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Abstract

Fuel burn is a key driver of aircraft performance, and contributes to airline costs and aviation
emissions. While the trajectory (ground track) of a flight can be observed using surveillance
systems, its fuel consumption is generally not disseminated by the operating airline. Emissions
inventories and benefits assessment tools therefore need models that can predict the fuel flow
rate profile and fuel burn of a flight, given its trajectory data.

Most existing fuel burn estimation tools rely on an architecture that is centered around the
Base of Aircraft Data (BADA), an aircraft performance model developed by EUROCONTROL.
Operational data (including trajectory data) are generally processed in order to generate the
inputs needed by BADA, which then provides an estimate of the fuel flow rate and fuel burn.
Although a versatile tool that covers a large number of aircraft types, BADA makes several
assumptions that are not representative of real-world operations. Consequently, the reliance on
BADA results in errors in the fuel burn estimates. Additionally, existing fuel burn modeling
tools provide deterministic predictions, thereby not capturing the operational variability seen in
practice.

This thesis proposes an alternative model architecture that enables the development of data-
driven, statistical models of fuel burn. The parameters of interest are the instantaneous fuel flow
rate (that is, the mass of fuel consumed per unit time) and the fuel burn (cumulative mass of
fuel consumed over a particular phase or the entire trajectory). The new model architecture uses
supervised learning algorithms to directly map aircraft trajectory variables to the fuel flow rate,
and subsequently, fuel burn. The models are trained and validated using operational data from
flight recorders, and therefore reflect real-world operations.

A physical understanding of aircraft and engine performance is leveraged for feature selec-
tion. An important characteristic of statistical methods is that they provide both estimates of
mean values, as well as predictive distributions reflecting the variability and uncertainty. Lo-
cally expert models are developed for each aircraft type and for each of the flight phases. The
Bayesian technique of Gaussian Process Regression (GPR) is found to be well-suited for mod-
eling fuel burn. The resulting models are found to be significantly better than state-of-the-art
aircraft performance models in predicting the fuel flow rate and fuel burn of a trajectory, giving
up to a 63% improvement in total airborne fuel burn prediction over the BADA model.
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Finally, the Takeoff Weight (TOW) of an aircraft is recognized as an important variable
for determining the fuel burn. The thesis therefore develops and evaluates a methodology to
estimate the TOW of a flight, using trajectory data from its takeoff ground roll. The proposed
statistical models are found to result in up to a 76% smaller error than the Aircraft Noise and
Performance (ANP) database, which is used currently for TOW estimation.

Thesis Supervisor: Hamsa Balakrishnan
Title: Associate Professor, Aeronautics and Astronautics
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A change

corrected pressure (corrected by the ISA sea level static

pressure = 101,325 Pa); Kronecker delta

noise

degrees of freedom of the Student's t-distribution

rI thrust deration level

O corrected temperature (corrected by the ISA sea level static

temperature = 288.15 K)

0c aircraft course track angle on the ground

Oh GPR hyperparameter vector

P mean of distribution

Pr coefficient of friction

Vi efficiency

p air density

standard deviation of distribution

aircraft turn rate

Subscripts:

ANP using the ANP model

(ap) in approach

(as) in full ascent

ATD above touchdown

BADA using the BADA model

(co) in climb out

(cr) in cruise

(de) in full descent

DP using the dot product kernel

DPE using the dot product exponential kernel

DPM, 3/2 using the dot product Matern kernel with parameter 3/2
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Chapter 1

Introduction

Since the Wright brothers successfully demonstrated controlled flight by a heavier-than-air air-

craft for the first time in December 1903, air traffic has evolved into a system with 1,400 airlines,

operating 32.8 million commercial flights annually, from nearly 3,900 airports worldwide, and

using more than 26,000 aircraft [2]. Aircraft transported 3.6 billion passengers and 51.2 mil-

lion tonnes of freight in 2015. Global passenger traffic has seen annual growth rates of 7.3%

(in terms of revenue passenger-miles) in the last few years, while passenger enplanements are

forecast to grow by 2.3% per year over the next two decades [3, 4].

Fuel burn constitutes a major component of the Direct Operating Costs of an airline, and

is an important aspect of aircraft and engine performance. Airline operations consumed 81

billion gallons of fuel in 2015, which corresponded to 26.5% of total airline expenses [2]. Fuel

burn also generates emissions of pollutants that have adverse impacts on climate, air quality,

and health. Aircraft are estimated to add about 773 million tonnes of carbon dioxide into the

atmosphere every year [2]. Increased air traffic demand in the United States is projected to

result in a 2-3.6 fold increase in CO 2 emissions, and a 1.2-2.7 fold increase in nitrogen oxide

emissions, between 2000 and 2050 [5]. Although aircraft contribute to just 3.4% of the total

manmade CO 2 emissions in the US, these emissions have amplified impacts due to the high

altitudes at which they occur [4].

While fuel burn is widely accepted to be an important metric of system performance, the

actual per-flight fuel consumed by particular flights between two airports, or flying specific
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procedures, is not disseminated by airlines. There are a variety of reasons for this, ranging

from concerns about privacy, to competitive interests. The rate at which fuel is consumed by

an aircraft is typically archived in the onboard Flight Data Recorder (FDR), along with a range

of other flight parameters. Many airlines have internal Flight Operations Quality Assurance

(FOQA) programs in which they routinely analyze flight data, in order to improve safety and

efficiency, and reduce maintenance costs [6]. However, there are significant restrictions against

broadly sharing these data, amid concerns that they could be potentially used for disciplinary

actions against pilots [7]. There are also sensitivities surrounding other flight parameters that

influence fuel burn (for example, the weight of the aircraft), which can reveal airline business

strategies such as load factors and fuel tankering practices. In an industry with low margins

(the net profit margin of the airline industry in 2016 was a historically high 5.1%; the average

over the previous 5 years was only 2% [8]), airlines are hesitant to share information that could

reveal any competitive advantage. As a result of all these factors, there is a need for modeling

tools that can estimate the fuel burn corresponding to real-world air traffic operations.

1.1 Motivation: Existing models of fuel burn

The estimation of the fuel burn impacts of operations has been a long-standing challenge in

Air Traffic Management (ATM) [9]. The motivation behind this challenge is two-fold, namely,

to evaluate the impact of real-world operations (for example, to determine inventories of fuel

burn and emissions [10]), as well as to evaluate the benefits of operational changes and system

modernization efforts (for example, NextGen in the US [11], SESAR in Europe [12], and the

Australian Air Traffic Management Plan [13]). The need for fuel burn estimation has led to

the development of several fuel burn models, including the Federal Aviation Administration

(FAA)'s NextGen Office Model [1], Aviation Environmental Design Tool (AEDT) widely used

in the US to model aircraft fuel burn, emissions, and noise [14], and Aircraft Fuel Evaluation

Simulation Tool (AFEST) [ 15], the EJPM-based Trajectory Analysis Software (ETAS) developed

by GfL and Technische Universitat Dresden [16], and operationally used by the German Air

Navigation Service Provider (ANSP) Deutsche Flugicherung (DFS), and Airservices Australia's
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Dall [17]

1.1.1 Model architectures

While these fuel burn models have generally been developed in-house by different parts of

the ATM community, there has been a remarkable similarity in the resulting architectures [1].

Figure 1-1, adapted from recent work by Enea et al. [1], presents a flowchart of the typical archi-

tecture of these fuel burn models. The main inputs, shown as parallelograms, are surveillance

data or the flight tracks to be evaluated, user preferences which reflect airline and air traffic

operational behavior, and the Takeoff Weight (TOW) of each flight. The ultimate desired output

is the fuel burn (mass of the fuel consumed over time) estimate for each of the flights, while

the intermediate output is thefuelflow rate (mass of fuel consumed per unit time) of each flight

at any point in time. These outputs are depicted in blue. Perhaps the most striking common

feature of these fuel burn models, as well as several others not mentioned above [18, 19, 20], is

their use of EUROCONTROL's Base of Aircraft Data (BADA) [21] as an underlying Aircraft

Performance Model (APM). The corresponding portion of the flowchart is highlighted in orange

in Figure 1-1.

Base of Aircraft Data (BADA)

BADA is an APM that has been developed and refined, over the past two decades, for the "sim-

ulation and prediction of aircraft trajectories for purposes of ATM research and operations"

[21, 22, 23]. It specifies, for each aircraft type in the database, performance and operating pro-

cedure coefficients that can be used to calculate aerodynamic and engine characteristics such

as drag and thrust, and subsequently the fuel flow rate. The latest release in BADA Family

3, namely, BADA 3.13, includes aircraft models for 519 different aircraft types. BADA 4.1,

which has considerable modeling refinements, covers 73 aircraft types, but at a higher level of

precision than BADA Family 3 [21]. The BADA models for a particular aircraft type are essen-

tially obtained by fitting polynomials to operational data obtained from aircraft manufacturers

using least-squares techniques [24, 25]. These models (coefficients) are provided for each air-

craft type, for a discrete set of aerodynamic configurations (for example, takeoff, climb, cruise,
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Figure 1-1: Flowchart illustrating typically-used architectures for determining fuel burn from
trajectory surveillance data (adapted from [1]).

descent, approach, and landing), and a set of candidate mass levels (low, nominal, high). The

configuration can be driven either by default values, or by user preferences, which can be used

to reflect airline procedures or air traffic control procedures. Finally, we note that BADA as-

sumes a knowledge of the mass of the aircraft, which in turn requires an estimate of the mass

of the aircraft at takeoff (known operationally as the Takeoff Weight, or TOW).

1.1.2 Limitations of current state-of-the-art

Despite their widespread use, these existing fuel burn models pose significant limitations. BADA

was initially developed as a trajectory prediction and simulation tool in the 1990s (BADA 2.1

was released in May 1994 [22]), when aircraft trajectory data were not systematically collected

or archived. Consequently, a key purpose of these models was to generate the complete 4-D

(space and time) trajectory of a flight between two airports, given the takeoff mass and a nom-

inal speed schedule (which could be used to determine when the aircraft would transition from

climb to cruise, cruise to descent, and so on). BADA's Total Energy Model (TEM) then balances

the rate of work done by the different forces (thrust and drag) acting on the aircraft to the rate of
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increase in the total (potential + kinetic) energy in order to determine approximations of the rate

of climb/descent (ROCD), engine thrust, fuel flow rate, etc. The coefficients of polynomial fits

are determined with the objective of minimizing the errors in ROCD and fuel flow rate. Since

the drag forces depend significantly on the configuration of the aircraft (for example, due to the

different flap settings during approach and landing), separate model coefficients are specified

for different phases of flight [22].

In general, existing models for fuel burn assume a knowledge of parameters which are dif-

ficult to obtain or estimate (such as flap schedules and the drag profiles). They also employ

simplified parametric equations which neither adequately capture the physical underpinnings

nor the complexity in system behavior (for example, BADA Family 3 models the Thrust Spe-

cific Fuel Consumption (TSFC) (ratio of the fuel flow rate to the net thrust) as a linear function

of the airspeed, neglecting its dependence on ambient conditions and net thrust). The underlying

data are derived from non-operational sources such as flight manuals, ground tests, handbooks,

performance calculators. As a result, such studies do not reflect the effects of operational vari-

ability, random disturbances affecting aircraft performance, and other unmodeled factors. There

are additional limitations with regards to their ability to incorporate trajectory as well as opera-

tional data, as discussed in the next few sections.

Operational variability

Aircraft operations occur in constrained, complex environments, which result in differences

between the predictions of idealized models, and the actual fuel burn. The reasons for such op-

erational variability include differences in weather conditions (such as winds), aircraft weights,

fueling practices, maintenance operations, age of the aircraft, air traffic control procedures, etc.

As a consequence of these factors, two aircraft of the same type, flying very similar trajectories,

could consume significantly different amounts of fuel. Airlines have reduced the Zero Fuel

Weight (ZFW) of their aircraft by moving to paperless cockpits, reducing excess potable water,

reducing galley equipment, and even removing seatback phones and magazines: It is estimated

that a 1,000 lb reduction in the ZFW can result in a fuel savings of 0.6-0.7% for a Boeing 737

[26, 27]. Similarly, the Operating Empty Weight (OEW) of an aircraft is estimated to increase
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0.1-0.2% per year, resulting in aircraft being as much as 1% heavier when they are 5-10 years

old, due to the accumulation of moisture and dirt. Maintenance activities, such as repetitive

engine washes, can also have a significant impact on fuel consumption [27]. Given an aircraft

trajectory, we would like to predict not just the expected value, but also the variability in the

fuel burn that would be seen in actual operations.

Incorporation of aircraft trajectory data

In the years since BADA was first developed, aircraft trajectory data have become widely avail-

able. Trajectory data can be gathered by radar surveillance (for example, the FAA's Enhanced

Traffic Management System (ETMS), Aircraft Situation Display to Industry (ASDI) (both now

a part of the Traffic Flow Management System (TFMS)), Performance Data Analysis and Re-

porting System (PDARS), and Airport Surface Detection Equipment-Model X (ASDE-X), EU-

ROCONTROL's Enhanced Tactical Flow Management System (ETFMS)), or from Automatic

Dependent Surveillance-Broadcast (ADS-B) ground receivers. (These systems are the data-

sources for many of the commercial real-time flight-tracking products that are available today.)

The availability of surveillance data has resulted in the need to estimate the fuel burn impacts of

the trajectories, as they were flown by actual aircraft [1]. However, even with the incorporation

of surveillance data, the basic architecture for fuel burn estimation has not changed. Model

refinements have primarily focused on improving different parameters within the existing ar-

chitecture.

Refinement of fuel burn models using operational data

The factors described in Section 1.1.2 result in significant differences between the fuel burn

estimated by models and that observed in actual operations. This fact has motivated the use of

operational data to refine models of fuel burn. However, prior efforts have focused on either

evaluating the outputs or tuning various parameters of the existing architecture (Figure 1-1),

rather than on investigating new ones. Data from FDRs as well as aircraft manufacturer manuals

and handbooks have been used to refine coefficients in BADA models [24], develop speed and

flap deployment schedules [16, 17], tune the thrust determination models of the APM [28],
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and improve TOW estimates [17, 29]. These efforts have also focused on deterministic (point)

estimates of the fuel flow rate and fuel burn. By contrast, this thesis investigates an alternative

architecture in which the fuel flow rate and fuel burn may be directly inferred from trajectory

data, along with estimates of their variability.

1.2 Main contributions of this thesis

This Thesis11h

Takeof Weight (TOW)

_'' User preferences

Surveillance Determine Determine Determine
data Airspeed Configuratn Drag

t
Aircraft Performance

Weather Model or APM
(density, temp., wind) (e.g., BADA)

This Thesis

FuellBurn Determine Determine
f Fuel Flow Thrust

Figure 1-2: Flowchart of typically-used architectures for determining fuel burn from trajectory
surveillance data (adapted from [1]), as well as the new approach pursued in this thesis (depicted
by the teal block arrows).

The overarching research contribution of this thesis is the development of methodologies

for the statistical modeling of aircraft engine performance. It focuses on two specific aspects of

engine performance, namely, fuel flow rate and fuel burn. At a high-level, this thesis investigates

the following problem: Given the trajectory of a flight, how does one infer its fuel flow rate and

fuel burn profiles, along with their associated uncertainties?

The main parameters of aircraft engine performance investigated in this thesis are the in-

stantaneous fuel flow rate (mass of fuel consumed per unit time) and the fuel burn (mass of the
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fuel consumed over time). Both these quantities are important from an emissions perspective:

Some emissions (e.g., nitrogen oxides, hydrocarbons) depend on the instantaneous fuel flow

rate, whereas others (e.g., carbon dioxide, water vapor) depend on the total mass of fuel burnt.

The fuel flow rate and the fuel burn are modeled in all the phases of flight (sometimes referred

to as a gate to gate [30]), both on the ground and in the air. This is in contrast to many existing

tools of fuel burn estimation which focus only on the airborne phases of flight.

Statistical models of fuel burn

The models developed in this thesis estimate the fuel flow rate profiles given the trajectory

information of a flight. The underlying mappings depend on a multitude of components, such

as the aircraft and engine types, weather conditions, operational procedures, human factors, etc.

Statistical methods overcome the challenges described in Section 1.1.2 by providing predictive

distributions of the fuel burn of a particular trajectory. In short, they yield mean estimates as

well as prediction intervals for the fuel burn as part of the model output. The resulting prediction

intervals reflect the cumulative effect of random disturbances affecting engine operation (such

as manufacturing tolerances, component deterioration, and atmospheric and flow turbulence

[31]), as well as features neglected in model building. The model predictions are therefore

representative of both the variability in fuel burn and model uncertainty.

We propose methods to infer the direct mapping between the trajectory and the correspond-

ing fuel flow using data from real operations, in order to address the challenges described in

Section 1.1.2. We adopt a supervised learning approach, namely, given training datasets of

trajectories and their fuel flow, we build models that can be used to estimate the fuel flow pro-

files of new trajectories that we are interested in evaluating [32]. As mentioned earlier, FDR

archives contain both trajectory and fuel flow variables from real flight operations, making them

an ideal source of training data. The developed models can then, given a new set of trajectory

variables from a flight, predict the associated fuel burn even in the absence of the FDR data for

that flight. In short, the objective of this thesis is to develop open models, namely, ones that

can estimate the fuel burn of a flight from easily accessible data such as its trajectory variables,

thereby addressing the challenges described in Section 1.1.2.
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In this thesis, we investigate several classes of machine learning algorithms, including least

squares regression, Classification and Regression Trees (CART), Least Squares Boosting (LSB)

using regression trees, and Gaussian Process Regression (GPR). We find that the Bayesian tech-

nique of GPR presents several advantages in the problems of interest. Locally expert models

are developed for each aircraft/engine type and for each of the flight phases. While the models

are not explicitly physics-based, we use a physical understanding of aircraft and engine per-

formance in order to identify the predictor variables or features. In order to enable practical

implementation, the features are restricted, to the extent possible, to those that are derivable

from trajectory data.

The data-driven statistical models are compared for their predictive performance with other

widely used Aircraft Performance Models (APMs) and are found to exceed them in predicting

the fuel flow rate and fuel burn, as well as their uncertainties, for a new flight trajectory. In

particular, the GPR-based models are shown to yield a median (across all aircraft types) value

of the mean absolute fuel burn error of 2.2% in ascent, 2.0% in climb out, 7.2% in cruise, 8.2%

in descent, and 5.5% in approach. The GPR models are shown to achieve a reduction in mean

absolute fuel burn error of as much as 54% in ascent, 80% in climb out, 34% in cruise, 66% in

descent, and 89% in approach as compared to currently used APMs.

The total fuel consumed by a trajectory can be predicted by aggregating the fuel flow rate

predicted at each time instant. By doing so, we find that the proposed GPR-based models

achieve a mean error of 0.2% (across flights of 8 different aircraft types), and a mean absolute

error of 3.8% in the total airborne fuel burn. These results constitute a significant improvement

over existing fuel burn models (for example, an up to 63% improvement over the BADA model).

Finally, model performance on flight surveillance data from the airport surface is described,

in order to demonstrate the practical applicability of the developed models. The modeling ap-

proaches adopted in this thesis are descriptive ones, that is, they use data to identify mappings

between the input and output variables. They do not attempt to identify causal relationships

between the input and output variables, nor prescribe optimal operational procedures. As new

operational data become available, the same methodologies can easily be applied to refine mod-

els of fuel burn estimation, or even develop models of other aircraft performance parameters of
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interest.

Modeling of takeoff weight

Consistent with prior research, the aircraft Takeoff Weight (TOW) is found to be an important,

yet generally not available, variable in determining the fuel burn [1]. TOW is also important for

aircraft trajectory modeling and estimation of other parameters such as aircraft climb perfor-

mance [33]. This thesis therefore, also develops a methodology to estimate the takeoff weight

directly using trajectory information from the takeoff roll. In particular, it proposes a statistical

approach based on Gaussian Process Regression (GPR) to determine both a mean estimate of

the TOW and the associated prediction interval, using observed data from the takeoff ground

roll. Following a similar philosophy to the fuel burn modeling, predictor variables are chosen by

considering both their ease of availability and the underlying aircraft dynamics, with the FDR

data providing the ground truth for a supervised learning approach. The proposed models are

found to have a mean absolute error in TOW prediction of 3.6% (averaged across nine different

aircraft types), resulting in a nearly 35% smaller error than the models in the Aircraft Noise and

Performance (ANP) database that is used in AEDT [14, 34]. In contrast to the ANP database

which provides only point estimates of the TOW, the GPR models quantify the uncertainty in

the estimates by providing a predictive distribution.

1.2.1 Intended benefits

Fuel burn is an important aspect of operational performance, and is therefore of interest to

many stakeholders in the ATM community. A key challenge lies in evaluating the relative fuel

burn impacts of different procedures and routes. The ideas developed in this thesis represent

the use of state-of-the-art machine learning techniques in order to better predict a flight's fuel

burn from its trajectory, thereby enhancing current capabilities for modeling aircraft and engine

performance. The models developed in this thesis are computationally less expensive than

full-blown physical simulations of aircraft performance, and can yield predictive distributions

without the need for identification of uncertain model parameters and subsequent Monte Carlo

simulations. The proposed models can enable airline flight planners to assess the fuel burn
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and emissions impact of different routes. In addition, these methodologies can be extended

in the future to address the problem of anomaly detection for aircraft maintenance operations,

that is, by identifying flights whose fuel burn profiles deviate significantly from the nominal

values. In the near-term, these models will help improve fuel burn and emission inventories

by evaluating impacts on a per-flight operation basis (instead of on a fleet/airline/regional level

alone). Finally, these models have the potential to help analyze the effects of new operational

procedures to mitigate the environmental impacts of aviation.

1.3 Thesis organization

The structure of the remainder of this thesis is as follows: Chapters 2-4 complete the prelimi-

naries, with Chapter 2 presenting prior research and the state-of-the-art in fuel burn estimation,

Chapter 3 providing details of the different datasets used for model development and evaluation,

and Chapter 4 describing the fundamentals of different statistical algorithms investigated in this

thesis. The next four chapters constitute the main portion of the thesis. Chapter 5 focuses on

modeling the fuel flow rate and mass of fuel consumed in the airborne phases of flight, including

the process of feature identification, model training, validation, and testing, and comparisons to

other APMs. The work on fuel burn modeling in the climb out and approach phases was con-

ducted as part of an Airport Cooperative Research Program (ACRP) Graduate Research Award

on Public Sector Aviation Issues, and will appear in [35]. Preliminary results on fuel flow rate

estimation (in particular, the one-step prediction algorithm described in Section 5.3.2) appeared

in [36]. Chapter 6 deals with the modeling of fuel burn on the airport surface during taxi. It

also demonstrates the application of the models to surveillance data from ASDE-X. Chapter 7

addresses the estimation of an aircraft's Takeoff Weight (TOW) from takeoff roll data. A ver-

sion of this work was published in [37]. Finally, Chapter 8 summarizes the key findings of the

thesis, and also discusses limitations of this work and promising directions for future research.
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Chapter 2

Related Literature

This chapter describes prior literature related to the modeling of aircraft fuel burn, with the

objective of identifying the state-of-the-art, as well as gaps in knowledge that could be addressed

in this dissertation.

2.1 Simulation models

Simulation models (also known as knowledge-driven, physics-based, behavioral, or process

models) are often used to analyze system performance. These models use a physical under-

standing of system performance to derive modeling equations. Such models can pose challenges

when applied to complex systems such as aircraft.

Engine performance simulators (e.g., GasTurb) apply principles of aerodynamics and ther-

modynamics to engine flows to determine the engine performance metrics (such as fuel flow

rate, thrust) at different operating conditions [38, 39]. These simulators require as inputs pa-

rameters such as the engine operating point (determined by the ratio of the total temperatures

at the high-pressure turbine inlet and the low-pressure compressor inlet), the amount of bleed

air, and the power offtake from the compressor. As a result, these models are the most ef-

fective in design studies, where the underlying simulation variables (inputs) can be controlled.

They are less suitable for estimating the fuel burn of real flight operations, since the simulations

would in turn require that these inputs be inferred. Moreover, engine simulations need access
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to component characteristics maps, which are proprietary to engine manufacturers.

2.2 Data-driven models

Most modern engineering systems are instrumented with embedded sensors, controllers, actua-

tors, and computational components. Such systems are also known as Cyber-Physical Systems

(CPS) [40, 41]. The sensors in a CPS provide data which can give valuable insights into system

performance. When combined with improvements in storage and computational technologies

as well as machine learning algorithms, these data sources can be used to develop better mod-

els. Such data-driven modeling approaches have shown promise in diverse applications, such as

monitoring battery health [42], hydrological applications [43], energy systems [44], vehicular

traffic [45], etc. These studies identify important variables to be used as model inputs, and then

apply statistical methods to data in order to relate the output parameters of interest to the inputs.

Data-driven methods have the potential to give more realistic estimates of system performance

than simulation-based models. One reason is that the observed data are objective manifesta-

tions of system performance, and do not depend on modeling assumptions. Data-driven models

can also analyze system behavior without requiring a complete understanding of the underlying

components.

Data-driven approaches often use statistical machine learning techniques for model develop-

ment. Regression, classification, and clustering algorithms use data in order to learn mappings

between the input and output variables, identify patterns, and determine similarities and dissim-

ilarities in the data. The resulting models are capable of predicting the outputs corresponding

to a new set of inputs. An additional advantage of using statistical techniques is their abil-

ity to model the system stochastically rather than deterministically. Real-world systems are

rarely deterministic, and exhibit considerable variability. For example, an aircraft engine is in-

fluenced by random disturbances such as flow turbulence, fluctuations in ambient temperature

and pressure, component deterioration and aging, manufacturing tolerances, fuel quality, me-

chanical vibrations, and drag deterioration [31]. Moreover, there will be unmodeled factors that

influence system behavior, leading to uncertainty in the output variables. Deriving the uncer-
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tainty estimates for a deterministic model requires (potentially a large number of) Monte Carlo

simulations, which in turn requires probability distributions of the input parameters. Such sim-

ulations become computationally intractable when there are many uncertain parameters. By

contrast, statistical models provide a natural way (by means of prediction intervals) to capture

uncertainty and variability in the output variables.

An aircraft (and its engine) can be considered an example of a CPS. There are a number of

data sources relating to aircraft performance, including the results of ground tests, manufacturer

manuals, and flight recorder datasets. Prior work on data-driven models of aircraft performance

has been quite limited, but has included the development of neural network models from aircraft

flight performance manuals [46], the application of total energy balance to an aircraft to calcu-

late fuel consumption using data from performance manuals, noise measurement reports, flight

operation manuals [9], and the use of nonlinear regression on data from performance calculators

in order to model the fuel burn in the terminal phases of flight [28, 47].

