1)

S2(1)

sn, (1)

- T
... si(n) si(n) -..

- s2(n) s2(n) -

--- sn,(n) sn.(n) ...

-.. si(n) s1(n) T.

- s2 (n) S2 (n) ...

... sn,,(n) sn. (n)

si (n) si(n) T.

- S2 (n) s2 (n) -

... sn, (n) sn. (n)

Therefore,

( 0 n-1

Xj (k) = 1:sj (i) Au(k - i) = sj (n)u(k - n) + E sj
i=1

i)Au(k - i).
i=1

4.3.3 State prediction with finite impulse and step responses

The predicted future states have two contributions: the free response with Au(k) =

Au(k + 1) = 0 and the forced response, as seen in the expressions for the current
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and future values for the states:

n-1

3 (kIk) = sj (n)u(k - n) + s (i)Au(k - i)
i= 1

free response

- (k + 1lk) =
n-i

sj (r)u(k + 1 - ni) + sj s(i)Au(k + 1 - i

n-1

s3 (n)u(k + 1 - n) + s (i)Au(k + 1 - i)
i=2

free response

+ sj (1)Au(k)

forced response

n-i

sj (m)v(k +1-2 - ni) +v >sj (i)Aa(k + 2 - i

n-1

s3 (n)u(k + 2 - n) + : sj (i)Au(k + 2 - i) + sj (1)Au(k + 1) + sj (2)Au(k)
i=3

.(k + n - 1k) =

free response

n-i

sj(r)u(k+n - 1 - n) + E sj(i)Au(k+ n

= s(n)u(k - 1)

free response

, (k + njk) = s(n)u(k + n

= s1(n)u(k + n

n-1

+ 7sj(i)Au(k+r- 1- i)
i=1

forced response

n-1

- n) + sj(i)Au(k + n - i)

n

-nr) + >7sj(i)Au(k + ni - i s (n)Au(k + n - n)

s3 (n)Au(k - 1)

free response

+ sj(i)Au(k + n - i).

forced response

for which i5 (ilk) denotes the predicted Jth state at time instant i given the information

up to and including time instant k. If the ith free response of the jth state given the
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information up to and including instant k is denoted by fj(ilk), then

Jj(k + Ilk)

sy(k+ n- Ilk)

(k + nik)

+

fj(k + ilk)

f3(k+ n-l|k)

fj(k + nk)

s3(1) 0

s1(2) s3(1)

s3(3) sj(2)

sj(n) sj(n -1)

0

0

s (1)

sj(n - 2)

0

0

0

0

... s (1)

Au(k)

Au(k + 1)

Au(k + n -

An expression for computing a vector f(k) can be obtained from

f3(k +Ilk

fj(k + 21k

f3(k + n - 21k

f3(k +n - Ilk

f3(k + nlk

+ 1) = f3(k +

+ 1) = f3(k +

+1) = f3(k +

+ 1) = f3(k +

+ 1) = f3(k +

Ilk) + sj(1)Au(k)

21k) + sj(2)Au(k)

n - 21k) + sj(n - 2)Au(k)

n - Ilk) + sj(n - 1)Au(k)

n - IIk) + sj(n)Au(k),

for which the last equation for fj(k + nlk + 1) repeats fj(k + n - Ilk), since the

transient response to a step input is assumed to end after n time instants. Therefore,
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the recursion relation for fj (k) is

f,(k + 1) =

f3 (k +

f3 (k +

fj(k +

fj (k + n

fy (k +

Ilk + 1)

21k + 1)

31k + 1)

- Ilk + 1)

nlk + 1)

fj(k + ilk)

fj(k + 21k)

fj(k + 31k)

fj(k + n - lk)

f3(k + n - lk)

(4.9)

With

f3(kIk)

fj(k + Ilk)

f3(k + n - 21k)

f3(k +n - Ilk)

sj (1)

sF (2)

: I,

and

0

0

0

0

0

+

sj (1)

sj (2)

sj (3)

sj (n - 1)

Sj (n)

Au(k).

Sj =

s(n- 1)

sj(n)

1

0

0

0

1

0

0

1

0

0

1

1

0

0

0

(4.10)
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equation (4.9) can be rewritten as

fj (k + 1) = Mfj (k) + sj Au(k) .

For the control horizon is c and prediction horizon p, (4.8) can be written as

j(k + ilk)

- (k + p - Ilk)

j(k+plk)

fj(k-+ Ilk)

f3 (k + p - ilk)

fj(k+plk)

sj (1) 0

sj (2) sj (1)

sj (3) sj (2)

0

0

sj (1)

0

0

0

sj(p - c)

s (p) sj(p - 1) sj(p - 2) ... sj(p - c + 1)

Au(k)

Au(k + 1)

Au(k +c- 1)

= Tfj(k) + Gj,p,cAu(k),
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where T E RP"f is

0

0

0

0

0

and G,p,c E RPxc is

0 0

s3(1) 0

sj (2) sj (1)

sj(p-1) sj(p-2)

0

0

0

Sj(p - c)

sj(p - c+ 1)
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0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

if p> n, (4.13)1

0

0

0

0

0

1

0

0
0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

if p < n,

1

0

(4.14)

sj (1)

sj (2)

sj (3)

S (p)

(4.15)



If the unmeasured disturbance is included into the prediction for future states, then

(4.12) becomes

, (k + Ilk)

sij(k + p - Ilk)

,j(k + p k)

- Tfj(k) + G,p,,cAu(k) +

wj(k + ilk)

wj(k + p - Ilk)

wj(k + plk)

for which wj(ilk) denotes the unmeasured disturbance for the jth component of state

at the ith time instant given the information of system up to time instant k. DMC

assumes that the unmeasured disturbances are constant in the present and the future,

i.e.

and can be estimated from the difference between the measured and the predicted

states, i.e.

wj(kjk) x Xj,measured(k) - fj(klk),

where Xj,measured(k) denotes the measured jth state at instant k. With these assump-

tions,

, (k + Ilk)

, j(k +p - Ilk)

.ij (k + plk)

~ Tfj(k) + Gj,p,cAu(k) +

1

1

1

[Xj,measured(k) - fj(klk)]

= xjpresent(k) + Gj,,,cAu(k),
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Wj(klk) = wj(k +1|lk) = wj(k + 2|k) = --- = wj(k + plk),)



1

1

1

[Xj,measured(k) - fj(klk)] . (4.18)

Consequently, the summation E_1 |xs.P-(k + i) - >^(k + i)2I| in the optimization

objective can be rewritten as

T

x - x resen t (k) - G1 ,p,cAu(k)

x2 - X2" (k) - G 2,p,cAu(k)

xsgp.- Xpresent (k) - G Au,cAU(k)

Xs.p. _-xi = P

x. present (k) - G1,,cAu(k)x1 - 1

x - x pre"t (k) - G2 ,p,cAu(k)

x sp.- xpresent (k) - GAcAu(k)
Lnx nx n~~

j -(k + 1)

x + 2)

xj (k + p)

4.3.4 Rewriting the model-based control optimization

Defining the control error

ej(k) - xj* - X "resent(k),
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where

where

(4.20)

x present (k) =_ Tfj (k) +



and rewriting (4.19) as

ei(k) - Gi,p,cAu(k)

e2 (k) - G2 ,p,cAu(k)

enx(k) - Gnx,,,cAu(k)

T

the Au(k)-dependent part can be written as

AUT (k)G TcGjpcAu(k) - 2ej(k)G,p,,cAu(k)
j=1
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el(k) - G1 ,,,cAu(k)

e2(k) - G2 ,p,,Au(k)

enx(k) - Gnx,p,cAu(k)

(4.21)



The constraints (4.3) can be rewritten as

rG1j,

G2,1

Cmx,

G2,,

Gn,,

,C

I

ICXCAu(k) AUmax

-IcxcAu(k) Aumin,

for which

IL E Rcxc =-

1 0 0 0 .-- 0

1 1 0 ... ... 0

1 1 1 0 ... 0

1

1

1 1 1 0

11 -... 1 1
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Au(k) < Xmax -

,C

le Au(k) < -xmin +

PIC-

ILAu(k) Umax -

-ILAu(k) Umin

present (k)

x rese"t(k)

xP esent (k)

x e (k)

present(k
x (k)

~present (k
x1 (k)

1

1
u(k-1)

1
1

1

(4.23)

(4.22)



4.4 PCE-based MPC

The optimized Au(k) depends on the system model, since sj's and Gj,'s are model-

dependent. Let us now examine what happens to system-model-based control if the

model parameters are uncertain.