2.3 Models of aircraft fuel burn

Financial and environmental reasons, as well as the need to assess the fuel burn impacts of

various flight operations, have led to aircraft fuel burn estimation being a widely studied prob-

lem. In this section, some of the most commonly-used models of fuel burn are discussed. These

models form components of broader fuel burn and emissions modeling tools.

2.3.1 ICAO Aircraft Engine Emissions Databank

The International Civil Aviation Organization (ICAO) maintains a databank known as the Air-

craft Engine Emissions Databank [48] (hereafter referred to as the ICAO Databank). It provides

point estimates of the values of fuel flow rates, emission indices (mass of emissions generated

per unit mass of fuel burnt), smoke numbers, and times-in-mode at four different thrust set-

tings. These thrust settings correspond to the standard takeoff roll (assumed to last 42 s at 100%

thrust), climb out up to 3,000' Above Ground Level (AGL) (132 s at 85% thrust), approach from

3,000' AGL (240 s at 30% thrust), and ground roll and taxi (1560 s at 7% thrust) phases of the
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Landing and Take Off (LTO) Cycle. The values are obtained by conducting ground-based tests

on an uninstalled engine during the certification process and are corrected to the International

Standard Atmosphere (ISA) sea level, static conditions. The values of the fuel flow rates and

emission indices are fixed for a particular engine type, irrespective of actual operation. The fuel

flow rate values tabulated in the ICAO Databank can be corrected for non-reference atmospheric

conditions and installation effects using the Boeing Fuel Flow Method 2 (BFFM2) [10]. The

ICAO Databank along with the BFFM2 corrections is used in FAA's Aviation Environmental

Design Tool (AEDT) to estimate fuel flow rates in the LTO cycle, when thrust values are not

explicitly available.

Studies have shown that the fuel burn estimates from the ICAO Databank method can be

significantly different from those derived from operational flight data [49, 50]. The values of

the emissions indices reported in the ICAO Databank have also been shown to deviate from

measured values [51, 52]. In [49], we compared the times-in-mode, fuel flow rates, and fuel

burn values derived from operational flight recorder data in the different phases of the LTO

cycle with the corresponding ICAO Databank values. All reported values were converted to

sea level static ISA conditions for an uninstalled engine in order to conduct a valid comparison

with the ICAO Databank estimates. In most cases, the mean operational values were found to

differ statistically significantly (at a 5% significance level using the two-sided Wilcoxon signed-

rank test) from those in the ICAO Databank (Figure 2-1). The ICAO Databank was found to

overestimate the values of the LTO cycle fuel burn by as much as 39%. These discrepancies

were largely due to the underlying assumptions made by the ICAO Databank. For example, the

ICAO Databank assumes that takeoff occurs at 100% thrust, whereas in reality, most takeoffs

occur at derated thrust levels. Many taxi operations also take place at thrust settings lower

than 7% [51]. The differences between the ICAO Databank assumptions and the operational

values can lead to inaccuracies in fuel burn and emissions inventories, which currently rely on

the ICAO Databank. Moreover, because of its deterministic nature, the ICAO Databank cannot

provide uncertainty estimates to reflect real-world operational variabilities.
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Figure 2-1: LTO cycle: Operational and ICAO Databank values for (top) fuel flow rate (per
engine), (middle) fuel mass consumed (all engines), and (bottom) total fuel mass consumed (all
engines) in the complete LTO cycle. The bars represent the mean estimates from operational
FDR data. The error bars are 95% confidence intervals. Hatched bars represent cases when the
operational estimates are not statistically significantly different from the ICAO Databank values
at a 5% significance level (adapted from [49]).
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2.3.2 Base of Aircraft Data

Another model commonly used to simulate aircraft performance is the Base of Aircraft Data

(BADA), developed by EUROCONTROL using data from different airplane manufacturers and

airlines [22]. BADA was initially developed as a trajectory prediction and simulation tool.

Consequently, a key purpose of these models was to generate the complete 4-D (space and

time) trajectory of a flight between two airports, given the takeoff mass and a nominal speed

schedule (which could be used to determine when the aircraft would transition from climb to

cruise, cruise to descent, and so on). BADA uses the 'total energy' method to simulate aircraft

performance. The Total Energy Model (TEM) balances the rate of work done by the different

forces (thrust and drag) acting on the aircraft to the rate of increase in the total (potential +

kinetic) energy in order to determine approximations of the rate of climb/descent (ROCD),

engine thrust, fuel flow rate, etc. The aircraft is assumed to be a point mass. The governing

equation of the TEM is as follows [22]:

dh dV
( F,1 - D) - V = mg dh+ mV dV(2.1)

dt dt

Here, F,,, is the aircraft net thrust from all engines parallel to the aircraft true airspeed vector,

D is the drag, V is the true airspeed, m is the aircraft mass, g is the acceleration due to gravity,

h is the altitude, and t is the time.

The TEM is used to develop parametric (polynomial) equations to calculate performance

parameters such as the net thrust and the Thrust Specific Fuel Consumption (TSFC). The coef-

ficients of polynomial fits are determined empirically using a least-squares technique, with the

objective of minimizing the errors in ROCD and fuel flow rate. The performance and operating

procedure coefficients used in these equations differ for each aircraft type, and are maintained

in a database. BADA Family 3 version 3.13 (hereafter referred to simply as BADA) has 519 dif-

ferent aircraft types in its database. BADA determines the fuel flow rate by estimating the TSFC

and the net thrust, and then multiplying them together. The TSFC for jet engines is modeled as

a linear function of the airspeed. The minimum fuel flow rate for engine operation is modeled

as a linear function of the altitude. The net thrust is modeled as a quadratic function of the air-
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craft altitude in ascent and descent and by drag balance in cruise. Since the drag forces depend

significantly on the configuration of the aircraft (for example, due to the different flap settings

during approach and landing and due to landing gear extension), separate model coefficients

are specified for different phases of flight. BADA assumes discrete levels of TOW (such as

low, nominal, high, minimum, maximum, reference, and maximum payload) for performance

analysis. The BADA fuel flow rate module is used as the Aircraft Performance Model (APM) in

several fuel burn estimation tools. These include the FAA's AEDT in the airborne phases [10],

Aircraft Fuel Evaluation Simulation Tool (AFEST) [15] and the NextGen Office Model [1], a

model developed at NASA [18], Airservices Australia's Dalif [17], and TU Dresden's Enhanced

Jet Performance Model (EJPM)-based Trajectory Analysis Software (ETAS) [16].

The BADA models suffer from several drawbacks. BADA APMs are built using data from

nominal aircraft operations, which may differ a lot from actual operations. The modeling equa-

tions are also overly simplistic. For example, the TSFC is modeled as a linear function of the

airspeed alone, while in reality, the TSFC depends on other factors such as ambient conditions

and the engine operating point. A linear equation is also insufficient for modeling the complex,

nonlinear, engine dynamics. BADA gives point estimates of the fuel burn, and does not provide

uncertainty estimates which can quantify the operational variability in the fuel flow rate. It also

needs the net thrust values to estimate the fuel flow rates. In practice, this thrust estimation

requires the estimation of aircraft drag. The thrust estimation equations in BADA are simplistic

parametric equations. Finally, BADA uses a set of candidate mass levels (low, nominal, high)

to represent the TOW; consequently, the operational TOW for a particular flight may differ

significantly from these discrete levels. As a result of these issues, the estimates of fuel burn

provided by BADA can be erroneous. Studies have indicated that the BADA method can give

errors as high as 22.3% for phases of flight occurring in the terminal area [28]. More recently,

a comparison of various fuel burn models has shown that for a common set of 60 flights, the

airborne fuel burn errors ranged from -27.3% to 13.3% for AFEST (median value of -13.1%,

with no TOW input), from -31.3% to 26.3% for AEDT (with a median value of -8.6%), from

-31.2% to 46.9% for ETAS (with a median value of -11.8%), and from -16.9% to 26.5% for

Dali (with a median value of -3.9%). All these models use BADA 3 as their APM. A version of
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Dali using BADA Family 4 resulted in errors between -13.8% and 32.7%, with a median error

of -4.6% [1].

2.3.3 Senzig-Fleming-Iovinelli model

Researchers have also developed data-driven models to estimate the TSFC in terminal areas

(< 10,000' Above Field Elevation (AFE)) [28, 47]. The data to build the models are obtained

from performance calculators developed by Boeing. Parametric equations are used to model the

TSFC as a function of the ambient conditions, Mach number, altitude, and the net thrust. The

model is referred to as the Senzig-Fleming-Iovinelli (SFI) model, after the names of the lead

authors in [28, 47]. The SFI model is used in AEDT to model fuel burn in the terminal areas.

Unlike the BADA model, the SFI model expands the set of inputs used to calculate the TSFC.

Nonlinear equations are used to model the TSFC. However, like BADA, the SFI model needs

thrust as an input to estimate the TSFC (and subsequently the fuel flow and fuel burn). The

model also does not give uncertainty estimates for the fuel flow rate. Finally, the model is valid

only for altitudes below 10,000' AFE.

2.4 Model refinements using operational data

Operational data on gate-to-gate fuel consumption, time spent on the ground and in the air, take-

off weight, and origin-destination pairs have been used to refine aircraft performance models

based on the BADA model as well as the ICAO databank. A 10% improvement in fuel burn

estimates is achieved through the incorporation of such operational data [53]. Flight recorder

data have been used to develop least squares regression models to estimate taxi fuel consumed

as functions of taxi time, number of stops, and number of turns on the surface, as well as the taxi

time and number of acceleration events during taxi [54]. Flight recorder data have also been

used to enhance the System for assessing Aviation's Global Emissions (SAGE) [55], a precursor

to AEDT [56]. In other work, multiple regression has been applied to FOQA data to identify

anomalous outliers in fuel burn. Cruise phase fuel burn for each engine of the Boeing 757 is

regressed on the calibrated speed, gross weight, and the engine RPM. The total fuel burn (from
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all engines combined) is found to be higher than that given by the manufacturer's performance

manual [57]. In summary, these studies illustrate the improvement in fuel burn estimation that

could be achieved through the use of operational data.

2.5 Estimation of takeoff weight

The Takeoff Weight (TOW) of an aircraft is an essential parameter for modeling or estimating

its trajectory and fuel consumption, as well as other aircraft performance characteristics, such

as, its rate of climb/descent, range, endurance, ceiling, and takeoff distance [58, 33]. The models

described in Section 2.3.2 further illustrate the need to know the TOW in order to accurately

estimate fuel burn. However, TOW is not generally available outside the operating carrier, due

to its dependence on proprietary information such as passenger load factors and operational

strategies. The above facts motivate the development of models to estimate the TOW of a flight

from accessible information.

Aircraft design studies have traditionally estimated the TOW by considering its components,

namely, the payload weight, stage length fuel weight, operating empty weight, reserve fuel

weight, and alternative fuel weight [59, 60, 10]. This approach is effective for studies in which

the payload weight is an input. It can also be used to estimate the average TOW of an aircraft

type over a set of operations for which the average passenger load factor is available [61]; for

example, average passenger load factors for different origin-destination pairs are published in

the United States by the Department of Transportation [62]. However, this method cannot be

easily extended to estimate the TOW of a particular flight, as load factors of individual flights

are not publicly known.

Prior studies have estimated the TOW for a particular flight using simulated or real air-

craft trajectory information during the climb phase [63, 64, 65, 66]. They typically estimate an

equivalent TOW such that the power in climb modeled using the equivalent TOW matches the

energy rate observed on past trajectory points. The equivalent TOW is computed using either

an adaptive mechanism, or least squares algorithms. Machine learning techniques have also

been applied to radar data to estimate the TOW in order to predict the future aircraft trajectory
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[67]. The methods proposed in these studies have been shown to be superior to the EURO-

CONTROL's Base of Aircraft Data (BADA) method for trajectory modeling [22]. However,

due to the unavailability of ground truth data, the accuracies of these TOW estimates have not

been evaluated. Instead, these models have been evaluated based on their trajectory prediction

accuracy. Studies have also looked at developing non-iterative, closed-form, flight phase-based

methods for TOW estimation by using aircraft performance data from BADA [33]. However,

these TOW estimates are validated by comparison of the resultant range-payload diagrams with

those supplied by the aircraft manufacturer, and not by direct comparison of the TOW estimates

with ground-truth data. Models have also been developed which estimate the TOW based on

the flight trip length. For the same aircraft type, longer distance flights are expected to have a

higher TOW. One such model is the Aircraft Noise and Performance (ANP) model [34] used

in AEDT. However, flight trip length is not a complete indicator of the TOW because of airline

operations such as fuel tankering.

Recent work has used runway ADS-B data during takeoff to model the operational TOW,

using analytical methods or methods based on least squares [68]. However, the resultant TOW

estimates could not be validated due to the unavailability of ground truth data. Moreover, these

studies assume no deration in the takeoff thrust, and a standard coefficient of friction for the

ground roll, which result in approximate estimates of the operational TOW. Finally, phase-based

models have been used for the Bayesian inference of TOW [69].

2.6 Discussion

A study of the prior literature illustrates the benefits of data-driven models and how they can

help to overcome some of the limitations of simulation models, and reduce modeling assump-

tions. The literature survey also revealed insights into the desired characteristics of fuel burn

models. In particular, statistical techniques help directly map input features (for example, the

4-D flight trajectory) to the desired outputs (for example, the aircraft fuel flow and fuel burn).

These methods also enable quantification of uncertainty in the output arising from random dis-

turbances and unmodeled features.
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Most prior studies and models have used nonoperational data from ground tests, perfor-

mance calculators, and flight manuals for model building. Results from such models may not

be representative of real flight operations (as shown by the comparison between the ICAO Data-

bank and FDR-derived estimates of fuel burn in Section 2.3.1). This observation motivates the

use of operational flight data for model building. Prior studies also show that the BADA mod-

els, which are used in many trajectory modeling tools worldwide, do not adequately represent

the factors which govern the fuel burn. The use of parametric (mostly linear) equations be-

lies the complex nature of the mapping between trajectory and fuel burn. BADA also needs a

thrust estimate to calculate the fuel burn. An improved modeling methodology should leverage

a physical understanding of aircraft and engine behavior, in order to adequately account for dif-

ferent factors affecting fuel burn. It should also be able to map the trajectory to the fuel flow rate

directly, bypassing the estimation of intermediate parameters (such as thrust). In other words,

it should improve on existing architectures (for example, Figure 1-1), by making better use of

operational data. The model architecture shown in Figure 1-2 illustrates such an alternative.

We would also like models that reflect problem complexity, making nonparametric statistical

techniques well-suited for this objective. We would also like a methodology that can model the

fuel burn in all different phases of flight (that is, the surface, ascent, cruise, and descent).

Lastly, prior literature shows that an accurate estimate of TOW is necessary for accurately

modeling aircraft performance (including its fuel burn). Therefore, the development of a vali-

dated methodology for estimation of takeoff weight along with its associated uncertainty is also

an important research question.
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Chapter 3

Datasets

As mentioned in Chapter 1, this thesis develops a data-driven approach to model aircraft en-

gine fuel burn. This chapter describes the different data sources and datasets used for model

development.

3.1 Flight data recorder

Colloquially known as the 'black box', a Flight Data Recorder (FDR) is an instrument on board

the aircraft which records the values of important parameters during flight. As a result, it is

regarded as one of the most accurate sources of operational flight data. The FDR data in this

thesis have been obtained from a major European carrier. The FDR dataset reports important

aircraft and engine parameters such as trajectory, speeds, gross mass, fuel flow rate, pressure

ratios, spool speeds, ambient pressure and temperature, aircraft attitudes, aircraft accelerations,

positions of auxiliary devices, etc. as a function of time. The frequency of sample recording

is higher in the rapidly changing phases of flight (such as takeoff, initial part of climb, latter

part of descent, landing) and lower in those phases which undergo less rapid changes (such as

cruise). There are two sets of FDR data in our possession, one set is from approximately 2006

(FDR-I) and the other set is from 2016 (FDR-II). The two FDR datasets have been procured

at different times. It is important to note that being confidential in nature, the FDR data for

any particular flight operation are not disseminated by the airline in general, thereby making it
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impossible to obtain recorded fuel flow rate values for any particular flight. Therefore, there lies

enormous promise in the ability to use the small subset of FDR data acquired in this study to

develop fuel burn prediction models. The developed models are abstractions of real flight data

and can be used to predict the fuel burn for a flight when its flight recorder data are unavailable.

The FDR-I dataset has been used to develop models to predict the TOW and the fuel flow rates

in the airborne phases of flight. The FDR-II dataset has been used to develop models to predict

the fuel flow rates during taxi.

3.1.1 Aircraft types and engines

The FDR archives in possession contain data for 9 distinct aircraft/engine types. Only those

flights are considered whose FDR records are uncorrupted, and whose trajectory can be clearly

separated into distinct flight phases (like taxi, takeoff roll, ascent, cruise, descent, and touch-

down) by employing simple trajectory-based criteria. The different flight phases and the cri-

teria to identify them are elaborated in Section 3.1.2. The different aircraft and engine types

included in the study are tabulated in Table 3.1 and Table 3.2. The approximate Maximum

Takeoff Weight (MTOW), the approximate Operating Empty Weight (OEW), and the number

of flights (# Flts.) are also shown. It should be noted that the MTOW and the OEW values in

the tables are approximate, representative numbers for the aircraft types and have been obtained

from the Jane's All the World's Aircraft database [70, 71, 72]. When not explicitly provided, the

aircraft-engine match has been inferred using the JP Fleet database entries for the appropriate

airline [73, 74].

Figure 3-1 shows histograms of the takeoff weights observed in the FDR-I dataset for dif-

ferent aircraft types, with the MTOW and OEW values overlaid. Figure 3-2 shows histograms

of the total airborne fuel burn observed in the FDR-I dataset for different aircraft types.

3.1.2 Flight phase identification

Before analysis, the trajectory of each flight is split into the following different phases (Figure

3-3):
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Table 3.1: FDR-I dataset: Aircraft types and engines.

Table 3.2: FDR-II dataset: Aircraft types and engines.

Aircraft Type Engine Type MTOW (kg) OEW (kg) # Fits.
A330-343 2x RR Trent 772B-60 230,000 124,600 182

B777-300ER 2xGE GE90-115BL 345,050 167,825 127

1. Departure taxi (taxi-out)

2. Takeoff roll and wheels off

3. Ascent/Climb

4. Cruise

5. Descent

6. Touchdown

7. Arrival landing roll and taxi (taxi-in)

The methodology for identifying the different flight phases is as follows:

- The FDR records of aircraft trajectory parameters like latitude, longitude, pressure al-

titude, ground speed, and their derivatives with respect to time are used to identify the

points of transition from one flight phase to the other.
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Aircraft Type Engine Type MTOW (kg) OEW (kg) # Fits.
A319-112 2xCFMI CFM56-5B6/2 or 2P 64,000 40,160 130
A320-214 2xCFMI CFM56-5B4/2 or P/2P 73,500 42,100 169
A321-111 2 x CFMI CFM56-5B1/2 or 2P 89,000 48,500 117
A330-202 2x GE CF6-80E1A4 230,000 120,500 84
A330-243 2x RR Trent 772B-60 230,000 120,600 100
A340-541 4xRR Trent 553 372,000 170,900 52
B767-300 2x GE CF6-80C2B7F 156,490 86,955 91

B777-300ER 2x GE GE90-115B1 345,050 167,825 131
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* The phase from the first movement of the aircraft up to the start of the

departure airport is the departure taxi (taxi-out) phase.

takeoff roll at the

" The start of the takeoff roll is identified by a sudden increase in the aircraft acceleration

post departure taxi. The aircraft then accelerates down the runway towards takeoff.

" The wheels-off condition (end of takeoff ground roll) is identified by the pressure altitude

relative to the departure airport elevation becoming 0 and then subsequently increasing

continuously and rapidly as the aircraft climbs.

* Climb follows, until the start of the cruise phase (top of climb).

" The start of cruise (top of climb) is identified by the beginning of leveling out of the

altitude for an extended time period.
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- The end of cruise (top of descent) is identified by the beginning of a rapid and continuous

decrease in aircraft altitude.

" The period of descent continues from the end of cruise (top of descent) until wheels-on.

" Touchdown (or wheels-on) is identified by the value of the pressure altitude relative to the

arrival airport elevation becoming 0 (or below a certain threshold value).

" Subsequently, the entire phase until the aircraft comes to a stop at the arrival airport is the

landing roll and taxi phase.

* It is important to note that all the above criteria make use of just the flight trajectory

information as a function of time.

" The exact criteria for flight phase identification are adopted by manual inspection of the

trends in the FDR trajectory data and vary for the different aircraft types. They can be

easily tweaked, if required.

In addition to the main phases identified above, two sub-phases are further identified in this

thesis: Climb out and approach. Climb out and approach are the parts of ascent and descent,

respectively, occurring below 3,000 ft AFE. These phases are a part of the ICAO LTO cycle

and considered separately as they are the airborne phases occurring the closest to the ground,

thereby impacting air quality in the vicinity of the ground.

3.1.3 Airports

A total of 89 airports are found serving the different flights in the FDR archives. Figure 3-4

shows the geographical extent of the flight operations considered. The airport Above Mean Sea

Level (AMSL) elevation varies from -11 ft to 5,558 ft.

3.2 Airport Surface Detection Equipment, Model X

The Airport Surface Detection Equipment, Model X (ASDE-X) is a surveillance system at

major US airports which is used primarily for collision avoidance on the airport surface [75].
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comprise records of 166 flights from 2016, which are inferred to correspond to the flights in the

FDR-II dataset (based on a maximum likelihood match).

For a particular flight, its ASDE-X record contains track information such as latitude, lon-

gitude, speed, heading, and altitude, as functions of time. There is also information about the

departure fix, aircraft identification, and aircraft type. Resolution of the trajectory variables in

the ASDE-X dataset is as follows:

- Sampling rate: 1 Hz

SLatitude and longitude: < 10-6I

O Heading: < 10-6

F Speed: 0.51 ms-1 (1 knot)

A drawback of the ASDE-X archives is that the raw data are very noisy and have missing

fields. These tracks, therefore, need to be smoothed before use, as described in Chapter 6.
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Chapter 4

Statistical Methods

This chapter gives a brief primer on the different statistical methods used for model development

in this thesis. It gives only a high-level overview of the methods and readers are asked to refer

to the cited texts for more details about the methods. The different methods described in this

chapter are the Ordinary Least Squares (OLS) regression, methods based on regression trees

(Classification and Regression Trees (CART) and Least Squares Boosting (LSB)), and Gaussian

Process Regression (GPR).

4.1 Supervised learning

There are many real-life problems which involve the prediction of an output variable in response

to an input variable. For example, one might be interested in predicting the weight of an individ-

ual (the output) given his/her height and age (the inputs). One might be interested in predicting

if it will rain or not on a particular day (the output) given the temperature, pressure, and whether

it rained or not the previous day (the inputs). Predicting the output requires the development of

a mapping from the inputs to the outputs. One way to develop this mapping is by using data

containing information about the input and the output variables of interest. For example, in the

first problem, height, weight, age values for different people in a representative sample can be

collected. In the second example, historical weather data can be collected. The values of the

output and the input variables in the collected data can be used to develop a mapping between
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the two and this mapping can then be used to predict the unknown output at a new input not

seen before. This process of model creation using a subset of data containing values of both

the output and the input variables is known as supervised learning [32] (as model creation is

"supervised" by actual values of the output variable in the collected dataset).

Based on the nature of the output variable, the supervised learning problem can be of two

different kinds. Developing a mapping to estimate the value of a continuous output (as in the

first example) is known as a regression problem. Developing a mapping to predict which of

a discrete set of classes the output falls in (as in the second example where there are just two

classes - either it will rain or it will not rain) is known as a classification problem. In this

thesis, the objective is to map the fuel flow rate (and the TOW) to aircraft trajectory variables.

FDR data containing values of the fuel flow rates, the TOW, and the trajectory variables at

every instant in flight are used for developing the mapping. Thus, fuel flow rate and TOW

modeling as investigated in this thesis are supervised learning problems. More specifically,

they are regression problems since fuel flow rate and TOW are continuous variables.

4.1.1 Regression

In regression, the output of the ith observation (yi) is assumed to equal a function of the input

features (xi) plus some noise (6i),

yi = f (xi) + Ei. (4.1)

The goal is to estimate the underlying regression function f(x) using a set of given inputs and

their corresponding given outputs. Once the regression function is estimated, it can be used to

estimate the unknown output corresponding to a new input (x*),

y =f(x*). (4.2)

The ultimate objective of any regression model is to provide accurate predictions of the

output variable, given a new input vector. Prior to building any model using regression, the

dataset is divided into three mutually exclusive parts:

* Training dataset: This dataset, containing the true values of the input and the output
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variables, is used to train the regression model to estimate the regression function, thereby

generating a mapping from the input to the output variables.

- Validation dataset: This dataset, separate from the training dataset, is used to evaluate

a set of models developed in order to choose one model that gives the "best" predictive

performance. The validation dataset is also known as the development dataset.

- Test dataset: This dataset, separate from both the training and the validation sets, is used

to evaluate the predictive performance of the chosen "best" model.

Since the objective is to get accurate predictions on new inputs, it is important to evaluate a

model for its generalized predictive performance on a dataset that has not been used for training.

Evaluating a model on data that have been seen during training can lead to overly-optimistic

estimates of the prediction accuracy.

4.2 Ordinary Least Squares regression

Ordinary Least Squares (OLS) is the most commonly used regression algorithm. It is a prob-

abilistic, parametric regression method. The noise (Ei in Equation 4.1) is assumed to follow a

Gaussian distribution thereby lending an underlying probability distribution to the output. The

regression function is assumed to be a linear combination of the appropriate input features [76].

The coefficients in this linear combination are the parameters, and are estimated via maximum-

likelihood estimation.

p

yi = 30 + E kXk,i + Ei, where i , X(0, u a) (4.3)
k=1

Here, /3s are the parameters to be estimated, Xk,i is the kth component of the input feature vector

at the ith observation (xi), p is the number of input features, AJ(O, o) is the Gaussian distribu-

tion with 0 mean and variance o, and 'i.i.d.' stands for 'independent, identically distributed'.

As an example, let us consider an output/dependent/predicted variable y to be modeled as

a function of two input/independent/predictor variables x, and X 2 . If linear basis functions are
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adopted, then for each observation, Equation 4.3 becomes

yi = #o + /31X 1 ,i + / 2 x 2,i + Ci. (4.4)

The model input features are x, and x 2, and the output feature is y. If quadratic basis functions

are adopted, then for each observation, Equation 4.3 becomes

yi = 3o + 3
1 X 1,i + / 2 X 2,i + /3X1,iX2,i + # 4 xi + )35X2, + ci. (4.5)

The model input features are now x1 , X 2, X 1X 2, X2, and xj, and the output feature is y. In

OLS regression, this form of the input and output feature vectors needs to be assumed prior to

regression and each input feature is associated with a regression parameter/coefficient which

needs to be estimated.

Equation 4.3 can be written in matrix form as

Y = Xho + E. (4.6)

Here, y is the n x 1 vector of the output values corresponding to the n observations in the

training dataset, Xh is the n x (p + 1) matrix of training input vectors with a leading column

of ones added, 8 is the (p + 1) x 1 vector of the regression parameters to be estimated, and E is

the n x 1 vector of the noise values corresponding to the n observations. Xh is given as

X1, 1

X 1 ,2

1

X2 ,1

s 2 ,2

X1,n X2,n

... - p,1

.. -- p,2

... srp,n

(4.7)

The least squares approach (which is equivalent to

Gaussian noise) estimates the regression parameters as

= (X TXh) 1X y.T

a maximum likelihood estimation for

(4.8)
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The mean prediction of the output at a new input (column) vector x* is then given as

y* x*)/ (4.9)

where, x (4.10)

The predictive distribution for the predicted output in the OLS regression framework is a

Student's t-distribution. The 95% prediction interval (0.95PI) for the output y* corresponding

to the new input vector x* is given by the 95% Highest Density Interval (HDI) [77] of this t-

distribution. The 95% prediction interval is an interval centered about the mean prediction (y*)

within which the true output falls with probability 0.95.

0.95PI = {yy* E[y* - T(0.975; n - p - 1)spred, (4.11)

y* + T(0.975; n - p - 1)Spredl} (4.12)

where, s2red - MSE(1 + x*T(X Xh)-x*), and (4.13)
(ye - h T h Xh)

MSE - - X)T(y Xh) (4.14)
n - p -1

T(0.975; n - p - 1) refers to the 9 7 .5 th percentile of the Student's t-distribution with n - p - 1

degrees of freedom (C), sp2 is the estimated variance for the predicted output, and MSE is the

regression mean squared error.

The residuals, given by y - Xh3, are the error estimates at the different observations in

the training dataset. The underlying probabilistic assumptions on the noise terms require the

residuals to follow certain properties. These properties, which can be used as diagnostic tools

to check the quality of the OLS regression models, are as follows:

The residuals, when plotted against the input features, should not show any specific

trends. They should be located around zero and should be independent of the input fea-

ture values. A systematic variation of the residuals with the input features could indicate

'A 95% Highest Density Interval (HDI) is an interval in the domain of a probability distribution such that, (i)
the probability mass within the interval is 0.95, and (ii) every point inside the interval has a probability density not
less than every point outside it. The interval is unique and the shortest among all possible 95% confidence intervals
for that distribution.
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an improper choice of the basis functions used for regression.

- The residuals, when plotted against products of input features, should not show specific

trends. Presence of trends could indicate that the interactions among the input features

are not sufficiently captured in the model.

- The noise terms are assumed to have a constant variance (o). Thus, the residuals should

also have similar variance (homoskedasticity) at different levels of the input features or

the fitted values. A non-constant variance of the residuals (heteroskedasticity) indicates

model misspecification.

* The noise terms are assumed to be independent. Therefore, the residuals should be inde-

pendent too. One way to check for residuals' independence is to plot the residuals against

their lagged values. Systematic trends in this plot could indicate that the residuals are not

independent of one another.

- The noise terms are assumed to be normally distributed. Therefore, the residuals should

also be normally distributed. Normality of residuals can be checked using normal prob-

ability plots or through statistical testing. Deviation from normality indicates a major

model misspecification as error normality is the basis for many model results (such as the

distributions of the model coefficients, and model predictive distributions).

Remedial measures exist to correct for possible model misspecifications. One such remedial

measure is feature transformation to change the basis functions (such as using quadratic instead

of linear basis functions, taking logarithmic or square root transformations of the original fea-

tures, etc.). More such remedial measures and details of the OLS regression can be found in

[76]. In this thesis, inbuilt MATLAB®[78] toolboxes are used for building models using OLS

regression.

The advantage of OLS regression is that it is simple to interpret, computationally inexpen-

sive, gives a closed form solution for the parameters, and, being probabilistic, can generate the

predictive distribution of the output at a new input. However, one needs to choose a form of

the input feature vector (x) (for example, polynomial, logarithmic, trigonometric, etc.) before
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undertaking the parameter estimation. This poses a considerable challenge in problems without

prior knowledge of the exact functional form of the feature vector (which may be nonlinear),

and motivates the adoption of nonparametric methods which enable a data-driven tuning of the

regression function without having to explicitly assume a form of the feature vector prior to

regression.

4.3 Regression trees

As mentioned in the previous section, use of nonparametric methods frees the user from the

choice of the form of the regression features prior to model building. One such nonparametric

method is the use of regression trees.

Regression trees are decision trees used for the purpose of regression. Modeling using

regression trees involves generating rules based on values of the input variables. Sequentially

following these rules leads to the output prediction. The regression tree based methods, as

used in this thesis, are nonprobabilistic (i.e., they do not assume an underlying probability

distribution for the output). They are nonparametric as there are no specific parameters which

need to be estimated in order to build the regression model. Two algorithms based on regression

trees are investigated in this thesis: Classification and Regression Trees (CART) and Least

Squares Boosting (LSB).

4.3.1 Classification and Regression Trees

Classification and Regression Trees (CART) is a popular algorithm developed by Leo Breiman

et al. [79]. Starting with the root node containing all the data points, CART carries out recursive

binary splitting of the data. The split criteria are always of the form X < x where X is

a particular predictor variable and X is the split point. Points in a node satisfying the split

criterion go into the left child node and the others go into the right child node. This split at

each node is a locally optimal split, chosen so as to maximally reduce the weighted sum of

the mean squared errors of the resulting nodes. The sum is weighted by the fraction of the

observations going in the left child and the right child nodes. The algorithm assigns the mean of
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the values of the dependent variable in a node as the value of that node. The recursive splitting

continues till the algorithm reaches a stopping criterion. The nodes which do not further split

are known as leaf nodes. The algorithm stops splitting a node when either the improvement in

mean squared error due to a further split drops below a threshold, or when a further split drops

the number of observations in a node below a pre-defined value, or when splitting is no longer

possible as the predictors have the same distribution for all the points in the node, or when only

one observation remains in the node. In this thesis, a minimum number of 10 observations is

required to be present in each node. In each leaf node, the algorithm assigns a constant value

equal to the mean of the dependent variable for all the observations in that node. Each leaf node

represents a partition of the input feature space which is assigned a constant value of the output

variable.

The tree growing procedure normally produces a very deep tree which overfits the data.

Hence, the tree is pruned as a means of regularization. Pruning re-combines leaves (to reduce

the total number of leaves and hence, the tree complexity) in a manner which keeps the increase

in training mean squared error to a minimum. This successive pruning produces a sequence of

subtrees. The mean squared error given by each subtree on out-of-sample data is chosen as the

metric of its generalized performance. In this thesis, 10 fold cross validation is used to calculate

the out-of-sample mean squared error and its standard deviation. The most parsimonius subtree

having its mean squared error within one standard deviation of the minimum error across all

subtrees is chosen as the final tree to be used further for modeling and prediction of the fuel

flow rate.

Figure 4-1 shows a typical regression tree built by CART and the partitions induced by it in

the predictor space [80]. The tree is a toy model which regresses fuel flow rate per engine (in

kg/s) on two variables: Altitude (h, in m) and ground speed (VGS, in m/s) for the A320-214 in

ascent. For ease of representation and interpretability, only 1000 observations randomly chosen

from the FDR dataset for the A320-214 are used for model building in Figure 4-12. The tree

clearly shows that prediction is based upon a set of simple decision rules which direct each
2It must be emphasized that the regression tree and the predictor space partitions in Figure 4-1 are solely for

the purpose of understanding, via a toy problem, how a tree developed using CART works. The actual trees for
fuel flow rate prediction using CART are built using a different set of features, and a larger number of observations
(as explained in Chapter 5).
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h < 943.74 m
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Figure 4-1: A320-214: CART visualization in ascent: (top) the tree, and (bottom) the partitions
of the predictor space induced by the tree. The numbers inside the partitions correspond to the
leaf node numbers in the tree (written in parentheses for each leaf node) (reproduced from [80]).

input vector to a leaf node and assign a node-specific value for the fuel flow rate. For example,

one rule states that if the altitude is less than 4645.99 m and the ground speed is less than 62.58

m/s, then the fuel flow rate per engine is 0.32 kg/s (partition 1 in Figure 4-1). This simplicity
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enables fast prediction. It is also easy to see how the tree seamlessly captures interactions among

predictors. This is evident from the fact that splitting variables seen in the left subtree of a node

could be different from those seen in the right subtree. The tree breaks up the predictor space

into different partitions, each corresponding to one leaf node. Each partition represents that

region of the predictor space where all points show homogeneity in fuel flow rate values. Thus,

instead of fitting a global model to the entire dataset, CART identifies homogeneous regions

of data and fits a separate model in each region. This has the capability of improving model

accuracy as well as capturing the variability in data properly.

There are several advantages of using CART [32]. CART is a fast, computationally inex-

pensive, and a relatively automatic algorithm, not requiring much intervention from the user.

It can be easily scaled to large datasets. The trees generated are easily interpretable. CART is

a nonparametric algorithm (as there are no regression parameters present, unlike, for example,

the regression coefficients in ordinary least squares regression). Being a nonparametric method,

the problem of having to choose the form of the input features prior to model building does not

arise. The trees also capture interaction among different predictors (up to the depth of the tree).

Regression trees developed by CART are also robust to outliers in the input data and can deal

with irrelevant data. The CART algorithm can easily handle missing values in the data. Lastly,

the algorithm is invariant to monotonic transformations of the inputs.

4.3.2 Least Squares Boosting

The CART algorithm generates only one tree, which may be unstable and can have low pre-

dictive power. A combination of several such 'weak' regression trees can be expected to yield

models with better prediction capability. Boosting [32] is an ensemble method which combines

several 'weak' learners to yield a 'stronger' model. In this thesis, each weak learner is a regres-

sion tree generated by CART (as explained in Section 4.3.1). The boosting algorithm is run for

many ensemble cycles. Based on the minimization of the cross validated mean squared error

over the training dataset, the number of ensemble cycles in this thesis is 100. The algorithm

starts by building a CART-based weak learner to the entire dataset. In each successive cycle,

the boosting algorithm fits a weak tree learner to the residuals from the previous cycle. The
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objective is to minimize the squared error loss and hence, the name Least Squares Boosting

(LSB). The output predictions at a particular input from all the cycles are linearly combined

to give the model prediction at that input. The contribution from each cycle is controlled by a

manually set learning rate which, in this thesis, is set to a value of 0.1. The learning rate thus,

shrinks the contribution from each tree.

The advantage of the LSB algorithm lies in its superior predictive ability compared to a

single CART model. However, by combining many single CART models, the algorithm loses

the interpretability seen in a single tree. The LSB algorithm is also slower than the CART

algorithm. Both the CART and the LSB algorithms have seen widespread application in diverse

areas like solar radiation modeling [81], strength modeling of composites [82], modeling of

signalling traffic in mobile networks [83], highway safety studies [84], health monitoring of

engineering components [85], pollution studies [86], and ecological studies [87].

4.3.3 Bootstrapping

For nonprobabilistic methods (such as CART and LSB) which do not assume an underlying

probability distribution on the output, the 95% prediction intervals (used to quantify uncertainty

in the output prediction) can be developed using the method of bootstrapping. Bootstrapping

starts with re-sampling the training dataset with replacement. Each such sample set contains

the same number of observations as in the original training dataset. Many such samples sets are

created (1000 in this thesis) and each set is used for training a model. This model gives one value

of the output prediction at a new input vector. Different sample sets lead to different models

trained which, in turn, lead to different predictions at the same input. Thus, at every new input,

a sample of output predictions is obtained. This sample can be used to develop 95% prediction

intervals for the predicted output at the new input (for example, by taking the inter-percentile

range between the 2 .5 th and the 9 7 .5 th percentiles of the prediction samples). More details about

the bootstrap method can be found in [88]. Bootstrapping can be computationally expensive and

thus, computing prediction intervals for nonprobabilistic methods can be challenging. In this

thesis, MATLAB® toolboxes are used for running the CART, LSB, and the bootstrap algorithms

[78].
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4.4 Gaussian Process Regression

From the discussion in the previous sections, it is apparent that a regression method is desired

that is both nonparametric (i.e., does not assume a form of the regression function prior to model

building) and probabilistic (i.e., gives a predictive distribution of the output variable which can

yield prediction intervals easily without having to resort to computationally challenging algo-

rithms such as the booststrap method). One such method is Gaussian Process Regression (GPR),

which has found application in diverse areas, including biomedical applications and health care

[89, 90, 91], remote sensing [92, 93], music [94], robotics [95], cellular communications [96],

and material microstructure analysis [97].

Gaussian Process Regression (GPR) uses Gaussian Processes for regression. A function

f(x) is said to follow a Gaussian Process (GP) if the function values at any finite set of inputs

x follow a joint Gaussian distribution [98].

f (x) ~ gP(me(x), k(x, x')) (4.15)

where, me(x) is known as the mean function and k(x, x') is the kernel function over two inputs

x and x', which governs the covariance among function values.

cov(f (x), f (x')) = k(x, x') (4.16)

GPR is a Bayesian statistical technique [77]. In a Bayesian setting, the parameter to be

estimated is first given a 'prior' distribution which represents beliefs about the parameter prior

to making any observations. Each observation made contributes to updating our belief about

the parameter. The updated belief after the observation is made is represented by the 'posterior'

distribution of the parameter. Mathematically, the Bayesian setting can be represented using the

Bayes theorem,

p(bly) ac p(0P)pyj) (4.17)

where, V) is the parameter to be estimated, y is the vector of observations, p(4) is the prior prob-

ability distribution of the parameter before making any observations, p(y|o) is the likelihood
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of the observations given the parameter, and p(Oly) is the posterior probability distribution of

the parameter after making the observations.

In GPR, the regression function f(x) in Equation 4.1 is given a GP prior with a zero mean

function. The noise parameter in Equation 4.1 is assumed to follow a Gaussian distribution
i.i.d.Ei r A(0, of). Under the assumption of a GP prior over the regression function and Gaussian

noise, the output variable y also follows a GP prior with a zero mean function and a noisy kernel

function knoisy (xP, xq) over d-dimensional column input vectors xP and xq.

y ~ gP(o, knoisy (xp, xq)) (4.18)

The noisy kernel function over two inputs (knoisy(xP, xq)) relates to the kernel function for the

GP prior over the regression function (k(xp, xq)) (Equations 4.15-4.16) as

knoisy (x xq) = k(xp, xq) + ofnpq (4.19)

where, 6 pq is the Kronecker delta between the pth and the qth input vectors.

4.4.1 Kernel functions

A large amount of the flexibility in GPR results from the rich suite of kernel functions avail-

able to model the covariance among the function values. Any function which can give a valid

(positive semi-definite and symmetric) covariance matrix over function values is a viable kernel

function. By controlling the covariance between function values, these kernel functions control

the smoothness of the functions. Some commonly used kernels are as follows [99, 98]:

Squared Exponential kernel: This kernel function is a stationary kernel function, which

depends on the inputs only via the Euclidean distance between them. It is used to model

very smooth functions. It is given by

kSE (Xp, X) --- exp ( (xPi Xq~i)2 (4.20)
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- Exponential kernel: This stationary kernel function is used to model rough functions. It

is given by

kE(Xp, Xq) 2 exp - i i)) (4.21)

- Mat6rn class of kernels: This class of stationary kernels models smoothness levels be-

tween those of the exponential and the squared exponential kernels. Two commonly used

kernel functions from the Mat6rn class of kernels are as follows:

kMat.,3/2(XpXq) = ( 1+ Nr exp(-v"3r) (4.22)

kMat.,5/2(Xp, Xq) = ( I + -r + exp(-V'5r) (4.23)

d )
where, r = ( pi - Xqi (4.24)

In Equations 4.22-4.23, the '3/2' and '5/2' refer to values of a parameter in the Mat6rn

class of kernels which controls the level of smoothness. 3/2 and 5/2 are two values com-

monly used. In Equations 4.20-4.24, af is a variance parameter governing the magnitude

of the kernel, e is the d-dimensional vector of length scales (one for each input dimen-

sion), and the subscript i refers to the ith component of the vector. These kernel parame-

ters are referred to as hyperparameters in GPR. Thus, the hyperparameter vector for the

squared exponential, exponential, and Matdrn kernels is [uf f]T.

* Dot product kernel: This is a non-stationary kernel, whose value depends on the actual

location of the inputs (instead of the distance between them). It is given by

kDP (Xp, Xq) = O + XpXq, (4.25)

where, E = diag(U , a, . . ). (4.26)

Here, a is the constant variance parameter, U2, U2 , ... U, c are the variance parameters
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for each of the d input dimensions, and 'diago' is the diagonal matrix with its arguments

constituting the diagonal entries. The hyperparameter vector for the dot product kernel is
[r2 012 02 .. 12]T.

0T 1i 2 d.

Numerous other kernel functions exist, details of which can be found in [99]. The sum of two

kernel functions is also a valid kernel function. In this thesis, additive kernels made up by

summing a dot product kernel and different stationary kernels are used for GPR. Such kernels

depend both on the location of the input vectors and the distance between them (so that the

function values at two input vectors which are close together are correlated). The following

kernels are used in this thesis for GPR:

* Dot Product Squared Exponential (DPSE) kernel: This kernel, formed by adding the dot

product (Equation 4.25) and the squared exponential (Equation 4.20) kernels, is given by

kDPSE(Xp, Xq) = kDP (Xp, Xq) + kSE (Xp, Xq). (4.27)

- Dot Product Exponential (DPE) kernel: This kernel, formed by adding the dot product

(Equation 4.25) and the exponential (Equation 4.21) kernels, is given by

kDPE (Xp, Xq) = kDP (XP, Xq)+ E (Xp, Xq). (4.28)

- Dot Product Matern (DPM) kernels: These kernels, formed by adding the dot product

(Equation 4.25) and the Matern class (Equations 4.22-4.23) of kernels, are given by

kDPM,3/2(Xp, Xq) = kDP (Xp, Xq) + kMat.,3/2(Xp, Xq). (4.29)

kDPM,5/2(Xp, Xq) = kDP (Xp, Xq) + kMat.,5/2(Xp, Xq). (4.30)

4.4.2 Hyperparameter inference

The next step after choosing the kernel function involves inference of the hyperparameters.

Under GPR, the log posterior probability of the hyperparameter vector 0 h, given the matrix of
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input vectors X and the vector of dependent/output variable values y, is written as

log p(6h|y, X) = log p(Oh) -y T -ly -- log|KY| 2 log(27). (4.31)
2 2' 2

Here, P(Oh) is the prior on the hyperparameter vector. The remaining terms in the right hand

side of the above equation form the type-II log likelihood. n is the number of observations in

the training dataset used for model building, X is the n x d matrix of d-dimensional training

inputs, y is the n x 1 vector of the training output values, Oh is the vector of hyperparameters

and KY is the n x n covariance matrix derived from the noisy kernel function (Equation 4.19)

over pairs of input vectors in the training set. I refers to the determinant of the matrix. The

Maximum A Posteriori (MAP) estimate (0h) found by maximizing the log posterior probability

in Equation 4.31 is taken to be the estimate of the hyperparameter vector.

4.4.3 Prediction using Gaussian Process Regression

Once the hyperparameters are inferred, we wish to determine the predictive distribution of the

output values y* at a set of new inputs X*. This predictive distribution, which is also a Gaussian

distribution in the GPR framework, is given as follows:

y*IX* D ~ A(p, C) (4.32)

t = K(X*,X)Kyly (4.33)

C = K (X*, X*) - K(X*, X)KY1K(X*, X)T + o< 1 * (4.34)

Here, n* is the number of new inputs at which predictions are desired, X* is the n* x d matrix

of the set of new inputs, D is the set of training inputs and output values, ti is the mean and C

is the covariance matrix of the multivariate Gaussian predictive distribution, K(X*, X) is the

n* x n covariance matrix derived from the noisy kernel function (Equation 4.19) over pairs of

new and training input variables, K(X*, X*) is the n* x n* covariance matrix derived from

the noisy kernel function over pairs of the new input variables, and In is the n* x n* identity

matrix. The form of the predictive distribution highlights the advantage of using GPs - the
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distribution is normal. The mean prediction is the mean of the Gaussian predictive distribution

(i) given by the GPR model. Along with mean predictions, we also get uncertainty estimates,

in a mathematically tractable fashion. For a Gaussian predictive distribution over an output y*

with mean prediction y^* and standard deviation of the predictive distribution spred, the 95%

prediction interval is given by

0.95PI = {y*jy* E [y^* - 1. 9 6 spred, y* + 1.96spred]}. (4.35)

Figure 4-2 shows a pictorial way to understand the essence behind GPR. Figure 4-2(a) shows

the output function values drawn from the GP prior before making any observations. Based

on the GP prior, several different functions are deemed possible. Figure 4-2(b) shows that as

observations used for model building are taken into account, the space of the possible output

functions restricts to include only those functions which can fit the observations (with the noise

properly accounted for), and one is left with a smaller set of acceptable functions. The gray band

in the figure shows the confidence intervals for the functions. The band is the narrowest around

the observations (as the output values at such points are known with the greatest certainty).

Thus, GPR 'tunes' the space of acceptable functions with the help of the observations.

2 2-

11

0 0

0

-2 -2

-5 0 5 -5 0 5
input x input. x

(a), prior (b), posterior

Figure 4-2: Visualization of Gaussian Process Regression, (a) the prior function space, and (b)
the posterior function space (reproduced from [98]).
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4.4.4 Approximate Gaussian Process inference and prediction

The exact GP inference and prediction explained in Sections 4.4.2-4.4.3 involves inverting an

n x n matrix (Ky), which requires 0(n3 ) operations. Hence, exact GP can be computationally

very expensive for large datasets. In order to perform inference and prediction on large datasets,

many approximations have been developed. One such approximation, used in this thesis, is the

Fully Independent Conditional (FIC) approximation. In this approximation, m, artificial inputs,

called the inducing inputs are introduced. The GPR function values at these inducing inputs are

called inducing variables. Addition of these inducing variables enables us to make the first ap-

proximation that the vector of function values at the training inputs and the vector of function

values at the new inputs where predictions are desired, are conditionally independent given the

inducing variables. Additionally, in the FIC approximation, the training function values are as-

sumed fully independent among themselves, given the inducing variables. The function values

at the new prediction inputs are also assumed fully independent among themselves, given the

inducing variables. Thus, all the function values at the training and the new inputs are con-

sidered fully independent, given the inducing variables. These approximations lead to massive

computational savings if m, is much smaller than n. More details about the FIC (and other

approximations) can be found in [100]. All GPR analysis in this thesis is conducted using the

MATLAB®-based GPstuff toolbox [78, 101].

4.5 Metrics for evaluating statistical models

The objective of this thesis is the development of statistical models that predict the fuel flow

rate and fuel burn profile for a flight, given just its trajectory data. The following metrics are

developed to assess the predictive performance of a statistical model on an unseen prediction

set (not used for model training), in terms of the accuracy of both the point and the interval

estimates of the predicted output variable:

* Mean Error (ME): The Mean Error (ME) is the mean of the values of the relative pre-
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diction errors on the unseen prediction dataset.

ME = *" (4.36)
n = _i,true

Here, n* is the number of observations in the unseen prediction set, Yi,true is the actual

value of the output variable (ground truth) and Dj is the model point (mean) prediction of

the output variable for the ith observation in the prediction set. The ME reflects whether

the modeled point estimate over-predicts or under-predicts the ground truth. A negative

value of ME indicates that the model point predictions, on the average, under-predict the

ground truth. A positive value of ME indicates that the model point predictions, on the

average, over-predict the ground truth. Thus, the ME is an indicator of the bias in the

model predictions. It does not reflect the accuracy of the model point predictions.

Mean Absolute Error (MAE): The Mean Absolute Error (MAE) is the mean of the

absolute values of the relative prediction errors on the unseen prediction dataset.

MAE = ' E Yi- ""ru (4.37)
i=1 Yi,true

The MAE reflects the accuracy of the model point prediction. A model with a low MAE

is desired (with zero being the lowest possible value).

- Prediction Coverage (PC): The Prediction Coverage (PC) is the fraction of observations

in the unseen prediction set for which the ground truth values of the output variable fall

within the 95% prediction intervals of the predicted output. The PC across all the obser-

vations in the prediction dataset is given by

PC = E IJO.95P12 (Yi,true) (4.38)
n*

where, 1 is the indicator function, and 0.95PI is the 95% prediction interval for the ith

observation in the prediction set. The PC indicates how well the prediction intervals
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capture the variability of the output variable. A PC value close to 95% indicates that the

model has been properly specified and formulated.

Predictive Log Likelihood (PLL): For a probabilistic model (such as GPR), PLL cal-

culates the log of the likelihood of the actual output value (ground truth) in the unseen

prediction set under the predictive distribution given by the model. The higher the PLL

is, the better the actual output value can be explained by the model predictive distribution.

For a Gaussian predictive distribution (with mean yj and standard deviation spredi for the

ith observation in the prediction set), the PLL across all the observations in the prediction

set is given by

PL= * (Yi,true _ i) 2  12 o(R)PLL = - 're" -- log spred - log(27r) 21(4.39)

For a Student's t-distribution as the predictive distribution (as seen for OLS regression in

Equations 4.11-4.14), the PLL across all the observations in the prediction set is given by

PLL= log F l(g ) (+i) log (I+ 2sre )

(4.40)

Here, FQ refers to the Gamma function, ( is the number of degrees of freedom for the

t-distribution, yj is the mean prediction and spredi is the estimated standard deviation for

the ith observation in the prediction set.

- Normalized Length of Prediction Interval (NLPI): This is the mean of the length of

the 95% prediction intervals expressed as a fraction of the point estimate. For Gaussian

predictive distributions, it is given by

NLPI = 1 3 .9 2 spred
N 1 (4.41)

72



For a Student's t-distribution as the predictive distribution, the NLPI is given by

NLPI =2T(0.975 ()Spredi (4.42)
nyi

The NLPI indicates the extent of the relative uncertainty present in the estimated output.