A PCE-based formulation for MPC applies similar steps as above. This formula-

tion builds on Joel A. Paulson's Ph.D. thesis that considered standard DMC in which

the vector of manipulated variables u(j) is directly optimized online. His PCE-based

DMC algorithm had low online computational cost while being less sensitive to pa-

rameter uncertainties than DMC, but had poorer closed-loop performance than DMC

when the constraints were no longer active.

The main contribution of this chapter is to develop a PCE-based DMC algorithm

has low online computational cost while having better closed-loop performance than

Joel's algorithm. The main idea is borrowed from the robust MPC literature, which

replaces the vector of manipulated variables at time j, u(j), with

Kx(j) + v(j) (4.24)

where the feedback gain matrix K is computed offline using an optimal control algo-

rithm that ignores constraints. In the online optimization, the vector of optimization

variables u(j) up to the control horizon c is replaced by the vector of optimization vari-

ables v(j) up to the control horizon c. The robust MPC literature has demonstrated

that such a reformulation results in improved worst-case performance for uncertain

parameters that belong to deterministic sets.

In what follows, this idea of incorporating feedback into the MPC algorithm is

applied to time-invariant parameters described by probability distribution functions.

In this formulation, the feedback gain matrix K is computed offline using an offline

control algorithm, such as linear-quadratic control of the 7 2-optimal PCE-based BMI

formulation from Chapter 3. A case study demonstrates the improved closed-loop

performance of this formulation.

100



4.4.1 Potential effects of parametric uncertainties

As a demonstrative example, consider a linear time-invariant system described by

(4.1), with the parameters and values for a model-based control optimization listed

in Table 4.1. Consider the control action u of the form:

u = -Kx + v, (4.25)

for which K is computed off-line by the linear-quadratic (LQ) control for the system,

which has the optimization objective

min (xTQx + uT Ru) dt
K Jo

with Q = I'-"- and R = r. With Inserting (4.25) into (4.1) gives

c = Ax + B(-Kx + v) = (A - BK)x + Bv. (4.26)

As a result of this transformation,

Au = -A(Kx) + Av = -KAx + Av

the optimization problem (4.2) becomes

min J = min
Av(k) Av(k)

c-i

IxsP(k + i) - k(k + i)112 +r rZ [-KAx(k + i + Av(k + i)] 2

= min Y xsP(k + i) - i(k + i) 12+ r {-K [x(k) - x(k - 1)] + Av(k)} 2

Av(k) 
2

c-i

+ r {-K [i(k + 1) - x(k)] + Av(k + 1)}2 + r E3[-KAi(k + i) + Av(k + i)]2

(4.27)
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Along with the change of the optimization objective is the change of constraints (4.3):

G 1,pc

G2,p,c Av(k) <

cnx ,p,cl

G 1,p,c

- 2,'c Av(k) <

Gnx ,p,c

IL [-AXT (k)KT + Av(k)] + u(k - 1) <

_IL [-AXT (k)KT + Av(k)] - u(k - 1) <

-AXT(k)KT + Av(k) <

AXT(k)KT - Av(k) <

for which the sj and Gjp,c are computed based on the

in v and

Xmax -

-Xmin +

Umax

-Umin

AUmax

-AUm

present(k)

x1 ese"t(k)

xpresen
t (k)

x '*"(k)

x "resent (k)

xpresent(k)

p~resent ()

(4.28)

in

response of x to the step change

I I
AX(k) =x(k) - x(k - 1) i(k + 1) - x(k) ... k(k + c - 1) - i(k + c - 2).

I I

Figure 4-3 demonstrates the use of DMC to make the system state reach its set point

without constraint violation.

Now consider what happens if the parameter values different from their true values

are used to compute sj and Gjp,c. Instead of A = -1 and B = 1, consider the s

and Gj,,,c computed with A = -3 and B = 0.5. Figure 4-4 demonstrates how the

DMC computed with A = -3 and B = 0.5 fails to satisfy the state constraint for the

system with A = -1 and B = 1.
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4.4.2 Background on Polynomial Chaos Expansions

Consider again the system described by (4.1) with parameters described in Table 4.2.