4.6 Comparison of statistical models

In this thesis, the metrics developed in Section 4.5 are used to evaluate model predictive per-

formance for the desired output variable on each flight in the unseen prediction set (not used

for model training). It is often desired to compare these metrics among different models to

determine which model has the best predictive performance. One way of such a model com-

parison is to compare the mean (or median) of the evaluation metric for the different models

across all the flights. However, such a comparison does not account for the standard deviation

seen in the metric across different flights. Thus, in this thesis, the metrics for different models

are compared using statistical testing. This section gives a very brief overview of the different

statistical tests used in this thesis. Readers are encouraged to refer to the in-text references cited

for a more detailed exposition about these tests.

Let v be the metric which needs to be compared for two different models Mi and Mj. The

null hypothesis (WO) and the alternate hypothesis (NA) for a two-sided statistical comparison

are

W VM, - VM3 =0,

W A : M, - VM, # 0. (4.43)

Since two different models are being tested on the same set of flights, the statistical testing is

a case of testing using repeated measures (or "paired" samples). A Wilcoxon signed-rank test

[102] is used as a nonparametric statistical test in this thesis for pairwise model comparison. The

Wilcoxon test takes as input the vector of vm, - vmj for corresponding flights in the sample.

Being nonparametric, the test does not require any assumption on the distribution from which
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vM, - VMj are drawn. The test output is a test statistic which, for a set of more than 10 flights,

approximately follows a standard normal distribution under the null hypothesis. The p-value

for the resulting test statistic is then determined to be the probability of observing a value as, or

more, extreme than the calculated test statistic under the standard normal distribution (in both

the left and the right tails of the distribution). For a level of significance oz, the null hypothesis

is rejected if the p-value is less than y. The null hypothesis cannot be rejected with the given

data if the p-value is greater than or equal to g. In this thesis, the value of oz is taken to be

0.05.

In some cases, a one-sided statistical comparison may be desired. For a left-tailed compari-

son, the null and alternate hypotheses are

o :UM - VM 3 >

"HA VM - VM7O. 0 (4.44)

For a right-tailed comparison, the null and alternate hypotheses are

WO VM, - VMJ 0

WA VM, - VM 3 > 0. (4.45)

A similar Wilcoxon signed-rank test can be conducted for one-sided statistical comparison. For

a left (right)-tailed comparison, the p-value for the resulting test statistic is determined to be the

probability of observing a value as, or more, extreme than the calculated test statistic under the

standard normal distribution (in the left (respectively, right) tail of the distribution). For a level

of significance a, the null hypothesis is rejected if the p-value is less than Oz.

In some cases, more than one statistical comparisons may be simultaneously conducted. For

example, the evaluation metric for model Mi may be compared with that from both model Mj

and model M, simultaneously. In such cases of multiple pairwise comparisons, the p-value for

each test should be compared with the significance level corrected with a Bonferroni correction

factor [76]. This correction ensures that the family significance level for all the tests together

is at most oz. For k number of simultaneous tests, the effective level of significance for each
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test in the family of tests under the Bonferroni correction is 2 for two-sided testing and } for2k k

one-sided testing.

Finally, in some cases, it may be desirable to compare k models for all pairwise combi-

nations. Thus, there are k(k2 1) statistical comparisons to be simultaneously performed. The

Wilcoxon signed-rank test can be performed and the p-value for each test can be compared to

the significance level modified by the Bonferroni correction, as explained above, in the absence

of the assumption of any underlying parametric distribution for the differences in the evaluation

metrics. However, if a Gaussian parametric distribution is found to hold for the differences in

the evaluation metrics, then a repeated measures Analysis of Variance (ANOVA) procedure is

conducted [76]. The statistical testing is done using the Tukey multiple pairwise testing pro-

cedure for all pairwise comparisons [76]. The Tukey test is a parametric test. The output of

the Tukey test is a confidence limit for each pair of differences VN, - vm,. If the confidence

limit includes zero, then statistically vm, = vN, for the particular pair of models (Mi and Mj)

being compared. If the entire confidence limit is less than zero, then statistically vM2 < v, for

the particular pair of models being compared. If the entire confidence limit is greater than zero,

then statistically VM, > vmj for the particular pair of models being compared. These confidence

limits can thus be used to rank all the models in terms of the evaluation metric under consid-

eration. When assumption of a Gaussian parametric distribution is valid, using a parametric

statistical test is superior to using a nonparametric test.
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Chapter 5

Airborne Fuel Burn

In this chapter, the statistical techniques described in Chapter 4 are applied to FDR data in order

to build fuel flow rate and fuel burn models for the airborne phases of flight. Separate models

are developed for each aircraft/engine type and for each of the airborne phases (that is, ascent,

cruise, and descent). Additionally, separate models are built to analyze the fuel flow rate and

fuel burn in climb out and approach, motivated by the observation that these phases occur at

low altitudes, close to the surface [35].

This chapter begins by explaining how a physical understanding of aircraft and engine be-

havior has been used to identify features important for fuel flow rate prediction. It then proceeds

to describe two fuel flow rate prediction algorithms. The proposed statistical models are eval-

uated using the metrics developed in Chapter 4. An important aspect of this chapter is the

comparison of model predictive performance to that of currently used APMs such as the ICAO

Databank, BADA Family 3, and the SFI models. In this manner, we demonstrate the improve-

ments in performance afforded by the proposed modeling methodologies.

5.1 Candidate model features

The features of a model refer to the variables (and their transformations) that are included in

the model. Instead of a purely data-driven feature identification procedure, this thesis leverages

a physical understanding of aircraft dynamics to engineer the appropriate features for fuel flow
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rate modeling.

Four principal forces act on an aircraft in flight, namely, the net thrust generated by the

engines which propels the aircraft forward, the lift generated (primarily by the wings) which

keeps it in the air, the drag or the resistance offered by the air, and the weight of the aircraft

(Figure 5-1). Considering the aircraft as a point mass, the equations of motion can be written,

in a simplified form, as follows:

Va

L-
Fnh

Mg
Figure 5-1: Simplified free-body diagram showing the forces acting on an aircraft in flight.

L = mg cos yc (5.1)

Fn = D + mg sin 7c + ma (5.2)

L = qSCL (5.3)

sin c = v (5.4)

D = qS(CDO +CD 2 C) (5.5)
1

q = -pov2 (5.6)
2
dV

a = (5.7)
dt

Here, L is the lift on the aircraft, m is the aircraft gross mass, g is the acceleration due to

gravity, -yc is the flight path angle, Fn is the aircraft net thrust from all the engines, D is the

aircraft drag, a is the aircraft acceleration in the net thrust direction, q is the dynamic pressure,
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S is the reference wing area, CL is the aircraft lift coefficient, h is the vertical speed, V is the

true airspeed, CD0 and CD2 are aircraft drag coefficients, p, is the ambient air density, and

t is the time. In this simplified dynamics model of the aircraft, the aircraft angle of attack

and the bank angle are neglected. These quantities are small for large portions of the flight.

More importantly, this simplified model is commonly employed in literature and is not found

to introduce a significant error in the fuel burn prediction as compared to a more sophisticated

dynamics model [15, 18]. Combining Equations 5.1-5.7, we have

CD2 2 D2 V 2 2 h d FC = qSCD_ CDqm22  + Mg- + m . (5.8)
qS qSV2  V dt

The average fuel flow rate per engine (rmf) can be related to the net thrust via the Thrust

Specific Fuel Consumption (TSFC) as

TSFC x F, (5.9)
Neng

where, Nng is the number of engines. For a particular engine type, the corrected TSFC can be

assumed to be a function of the aircraft Mach number, the corrected engine parameters (such as

corrected net thrust for the engine), and the engine component efficiencies [56, 39], given as

TSFC Fn,pe
= fTSFC O ,Veng). (5.10)

Here, M, v is the aircraft Mach number, 6, is the ambient pressure (Pc) divided by

the International Standard Atmosphere (ISA) sea level static pressure (= 101,325 Pa), 0, is the

ambient temperature (Th) divided by the ISA sea level static temperature (= 288.15 K), F,pe is

the net thrust per engine nF,pe = F, assuming all the engines on the aircraft are producing

equal net thrust), and veng represents the engine component efficiencies. The parameter -y is the

adiabatic constant for air (= 1.4) and R is the gas constant for air (= 287.05 J/kg/K). The above

equations and relations (Equations 5.8-5.10) reveal the following functional dependency for the

averaged per engine fuel flow rate for a particular aircraft/engine type (neglecting constants for
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the particular aircraft/engine type):

rny~ ~ = q, ,,V , ZT1 CDO , CD2, Veng (5.11)
aircraft /engine type f?( h dV dt I e) 5

The aim of this thesis is to develop open models that map the aircraft trajectory to fuel flow

rate profiles, which can then be used to estimate the fuel flow rate for a flight, given its trajectory

from a surveillance system. Trajectory data from surveillance systems typically comprise the

aircraft latitude, longitude, altitude, ground speed, climb rate, and course angle, as functions of

time and are easily accessible. Many of the factors that affect fuel flow rate (Equation 5.11),

such as the ambient conditions, aircraft mass, true airspeed, the drag coefficients, and the engine

component efficiencies cannot be obtained from just the surveillance systems. A model that

incorporates these features would need access to high-fidelity datasets beyond just surveillance

data (for example, flight recorder archives, airline or manufacturer data, etc.), not all of which

are easily accessible. Therefore, reasonable modeling assumptions need to be made in order to

restrict the feature set, to the extent possible, to features which are extractable from trajectory

data from surveillance systems.

5.1.1 Modeling assumptions

- Knowledge of the values of the ambient temperature and density at different locations

along the flight trajectory needs access to high-fidelity weather data. When the true am-

bient conditions are not available, a surrogate density value is assumed according to the

International Standard Atmosphere (ISA) model [103], which models the density as a

function of the altitude (available from ground-based surveillance systems). Since the

altitude alone determines the density in the ISA model, it is sufficient to retain only one

ambient parameter (such as the density) in the model, as knowledge of the density gives

the temperature too via the altitude. The equations for the density variation in the ISA
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model are

PSL I+ 0ISA7 1SAR 1,if h < 11, 000 m, and
Poo = (5.12)

pl exp ( -(h - hi)), if 11, 000 m < h < 20, 000 m.

Here, PSL is the air density at sea level (= 1.225 kg.m- 3 ), /ISA is the tropospheric lapse

rate (= -0.0065 K-m- 1), h is the altitude above mean sea level, TSL is the air temperature

at sea level (= 288.15 K), g is the acceleration due to gravity (= 9.81 m-s- 2 ), R is the gas

constant for air (= 287.05 J.kg 1 K- 1), pu is the air density 11,000 m above sea level (=

0.364 kg.m- 3 ), T11 is the air temperature 11,000 m above sea level (= 216.65 K) and h1 l

is the height of the tropopause start above mean sea level (= 11,000 m).

Aircraft performance depends on the true airspeed (V), which is the aircraft velocity with

respect to the surrounding air. Due to the effect of wind, this speed differs from the

ground speed, namely, the speed relative to the ground. The trajectory (or ground track)

of an aircraft, as observed by a surveillance system, only provides information on the

ground speed. The calculation of the true airspeed will require additional wind data of

the same spatial and temporal resolution as the trajectory information. Historical wind

data are available at a much coarser resolution (for example, airport surface winds are

archived at 30 or 60 minute resolutions [104]; winds aloft are nowcast on a 13 km grid

at hourly intervals at 51 discrete altitudes [105]; upper air wind and temperature data are

also only recorded at a 1.25' or 138 km resolution globally [106]). As the value of the

true airspeed cannot be derived from the trajectory with the same fidelity as the other

variables, we do not include it as an input feature. Instead, we consider the ground speed

(VGs), which can be derived from trajectory data. We expect that the neglect of the effects

of wind will be reflected in larger variability, and consequently, larger prediction errors

as well as prediction intervals.

The rate of change of the true airspeed (dV) (as required in Equation 5.11), is also not

observed. The numerical derivative of the ground speed is therefore used as a

feature. The values of the numerical derivative are smoothed through a low pass filter
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before using them for analysis to remove noise arising from numerical differentiation.

" The Base of Aircraft Data (BADA) assumptions on the drag coefficients are assumed to

hold. In ascent and cruise, the drag coefficients are considered to be aircraft-type specific

constants. In descent, the drag coefficients are assumed to have discrete levels depending

on the altitude of the aircraft with respect to the mean sea level elevation of the arrival

airport (hATD), the aircraft speed, and the aircraft gross mass. This dependence results

from the different configurations that the aircraft adopts as it comes in to land (due to

deployment of flaps, slats, landing gear), which change the aircraft drag coefficients.

" The engine component efficiencies depend on factors like the engine operating point, the

engine age, and the level of maintenance undergone by the engine. Because trajectory

data alone do not give information on the engine component efficiencies or factors influ-

encing the efficienies, veng is not included as a predictor variable.

5.1.2 Feature selection

Based on the assumptions in Section 5.1.1, the functional dependence of the averaged per engine

fuel flow rate for a particular aircraft/engine type in Equation 5.11 can be approximately re-

written as in Equation 5.13:

h V AVG;S\
rnf(as) (qGSSI m, VGS GS s , in ascent,

h vA1/0 S
rnf(o) (qGSS, m VG' GS I ), in climb out,

f~~~ . Ac)QGS h GSs, in cruise, (5.13)
mf aircraft/engine type e T (qGSS, MVG GS, At i

r4f(de) qGSS, m, V GS s , hATD , in descent, and

GG v A t ,
T4l~p (A-s m VC; s, A 1 , hATD) in approach.

82



In Equation 5.13, the subscripts (as), (co), (cr), (de), and (ap) refer to the full ascent, only climb

out, full cruise, full descent, and only approach phases, respectively. The different subscripts

indicate that for each aircraft/engine type, different models are built for each of these five phases.

qGS pOOVGS is the dynamic pressure based on the ground speed (with ambient density given

by the ISA model if needed).

Thus, in the regression models to be built, the input/independent/predictor variables are the

following:

- Ground speed-based dynamic pressure multiplied by the reference wing area (qGSS, in

N)

" Aircraft gross mass (n, in kg)

" Ratio of the aircraft vertical speed to its ground speed ( h , a dimensionless quantity)

- Aircraft ground speed (VGS, in m-s 1 )

* Rate of change of the aircraft ground speed (AK 7 s, in m.s 2 )

" Aircraft altitude above the mean sea level elevation of the arrival airport (hATD, in m)

(additional feature only in descent and approach)

In all the phases, the output/dependent/predicted variable is the averaged fuel flow rate per

engine (rhf, in kg-s- 1 ). It should be noted that except for the aircraft gross mass, all other input

variables can be obtained from surveillance systems.

The predictor variables chosen are the primary factors affecting the fuel flow rate. However,

many other factors (for example, aging, component deterioration, engine bleed, power offtake,

aircraft attitudes and attitude rates, wind vector, etc.) also affect the fuel flow rate at the same

values of the primary factors. These secondary factors are difficult to model due to their absence

from trajectory data from surveillance systems. However, it is assumed that the prediction

intervals given by the statistical models can give a cumulative extent of the uncertainty in fuel

flow rate resulting from these unmodeled secondary factors.
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5.2 Model training

As explained in Section 4.1.1, the FDR dataset for each aircraft/engine type in each phase is

divided into three smaller datasets. 65% of the flights are randomly chosen to constitute the

training set, 15% of the flights are randomly chosen to constitute the validation set, and the

remaining flights constitute the test set. Each observation (data point) in the training, validation,

and test sets corresponds to one FDR instantaneous recording. The training set, consisting of

the ground truth values of all the input and the output features, is used for training the model.

Model training involves building the statistical model which can map the predictor variables

to the output fuel flow rate. The validation (or development) set is used for model validation,

where the different models trained using different regression techniques are evaluated for their

predictive performance in order to choose the "best" model. The test set is used to evaluate and

report the predictive performance of the chosen model. It is important to note that the three sets

are mutually exclusive and all the observations of a particular flight are present in only one of

the three sets. Table 5.1 gives an idea of the size of the different sets by enumerating the number

of flights and the number of observations in each phase for each aircraft type.

Prior to training, all the variables are standardized, that is shifted by the sample mean

and then scaled by the sample standard deviation of the respective variables in the training

datasets. Ordinary Least Squares (OLS) regression (with quadratic basis functions and Gaus-

sian noise), Classification and Regression Trees (CART), regression tree-based Least Squares

Boosting (LSB), and Gaussian Process Regression (GPR) with different kernel functions are

applied to the standardized variables in the training sets to build the models. In GPR, the hyper-

parameters, being all positive, are given a broad gamma prior with mode 1 and variance 100 (for

lack of specific prior knowledge). Exact GP is used for inferring the hyperparameters in cruise.

In ascent, climb out, descent, and approach, due to the large size of the training datasets, GP

with the Fully Independent Conditional (FIC) approximation is used for hyperparameter infer-

ence. For this FIC approximation, 150 observations are randomly chosen from the appropriate

training set (depending on the phase) to form the inducing inputs and variables (the number of

inducing variables is chosen by doing a study on the validation dataset of how the prediction

error and the testing time vary with the number of inducing variables). It is important to note
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Table 5.1: Details of training, validation, and test
each aircraft type, and in each airborne phase.

datasets drawn from the FDR-I dataset, for

A/C Type Phase Training Set Validation Set Test Set
# Flights # Obs. # Flights # Obs. # Flights # Obs.

Ascent 17,810 4,016 5,609
Climb out 5,469 1,197 1,636

A319-112 Cruise 85 1,146 19 205 26 303
Descent 42,398 8,984 12,812

Approach 20,609 4,504 6,890
Ascent 26,101 6,260 8,256

Climb out 5,855 1,340 1,810
A320-214 Cruise 110 1,416 25 308 34 481

Descent 54,350 12,409 16,592
Approach 24,562 5,560 7,411

Ascent 18,261 4,241 6,171
Climb out 7,313 1,712 2,279

A321-111 Cruise 76 933 18 190 23 307
Descent 34,110 8,184 11,673

Approach 16,310 4,034 5,006

Ascent 15,825 3,712 5,140
Climb out 5,551 1,325 1,807

A330-202 Cruise 55 3,443 12 672 17 1,023
Descent 27,224 5,805 8,258

Approach 16,885 3,502 5,127
Ascent 16,011 3,985 5,485

Climb out 5,232 1,167 1,652
A330-243 Cruise 65 2,317 15 583 20 908

Descent 32,445 7,830 10,228
Approach 20,660 4,613 5,945

Ascent 9,543 1,998 2,702
Climb out 4,464 955 1,222

A340-541 Cruise 34 1,736 8 390 10 482
Descent 17,438 4,238 5,187

Approach 9,892 2,574 3,003
Ascent 11,378 2,608 3,544

Climb out 4,789 1,084 1,375
B767-300 Cruise 59 2,683 14 406 18 944

Descent 28,197 6,388 8,294
Approach 16,784 3,918 5,197

Ascent 19,338 4,481 5,748
Climb out 5,474 1,334 1,706

B777-300ER Cruise 85 4,749 20 1,198 26 1,493
Descent 39,272 9,475 12,167

Approach 20,756 5,138 6,827

that for each aircraft type, different models are trained for the different phases of flight. Thus,

the models developed are locally expert models, where each model is intended to predict the

fuel flow rates only in a particular phase of flight. The combined predictive performance of
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these locally expert models is expected to be better than that of a single model trained to predict

the fuel flow rates for the complete airborne trajectory. Once the models are trained, they can be

used to determine the point estimates, the prediction intervals, and the predictive distributions

of the fuel flow rate at a new input vector.

5.3 Fuel flow rate prediction

As mentioned in Section 5.1.2, aircraft gross mass is the only input feature which cannot be di-

rectly obtained from trajectory data. Depending on how the gross mass is handled as a predictor,

two different algorithms have been developed for fuel flow rate prediction.

5.3.1 Batch prediction algorithm

Aircraft gross mass decreases with time as fuel is consumed. In general, the exact values of

the instantaneous aircraft mass for any particular flight cannot be obtained from its trajectory

data or any other easily available dataset. To partially overcome this problem, in this section,

the takeoff weight (TOW, MTo) is used as a surrogate for the actual instantaneous aircraft mass

during flight. It should be noted that the TOW is also not available in general and would need

to be estimated. However, a single value of the mass at takeoff is easier to obtain/estimate as

compared to estimating the entire instantaneous aircraft mass profile during flight. Moreover,

the use of TOW as a predictor variable enables simultaneous prediction of the fuel flow rates

at all the points in a particular phase of a flight (hence the name, 'batch' prediction algorithm).

Therefore, for the analysis in this section, the predictor features are the trajectory-based vari-

ables described in Section 5.1 along with the takeoff weight (TOW). The predicted variable is

the averaged fuel flow rate per engine. The ground truth values of the input and the output

variables (including the ground truth values of the TOW and the ambient air density) from the

FDR training datasets are used for training the models using the different regression techniques

mentioned in Section 5.2.

In order to determine model generalized predictive performance on a new flight trajectory,

it needs to be evaluated on an unseen prediction set not used for training. While evaluating the
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predictive performance of the trained models on an unseen prediction set (such as the validation

or the test sets), the values of the ambient air density as calculated by using the ISA approxi-

mation (Equation 5.12) are used (as new flight trajectory data will not have the actual density

values). The values of the other input features (including the TOW) for an unseen observation in

the validation or test datasets are assumed to be known from the FDR data for the analysis done

in this chapter. However, in order to get a complete estimate of model generalized predictive

performance, the values of these input features should, in reality, be obtained from surveillance

data as FDR data for a new flight may not be available. More importantly, TOW also needs to

be estimated since its value for a new flight will, in general, be unknown. In the analysis done in

this chapter, FDR values of the input variables for new flights are assumed to be known so as to

show model predictive performance on unseen data without incorporating errors arising due to

differences in the FDR- and surveillance data-reported values of the input variables. Model pre-

dictive performance on unseen data when the TOW is unknown and also needs to be estimated

will be described in a later chapter (Chapter 7).

After models are trained using different regression techniques, the evaluation metrics de-

scribed in Section 4.5 are calculated for the different models on the respective validation sets.

MAE, PC, PLL for the different models are compared among one another using statistical mul-

tiple comparison tests at an at most 5% family significance level (Section 4.6) to find the "best"

statistical model (in terms of the accuracy of the point estimate, the uncertainty estimate, and

the estimate of the predictive distribution) for each aircraft type in each phase. Since tree-based

models (CART and LSB) are nonprobabilistic in nature, their prediction intervals are deter-

mined using bootstrapping (Section 4.3.3). The PLL values for OLS regression models are

calculated with respect to a Student's t-distribution (Equations 4.11-4.14, 4.40). PLL values

cannot be determined for the tree-based models as they do not give a predictive distribution.

The PLL values for GPR models are calculated with respect to a Gaussian distribution (Equa-

tion 4.39). Table 5.2 shows the values of the MAE, PC, PLL on the validation datasets which are

used for model selection. The table also shows the "best" model finally chosen for each aircraft

type in each phase. Due to lack of space, the table does not show values of the prediction cover-

age for the tree-based models (CART and LSB). However, both the tree-based methods perform
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poorly in terms of the prediction coverage. For example, for the A321-100, the mean PC across

the different flights in the validation set ranges from 43.9% to 57.3% for the CART models and

from 40.7% to 42.9% for the LSB models. Similar low values of PC are also observed for the

other aircraft types.

From Table 5.2, it can be observed that the GPR models give, statistically significantly, the

best predictive performance on validation data for all the aircraft types in all the phases, when

collectively evaluated on the different evaluation metrics. Thus, GPR models are selected as

the final models for fuel flow rate prediction using the batch prediction algorithm. Different

kernel functions are seen to give the best performance for different aircraft types and phases. It

should be noted that though the GPR models take the longest time to be trained as compared to

the other models, they give fast predictions (on the order of a few seconds). Hence, once these

models are trained, the time taken to predict the fuel flow rate for a new flight is small.

5.3.2 One-step prediction algorithm

In this algorithm, the instantaneous aircraft gross mass (and not the TOW) is used as a predictor

variable (along with the other trajectory-based variables). Aircraft gross mass decreases with

time as fuel is consumed. While training, the actual ground truth values of the instantaneous

aircraft gross mass and the other predictor variables from the FDR training datasets are used

as inputs. However, the main aim of model building in this thesis is to use the models for

predicting the fuel flow rates for new, unseen flights not used for training. For a new flight, the

actual value of the instantaneous aircraft gross mass may not be available (since FDR data for

the new flight could be unavailable and surveillance data cannot record the mass of the aircraft

as it flies through the air). Hence, for a new flight, the value of the aircraft gross mass at a

particular time instant needs to be estimated in order for it to be used as an input to further

estimate the fuel flow rate at that time instant.

In this section, an algorithm is developed which estimates both the instantaneous aircraft

gross mass and the fuel flow rate for the airborne phases of a flight. This algorithm operates

on the knowledge that the reduction in gross mass with time is due to fuel burn only. For this

algorithm to work, it is assumed that the values of the aircraft gross mass and the fuel flow
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Table 5.2: Fuel flow rate predictive performance of statistical models (using TOW as a predictor) on validation data. Each entry shows the mean
of the evaluation metric across all the ffights in the validation dataset. Except for the Predictive Log Likelihood (PLL), all the evaluation metrics
are calculated on de-standardized data (that is, data at their original location and scale and not shifted by the mean and scaled by the standard
deviation of the variables in the training dataset). 'GPR1', 'GPR2' 'GPR3', 'GPR4' refer to the GPR models with the DPSE, DPE, DPM3/2, and
DPM5/2 kernels, respectively.

A/C Type Phase MAE PC PLL Best
OLS CART LSB GPR1 GPR2 GPR3 GPR4 OLS GPRJ GPR2 GPR3 GPR4 OLS GPRJ GPR2 GPR3 GPR4 Model

Ascent 5.3 6.1 5.5 4.9 5.1 4.9 4.9 94.8 93.7 95.9 93.7 93.5 -332.1 -46.4 -62.3 -47.0 -57.8 GPR2
Climb out 3.1 4.5 4.0 3.3 3.1 3.3 3.3 87.4 84.8 88.9 83.9 84.2 -110.1 -74.5 -66.2 -76.2 -77.0 GPR2

A319-112 Cruise 13.7 14.6 13.1 13.7 12.6 12.6 12.5 94.9 91.4 92.4 95.0 96.0 -15.1 -11.1 -10.5 -9.7 -9.6 GPR4
Descent 24.5 23.8 22.3 20.2 20.0 20.1 20.1 94.5 94.6 94.8 94.4 94.2 -674.3 -392.3 -399.4 -397.6 -399.4 GPR2
Approach 16.7 20.0 18.4 16.1 15.8 15.9 16.1 95.0 94.0 95.9 94.6 94.1 -336.4 -196.6 -190.3 -192.3 -194.9 GPR2
Ascent 5.8 6.2 5.6 4.6 5.3 4.6 4.5 93.4 94.7 94.4 94.9 94.7 -418.4 -19.8 -91.4 -22.8 -20.1 GPR1
Climb out 3.4 4.7 4.1 3.7 3.5 3.4 3.4 94.2 90.7 95.8 92.4 92.2 -95.9 -48.0 -42.7 -41.2 -42.0 GPR2

A320-214 Cruise 11.6 14.0 12.4 12.8 13.6 12.1 13.1 90.7 91.6 95.4 94.0 91.5 -19.1 -17.3 -14.7 -14.2 -18.0 GPR2
Descent 26.8 24.9 23.8 24.3 24.6 23.6 24.0 93.1 91.9 92.1 92.2 92.6 -746.7 -443.1 -457.3 -441.5 -438.2 GPR4
Approach 17.9 18.9 16.4 16.4 16.6 15.8 16.1 94.0 94.1 95.6 94.2 94.1 -319.6 -166.3 -167.4 -165.8 -167.8 GPR2
Ascent 4.1 4.4 3.9 3.4 4.0 3.4 3.3 95.8 93.6 95.5 94.2 94.1 -302.8 -15.6 -37.9 -13.9 -9.5 GPR1
Climb out 4.3 5.3 4.6 4.2 4.2 3.7 3.8 95.8 89.7 92.8 90.8 91.1 -104.3 -43.4 -39.1 -36.4 -36.3 GPR2

A321-111 Cruise 15.9 18.2 14.4 14.6 15.0 15.0 14.8 97.8 95.0 94.4 94.0 94.5 -13.1 -8.3 -8.5 -8.7 -8.6 GPR1
Descent 25.0 25.1 23.0 22.3 22.1 22.1 22.7 95.2 93.0 95.1 92.7 92.8 -644.2 -387.1 -380.4 -388.7 -393.6 GPR2
Approach 18.7 18.0 17.7 17.3 17.3 17.4 17.4 94.1 92.8 93.2 92.7 92.9 -333.6 -194.0 -188.8 -194.3 -191.8 GPR2
Ascent 4.3 4.4 3.9 3.9 4.0 3.9 3.9 95.1 93.5 96.5 93.6 93.5 -435.2 -18.8 9.3 -25.3 -27.2 GPR2
Climb out 4.8 3.8 3.6 5.1 3.9 4.8 4.8 92.5 86.2 92.4 86.9 85.9 -166.8 -105.6 -67.5 -95.1 -96.5 GPR2

A330-202 Cruise 10.1 7.8 7.4 7.6 9.0 7.5 7.5 92.1 98.9 99.2 99.6 99.6 -84.1 -51.2 -56.9 -54.0 -52.0 GPR2
Descent 34.4 29.7 28.0 27.1 27.0 26.1 28.6 93.7 92.0 92.3 92.5 91.6 -701.8 -413.9 -412.4 -405.3 -439.6 GPR3
Approach 29.6 26.7 24.1 23.4 25.9 23.7 23.6 92.1 91.3 92.9 91.1 91.2 -450.1 -265.9 -271.4 -268.6 -267.1 GPR1
Ascent 3.8 4.6 3.9 3.1 3.6 3.2 3.1 97.7 97.6 97.4 97.5 97.5 -333.6 52.5 -10.4 -47.8 55.7 GPR1
Climb out 3.0 4.0 3.2 6.0 3.1 5.1 5.6 94.7 61.7 92.1 70.8 63.7 -128.8 -213.7 -86.4 -155.7 -182.8 GPR2

A330-243 Cruise 12.2 10.3 8.9 11.1 12.1 10.9 10.8 95.4 97.1 93.3 97.2 97.5 -50.7 -35.0 -31.0 -31.2 -32.3 GPR3
Descent 30.6 20.4 20.6 25.6 22.7 23.4 25.5 92.3 89.0 92.4 90.5 89.3 -834.0 -591.5 -468.3 -510.8 -582.5 GPR2
Approach 27.4 22.0 21.1 23.3 22.2 23.4 23.4 91.0 88.4 90.3 88.7 88.5 -527.1 -305.1 -284.2 -306.2 -304.6 GPR2
Ascent 4.7 5.1 4.6 5.0 4.5 4.0 4.1 94.9 89.9 94.0 95.6 95.7 -344.1 -89.8 -59.3 -42.1 -46.9 GPR3
Climb out 3.3 4.8 4.0 5.9 3.3 3.7 4.3 88.6 75.2 90.2 75.5 74.4 -208.7 -433.5 -75.1 -297.3 -387.3 GPR2

A340-541 Cruise 12.5 8.7 10.8 12.9 17.3 15.7 14.1 79.7 83.5 79.5 86.9 85.2 -236.9 -94.4 -108.0 -84.7 -91.2 GPR3
Descent 25.2 25.7 23.5 20.5 21.9 21.2 21.3 95.2 93.8 95.7 94.1 93.8 -738.7 -430.2 -444.0 -435.3 -438.1 GPR1
Approach 21.6 24.8 21,5 21.5 18.9 20.8 21.0 93.8 90.1 94.7 91.1 91.4 -480.8 -352.1 -311.6 -3421.7 -340.0 GPR2
Ascent 5.1 5.0 5.0 5.1 5.0 5.1 5.1 96.5 90.8 96.6 92.4 92.0 -279.4 -91.9 -64.3 -83.7 -87.3 GPR2
Climb out 4.5 3.0 2.9 4.7 3.4 4.0 4.3 87.1 67.3 96.3 80.8 77.5 -155.0 -116.9 -41.3 -73.9 -82.8 GPR2

B767-300 Cruise 20.7 18.4 18.4 18.0 26.2 21.5 17.1 80.3 94.7 96.1 95.6 97.9 -37.4 -14.5 -41.4 -25.3 -18.8 GPR4
Descent 31.0 18.6 19.1 19.0 20.4 17.6 17.8 95.1 93.3 95.0 93.7 93.8 -646.4 -218.7 -220.0 -196.4 -194.8 GPR2
Approach 26.6 20.4 18.4 18.9 18.5 17.2 18.0 91.5 93.1 96.4 93.0 92.7 -455.1 -183.0 -176.9 -177.9 -183.4 GPR2
Ascent 8.1 7.8 6.9 6.8 7.6 6.6 6.7 93.8 93.5 95.8 94.1 93.9 -324.9 -46.0 -64.0 -33.3 -36.1 GPR3
Climb out 8.4 7.8 7.2 6.5 7.2 6.2 6.3 92.6 92.0 95.7 93.2 92.8 -103.5 -8.3 -14.4 -7.4 -7.4 GPR3

B777-300ER Cruise 11.5 12.2 11.1 11.1 11.3 10.9 10.8 87.9 92.4 88.1 91.4 91.4 -161.7 -84.1 -99.6 -75.9 -78.5 GPR4
Descent 32.6 16.2 16.1 18.5 16.7 17.0 17.2 89.6 91.7 91.9 91.7 91.9 -745.0 -281.8 -231.1 -256.1 -262.6 GPR2
Approach 21.1 18.9 17.5 15.8 16.4 15.0 14.9 91.0 90.6 93.8 91.0 90.9 -428.3 -159.1 -145.5 -151.1 -153.2 GPR2

00



rate are known at takeoff, which just precedes the first instant in ascent (or climb out). In case

it is not known, the fuel flow rate value at the takeoff point can be estimated using the TOW,

the trajectory information at the takeoff point, and the fuel flow rate models developed for the

ascent phase. The TOW is thus needed to be known and these takeoff values, therefore, serve

as initial conditions to the algorithm. At any instant of time, the aircraft gross mass is estimated

using the estimated values of the gross mass and the fuel flow rate at the previous instant of time

using the following equation:

mi+1 = mi - NengTrifiAti+1,i (5.14)

Here, mi+1 and mi are the aircraft gross mass values at the (i + 1)th and the 1th time instants,

respectively, rnfi is the averaged fuel flow rate per engine at the jth time instant, and Ati+1,i

is the time interval between the (i + 1)th and the ith time instants. The time interval between

successive instants depends on the sampling frequency of the reported trajectory data for the

new flight. The algorithm as such, does not need to assume an explicit value of the time step a

priori.

The estimated gross mass at the current instant then serves as one of the inputs (the ex-

act values of the other trajectory-based inputs at the current instant are assumed to be already

known) to the fuel flow rate model trained (with the instantaneous aircraft mass as one of the

predictors) for the particular phase (ascent/cruise/descent) in which the current time instant lies.

This procedure continues till the end of descent. In this algorithm, uncertain estimates of fuel

flow rate are used to estimate the gross mass and these uncertain estimates of gross mass then

serve as inputs to again estimate the fuel flow rate. Thus, instantaneous gross mass and fuel

flow rate are estimated in tandem in a stepwise fashion. It is important to correctly propagate

these uncertainties from one time instant to the next. The regression problem in this case is

hence, one having uncertainty in input values - a feature not encountered in common regression

problems (in which the inputs are assumed to be free of any uncertainty). The uncertainty is in

the gross mass input variable and not the other input variables whose exact values are assumed

to be easily available. The approach described in [107] is suitably adopted to propagate the

uncertainty in the input vector to the output. Let D be the training dataset and x* be a new un-
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certain input at which the prediction y* is desired. For correct propagation of uncertainty from

input to output, we are interested in determining the probability of the output prediction given

the training data, marginalized over all possible values of the uncertain input (Equation 5.15).

By using a Monte Carlo approach, the integral in Equation 5.15 is approximated by an average

(Equation 5.16).

p(y*ID) fp(y* x*, D)p(x*)dx* (5.15)

Zp(y* xj, D) (5.16)
j=1

where, n, is the number of samples and x are samples of the uncertain input x*. For a GPR

model, p(y* xj, D) is a Gaussian density. Thus, for a GPR model, p(y* D) can be approxi-

mated by a Gaussian Mixture density with n, number of equally-weighted components. The

approximation arises due to the use of a finite number of samples.

Algorithm 1 shows the one-step algorithm for fuel flow rate prediction. In the algorithm,

subscripts 'prev' and 'curr' refer to the previous and the current time instants, respectively.

'IndexAscentStart' refers to the index of the point in the flight trajectory where ascent begins

(the point immediately succeeding takeoff). 'IndexTouchdown' refers to the index of the point

in the flight trajectory where the aircraft touches down at the arrival airport (just after the end

of descent). x*m refers to the input vector where prediction is desired with the gross mass

input variable removed. 'MeanPredGPR(x*)' and 'VarPredGPR(x*)' refer to the mean and

the variance, respectively, of the prediction from the GPR fuel flow rate model (trained for

the appropriate phase of flight, given in the subscripted parentheses) at a given input x*. The

subscript '1 : n,' refers to the vector formed by taking all n, samples together. In this study,

100 samples are used for the Monte Carlo integration approach described in Equation 5.16.

The number of samples is chosen after considering the simulation time. .V(p,, 0 2 ) refers to

a univariate Gaussian distribution with mean t and variance a2. .M (A, o.2, w) refers to a

Gaussian Mixture distribution (of univariate Gaussians) with vector of component means it,

vector of component variances o.2, and vector of component weights w. The mean of the

vector of fuel flow rate samples (liifcurr), generated according to Algorithm 1, gives the average
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predicted fuel flow rate per engine at a particular instant. The 95% prediction interval for the

predicted fuel flow rate per engine at a particular instant is given by the inter-percentile range

between the 2 .5 th and the 9 7 .5 th percentiles of the fuel flow rate samples (n'ficurr)-

Algorithm 1 Sequentially predicting aircraft gross mass and fuel flow rate in the airborne phases
for a given flight (one-step prediction).

1: mprev <- TakeOffGrossMass
2: nfpr,,e +- TakeoffFuelFlowRatePerEngine
3: i <- IndexAscentStart
4: mcurr -- mprev - Neng X Mfprev X Atcurr,prev

5: IUGPR <- MeanPredGPR(as)([x*-m, m]Icurr)
6: a2PR < VarPredGPR(as)([x*m, m]|curr)

7: forj<-1,2,...,nsdo
8: nf currj - (AGPR, GPR)

9: mprev,j <- mcurr
10: rifprev,j "'fcurr,j

11: i <- i + 1
12: while i < IndexTouchdown do
13: for J <- 1, 2, . .. , ns do
14: mcurr,j mprevj - Neng X < X Atcurr,prev

15: IMGPR,j <- MeanPredGPR(as/cr/de as appropriate) ([X*m, mj curr)

16: o2PRJ VarPredGPR(a/cr/de as appropriate) (X*m, mj] curr)

17: for j <- 1, 2,. . . , ns do
18: mfcurr, GpR,2:n8 , NPR,1:n8 , EqualComponentWeights)

19: mprev,j <- mcurr,j
20: m'fprevj - currj

21: i<-i+1

Since this algorithm can predict fuel flow rate in a sequential fashion only (instead of pre-

dicting it simultaneously at all instants), it is named as the 'one-step' prediction algorithm.

Table 5.3 compares the predictive performance of the one-step prediction algorithm with that

of the batch prediction algorithm on the validation data for three aircraft types in climb out and

approach. The kernel functions of the GPR models selected in Section 5.3.1 are used for both

the algorithms. The algorithm comparison is done by using statistical tests to compare different

evaluation metrics (Section 4.6). The null hypothesis for the statistical comparison is that an

evaluation metric is equal for both the algorithms. The alternate hypothesis is that an evaluation

metric on the two algorithms is unequal. Statistically significant p-values (at 5% significance
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level) are highlighted in bold in Table 5.3. From Table 5.3, it is observed that in almost all the

cases, batch prediction performs the same as or better than one-step prediction (in a statisti-

cally significant sense). Moreover, the one-step prediction algorithm is computationally slower

than the batch prediction algorithm. Hence, the batch prediction algorithm is preferred over the

one-step prediction algorithm.

Table 5.3: Comparison of the batch prediction (BP) and one-step prediction (OSP) algorithms
on unseen data (not used for training) for three aircraft types in climb out and approach. Each
cell shows the mean and the standard deviation (within parentheses) of the evaluation metric
across all the flights. In order to maintain approximately the same number of flights for the
different aircraft types, the flights are taken from the validation dataset for the A319-112 and
the B777-300ER and from the combined validation and test datasets for the A340-541. The
table also shows the p-values of the BP and OSP predictions differing on various metrics (that
is, MAEBP # MAEosp, PCBP # PCsp, and NLPIBP # NLPIOSP).

A/C Type Phase MAE (%) PC (%) NLPI (%) Comparison: p-values
BP OSP BP OSP BP OSP MAE PC NLPI

Cibot3.1 3.2 88.9 88.9 14.1 14.0 0.016 0.856 0.171

A319-112 (1.6) (1.6) (15.8) (15.0) (1.0) (1. 1)

Approach 15.7 15.9 96.0 95.3 96.2 97.6 0.126 0.005 0.007
(4.3) (4.1) (4.4) (4.8) (14.2) (15.0)

Climb out 4.1 4.0 83.7 84.6 14.4 14.3 0.528 0.384 0.145
A340-54 1 (2.7) (2.7) (22.7) (22.1) (0.9) (0.8)

Approach 17.6 17.8 95.4 96.3 123.8 129.6 0.983 0.107 0.133
(3.4) (4.2) (3.7) (3.0) (20.0) (26.2)

Climb out 6.2 6.5 93.2 91.8 30.8 30.9 0.033 0.151 0.823
B777-300ER (1.7) (1.5) (4.3) (6.0) (4.5) (4.4)

Approach 15.6 17.6 94.9 91.0 98.8 90.9 0.015 2.5e-4 7.8e-4
(4.7) (6.4) (4.7) (6.4) (16.1) (18.1)

The validation studies in Sections 5.3.1 and 5.3.2 result in GPR models (having the chosen

kernel functions) with the batch prediction algorithm (which uses TOW as one of the predictors)

being selected as the final models for fuel flow rate prediction. These models are therefore, used

for all further analyses.

5.4 Model results and comparative analysis

In this section, the predictive performance of the chosen GPR models with batch prediction

algorithm is evaluated on unseen test data. The models are compared to other APMs widely

used currently for fuel flow rate estimation.
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5.4.1 Alternative models used for comparison

The statistical models developed are compared to current state-of-the-practice APMs that are

used to estimate fuel burn in tools such as the FAA's Aviation Environmental Design Tool

(AEDT). These include:

Base of Aircraft Data (BADA) model [22]: Developed by EUROCONTROL, BADA is

a total energy-based method used for aircraft performance modeling. It uses simplified

equations to model aircraft performance, with different equation coefficients (maintained

in the BADA database) for different aircraft types. This method needs engine net thrust

values to estimate the fuel flow rate. In this chapter, net thrust (F1 ) values are determined

using the BADA Family 31 thrust estimation equations for a jet engine, given by

(Fnas, in ascent and

Fn min(Dcr, Fna.), in cruise, and

Ffde, in descent, an

climb out,

(5.17)

d approach.

The ascent thrust Fa, is given by the following set of equations:

Fnas

ATeef

0

= (1 - CTc,5 ATeff)CTc,1 1 - + CTc,3 h)2

= AT - CTc,4

SATeff X CTc,5 < 0.4

Crc,T5 > 0

(5.18)

(5.19)

(5.20)

(5.21)

Here, CTc,1, CTC2, CTc,3, CTc,4, and CTc,5 are thrust coefficients enumerated in the BADA

database, and AT is the temperature deviation from the ISA. h is the altitude.

Dcr in the expression for the cruise thrust in Equation 5.17 refers to the aerodynamic drag

in cruise calculated using the drag coefficients for cruise (CDocr and CD2 cr) in the BADA

'Revision 3.13
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database.

CD 2 crm 
2 g2

Dcr qSCDocr + qS

The descent thrust Fl, is given as

CTdes,high X Fn,, if

CTdeslow X Fa, if

CTdes,app x Fn, if

CTdes,ld X Fnas, if

h

h

h

h

> hde,

< hde & aircraft is in cruise config.,

< hde & aircraft is in approach config.,

< he & aircraft is in landing config.

Here, CTdes,high, CTdes,low, CTdes,app, CTdes,ld are descent thrust coefficients enumerated

in the BADA database. hde is the transition altitude for calculation of descent thrust and

is enumerated in the BADA database. The definitions of approach and landing configura-

tions are given in the BADA manual. These configurations are treated differently due to

different aerodynamic drag values arising from the extension of slats, flaps, landing gear.

In all the analysis done here, the values of the altitude, ambient temperature, ambient

density, true airspeed, gross mass have been obtained from FDR data.

Once the net thrust is determined, the following equations are used to estimate the fuel

flow rate per engine (mfBADA):

mfBADA

TSFCBADA

mfmin

{ TSFCBADA x F in ascent, climb out, cruise,

max(TSFCBADA x Fn, rnfin), in descent and approach.

C12

h
=Cf 3(I C 4

Here, TSFCBADA is the Thrust Specific Fuel Consumption given by BADA, F" is the

aircraft net thrust from all engines, Nng is the number of engines, V is the aircraft true
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airspeed, htf mi. is the minimum aircraft fuel flow rate from all engines, and h is the

aircraft altitude Above Mean Sea Level (AMSL). Cfi, Cf2, Cf , and Cf4 are aircraft

type-specific constants found in the BADA database. The values of V and h are obtained

from the FDR dataset for the analysis done here.

Senzig-Fleming-Iovinelli (SFI) model [28]: The SFI model is used in AEDT to model

the fuel flow rate in the terminal region of ascent and descent (< 10,000' AFE). The SFI

model has been used here for performance comparison with the GPR models developed

in climb out and approach (as both these phases occur below 10,000' AFE). The fuel flow

rate per engine (rif SFI) is expressed as

+K1 K2M + Kh+K4 F-P2) O ,pe, in climb out, and

rnf SFI =
Fpe

+1M. + f2 exp - 6" ) ) Fnpe, in approach.

Here, M, is the aircraft Mach number, h is the aircraft altitude AMSL, Fnpe is the aircraft

net thrust per engine, .. is the ambient pressure divided by the sea level ISA reference

value, 0, is the ambient temperature divided by the sea level ISA reference value,- and

FOO is the maximum ISA sea level static engine thrust. K1, K2, K3, K4 , , i1, #2, and

03 are aircraft type specific model coefficients enumerated in the AEDT database. The

per-engine net thrust (F,pe) values required as inputs to the SFI model are determined by

using the BADA thrust estimation equations (that is, Equations 5.17-5.23) to calculate the

net thrust from all the engines and then dividing it by the number of engines. The values

of Mo, h, etc. are obtained from the FDR dataset.

- ICAO Databank with Boeing Fuel Flow Method 2 Correction (ICAO-BFFM2) model

[10]: The ICAO Aircraft Engine Emissions Databank tabulates the values of fuel flow

rates in the Landing and Takeoff (LTO) cycle [48]. These values are obtained through

ground-based uninstalled engine certification tests and the measurements are reported af-

ter being corrected to standard sea level static ISA reference conditions. The databank

entry for each engine reports four corrected values for the fuel flow rate, namely, at take-
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off (100% thrust), climb out (85% thrust), approach (30% thrust), and ground idle/taxi

(7% thrust). The Boeing Fuel Flow Method 2 (BFFM2) provides corrections to convert

the ICAO Databank values to at-altitude conditions for an installed engine [10]. In this

chapter, the ICAO Databank with BFFM2 correction has been used to estimate fuel flow

rates in climb out, and approach. The fuel flow rate is then given by

I.CA-FFM2 *3rfCAOo C -3.8 exp (-0.2M2), in climb out, and
mfJICAO-BFFM2 =fCOc 0(5.25)

1.02ifIC 6, -3.8 exp (-0.2M2), in approach.

Here, 'nfICAo-BFFM2 is the ICAO-BFFM2 fuel flow rate per engine, 4fICAOCO and rfICAO,ap

are the reported values of the fuel flow rate at reference conditions in the ICAO Databank

in climb out and approach, respectively, 6, and 0,, are the ambient pressure and temper-

ature divided by the sea level ISA reference values, and M, is the aircraft Mach number.

The values of the Mach number, ambient temperature, and pressure are obtained from

the FDR dataset. The ICAO-BFFM2 method is used in AEDT to model the fuel flow

rate in the LTO cycle when engine thrust values or other sources of the fuel flow rate are

unavailable.

It is important to note that all the above APMs only provide point estimates of the fuel flow

rate, and do not report any uncertainty estimates. The values of the trajectory variables, aircraft

gross mass, and ambient conditions needed as inputs to calculate the fuel flow rates by the above

APMs are obtained from the FDR dataset, so that the APM fuel flow rate predictive performance

does not account for errors in estimating the inputs. Thus, the different models can be compared

solely on the accuracy of the fuel flow rate prediction methodology.

5.4.2 Discussion

Tables 5.4 (a) and (b) show the ME, MAE, PC, NLPI for the GPR models of fuel flow rate (with

known TOW) on unseen test data (not used for either training or validation) for different flight

phases. The tables also report the ME and MAE for the BADA models in all the airborne phases,

and for the SFI and ICAO-BFFM2 models in climb out and approach. Since the BADA, SFI,
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ICAO-BFFM2 models report only point estimates of fuel flow rate, the PC and NLPI values for

these models are not reported in the table. For the A330-243, the SFI models cannot be applied

due to the unavailability of model coefficients. All the metrics are calculated on de-standardized

data. Each cell in the table reports the mean and the standard deviation (within parentheses) of

the evaluation metric across all the flights in the test dataset. Bold entries in the 'ME' column

indicate the predicted fuel flow rates having a mean error statistically significantly different

from zero (at a 5% significance level). Bold entries in the 'MAE' column indicate the model

with the statistically significantly (at a 5% significance level) lowest mean absolute error among

all the models compared.

It is observed that the median ME in the fuel flow rates (with known TOW) across the

different aircraft types is 0.8% in ascent, 0.4% in climb out, 2.0% in cruise, 7.5% in descent,

and 6.4% in approach. The majority of the aircraft types give a statistically significantly (at 5%

significance level) unbiased fuel flow rate predictions in ascent, climb out, and cruise. However,

there is a statistically significant bias in the predictions in descent and approach. The median

MAE given by the GPR models is 4.6% in ascent, 3.8% in climb out, 10.9% in cruise, 22.4%

in descent, and 18.0% in approach. The GPR models give the lowest MAE as compared to

the other APMs. The GPR models achieve a reduction in median MAE of as much as 48% in

ascent, 71 % in climb out, 49% in cruise, 31% in descent, and 77% in approach. The median PC

across the different aircraft types is 95% in ascent, 91.8% in climb out, 96.1% in cruise, 93.2%

in descent, and 94.4% in approach. The closeness of these empirically observed PCs to 95%

indicates good model performance. The median NLPI is 27.4% in ascent, 17.9% in climb out,

68.8% in cruise, 135.3% in descent, and 106.0% in approach. The MAE and the NLPI are the

largest in descent as descent shows large operational variability inherently.

Figures 5-2-5-4 show the GPR mean predictions and 95% predictions intervals as functions

of time, for one flight in the test dataset. The plots also show the predictions from the other

APMs and the ground truth values of the fuel flow rates. It can be clearly observed that the mean

predictions of the GPR models are more accurate than those of the other APMs. Moreover, the

GPR predictions capture the variation and the uncertainty in fuel flow rates better than the other

APMs. The GPR predictions are the most accurate in ascent and the least accurate in descent.
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Table 5.4: (a) and (b). Predictive performance of the GPR, BADA, SFI, ICAO-BFFM2 fuel
flow rate models on unseen test data. Each cell reports the mean and standard deviation (in
parentheses) of the evaluation metric across all flights. All values are in percentages.