With uncertainties in A and B, the same problem as described in Section 4.4.1 is

encountered if the MPC is computed for the nominal values of A and B. DMC based

on the nominal values of uncertain parameters does not take into consideration the

variance in the state prediction introduced by the parametric uncertainties. Here

the variance information is taken into account using polynomial chaos expansion

(PCE), which approximates the dependence of states on uncertain parameters with

appropriate choices of polynomial expansions. For uncertain parameters denoted by

xj (t, ) Zxi,(t)i(() [ xi,, X2,j, ,..., XNj] . = X3N, (4.29)
i=1

ON((

for which the xj (t) denote the expansion coefficients; 5j ( ) denotes the expansion

polynomials, the type of which depend on the type of (; N denotes the number of

polynomials used in the expansion, and

X2,j #2

XNJ ,O -
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An advantage of using PCE is the convenience to compute the expected value and

the variance of x2 (t, ) with respect to .:

E [Xj (t, X)] = 0ey()i() 1 = j M15t

NZjt 2 L\/2,(-\\

i=2

as a result of

4.4.3 Transformation of the original system of equations using

PCE

Using (4.29), the state vector can be approximated by

Tx1

TX2
x~t( ~ ON-

T
LXxz

(4.30)
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E 1 2 (t, )] -E2 [Xj (t, )]Var [Xi (tI )] I



Substituting (4.30) into (4.1) gives

T

*cT
X2

Lnx

T
*T

*T

oTN~~ X2

*T
Lxnxi

Txi

T
BK 2

~ (A - BK )'O + UB

T

X n

T
*cT

*T

T T2 (A -BK) + VTBTBxnx
T

0 P CT (A -BK)' + T B7 T

xkTnx-

Inxxnx($ ~T(A -B@(N O)X+@NE((I (ObN ] ~E(A - BK) 9 (N TN + B 0s N 'NV

nx [ivx ® Ol'T)] OTE ( B)0(Nk)] Xy + E [B 09 ON] V,
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(4.31)



- T4
*CT

*cT
X 2

- nx

x 1 ,1

X 2 ,1

XN,1

X 2 ,2

XN,2

X1,nx

XN,nx

E RNnxxl

C 0 ... 0 ...

O E 0 ... ...

00 0 ... X

L 0 0 0 E

E Rnx x Nnx

ZVar [xj(t, )] =
j=1

0 0

0 lbN 0

0 0 4)N 0

0

CRNnx x Nnx

106

for which

X = vec

Note that

E [X(t, )] =

0

-... 0

... ... 0 <DN



for which

E = [1,, O.. ., 0] E R1xN

N= diag(0, 2(), ... , N

4.4.4 Mathematical formulation of PCE-based MPC with em-

bedded feedback

The MPC-based control optimization in the presence of parametric uncertainties can

be reformulated as

p

min I x-p(k + i) - E [k(k + i)]2|I
Av(k)

2=1

(4.32)+ roEE Var [ j(k i)
i=1 j=1

c-1

+r1 5 [-KAx(k + i) + Av(k + i)] 2

2=0

p

Smi I Ix P(k + i) - E [k(k + i)]2||
Av(k)

+ro5 Y Var [ij(k + i)]
i=1 j=1

+r1 {-K [x(k) - x(k - 1)] + Av(k)} 2

+ ri{-K [k(k + 1)
c-1

- x(k)] + Av(k + 1)}2 + r1 ), [-KAi(k + i) + Av(k + i)]2

i=2
(4.33)

where ro denotes the relative importance of the variance of the predicted states to

the deviation of the predicted states from the set point.
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For the constraints, Xmin < : < xmax is transformed to

EC [*] + a1 SDC [i] Xmax

EC [k] - a2SDC [i > Xmin-

where ci and OZ2 are non-negative numbers that consider the variance in the predicted

states due to parametric uncertainties.

4.4.5 Case Study

With the parameters listed in Table 4.2, the PCE-based MPC algorithm is able to

satisfy all the constraints and reach the state set point (Figure 4-5).

u(t)

0

]() Process X(t)

u(1) = u(2)

t

,(3) = h(3)

,2 ( 

-(4)

Figure 4-1: Finite impulse response.