(a)

ME MAE PC NLPI
A/C Type Phase GPR BADA SFI ICAO- GPR BADA SFI ICAO- GPR GPR

BFFM2 BFFM2
Ascent 0.9 -0.8 - - 4.9 5.6 - - 96.5 27.3

(2.4) (2.6) (1.9) (1.9) (3.2) (1.9)
Climb out 0.1 -4.2 6.5 -13.0 2.6 4.7 8.2 13.0 95.6 13.9

(1.2) (3.1) (3.5) (5.3) (1.0) (3.3) (1.4) (5.2) (6.8) (1.0)
Cruise -0.5 -3.1 - - 12.1 24.7 - - 95.1 68.8

A319-112 (10.7) (15.1) (5.9) (9.1) (9.9) (12.8)
Descent 6.7 -21.6 - - 21.1 29.6 - - 95.6 128.5

(5.8) (8.8) (4.6) (6.9) (3.9) (17.4)
Approach 6.7 -12.0 38.0 65.5 17.4 24.4 51.0 68.6 94.7 95.8

(8.0) (12.0) (19.0) (23.1) (6.8) (8.2) (9.9) (21.9) (4.9) (13.5)
Ascent 0.7 -0.8 - - 3.8 5.8 - - 95.3 20.7

(2.0) (2.7) (1.6) (2.0) (5.0) (2.4)
Climb out 0.4 -4.7 6.4 -2.2 3.5 7.3 9.7 8.6 94.7 20.7

(2.1) (3.7) (4.1) (6.0) (2.5) (4.2) (2.8) (4.1) (9.8) (1.2)

A320-214 Cruise 1.8 -6.4 - - 14.1 21.5 - - 94.7 69.8
(15.1) (8.6) (9.3) (5.0) (13.7) (12.4)

Descent 9.5 -14.7 - - 22.5 32.3 - - 92.9 108.0
(8.1) (11.1) (5.9) (5.3) (3.2) (11.4)

Approach 6.1 4.8 73.8 80.7 16.2 24.9 75.5 82.2 94.8 92.8
(7.9) (12.5) (18.0) (21.5) (5.1) (5.9) (16.3) (20.5) (4.0) (14.0)

Ascent 0.8 7.1 - - 3.6 10.3 - - 94.3 21.7
(2.3) (3.4) (1.8) (2.6) (5.5) (2.5)

Climb out -0.1 0.5 8.0 2.4 4.3 11.8 14.6 13.1 91.7 21.7
(2.5) (4.8) (5.2) (7.1) (1.7) (3.5) (2.6) (4.1) (9.0) (1.2)

A321-111 Cruise 2.8 6.3 - - 10.5 23.2 - - 98.8 78.1
(7.3) (12.0) (5.0) (8.4) (4.3) (13.6)

Descent 8.3 -21.1 - - 22.2 33.0 - - 90.8 109.4
(6.5) (11.1) (4.7) (7.3) (4.6) (18.5)

Approach 5.5 -9.5 35.3 56.7 16.4 25.7 43.3 58.9 92.5 77.6
(6.3) (15.2) (19.2) (27.9) (4.4) (7.4) (14.8) (26.0) (5.4) (16.0)

Ascent -0.0 -7.7 - - 4.5 9.3 - - 96.7 27.5
(1.8) (2.3) (2.2) (1.4) (3.2) (2.6)

Climb out 2.6 -10.2 -4.7 -17.3 4.1 11.1 10.2 17.3 91.8 18.3
(2.1) (1.9) (2.1) (2.9) (1.8) (1.6) (1.4) (2.9) (9.7) (1.3)

A330-202 Cruise -1.4 -1.8 - - 9.4 13.6 - - 94.4 60.5
(8.1) (4.1) (3.8) (2.9) (16.3) (19.3)

Descent 9.4 21.8 - - 27.7 45.2 - - 92.1 176.5
(6.8) (14.7) (3.8) (12.2) (4.9) (21.5)

Approach 10.0 27.4 108.3 88.3 30.0 46.9 113.0 98.0 91.2 146.3
(14.1) (13.0) (23.3) (30.2) (11.2) (13.8) (22.6) (25.8) (7.5) (26.5)
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(b)

ME MAE PC NLPI
A/C Type Phase GPR BADA SFI ICAO- GPR BADA SFI ICAO- GPR GPR

BFFM2 BFFM2
Ascent 0.4 -6.2 - - 4.0 8.3 - - 94.7 26.1

(2.2) (3.5) (1.7) (2.0) (10.3) (6.4)
Climb out 0.8 -9.9 - -0.5 3.1 10.3 - 5.9 91.2 12.9

(2.0) (2.0) (6.0) (2.2) (1.7) (3.2) (18.4) (0.9)

A330-243 Cruise 6.0 1.9 - - 11.0 18.4 - - 96.5 53.6
(9.3) (7.3) (8.2) (9.1) (4.2) (17.5)

Descent 11.7 -2.7 - - 23.3 32.6 - - 93.8 143.6
(11.7) (13.5) (10.8) (5.7) (6.3) (22.7)

Approach 9.9 12.3 - 95.7 20.4 36.5 - 96.8 91.5 111.4
(12.2) (20.1) (26.7) (10.3) (6.5) (25.8) (8.1) (23.1)

Ascent 1.3 0.9 - - 4.7 9.5 - - 93.4 31.9
(3.1) (3.7) (1.8) (2.5) (6.8) (12.6)

Climb out 1.8 10.5 10.5 8.6 4.7 11.7 11.0 13.1 78.5 14.6
(5.0) (6.8) (5.9) (16.6) (3.3) (6.1) (5.6) (14.0) (28.5) (0.9)

A340-541 Cruise 0.3 8.7 - - 11.3 21.0 - - 96.1 68.8
(13.1) (4.7) (6.8) (5.7) (8.9) (39.4)

Descent 1.3 -19.8 - - 22.3 30.6 - - 93.4 142.0
(11.1) (13.1) (6.1) (9.5) (3.4) (26.7)

Approach 1.8 -18.0 27.6 56.3 16.6 29.0 42.3 63.1 95.9 126.0
(5.8) (16.2) (23.4) (25.0) (2.6) (10.2) (14.0) (20.1) (3.5) (24.2)

Ascent 0.8 -3.1 - - 4.6 6.6 - - 97.0 29.0
(2.6) (2.5) (1.9) (2.2) (4.3) (2.8)

Climb out 0.4 -5.8 -8.9 -21.0 2.5 5.8 8.9 21.0 98.4 17.4
(1.5) (1.1) (1.4) (4.4) (0.9) (1. 1) (1.4) (4.4) (3.5) (1. 1)

B767-300 Cruise 3.3 6.1 - - 10.8 21.4 - - 96.9 77.2
(10.2) (13.8) (8.7) (13.9) (7.1) (28.0)

Descent 6.4 0.9 - - 23.1 34.6 - - 93.7 144.7
(7.6) (18.4) (5.3) (6.2) (5.7) (43.9)

Approach 5.8 6.3 35.7 65.9 19.3 33.6 49.0 78.7 94.9 126.7
(9.7) (20.3) (23.8) (33.2) (7.1) (6.3) (13.2) (29.3) (6.1) (37.7)

Ascent 0.1 -4.6 - - 6.7 13.8 - - 93.3 35.8
(2.6) (6.5) (2.5) (4.2) (5.2) (5.1)

Climb out -0.0 -19.1 -9.7 -20.0 6.7 23.0 21.0 23.1 90.5 32.2

B777-300 (4.2) (8.8) (10.0) (8.4) (1.7) (5.5) (5.8) (5.7) (11.6) (6.7)
Cruise 2.1 6.2 - - 9.3 19.9 - - 96.1 49.1

ER (4.4) (3.9) (5.4) (7.5) (5.3) (12.3)
Descent 3.4 -4.5 - - 17.2 25.1 - - 91.8 122.1

(5.8) (8.5) (3.7) (6.6) (5.0) (13.8)
Approach 7.4 -7.8 28.5 66.4 18.5 23.5 39.1 76.2 94.0 100.6

(8.8) (12.0) (14.4) (26.4) (4.7) (7.3) (9.2) (23.6) (4.7) (16.8)
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An examination of the ground truth fuel flow rates reveals that unlike ascent which is a smooth

procedure, descent undergoes larger procedural variability. This variability is reflected in poorer

mean predictions and larger prediction intervals. Despite the poorer predictions in descent, the

GPR models are able to capture the time scales in fuel flow rates during descent better than the

other APMs.

1.5 (a
(a) GPR - 95% prediction interva

-GPR - mean prediction

BADA prediction

b ---SFI prediction
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Figure 5-2: A319-112: Averaged fuel flow rate profile (per engine) for one test data flight in
(a) all airborne phases, (b) climb out only, and (c) approach only. The x-axis for each subplot
represents time since the start of the FDR record as a percentage of the total flight time. The
SFI and ICAO-BFFM2 predictions are present in the climb out and approach phases only. It
should be noted that all subplots are on de-standardized data and have different scales.

5.5 Cumulative fuel burn by airborne phase

The predicted fuel flow rate profiles can be further used to predict the cumulative fuel burn (total

mass of fuel consumed by all the engines) in each airborne phase. The equation for predicting
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Figure 5-3: A340-541: Averaged fuel flow rate profile (per engine) for one test data flight in
(a) all airborne phases, (b) climb out only, and (c) approach only. The x-axis for each subplot
represents time since the start of the FDR record as a percentage of the total flight time. The
SFI and ICAO-BFFM2 predictions are present in the climb out and approach phases only. It
should be noted that all subplots are on de-standardized data and have different scales.

the cumulative fuel burn in a particular phase of flight is given by

n-1

rnf = Neng MifAti+1. (5.26)

Here, fnf is the predicted cumulative fuel burn in a particular phase of flight, Nng is the number

of engines on the aircraft, n is the number of time instants in that phase of flight, rt is the

predicted fuel flow rate per engine for the ith instant, and Atj+1 = - ti is the time interval

between the (i-+ 1)th and the ith instants. At every instant, the fuel flow rate per engine predicted

by a GPR model follows a Gaussian distribution (M). Hence, the cumulative mass of fuel

consumed divided by the number of engines and the total time in phase follows a Gaussian

Mixture distribution (!.M) with mixture component weights governed by the time intervals
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Figure 5-4: B777-300ER: Averaged fuel flow rate profile (per engine) for one test data flight in
(a) all airborne phases, (b) climb out only, and (c) approach only. The x-axis for each subplot
represents time since the start of the FDR record as a percentage of the total flight time. The
SFI and ICAO-BFFM2 predictions are present in the climb out and approach phases only. It
should be noted that all subplots are on de-standardized data and have different scales.

between successive instants.

mf2  ~ (pt, o) (5.27)

~;n g.M At2 (5.28)
NengAttot Attot

Here, pt is the vector of the means of the GPR-predicted fuel flow rate predictive distributions

for the first n - 1 instants (the pis), o- is the vector of the variances of the GPR-predicted fuel

flow rate predictive distributions for the first n - 1 instants (the o s), At is the vector of the time

intervals for the last n - 1 instants (the Atis), and Attot = E -1 Atie is the total time in phase

over which the cumulative fuel burn is desired. For each flight and phase of flight, samples are

drawn at random from the Gaussian Mixture distribution. The mean of these samples is used

to predict the average fuel burn for the particular flight and phase of flight. The 95% prediction
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interval for the predicted fuel burn is determined by using the 95% Highest Density Interval

(HDI) of the Gaussian Mixture Distribution.

Tables 5.5 (a) and (b) show the predictive performance of the cumulative fuel burn models

(with known TOW) on the entire unseen dataset (i.e., the combined validation and test sets)

for the different aircraft types in the different airborne phases. Predictions of fuel mass con-

sumption using other APMs are also tabulated. Bold entries in the 'ME' column indicate the

predicted fuel burn values having a mean error statistically significantly different from zero (at

a 5% significance level). Bold entries in the 'MAE' column indicate the model with the statisti-

cally significantly (at a 5% significance level) lowest mean absolute error among all the models

compared.

It is observed that the median ME in the fuel burn (with known TOW) across the different

aircraft types is 0.4% in ascent, 0.3% in climb out, -0.1% in cruise, 3.7% in descent, and 2.0%

in approach. The median MAE given by the GPR models is 2.2% in ascent, 2.0% in climb out,

7.2% in cruise, 8.2% in descent, and 5.5% in approach. In the majority of the comparisons, the

GPR models give the lowest MAE as compared to the other APMs. The GPR models achieve a

reduction in median MAE of as much as 54% in ascent, 80% in climb out, 34% in cruise, 66%

in descent, and 89% in approach. The median PC across the different aircraft types is seen to

be 100% in all the phases. The median NLPI is 81.3% in ascent, 30.6% in climb out, 79.8% in

cruise, 225.9% in descent, and 152.0% in approach. A 100% PC and the large NLPI indicate

overly cautious prediction intervals and that smaller intervals may be sufficient to capture the

uncertainty in fuel burn. However, these large intervals are not surprising and are a result of the

model setup. In this thesis, the primary variable which is modeled directly is the fuel flow rate

and not the mass of fuel consumed. The mass of fuel consumed (i.e., the fuel burn) is modeled

indirectly via the fuel flow rate predictions. GPR models for fuel flow rate prediction have

been shown to give a PC close to 95% and are hence, properly specified. However, when the

estimates of fuel flow rates are combined to give the fuel burn, the individual uncertainties in

the fuel flow rates at each instant also combine to give larger-than-necessary prediction intervals

for the fuel burn. An alternative to predict the fuel burn more precisely would be to directly

determine the mapping between the trajectory inputs and the cumulative fuel burn in different
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Table 5.5: (a) and (b). Predictive performance of the GPR, BADA, SFI, ICAO-BFFM2 cumula-
tive fuel burn models on unseen (combined validation and test) data. Each cell reports the mean
and standard deviation (in parentheses) of the evaluation metric across flights. All values are in
percentages.

(a)

ME MAE PC NLPI
A/C Type Phase GPR BADA SFI ICAO- GPR BADA SFI ICAO- GPR GPR

BFFM2 BFFM2
Ascent 1.1 -0.8 - - 2.5 3.0 - - 100.0 80.3

(3.3) (3.6) (2.4) (2.0) (0.0) (16.1)
Climb out -0.1 -4.3 6.1 -12.7 1.3 4.3 6.3 12.7 100.0 21.8

(1.8) (3.5) (3.9) (4.9) (1.3) (3.5) (3.6) (4.9) (0.0) (3.6)

A319-112 Cruise -1.0 6.0 - - 7.8 11.0 - - 100.0 82.4
(10.4) (18.2) (7.0) (15.6) (0.0) (17.4)

Descent -1.6 -38.4 - - 7.6 38.5 - - 100.0 190.1
(9.0) (12.5) (5.0) (12.3) (0.0) (23.3)

Approach 0.7 -12.2 42.8 53.3 3.9 13.7 42.8 53.3 100.0 133.6
(5.3) (12.5) (31.1) (36.4) (3.6) (10.8) (31.1) (36.4) (0.0) (16.5)

Ascent 1.2 -0.2 - - 2.6 2.9 - - 100.0 82.3
(3.0) (4.1) (1.9) (2.9) (0.0) (15.5)

Climb out 0.0 -5.3 5.6 -2.8 1.4 5.3 6.8 5.9 100.0 33.7
(1.8) (4.4) (4.8) (6.7) (1.1) (4.4) (2.8) (4.2) (0.0) (5.6)

A320-214 Cruise -0.7 0.0 - - 9.0 6.4 - - 100.0 77.3
(12.0) (8.4) (7.9) (5.3) (0.0) (14.3)

Descent 4.5 -39.8 - - 8.1 39.8 - - 100.0 177.9
(9.9) (14.3) (7.2) (14.3) (0.0) (19.5)

Approach 1.7 3.3 63.5 55.9 5.5 13.8 63.5 55.9 100.0 133.6
(6.8) (16.6) (21.7) (20.1) (4.4) (9.7) (21.7) (20.1) (0.0) (18.4)

Ascent 0.4 7.5 - - 2.2 7.5 - - 100.0 72.8
(3.0) (4.4) (2.0) (4.4) (0.0) (14.6)

Climb out -0.2 -0.6 6.7 1.5 2.1 5.2 7.5 7.2 97.6 41.1
(2.6) (6.2) (6.5) (9.0) (1.5) (3.2) (5.6) (5.5) (15.6) (8.1)

A321-111 ruise 0.5 17.9 - - 7.1 19.0 - - 100.0 93.3
(9.7) (20.9) (6.6) (19.9) (0.0) (25.4)

Descent 1.5 -40.6 - - 6.9 40.6 - - 100.0 171.8
(8.3) (14.4) (4.6) (14.4) (0.0) (25.9)

Approach 2.4 -12.3 30.6 45.8 4.9 15.5 31.3 45.8 100.0 114.3
(5.6) (15.0) (17.8) (23.0) (3.4) (11.5) (16.6) (23.0) (0.0) (21.6)

Ascent -0.8 -7.3 - - 1.6 7.3 - - 100.0 71.4
(1.9) (2.0) (1.3) (2.0) (0.0) (13.7)

Climb out 2.2 -11.2 -5.8 -18.1 2.2 11.2 5.8 18.1 93.1 36.8
(1.7) (2.0) (2.1) (3.1) (1.7) (2.0) (2.1) (3.1) (25.8) (4.4)

A330-202 Cruise -0.8 -0.4 - - 5.8 3.0 - - 100.0 70.5
(7.3) (3.7) (4.3) (2.2) (0.0) (14.3)

Descent 9.5 -10.0 - - 11.6 16.6 - - 100.0 236.1
(11.3) (18.0) (9.1) (12.0) (0.0) (19.7)

Approach 2.6 8.1 82.9 47.5 6.2 11.8 82.9 47.8 100.0 188.9
(8.1) (14.1) (42.7) (42.9) (5.7) (11.2) (42.7) (42.6) (0.0) (22.5)
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(b)

ME MAE PC NLPI
A/C Type Phase GPR BADA SFI ICAO- GPR BADA SFI ICAO- GPR GPR

BFFM2 BFFM2
Ascent 0.2 -4.3 - - 1.9 5.3 - - 100.0 67.0

(2.8) (4.3) (2.0) (2.8) (0.0) (14.8)
Climb out 0.9 -10.1 - -0.7 1.8 10.1 - 4.8 100.0 18.0

(2.0) (2.1) (5.9) (1.2) (2.1) (3.3) (0.0) (2.9)
Cruise 3.4 6.0 - - 5.5 6.7 - - 100.0 64.7

A330-243 (8.1) (10.5) (6.8) (10.1) (0.0) (15.7)
Descent 8.0 -18.5 - - 10.4 19.7 - - 100.0 218.4

(10.1) (17.8) (7.5) (16.6) (0.0) (23.0)
Approach 6.6 6.1 - 85.8 7.4 14.7 - 85.8 100.0 150.7

(9.8) (18.0) (53.8) (9.2) (11.9) (53.8) (0.0) (23.5)
Ascent -0.0 -4.4 - - 1.6 4.7 - - 100.0 92.6

(2.1) (3.2) (1.3) (2.7) (0.0) (17.6)
Climb out 1.0 9.5 9.8 5.3 2.6 9.9 10.0 7.4 100.0 27.4

(3.9) (6.3) (5.9) (12.9) (3.1) (5.7) (5.3) (11.8) (0.0) (7.1)

A340-541 Cruise -4.5 11.3 - - 9.7 11.3 - - 100.0 82.2
(13.7) (6.8) (10.5) (6.8) (0.0) (54.2)

Descent 1.9 -28.1 - - 8.3 28.1 - - 100.0 233.4
(10.8) (10.2) (6.9) (10.2) (0.0) (24.9)

Approach -2.4 -23.8 55.2 72.4 5.4 24.5 55.2 72.6 100.0 160.4
(5.9) (14.4) (89.8) (101.1) (3.2) (13.0) (89.8) (101.0) (0.0) (23.3)

Ascent 1.1 -2.2 - - 2.3 3.1 - - 100.0 84.8
(2.9) (2.8) (1.9) (1.8) (0.0) (14.1)

Climb out 0.5 -5.2 -8.3 -21.0 1.4 5.2 8.3 21.0 100.0 23.7
(1.9) (1.4) (1.8) (3.6) (1.3) (1.4) (1.8) (3.6) (0.0) (4.6)

Cruise 4.5 15.6 - - 7.3 15.9 - - 100.0 92.4
B767-300 (11.5) (25.2) (9.9) (25.1) (0.0) (30.7)

Descent 6.4 -15.3 - - 9.2 16.5 - - 100.0 255.9
(8.9) (14.1) (5.8) (12.6) (0.0) (20.3)

Approach 2.0 -0.6 23.3 30.5 4.6 13.3 25.7 31.3 100.0 167.6
(5.8) (17.0) (24.0) (30.0) (4.0) (10.2) (21.3) (29.0) (0.0) (28.4)

Ascent 0.3 -2.5 - - 2.2 4.9 - - 100.0 83.2
(3.1) (5.2) (2.2) (3.0) (0.0) (14.6)

Climb out -0.5 -22.3 -12.9 -22.1 2.9 22.3 13.2 22.1 73.9 79.4

B777-300 (3.6) (6.5) (7.4) (7.1) (2.1) (6.5) (7.0) (7.1) (44.4) (9.0)
Cruise 1.3 10.7 - - 4.8 10.8 - - 100.0 58.2

ER (7.9) (16.1) (6.4) (16.1) (0.0) (17.5)
Descent 2.9 -6.3 - - 7.4 9.9 - - 100.0 255.0

(8.6) (12.3) (5.1) (9.6) (0.0) (14.7)
Approach 2.0 -12.3 20.7 37.8 5.9 13.2 22.1 38.1 100.0 153.2

(7.0) (11.0) (34.9) (37.3) (4.2) (9.9) (34.0) (37.0) (0.0) (22.4)
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phases. This approach has not been pursued further in this thesis, and is a potential direction

for future research.

5.6 Total airborne fuel burn

Table 5.6 shows the ME and the MAE for the total fuel burn prediction in the air (with known

TOW). The total fuel burn in the air is predicted by adding the individual fuel burn predictions

in ascent, cruise, and descent. The table also shows the BADA predictive performance for the

total fuel burn in the air. Statistical tests are used to compare the MEs with zero and MEs that

are statistically significantly different from zero (at a 5% significance level) are highlighted in

bold. Statistical tests are also used to compare the MAEs of the GPR models to those of the

BADA models. The model which gives a statistically significantly lower MAE is highlighted in

bold in the table.

Table 5.6: Performance of the GPR, and the BADA models to predict the total airborne fuel
burn for unseen (combined validation and test) data. Each cell reports the mean and standard
deviation (within parentheses) of the evaluation metric across all the flights.

Figures 5-5 and 5-6 contain box-plots showing the errors and the absolute errors, respec-

tively, for the total airborne fuel burn prediction across the different flights in unseen data not

used for training. Model predictions are unbiased (at a 5% significance level) if the error box-

plots in Figure 5-5 contain zero in their notched regions. The notched regions of the absolute

error box-plots in Figure 5-6 for the GPR models can be compared to those of the box-plots for
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ME (%) MAE (%)A/C Type GPR BADA GPR BADA
A319-112 -0.7 (4.7) -8.9 (5.7) 3.9 (2.7) 9.0 (5.6)
A320-214 0.4 (5.1) -8.7 (7.3) 4.0 (3.2) 9.4 (6.4)
A321-1 11 -0.0 (4.1) -2.5 (11.3) 3.4 (2.2) 9.2 (6.8)
A330-202 -0.5 (5.3) -3.1 (2.9) 4.2 (3.2) 3.5 (2.4)
A330-243 1.7(3.7) -1.4(4.2) 3.2(2.5) 3.0(3.3)
A340-541 -1.3 (7.1) 2.3 (3.1) 5.4 (4.7) 2.7 (2.7)
B767-300 2.0 (4.7) 3.0 (4.6) 3.7 (3.4) 4.1 (3.6)

B777-300ER 0.5 (3.3) 5.1 (2.4) 2.8 (1.9) 5.2 (2.2)



the corresponding BADA models to determine which model gives a statistically significantly

lower absolute error (at a 5% significance level) on the total airborne fuel bum prediction.
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Figure 5-5: Box-plots showing error on total airborne fuel burn prediction for flights in unseen
data not used for training. On each box, the central mark is the median, the edges of the box
are the 2 5th and the 7 5 th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted as red crosses. The notch in the box represents an
interval which can be used for statistical comparison at a 5% significance level. These box-plots
are helpful in checking for model bias in the mean predictions.

Table 5.6 shows that the median of the total airborne fuel burn ME (with known TOW) for

the GPR models across the different aircraft types is 0.2%. For the majority of the aircraft types,

the GPR models give unbiased predictions of the total airborne fuel burn. The median MAE

(with known TOW) for the GPR and the BADA models is 3.8% and 4.7%, respectively. For all

the aircraft types except the A340-541, the GPR models give a statistically significantly similar

or lower MAE as compared to the BADA models. In other words, the GPR models provide

better predictions of the total airborne fuel burn as compared to the BADA models. Similar to

the case of predicting the cumulative fuel burn by phase, it may be possible to determine more
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Figure 5-6: Box-plots showing absolute error on total airborne fuel burn prediction for flights
in unseen data not used for training. On each box, the central mark is the median, the edges
of the box are the 2 5th and the 7 5th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted as red crosses. The notch in the box
represents an interval which can be used for statistical comparison at a 5% significance level.
These box-plots can be used to compare the GPR models to the corresponding BADA models
for the accuracy of the mean predictions.

accurate predictions of the total airborne fuel burn by treating it as the predicted variable, rather

than aggregating the instantaneous fuel flow rates. The development of such models of total

fuel burn is an interesting topic for future research.

A comment regarding the trajectory-based input variables used for model testing is in order.

In this chapter, models have been primarily evaluated for their fuel flow and fuel burn predictive

performance without accounting for possible errors in the trajectory-based input variables. The

actual values of the input variables as enumerated in the FDR dataset are therefore, used to

estimate the fuel flow rates for flights in the unseen dataset not used for training. In reality,

trajectory-based input variables for a new flight will be obtained from ground-based surveillance
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systems and the values of these variables may differ from those in the FDR dataset for that flight.

Future work would also look at evaluating model predictive performance in the airborne phases

using inputs from surveillance systems, such as the Traffic Flow Management System (TFMS)

in the United States.

5.7 Intra-family model generalizability

In the previous sections, each aircraft and engine variant combination has a separate model

to estimate the fuel flow rates. In this section, the potential of the models developed for one

aircraft/engine type to generalize to other aircraft/engine types is examined. A generalized

model, if possible, is practically advantageous as the same model can be used to estimate fuel

flow rates for different aircraft types, thereby reducing the total number of models required to

be developed.

The first step towards checking for model generalizability is to examine how well models

trained for one aircraft type predict the fuel flow rates for other aircraft types within the same

family. Two aircraft families can be identified in the FDR-I dataset - the A320 family compris-

ing the A319-112, the A320-214, and the A321-l111 aircraft types, and the A330-200 family

comprising the A330-202 and the A330-243 aircraft types. The A320-214 and the A330-243

are chosen as the representative aircraft types for these two families. Models trained on these

two aircraft are used to estimate fuel flow rates for the flights in the test datasets of the other

aircraft types in the same family. Good intra-family generalizability would imply that the re-

sultant fuel flow rate estimates are statistically significantly similar to those obtained in Section

5.4 by using different aircraft type-specific models.

Table 5.7 shows model evaluation metrics on test data when fuel flow rates are estimated

using both the aircraft type-specific and the family generalized models. The GPR models trained

for the A320-214 in Section 5.3.1 serve as the generalized models for the A319-112 and the

A321-111 in the A320 family, while the GPR models trained for the A330-243 in Section 5.3.1

serve as the generalized models for the A330-202 in the A330-200 family. The aircraft type-

specific ('Specific') and the family generalized ('General') models are statistically compared to
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one another. In these comparisons, models with a statistically significantly (at a 5% significance

level) lower MAE, higher PC, and lower NLPI are highlighted in bold in the table. From

Table 5.7, it can be seen that barring a few cases (such as some phases for the A319-112),

models trained on an aircraft type do not seem to be generalizable, in terms of the fuel flow rate

prediction, to the other aircraft types within the same family. Future work could look into ways

in which models can be made more generalizable. One way to improve model generalizability

could be to combine data from different aircraft types of a family to train representative models

for that family.

Table 5.7: Examination of intra-family model generalizability: Model evaluation metrics when
aircraft type-specific ('Specific') and family generalized ('General') GPR models are used for
fuel flow rate estimation on test data. Each cell reports the mean and standard deviation (in
parentheses) of the evaluation metric across flights.

A/C Type Phase MAE (%) PC (%) NLPI (%)
Specific General Specific General Specific General

Ascent 4.9 (1.9) 5.1 (2.0) 96.5 95.8 27.3 29.9
(3.2) (4.2) (1.9) (2.5)

Climb out 2.6 (1.0) 3.0 (1.0) 95.6 99.1 13.9 24.0
(6.8) (3.9) (1.0) (2.6)

A319-112 Cruise 12.1 11.5 95.1 92.2 68.8 54.6
(5.9) (8.2) (9.9) (11.3) (12.8) (7.9)

Descent 21.1 21.8 95.6 95.9 128.5 130.3
(4.6) (5.2) (3.9) (3.3) (17.4) (16.0)

Approach 17.4 17.2 94.7 94.9 95.8 100.1
(6.8) (4.7) (4.9) (4.5) (13.5) (14.5)

Ascent 3.6 (1.8) 5.0 (1.4) 94.3 96.5 21.7 42.4
(5.5) (5.6) (2.5) (18.7)

Climb out 4.3(1.7) 7.1(3.1) 91.7 67.6 21.7 17.1
(9.0) (22.7) (1.2) (0.9)

Cruise 10.5 13.0 98.8 89.8 78.1 50.5
A321-l11 (5.0) (5.5) (4.3) (13.2) (13.6) (3.6)

Descent 22.2 23.4 90.8 88.7 109.4 111.4
(4.7) (5.0) (4.6) (6.9) (18.5) (12.0)

Approach 16.4 17.2 92.5 88.5 77.6 88.9
(4.4) (5.6) (5.4) (9.6) (16.0) (10.9)

Ascent 4.5 (2.2) 5.7 (1.7) 96.7 93.8 27.5 26.0
(3.2) (5.3) (2.6) (1.6)

Climb out 4.1 (1.8) 8.8 (1.6) 91.8 27.6 18.3 9.3 (0.5)
(9.7) (13.8) (1.3)

A330-202 Cruise 9.4 (3.8) 14.8 94.4 98.0 60.5 73.0
(9.9) (16.3) (3.6) (19.3) (7.3)

Descent 27.7 41.5 92.1 89.1 176.5 142.1
(3.8) (8.0) (4.9) (5.1) (21.5) (17.9)

Approach 30.0 38.2 91.2 84.8 146.3 115.2
(11.2) (15.2) (7.5) (8.4) (26.5) (15.9)
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Chapter 6

Taxi-Out Fuel Burn

In this chapter, the methodologies and insights from the previous chapters are leveraged in order

to develop models of surface fuel flow. Taxi-out refers to the portion of ground movement at

the departure airport occurring between an aircraft's end of pushback and the start of its takeoff

roll. As before, a physical understanding of the taxi-out process is used to assist in model

feature selection. The primary modeling objective is to predict the taxi-out fuel flow rate profile

for a flight using its taxi-out trajectory information. The fuel flow rates predicted by the models

developed in this chapter are compared to those given by AEDT. Only the FDR-II dataset has

been used for developing the surface fuel flow rate models. Modeling the taxi-out fuel flow

rates is needed to estimate surface fuel burn and emissions generated during taxi.

6.1 Model features

A feature engineering approach similar to that adopted in Chapter 5 is used to select the features

important for fuel flow modeling in taxi-out. Figure 6-1 shows airplane dynamics during taxi.
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Figure 6-1: Schematic of airplane dynamics during taxi.

The equations of motion during taxi are as follows:

L+N = mg (6.1)

F. - D - f, matax (6.2)

L = qSCL (6.3)

D = qSCD (6.4)

f,= pN (6.5)
dV

ataxi = (6.6)
dt

1
q = pv2 (6.7)

Here, N is the normal reaction from the ground, fr is the frictional force from the ground, ataxi

is the aircraft longitudinal acceleration during taxi, and y, is the coefficient of friction.

As done in the previous chapter, the averaged fuel flow rate per engine can be linked to the

net thrust via the Thrust Specific Fuel Consumption (TSFC) as follows:

. =TSFC x Fn
mnf= Nen (6.8)

Neng

TSFC = fTSFC (MO 00 1veng) (6.9)

The above equations and relations (Equations 6.1-6.9) reveal the following functional de-

pendency for the averaged per engine fuel flow rate in taxi (neglecting constants for a particular
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aircraft/engine type):

7l aircraft/engine type - ffn (, 16, V, m, ataxi, Ar, CD CL ieng) (6.10)

The values of the ambient temperature and pressure on the surface can be obtained from

airport weather reports. These values do not tend to vary as rapidly as wind speed and direction.

As done in the previous chapter, we consider the dependence of the fuel flow rate on the ground

speed (and not the true airspeed). However, since surface wind speeds are typically not high,

the aircraft airspeed is likely to be equal to the ground speed (V e VGS). In addition, we

assume that the mass of the aircraft does not vary appreciably during the course of taxi-out,

and that it equals the takeoff mass MiTo. The coefficient of friction during taxi (which is a

function of time due to braking action by the pilot), the drag and lift coefficients, and the engine

component efficiencies cannot be estimated from trajectory data alone, and are not included

as model features. The cumulative effect of these unmodeled features is captured through the

prediction intervals generated by the statistical models. Therefore, an approximate functional

relationship for the fuel flow rate in taxi-out is given by

mf mfngs(O., 6m, VGS, iTo, ataxj). (6.11)
aircraft/engine type

Thus, in the regression models to be built, the input/independent/predictor variables are the

following:

- Ambient temperature normalized by the ISA sea level static temperature (0,, a dimen-

sionless quantity)

- Ambient pressure normalized by the ISA sea level static pressure (60, a dimensionless

quantity)

- Aircraft ground speed (VGS, in m-s- 1 )

- Aircraft takeoff mass (MTO, in kg)

- Aircraft longitudinal acceleration during taxi (ataxi, in m-s-2)
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The output/dependent/predicted variable is the averaged fuel flow rate per engine (rnf, in kg-s- 1).

It should be noted that the normalized values of the ambient temperature and pressure (instead

of the non-normalized values) are used as predictors as the ICAO Databank with Boeing Fuel

Flow Method 2 (BFFM2) correction uses these variables to model the fuel flow rate.

6.2 Taxi-out fuel flow rate profile

Figure 6-2 shows a typical fuel flow rate profile during taxi-out (as seen in the FDR-II dataset).

It can be seen that the fuel flow rate profile (red curve) can be divided into two distinct regions:

A baseline region and a fuel flow spike region. The baseline region is characterized by extended

intervals of an almost constant (low variation) fuel flow rate having a low value. The fuel flow

spike region is characterized by shorter-interval spikes in the fuel flow rate with values generally

greater than the baseline fuel flow rate. Therefore, these two fuel flow rate regions need to be

modeled separately. Figure 6-2 also shows a mean baseline fuel flow rate (in blue) obtained by

averaging the baseline fuel flow rates for a particular taxi-out operation.

Baseline fuel
flow region

Constant spe. mde

-*-Non-const
mode

Lnt speed

F a I flow ;pike i ii

I I "'IV{ I II I i i
-FDR fuel flow rate
-Mean of baseline fuel flow
-Non-constant speed mode

54 4.5
t (% of total time)

rate
indicator (0/1)

5.5

Figure 6-2: Typical fuel flow rate profile in taxi-out.
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Table 6.1 shows different characteristics of the baseline fuel flow region for the A330-343

and the B777-300ER aircraft types seen in the FDR-II dataset. It can be seen that on an average,

more than 90% of the taxi-out fuel consumption occurs during the baseline fuel flow region.

Thus in this thesis, only the baseline fuel flow region is modeled and the fuel flow spikes are

neglected.

Table 6.1: Taxi-out: Characteristics of the baseline fuel flow region. The table shows the mean
and the range of time spent and fuel mass consumed in the baseline fuel flow region, as a
percentage of the total time and fuel burn in taxi-out.

Time (%) Fuel Burn (%)
Mean Range Mean Range

A330-343 94.1 76.1-100.0 91.0 68.0-100.0
B777-300ER 93.0 77.4 - 100.0 91.0 73.0- 100.0

6.3 Trajectory smoothing

The objective of this chapter is to develop models which can map fuel flow rates to aircraft

trajectories during taxi-out. However, raw trajectory measurements are often found to be noisy

and could have low resolution. Moreover, in Section 6.1 it is shown that acceleration during

taxi is a predictor variable for fuel flow rate modeling. The values of aircraft acceleration

during taxi are generally not explicitly recorded in the trajectory data. Hence, the raw trajectory

data need to be smoothed in order to estimate the variables of interest (such as acceleration)

before developing a fuel flow rate model [108].

6.3.1 Aircraft kinematics

The aircraft trajectory on the surface is modeled using the following two-dimensional kinematic

model:

x f(x) + Bown (6.12)
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X(t) VGS sin(Oc(t)) 0 0

y(t) VGs cos(Oc(t)) 0 0 Wa (6.13)
VGS(t) ataxi M 1 0 wo

Oc(t) w(t) 0 1

Here, x is the state vector be estimated, (x, y) is the aircraft position on the ground (as a function

of time), VGs is the ground speed, Oc is the course track angle, ataxi is the acceleration, W is the

turn rate and w, ~Nj(0, W) is the process noise with zero mean and covariance W. The

process noise accounts for the uncertainty in the acceleration and turn rate. Here, Wa and wO are

the components of the process noise vector and are assumed to be uncorrelated and independent.

The trajectory measurements provide full information about the state vector (x) that needs to

be estimated. It should be noted that the actual measurements contain latitude and longitude

coordinates, which are converted into local (x, y) coordinates. The measurement vector, z is

given by

z = x + vn. (6.14)

Here, vn- ~A(0, Rn) is the additive noise (with zero mean and covariance Rn), assumed to be

independent and uncorrelated with the process noise.

6.3.2 Smoothing algorithm

The state estimation is done using a fixed interval smoother since measurements exist for the

entire trajectory [109]. We are interested in computing p(xt zi:tt.o) (the distribution of the state

vector at time t given the complete measurement vector ending at time teto), unlike filtering

whose output is p(xtlzi:t) (which only takes measurements up to time t into account). For

estimating the state variables, the aircraft kinematics is approximated by a hybrid system of the
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following form:

VGs sin (0,t)

x = fk(x) + B~wn; f(x) = GS csO(t) ; k 1, 2,...,M (6.15)
ataxik

Wk

The models are specified by M modes of operation, each of which is a set (ataxik, WOk). The

hybrid state vector consists of the original state variables (x) as well as the mode of operation.

Multi-model kinematics provides better tracking accuracy compared to single model kinemat-

ics. Another advantage of using multi-model kinematics is that it helps to identify the 'most

likely mode' of the system at any instant. The estimation is performed on the discretized sys-

tem with time discretization equal to the sampling rate of the measurements in the FDR-II

dataset (1 Hz). The algorithm is based on combining estimates produced by an Interacting Mul-

tiple Model (IMM) filter with a backward-time recursion [110, 108]. The algorithm gives out

smoothed estimates of the state variables (trajectory) as well as the probability of the system

being in a particular mode (i.e., the mode fraction). The 'most likely mode' of the system at any

time instant is determined from the maximum a posteriori probability, i.e., the mode with the

greatest mode fraction. Table 6.2 shows the modes considered for analyzing the taxi trajectories.

Table 6.2: Different modes considered in taxi trajectory smoothing.

Mode Number Mode Name ataxi Threshold (m-s 2 ) w Threshold (deg - s-1)
1 Constant speed 0 0
2 Acceleration 0.35 0
3 Deceleration -0.35 0

The modes correspond to constant speed, acceleration and deceleration events. The modes

are motivated by the fact that high acceleration may contribute to fuel burn spikes, whereas,

turns may not have any significant impact on the fuel flow. Another reason for not including

turns is that accelerated turns might show up as turns and not acceleration events.

Figure 6-3 shows the comparison of the flight trajectory between the FDR data and the

smoothed estimates for a departing flight on the surface. It can be seen that the estimated
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trajectory is smooth as compared to the raw FDR data. The zig-zag pattern of the raw data

is due to poor resolution. Figure 6-4 shows a comparison of the ground speed profile for the

flight trajectory between the FDR data and the smoothed estimate. Even the ground speed

measurements from the FDR data have a bad resolution, which is smoothed out in the estimates.

(a) Complete trajectory (b) Zoomed-in image

Figure 6-3: Comparison of taxi-out trajectory on the airport surface between the FDR raw data
(blue) and smoothed estimates (red) for one flight at the Boston Logan International airport
(BOS).
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6.3.3 Acceleration estimates

One of the objectives of the smoother is to derive smoothed estimates of acceleration during

taxi. Figure 6-2 shows the non-constant speed mode indicator variable (in green). Parts of the

trajectory identified to have the acceleration/deceleration (i.e., non-constant speed) mode as the

'most likely mode' are given the indicator 1. The other parts of the trajectory (having a constant

speed mode) are given the indicator 0. Analysis of the fuel flow rate and acceleration profiles

for different flights in the FDR-II dataset reveals a strong correlation between the fuel flow spike

regions and the regions having an acceleration mode. This is expected as pushing the throttle

forward results in a fuel flow spike that causes the aircraft to accelerate. On the other hand, there

is a good correlation between the baseline fuel flow regions and the regions having a constant

speed mode. However, cases have been observed in the data when an acceleration mode is

observed without any accompanying fuel flow spike (false positives). This can happen when

the pilot releases the brakes at an unchanged throttle setting causing the aircraft to accelerate.

Cases have also been observed when a fuel flow spike corresponds to a non-acceleration mode

(false negatives). This can happen when pushing the throttle forward is accompanied by the pilot

pressing the brakes in a manner so as to not cause the aircraft to accelerate. False negatives can

also occur due to the acceleration being small compared to the threshold, resulting in it being

flagged as a constant speed event.

The smoother output depends significantly on the value of the acceleration threshold. The

acceleration threshold is chosen such that the false positives and false negatives are almost the

same. Analysis of different acceleration thresholds shows that an acceleration threshold of 0.35

ms 2 balances the false positives and false negatives for both the A330-343 and the B777-

300ER flights in the FDR-II dataset. Thus, this value of the acceleration threshold is chosen for

taxi fuel flow rate modeling for all the flights in the FDR-II dataset. This acceleration threshold

is also recorded in Table 6.2.

The estimates of the mode fractions given by the smoother can be used to estimate the taxi

acceleration by the following equation:

&taxi= athres.(f2 - f3) (6.16)

121



Here, ataxi is the estimate of the taxi acceleration from the smoother, athres. is the acceleration

threshold employed, and f2 and f3 are the mode fractions corresponding to the acceleration

mode and the deceleration mode, respectively.

6.4 Baseline fuel flow modeling

As mentioned in Section 6.3.3, the baseline fuel flow rate regions correlate well with the con-

stant speed mode portions of the taxi-out trajectory. Thus, in this thesis, the averaged baseline

fuel flow rate per engine is modeled using the predictor variables from only the constant speed

mode portions of the taxi trajectory. Smoothed estimates of these predictors are used for model

building. For each aircraft type in the FDR-II dataset, 65% of all the flights constitute the

training set, 15% constitute the validation set, and 20% constitute the test set. Table 6.3 shows

the number of flights and the number of observations corresponding to baseline fuel flow and

constant speed mode for each of the training, validation, and test datasets used in this chapter.

Using the training set, two models are built to predict the baseline fuel flow rate. These models

are hereafter, referred to as the Baseline-I and Baseline-2 models.

Table 6.3: Details of training, validation, and test datasets drawn from the FDR-II dataset with
the number of flights (# Flts.) and the number of observations (# Obs.) for each aircraft type in
the taxi-out phase.

Training Set Validation Set Test Set
A/C Type # Flts. # Obs. # Flts. # Obs. # Flts. # Obs.
A330-343 117 70,785 27 15,962 37 24,117

B777-300ER 81 41,643 19 7,954 25 10,669

6.4.1 Baseline model, version 1

The Baseline-I model is a simple model which models the baseline fuel flow rate as a constant

for a particular taxi-out operation. It therefore, neglects the variation seen in the baseline fuel

flow rate within the same taxi-out operation. The aim of developing this simple model is to

suggest an improvement over the ICAO Databank - BFFM2 (ICAO-BFFM2) method, used in
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AEDT to estimate fuel flow rate during taxi. The ICAO Databank method with BFFM2 correc-

tion (ICAO-BFFM2) estimates the fuel flow rate per engine during taxi through the following

equation (the Mach number dependence from the original equation has been dropped due to

very low Mach numbers during taxi):

7nfICAO-BFFM2,taxi 1 rf CAOtaxi 8 (617)

l~lrn~c~otaxi(6.18)~ 114fICAO,taxi '8

Here, nfICAO,taxi is the ground idle taxi fuel flow rate enumerated in the ICAO Databank. The

approximation is reasonable as 6,, and 0O, are close to 1 on the ground. This approximation

(Equation 6.18) is used in AEDT to model taxi fuel flow rate per engine and is used in the

remainder of this chapter as the example of the current state-of-the-practice model to estimate

taxi fuel flow.

For each taxi-out operation in the training set, the mean baseline fuel flow rate per engine in

taxi-out (blue curve in Figure 6-2) is regressed against the mean of the values of the corrected

ambient temperature (04,) and the corrected ambient pressure (6,,) in the constant speed mode

portions of the same taxi-out operation. Only these two predictor variables are chosen out

of the complete set of predictor variables mentioned in Section 6.1 in accordance with the

ICAO-BFFM2 fuel flow rate modeling relation in Equation 6.17 (as the purpose of the Baseline-

1 model is to improve upon the ICAO-BFFM2 method). An Ordinary Least Squares (OLS)

regression approach is found to be sufficient to develop this simple model. (The sufficiency

of OLS regression is verified by conducting diagnostic tests which show that the assumptions

of OLS regression, as explained in Section 4.2, are satisfied. The regression coefficients are

also found to be statistically significant at a 5% significance level.) Table 6.4 shows the OLS

regression-derived equations for modeling the fuel flow rate using the Baseline-I model.

Table 6.4: Baseline-i model equations to model fuel flow rate per engine during taxi-out.

A/C Type Baseline-1 Model Equation
A330-343 mftaxi = 0. 7 79 M-I 6CO i0 0 .350

B777-300ER rrftaxi 0.7 5 3 fICAO .600 17
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The main difference between the AEDT equation and the Baseline-I model equations is the

change in the leading factor from 1.1 to 0.779 for the A330-343 and 0.753 for the B777-300ER.

6.4.2 Baseline model, version 2

In contrast with the Baseline-I model, Baseline-2 model does not model the baseline fuel flow

rate as a constant. This more complicated model can therefore, capture variation in the baseline

fuel flow rate occurring during the same taxi-out operation. For each taxi-out operation in the

training set, the instantaneous baseline fuel flow rate per engine in taxi-out (red curve in Figure

6-2 corresponding to baseline fuel flow) is regressed against the instantaneous values of all the

predictor variables selected in Section 6.1. Only those instants in the taxi-out operation are used

for model building which correspond to baseline fuel flow as well as the constant speed mode.

Based on insights gained in the previous chapter, Gaussian Process Regression (GPR) is used

to train the models. Analysis of model predictive performance on the validation sets leads to

the Dot Product Exponential (DPE) kernel being selected for Baseline-2 model building.

6.5 Performance of fuel flow rate model

Table 6.5 shows the predictive performance of the two baseline fuel flow rate models on un-

seen test data not used for training or validation. The predictive performance of each model is

evaluated in two ways:

1. Evaluation using test set outputs similar to training set outputs (Case #1): In this way

of evaluation, the models are evaluated by comparing their predictions with the same

output variables in the test set as those used for model training. Thus, Baseline-I model

is evaluated by comparing its predictions with the mean baseline fuel flow rates in the test

set. The test inputs are the mean values of the appropriate predictors in the constant speed

mode regions, similar to the way the model is trained. Baseline-2 model is evaluated by

comparing its predictions with the instantaneous baseline fuel flow rates in the test set.

The test inputs are the instantaneous values of the appropriate predictors in the constant
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speed mode and baseline fuel flow regions, similar to the way the model is trained. This

type of analysis is done to evaluate the model quality.

2. Evaluation using the complete taxi-out test trajectory (Case #2): In this way of evalua-

tion, both the models are evaluated by using them to predict the fuel flow rate at each

instant of the taxi-out trajectory in the test set, including the instants corresponding to the

fuel flow spike or the non-constant speed mode regions (even though the models have not

been trained for such portions). This way of evaluation mimics the way in which the de-

veloped models will be practically used to predict taxi fuel flow rates, given the complete

trajectory for a particular taxi-out operation.

Table 6.5 also shows the predictive performance of the AEDT models (Equation 6.18) on

the test data. The AEDT models do not give prediction intervals for the fuel flow rates and

hence, the Prediction Coverage (PC) and the Normalized Length of Prediction Intervals (NLPI)

for these models are not reported in the table. The Mean Errors (MEs) of the data-driven models

are statistically compared (Section 4.6) with zero to check if the models are biased. The Mean

Absolute Errors (MAEs) of the data-driven models and the AEDT models are also statistically

compared among one another to determine which model gives the lowest MAE. PC for the two

baseline models are statistically compared to one another to determine which model gives the

higher PC. Bold entries in the table indicate statistically significant results (models with bias,

the lowest MAE, the highest PC) at the 5% significance level.

Case #1 analysis shows that both the baseline fuel flow rate models give PCs that are close

to 95%, indicating good model quality. When the baseline models are evaluated on the com-

plete taxi trajectory (Case #2), the mean predictions for both the models are found to be biased.

For both the aircraft types, the MAEs given by the two baseline models are statistically similar.

However, the MAEs for the data-driven models developed are found to be statistically signifi-

cantly lower than those given by the AEDT models. For the A330-343, the MAE for both the

baseline models is 6.3%. This represents a reduction in MAE of about 84% as compared to

the AEDT model. For the B777-300ER, the MAE for both the baseline models is 2.7%. This

represents a reduction in MAE of about 94% as compared to the AEDT model. Unlike the

AEDT models, the data-driven models can also quantify uncertainty in the fuel flow rates. The
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Table 6.5: Performance of the different data-driven baseline fuel flow rate models and the AEDT
models to predict fuel flow rates on unseen test data during taxi-out. Each cell reports the
mean and standard deviation (within parentheses) of the evaluation metric across all the flights.
'Bas. 1' and 'Bas.2' refer to the Baseline-I and the Baseline-2 models, respectively.

Evaluation ME (%) MAE (%) PC (%) NLPI (%)
A/C Type Method Bas.1 Bas.2 AEDT Bas.1 Bas.2 AEDT Bas.1 Bas.2 Bas.1 Bas.2

Case #1 -0.8 -0.4 39.3 2.7 4.0 40.9 94.6 91.6 8.5 14.9

A330-343 (7.9) (8.5) (11.3) (7.5) (7.8) (4.4) (22.9) (16.4) (0.0) (2.4)
Case #2 -3.3 -2.9 36.0 6.3 6.3 39.4 71.5 84.8 8.5 15.1

(7.4) (7.3) (10.6) (6.9) (6.7) (4.4) (21.3) (16.4) (0.0) (2.3)
Case #1 -0.0 0.0 45.2 0.6 1.0 45.2 92.0 95.8 2.6 6.7

B777-300ER (0.8) (0.8) (1.0) (0.4) (0.4) (1.0) (27.7) (3.3) (0.0) (0.2)
Case #2 -1.8 -1.8 42.6 2.7 2.7 43.2 72.9 89.7 2.6 6.8

(1.1) (1.1) (1.6) (1.2) (1.2) (1.5) (23.6) (6.8) (0.0) (0.2)

Baseline-2 models give a statistically significantly larger PC as compared to that given by the

Baseline-1 models. This increased coverage results from the ability of the Baseline-2 model

to incorporate variability in the baseline fuel flow rate. The Baseline-2 model gives a PC of

84.8% for the A330-343 and 89.7% for the B777-300ER. However, this increased coverage is

the result of a larger NLPI for the Baseline-2 model. It should be noted that Case # 2 indicates

a degradation in model predictive performance as compared to Case #1. This degradation is

expected as in Case #2, the models are being used to predict the fuel flow rates for the entire

taxi-out trajectory, including the fuel flow spike or the non-constant speed mode regions for

which the baseline models have not been trained.

Figures 6-5 and 6-6 show the taxi-out fuel flow rate profiles (predicted as well as the FDR

ground truth) for one test data flight each of the A330-343 and the B777-300ER, respectively.

It can be observed how the bigger prediction intervals given by the Baseline-2 models account

for greater variability in the baseline fuel flow rate. Both the baseline models give a better

predictive performance as compared to the AEDT models.

6.6 Taxi-out fuel burn prediction

The predicted taxi-out fuel flow rate can be used for predicting the total mass of fuel consumed

during taxi (i.e., the fuel burn). Equations 5.26 - 5.28 are similarly applied to predict the taxi-out
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Figure 6-5: A330-343: Fuel flow rate prediction for one test data flight in taxi-out. The x-axis
represents time since the start of the FDR record as a percentage of the total flight time.

fuel burn.