1

u(t)

t

x(t)
Process

X(O) 

x x 
(3) 

-

)

Figure 4-2: Finite step response.
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Table 4.1: Parameters for the example system in Section 4.4.1.
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A -1

B 1

r 0.2

C 5

p 20

T 0.2 s

Xinitial 0

xs-P- [0.12, 0.12, ... , 0 .1 2 ]T E RpxI

xmax [0. 132, 0. 132, ... ,10.132]T E Rpxl

Xmin [-0.15,0.15, ... , 0.15]T E RPXl

Umax [0.25, 0.25, .. . , 0.25]T Rex1

Umin [-0.25, -0.25, ... , -0. 25 ]T E Rcx1

2 umax [0.1, 0.1, . .]T E Rex'

Umin [-0.1, -0.1, .1 -0.1]W E Rcx'

0



-- -- ------- 0
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0 Contr
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0 0.2 0.4 0.6 0.8

Time (s)
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a

0.4

0.3

0.2

0.14

0

-0.1 ---- niu~~~Umin---- u
---- U.

1 1.2 1.4

0.1 - 0

a

0.05 F

o State

---- xx- X.wey.p

0

-0.05 F

0 0.2 0.4 0.6 0.

Time (s)
8 1 1.2 1.4

Figure 4-3: DMC for the nominal system results in the system state reaching its set

point without constraint violation.
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0.1
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-0.15
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0
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Figure 4-4: DMC based on the nominal system is unable to satisfy the state constraint

when the control is applied to the actual system, illustrating the effect of model

uncertainty for a control system that does not take that uncertainty into account.
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Figure 4-5: PCE-based MPC converges the state
violation, even with significant model uncertainty.
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01 U(-1,1)

02 U(-1, 1)

A 20, - 3; nominal value -3

B 02 + 0.5; nominal value 0.5

rO 0

ri 0.2

a1  50

a2  0

c 5

p 20

TS 0.2 s

Xinitial 0

Xs.p. [.2011..01]T E RPx 1

xmax [0.132, 0.132, . . . , 0.132]T E RPx'

Xmin [-0.15, 0.15, . .. 0.1 5 ]T E RPxl

Umax [0.25, 0.25, ... ,0.25]T C Rex'

Umin [-0.25, -0.25, .. . , --0. 2 5 ]T E Rcx'

AUmax [0.1, 0.1, ... , 0.]T E Recx1

AUmin [-0.1, -0.1, . .. , -0.1]T E Rex 1

Table 4.2: Parameters for the example system in Section 4.4.2.
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Chapter 5

Conclusions and Future Directions

This thesis includes several firsts, with the main contribution being the first rigor-

ous theoretical frameworks and numerical algorithms for the optimal control of linear

time-invariant systems with time-invariant parameters described by probability dis-

tribution functions (Chapter 3). A combination of the Galerkin method and optimal

control theory results in offline optimizations over bilinear matrix inequalities (BMI)

that can be solved using commercial software. Formulations are derived for both W2

and W-, control objectives. The formulations are the first to handle the static output

feedback control problem for systems with time-invariant probabilistic parameters,

which is general enough to include the state feedback control problem and the low-

and full-order output feedback control problem as special cases.

Another first is the development of a fast model predictive control algorithm for

linear time-invariant systems with time-invariant probabilistic parameters that in-

corporates a feedback control law to improve closed-loop performance (Chapter 4).

The embedded feedback control law is computed offline using the BMI formulation

in Chapter 3 whereas a quadratic program with a low number of optimization vari-

ables is solved online in which the Hessian and Jacobian are computed from PCE

coefficients computed using Galerkin projection.

The main directions for future students would be to extend the theoretical frame-

work and numerical algorithm in Chapter 4 to linear time-invariant systems in which

the states are not measured, which would be relatively straightforward since Chapter
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3 already addresses output feedback control design. A much more challenging direc-

tion would be to extend the methodologies of Chapters 3 and 4 to nonlinear dynamical

systems. A more promising approach to tackling nonlinear dynamical systems is to

first derive the methodologies for special cases, such as linear time-varying (LTV)

systems, linear parameter-varying (LPV) systems (aka gain scheduled systems), and

polynomial systems (that is, when the nonlinear dependence on the states are de-

scribed by polynomials). Many startup, shutdown, and changeover operations can be

accurately modeled as LTV and LPV systems, whereas many chemical and biological

processes can be described as polynomial systems. A challenge in such formulations is

that the Galerkin method for computing the PCE coefficients is not as computation-

ally efficient when the system is not linear time-invariant, and the most commonly

used alternative methods for computing the PCE coefficients are much more com-

putationally expensive. It is likely that exploiting mathematical structure would be

needed to develop efficient PCE computation and efficient stochastic optimal control

algorithms for LTV, LPV, and polynomial systems.
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