Table 6.6 shows the fuel burn predictive performance using the Baseline-1, Baseline-2, and

the AEDT models on the unseen prediction set not used for model training (i.e., the combined

validation and test sets). The PC and NLPI are only reported for the Baseline-2 models. This is

because as mentioned in Section 6.5, the Baseline-I model is restricted to estimating the mean

baseline fuel flow rate (and not the uncertainty therein) and the AEDT model being determin-

istic does not give prediction intervals. For the numbers in the table, the models are run on

the complete taxi-out trajectories, including regions of fuel flow spikes or non-constant speed

modes (even though the underlying fuel flow rate models have not been trained for these re-

gions). Statistical multi-comparison tests are performed to compare the MAEs of the different

models among one another and to compare the MEs of the different models with zero. Bold

entries in the table indicate statistically significant results (models with bias, the lowest MAE)

at the 5% significance level. From Table 6.6, it can be observed that for both the aircraft types in
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MBas.1 - 95% prediction interval

-Bas.1 - mean prediction
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Figure 6-6: B777-300ER: Fuel flow rate prediction for one test data flight in taxi-out. The
x-axis represents time since the start of the FDR record as a percentage of the total flight time.

Table 6.6: Performance of the different data-driven baseline fuel flow rate models and the AEDT
models to predict fuel burn on unseen prediction dataset not used for training (combined vali-
dation and test sets). Each cell reports the mean and standard deviation (within parentheses) of
the evaluation metric across all the flights. 'Bas.1' and 'Bas.2' refer to the Baseline-i and the
Baseline-2 models, respectively.

A/CType ME (%) MAE(%) PC (%) NLPI(%)
A/CType Bas.1 Bas.2 AEDT Bas.1 Bas.2 AEDT Bas.2 Bas.2

A330-343 -4.7 -4.2 31.2 4.9 4.6 31.8 87.5 15.0 (1.3)
(5.9) (6.0) (19.8) (5.7) (5.7) (18.7) (33.3)

B777-300ER -3.0 -3.0 41.1 3.0 3.0 41.1 65.9 6.9 (0.2)
(1.9) (1.9) (2.8) (1.8) (1.8) (2.8) (47.9)

the FDR-II dataset, the baseline fuel flow rate models give statistically significantly biased pre-

dictions of the fuel burn. Both the models give more accurate mean predictions of the fuel burn

as compared to the AEDT method. The two baseline fuel flow rate models do not statistically

significantly differ from each other in terms of the MAE in fuel burn prediction. Thus, both

the models give similar mean predictions of the fuel burn. For the A330-343, the MAE for the
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Baseline-I model is 4.9% and that for the Baseline-2 model is 4.6%. Thus, these baseline mod-

els can achieve a reduction in MAE of as much as about 86% for the A330-343 over its AEDT

model. For the B777-300ER, the MAE for both the baseline models is 3.0%. Thus, the baseline

models can achieve a reduction in MAE of as much as about 93% for the B777-300ER over

its AEDT model. Despite being trained on only baseline fuel flow rates, the Baseline-2 model

gives 87.5% PC for the A330-343 fuel burn predictions and 65.9% PC for the B777-300ER fuel

burn predictions on the complete taxi-out trajectory.

Figures 6-7 and 6-8 contain box-plots showing the errors and the absolute errors, respec-

tively, for the taxi fuel burn prediction across the different flights in unseen data not used for

training. Model predictions are unbiased (at a 5% significance level) if the error box-plots in

Figure 6-7 contain zero in their notched regions. The notched regions of the absolute error box-

plots in Figure 6-8 for the baseline models can be compared to those of the box-plots for the

corresponding AEDT models to determine which model gives a statistically significantly lower

absolute error (at a 5% significance level) on the taxi fuel burn prediction. Figure 6-8 shows

that the absolute errors in fuel burn prediction given by the data-driven models developed are

statistically significantly lower than those given by the AEDT models.

It should be noted that the predictive performance of the models developed can be further

improved by modeling the fuel flow spikes too. Fuel burn predictions can be improved by

explicitly modeling the fuel mass consumed (instead of predicting it via the fuel flow rates).

These approaches are not pursued further in this thesis.

6.7 ASDE-X data as inputs

In the previous sections, the fuel flow rate and fuel burn model predictive performance was

evaluated using unseen data drawing values of the predictor variables from the FDR-II dataset.

In practice however, the models will be applied to trajectory data obtained through ground

surveillance systems. ASDE-X, described in Chapter 3, is one such surveillance system. In this

section, model predictive performance is evaluated using values of the trajectory-based predic-

tor variables (ground speed and taxi acceleration) drawn/estimated from the ASDE-X dataset.
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Figure 6-7: Box-plots showing error on taxi-out fuel bum prediction for flights in unseen data
not used for training. These box-plots are helpful in checking for model bias in the mean
predictions.

The values of the ambient conditions and TOW are still obtained from the FDR-II dataset. The

ground truth value of the fuel flow rate needed for model evaluation is also obtained from the

FDR-II dataset. The values of the evaluation metrics determined in this section indicate the

predictive performance of the models as they will be used in practice using ground surveillance

data.

6.7.1 ASDE-X trajectory smoothing

Fuel flow rate prediction using ASDE-X data is more challenging because of two reasons: (a)

ASDE-X data are more noisy when compared to FDR data, and (b) ASDE-X data have a lot

of missing fields [108]. The same modes that were used for smoothing the FDR data (Section

6.3) are used for smoothing the ASDE-X data. The noise parameters are tuned appropriately

and the acceleration threshold is chosen to be slightly higher when compared to the FDR case
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Figure 6-8: Box-plots showing absolute error on taxi-out fuel bum prediction for flights in
unseen data not used for training. These box-plots can be used to compare the baseline models
with the corresponding AEDT models for the accuracy of the mean predictions.

(0.5 ms-2 instead of 0.35 ms-). The threshold is determined by balancing the false positives

and false negatives of the acceleration events in the ASDE-X records. Here, false positives refer

to the acceleration events (i.e., when a time instant has the acceleration mode) that show up

in the ASDE-X estimates but not in the FDR estimates. Similarly, false negatives refer to the

acceleration events that do not show up in the ASDE-X estimates but are present in the FDR

estimates. Figure 6-9 shows the indicator variable for the acceleration mode obtained from the

estimation of the ASDE-X data and the FDR data. It can be seen that the first acceleration event

estimated using the FDR data is not seen in the ASDE-X estimates. This is an example of a false

negative. Figure 6-10 shows the comparison of the ground speed profile for a flight trajectory

obtained from the smoothed ASDE-X estimates with the raw ASDE-X data and the smoothed

FDR estimates. It can be seen that the raw ASDE-X measurements are noisy and missing for

a good fraction of the time. However, the smoothed ASDE-X estimates compare well with the
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Figure 6-9: Detection of the acceleration mode estimated from ASDE-X and FDR data.
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Figure 6-10: Comparison of the ground speed profile for a taxi-out trajectory among raw ASDE-
X data, smoothed ASDE-X estimates, and smoothed FDR estimates.

6.7.2 Predictive performance with ASDE-X data inputs

Models trained on FDR data in Section 6.4 are applied to trajectory predictor variable (i.e.,

ground speed and taxi acceleration) values drawn from the ASDE-X data to determine mean

predictions and prediction intervals for the fuel flow rates during taxi. Values of the ambient

temperature, ambient pressure, TOW, and the ground truth fuel flow rate are still obtained from

the corresponding FDR records. Model evaluation is done on 36 flights for the A330-343 and

23 flights for the B777-300ER which have records in both the FDR-II and the ASDE-X datasets

and which have not been used for model training.

132

--- ASDE-XI

8-

6-;

4 I

2-

U



Table 6.7 tabulates the fuel flow rate predictive performance on the complete taxi trajectory

when the source of trajectory variables is ASDE-X. For reference, the predictive performance

when the trajectory variables are obtained from FDR data is also tabulated. It should be noted

that this predictive performance on FDR-obtained variables may differ from that recorded in

Table 6.5 as different sets of flights have been used for model evaluation in the two tables. Bold

entries in the table indicate statistically significant results (models with bias, the lowest MAE,

the highest PC) at the 5% significance level.

Table 6.7: Performance of the different data-driven baseline fuel flow rate models and the AEDT
models to predict fuel flow rates during taxi-out when the trajectory predictor variables are
obtained from ASDE-X data. Each cell reports the mean and standard deviation (in parentheses)
of the evaluation metric across all the flights. For reference, model predictive performance when
the trajectory predictor variables are obtained from FDR data is also given. 'Bas. 1' and 'Bas.2'
refer to the Baseline-I and the Baseline-2 models, respectively.

A/C Type Trajectory ME (%) MAE (%) PC (%) NLPI (%)
Source Bas.1 Bas.2 AEDT Bas.1 Bas.2 AEDT Bas.1 Bas.2 Bas.1 Bas.2
ASDE-X -2.5 5.8 83.3 14.9

A330-343 -2.9 (2.7) 36.4 5.6 (1.9) 39.1 71.7 (10.4) 8.5 (2.0)
FDR (2.5) -2.6 (3.9) (2.0) 5.8 (3.4) (16.6) 83.3 (0.1) 14.8

(2.8) (1.9) (10.6) (2.0)
ASDE-X -2.5 3.6 87.4 6.8

B777-300ER -2.5 (1.4) 41.7 3.5 (1.4) 43.4 73.9 (6.9) 2.6 (0.2)
FDR (1.3) -2.5 (2.1) (1.5) 3.6 (2.1) (23.9) 87.4 (0.0) 6.8

(1.5) (1.4) (6.9) (0.3)

Table 6.7 shows that model predictive performance when trajectory variables are obtained

from ASDE-X is similar to that when trajectory variables are obtained from FDR. The data-

driven models give a better predictive performance than the AEDT models. It should be noted

that the Baseline-1 and AEDT models do not need any trajectory variables as inputs and are

therefore, independent of the source of such data.
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Chapter 7

Takeoff Weight

In Chapter 5, the aircraft gross mass at takeoff (operational known as the Takeoff Weight TOW)

is identified as an input variable to predict the fuel flow rate. However, the TOW for a particular

flight cannot be obtained from readily available data sources as it is considered a competitive

parameter by airlines. In this chapter, an algorithm is developed to predict the TOW for a par-

ticular flight using information from its takeoff ground roll segment. As done in the previous

chapters, the chapter starts with explaining the features deemed important for modeling TOW.

Gaussian Process Regression is used to build the models for TOW prediction. The model pre-

dictive performance is compared to that of the Aircraft Noise and Performance (ANP) model.

The ANP model is a part of AEDT and estimates the TOW as a function of the trip length.

The chapter ends with a section on how the TOW prediction can be combined with fuel flow

rate prediction. It is worth noting that as per the convention in aviation, the term weight in this

chapter refers to the mass of the aircraft in the physical sense.

7.1 Sensitivity of fuel flow rate to takeoff weight

The TOW, which is a predictor variable for the fuel flow rate models, needs to be estimated

as its actual value for a particular flight is not available. The accuracy of the fuel flow rate

estimation therefore, depends on the accuracy of the TOW estimation. For the fuel flow rate

sensitivity analysis, the values of the TOW in the unseen prediction dataset not used for training
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(combined validation and test datasets) for each aircraft type are changed systematically by

a fixed percentage of the true value to give a modified prediction dataset [80]. All the other

predictors in the prediction set are held at their original values (which is an approximation as

the other variables might depend on TOW too). GPR models trained using the true TOW in the

different airborne phases of flight (Section 5.3.1) are run on the modified prediction dataset, and

the mean absolute error in the predicted fuel flow rate is calculated. The variation of this error

with the percentage deviation of the TOW in the modified prediction dataset from its true value

indicates the sensitivity of the model fuel flow rate predictions to the TOW.

Figure 7-1 shows an example of how the mean absolute error in the predicted fuel flow rate

can vary with the deviation in the estimated TOW from its actual value. The figure plots the

MAE in the fuel flow rate on the modified prediction dataset from the GPR model developed

for the A340-541 in ascent, as a function of the deviation of the estimated TOW from the actual

TOW. A positive deviation means that the estimated TOW is greater than the actual TOW, while

a negative deviation implies that the estimated TOW is less than the actual TOW. From Figure

7-1, it can be seen that the MAE increases for large magnitudes of deviation from the true TOW.
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Figure 7-1: A340-541 in ascent: Variation of the MAE in fuel flow rate prediction with deviation
in the estimated TOW, for unseen data not used for model training. The MAE is calculated using
a GPR model.
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Table 7.1 tabulates the percentage change in mean absolute error in fuel flow rate prediction

in climb out and approach due to a +3% deviation in estimated TOW from its actual value.

The model predictions are seen to be sensitive to even a 3% deviation from the true TOW, with

MAE changing by as much as about 19% for the A320-214 in climb out. This sensitivity of the

MAE in fuel flow rate prediction to the deviation in the estimated TOW motivates the need to

accurately predict the TOW, in order to accurately predict the fuel flow rate.

Table 7.1: Increase in fuel flow rate MAE for a +3% deviation in TOW from its actual value.
Fuel flow rate GPR models are used in this analysis. Table entries are obtained by averaging
across all flights in the combined validation and test datasets (i.e., unseen data not used for
training).

A/C Type Phase % Increase in MAE

A319-112 Climb out 12.9
Approach 5.9

A320-214 Climb out 19.2
Approach 5.2

A321-111 Climb out 18.0
Approach 4.9

A330-202 Climb out 15.0
Approach 4.3

A330-243 Climb out 3.9
Approach 3.1

A340-541 Climb out 6.7
Approach 1.0

B767-300 Climb out 12.8
Approach 9.7

B777-300ER Climb out 4.7
Approach 3.1

7.2 Model features

Figure 7-2 shows the free-body diagram of an aircraft during takeoff roll on the runway with the

forces acting on it. The equations of motion during takeoff ground roll are given in Equations

7.1-7.7.
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Figure 7-2: Schematic of airplane dynamics during takeoff ground roll.

L + N = mTog (7.1)

F, - D - f, = mToa (7.2)

L = qSCL (7.3)

D = qSCD (7.4)

fr =pN (7.5)
dV

a = (7.6)
dt
1

q = IpV 2  (7.7)

Winds are neglected in this analysis. Neglecting wind speeds during takeoff ground roll,

the aircraft airspeed is assumed to be equal to the ground speed (V = VGS). The mass of fuel

consumed during the takeoff ground roll is assumed to be small compared to the aircraft mass,

so that the aircraft weight is effectively constant and equal to the TOW (MTo) during the takeoff

ground roll. The coefficients of lift and drag, governed by the aircraft configuration, are also

assumed to be constant during this flight phase. The net thrust on the aircraft is the averaged

net thrust per engine times the number of engines (Neng). The net thrust per engine is assumed

to be a function of the static thrust (FO) and the aircraft velocity [68]. The static thrust is the

net thrust which would be produced by the engine if the aircraft were at rest at the set throttle

setting. During the takeoff roll, the throttle setting does not change. The static thrust is assumed

to be a function of the thrust deration level (rq), the ambient air density during the takeoff roll

(po) and the maximum sea level, static engine thrust (FOO). The net thrust on the aircraft is
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therefore, governed by the following functional relation:

Fn = fFn(Neng, VGS, 7, Poc, Foo) (7.8)

The distance covered during takeoff roll (S) can be calculated by the following equation:

VG'S2V dVGs
S =Gs (7.9)

VGS1  a

Here, VGS1 is the aircraft ground speed at the start of the takeoff ground roll and VGS 2 is the

aircraft ground speed at wheels-off at the end of the takeoff ground roll. Combining Equations

(7.1)-(7.9), the TOW can be expressed by the following functional relation:

MiTo = fmTo (S, P0o, VGS 1 , VGS 2 , 8, FOO, CL, CD, br, 7, Neng) (7.10)

S, F00, and Neng are constants for a given aircraft/engine type.

The modeling variables are now restricted to only those which can be obtained or derived

from easily accessible databases. The ground roll distance and aircraft ground speed during

ground roll can be derived from surface surveillance data, while the ambient air density can be

obtained from airport weather data. By contrast, the values of the aircraft lift and drag coeffi-

cients, coefficient of friction, and thrust deration level are difficult to obtain, and are therefore,

not used as model features. Hence, for a particular aircraft type, the model uses the ground roll

distance (S, in m), the ambient air density (p,, in kg.m 3 ) during roll, the aircraft ground speed

at the start of the takeoff ground roll (VGSI, in m-s- 1 ), and the aircraft ground speed at the end

of the takeoff ground roll (VGS 2 , in m-s- 1) as the predictor/input variables. The predicted/output

variable is the aircraft TOW (MTo, in kg). In other words, the TOW prediction model has the

following form:

inTO MiTO (S, Po VGS 1, VGs 2) (7.11)
m aircraft type

The unmodeled features will contribute to the uncertainty of the TOW estimate, and will be

reflected in the prediction intervals provided by the statistical models.
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7.3 Model training

Ground truth FDR values of the predictor and the predicted variables during takeoff roll in

the training dataset are used for model training. Each observation (data point) in the training,

validation and test sets for TOW modeling corresponds to the takeoff of one flight. Prior to

training, all the variables are standardized, that is shifted by the sample mean and then scaled

by the sample standard deviation of the respective variables in the training datasets. Due to its

performance seen in fuel flow rate modeling, Gaussian Process Regression (GPR) is also used

to train the TOW models. A validation study using the validation datasets is done to choose the

appropriate kernel functions to build the final GPR models to predict the TOW. Once the models

are trained, they can be used to determine the point estimates, the prediction intervals, and the

predictive distributions of the TOW for a new input vector. Under GPR, the TOW predictive

distribution is a normal/Gaussian distribution.

7.4 Model results and comparisons with other models

Table 7.2 shows the performance of the GPR models in predicting the TOW on the test datasets

for the different aircraft types. The table also shows the performance of the TOW estimation

model given by the Aircraft Noise and Performance (ANP) database. A part of AEDT, the ANP

database models the TOW as a piecewise constant function of the flight stage/trip length [10].

The flight stage/trip length is determined in this chapter by calculating the great circle distance

between the flight origin and destination airports. The ANP model is a deterministic model and

does not account for operational variability in TOW. Two aircraft flying the same trip length

may have different TOW due to operational reasons such as fuel tankering. Since the ANP

model is a deterministic model, its PC and NLPI are not reported in the table. Table 7.2 also

shows the statistical comparison of the model MEs with zero and the model MAEs with one

another. For comparison of MEs, the null hypothesis is that the MEs are zero (unbiased model

predictions). The alternate hypothesis is that the MEs are non-zero (biased model predictions).

For comparison of MAEs, the null hypothesis is that the GPR model gives a similar (or worse)

predictive performance as compared to the ANP model in terms of a similar (or higher) MAE.
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The alternate hypothesis is that the GPR model gives a better predictive performance than the

ANP model in terms of a lower MAE (i.e., MAEGPR < MAEANP). The ME and the MAE used

for these statistical comparison studies are calculated on a per-flight basis (and not across flights)

for a particular aircraft type. Table 7.2 shows the p-values obtained through the Wilcoxon

signed-rank test (Section 4.6). The p-values indicating acceptance of the alternate hypothesis at

the 5% significance level are highlighted in bold.

Table 7.2: TOW estimation: Performance metrics of the GPR models, and the ANP models,
on the test datasets for different aircraft types. All the evaluation metrics are calculated on
de-standardized data. The table also shows the p-values for statistical comparisons of different
model metrics (i.e., MEGPR # 0, MEANP $ 0, and MAEGPR < MAEANP). Each cell (except
that for a p-value) shows the mean value (and the standard deviation) of the particular metric.
All entries (except the p-values) are in percent. The data for the A330-343 are drawn from the
FDR-II dataset. The data for all the other aircraft types are drawn from the FDR-I dataset.

A/C Type ME MAE PC NLPI Model Comparison: p-values
GPR ANP GPR ANP GPR GPR MEGPR MEANP MAE

A319-112 0.6 1.0 5.0 5.3 84.6 18.4 0.657 0.439 0.319
(5.9) (6.3) (3.0) (3.3) (36.8) (0.9)

A320-214 0.4 0.1 3.9 4.3 97.1 19.3 0.778 0.871 0.199
(4.9) (5.1) (2.9) (2.7) (17.1) (0.9)

A321-111 -0.3 1.0 6.1 6.7 91.3 23.9 0.808 1.000 0.303
(7.5) (8.5) (4.2) (5.1) (28.8) (1.0)

A330-202 -1.8 -4.1 2.4 6.0 94.1 11.2 0.025 0.013 0.007
(2.6) (5.6) (1.9) (3.3) (24.3) (2.1)

A330-243 -0.4 0.4 2.6 4.5 85.0 10.2 0.681 0.737 0.058
(3.4) (6.5) (2.1) (4.5) (36.6) (1.3)

A330-343 0.2 1.8 3.6 3.5 97.3 17.5 0.874 0.021 0.666
(4.3) (4.1) (2.3) (2.7) (16.4) (0.8)

A340-541 2.5 12.5 4.0 12.7 90.0 14.4 0.093 0.009 0.023
(3.8) (14.0) (1.9) (14.0) (31.6) (9.4)

B767-300 0.2 -6.5 2.0 8.4 94.4 10.9 0.528 0.004 1.4e-4
(2.5) (6.7) (1.5) (3.8) (23.6) (1.8)

B777-300 0.1 3.5 2.0 5.6 92.3 8.2 0.517 0.007 0.002
ER (3.4) (6.3) (2.7) (4.5) (27.2) (2.4)

Figures 7-3 and 7-4 contain box-plots showing the errors and the absolute errors, respec-

tively, for the TOW prediction across the different flights in test data. Model predictions are

unbiased (at a 5% significance level) if the error box-plots in Figure 7-3 contain zero in their

notched regions. The notched regions of the absolute error box-plots in Figure 7-4 for the GPR
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models can be compared to those of the box-plots for the corresponding ANP models to deter-

mine which model gives a statistically significantly lower MAE (at a 5% significance level) on

the TOW prediction.
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Figure 7-3: Box-plots showing error on TOW prediction for flights in test data. These box-plots
are helpful in checking for model bias in the mean predictions.

From Table 7.2, it can be seen that the proposed GPR models give unbiased predictions

of the TOW in most of the cases. The median of the MEs across the different aircraft types

is 0.2%. The proposed GPR models give a median MAE of 3.6% across the different aircraft

types whereas the ANP models give a median MAE of 5.6%. The median PC given by the GPR

models is 92.3% across the different aircraft types. The median NLPI is 14.4%. The statistical

comparison tests for the MAE indicate that the GPR models perform statistically significantly

(at a 5% significance level) similar to or better than the ANP models for all the aircraft types in

the study. The GPR models reduce the median MAE by 36% as compared to the ANP models.

Moreover, unlike the ANP models, the GPR models also give prediction intervals which can

quantify the uncertainty in TOW.
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Figure 7-4: Box-plots showing absolute error on TOW prediction for flights in test data. These
box-plots can be used to compare the GPR models with the corresponding ANP models for the
accuracy of mean predictions.

7.5 ASDE-X data as inputs

In this section, TOW model predictive performance for the A330-343 is evaluated using values

of the trajectory variables drawn from the ASDE-X dataset. The values of the evaluation metrics

determined in this section indicate the predictive performance of the models as they will be used

in practice using ground surveillance data.

7.5.1 Predictive performance with ASDE-X data inputs

Models trained on A330-343 FDR data in Section 7.3 are applied to trajectory predictor variable

(i.e., ground speed and takeoff roll distance) values drawn from the ASDE-X data to determine

mean predictions and prediction intervals for the TOW. Values of the ambient air density, and

the ground truth TOW are still obtained from the corresponding FDR records for the A330-343.
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Model evaluation is done on 33 flights for the A330-343 which have records in both the FDR-II

and the ASDE-X datasets and which have not been used for TOW model training.

Table 7.3 tabulates the TOW predictive performance when the source of trajectory variables

is ASDE-X. For reference, the predictive performance when the trajectory variables are obtained

from FDR data is also tabulated. It should be noted that this predictive performance on FDR-

obtained variables may differ from that recorded in Table 7.2 as different sets of flights have

been used for model evaluation in the two tables.

Table 7.3: Performance of the GPR model and the ANP model for the A330-343 to predict TOW
when the trajectory predictor variables are obtained from ASDE-X data. Each cell reports the
mean and standard deviation (within parentheses) of the evaluation metric across all the flights
in unseen data not used for model training. For reference, model predictive performance when
the trajectory predictor variables are obtained from FDR data is also given.

Trajectory ME (%) MAE (%) PC (%) NLPI(%)
Source GPR ANP GPR ANP GPR GPR

ASDE-X 1.9(4.1) 1.3 3.6(2.7) 3.4 97.0(17.4) 17.5(1.0)
FDR 1.2(3.8) (4.0) 3.3(2.2) (2.3) 100.0(0.0) 17.4(0.8)

Table 7.3 shows that for the A330-343, model predictive performance (in terms of MAE, PC,

NLPI) when trajectory variables are obtained from ASDE-X is similar to that when trajectory

variables are obtained from FDR. The GPR model gives a statistically similar MAE as the ANP

model. It should be noted that the ANP models do not need any trajectory variables as inputs,

and are therefore independent of the source of such data.

7.6 Use of predicted takeoff weight to model fuel flow rate

In this section, TOW models developed in Section 7.3 are used to predict TOW which is further

used as an input variable to predict the fuel flow rate. The aim of the analysis done in this

section is to understand how the fuel flow rate model predictive performance is affected when

an uncertain estimate of the TOW is used as an input instead of using the ground truth value of

the TOW (as has been done in Chapter 5).
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7.6.1 Methodology

Using the TOW predicted by the ANP models as well as by the developed GPR models (Section

7.3) as inputs to the fuel flow rate GPR models (Section 5.3.1), their predictive performance on

the flights in the unseen prediction dataset (combined validation and test datasets) is now evalu-

ated. To incorporate uncertainty in the predicted TOW, the fuel flow rate predictive performance

is evaluated using the predictive distribution of the fuel flow rate marginalized over the uncertain

values of TOW. In other words, we are interested in computing the following:

p(Thfx-Tow, #, D 1 , D 2 ) = p(hflX-TOW, MTo, Dl)p(mTo q, D2 )dmTo (7.12)
",TO

Here, p refers to the Probability Distribution Function (PDF), rhf is the fuel flow rate to be

predicted, X-Tow is the vector of predictor variables in the fuel flow rate GPR model excluding

the TOW, MTO is the TOW, and D1 is the set of the training variables used for building the fuel

flow rate GPR model. p(if JX-TOW, miTo, D1 ) is the PDF of the predictive distribution given

by the fuel flow rate GPR model when a known TOW is used as an input variable. It is thus, a

Gaussian PDF. p(mTo 15, D 2 ) is the distribution of the predicted TOW parametrized by q and

D 2.

The ANP model is a deterministic model giving a flight stage length-based point estimate

of the TOW, mTO,ANP. Under the ANP model, Equation 7.12 becomes

p(hnj X-Tow, S, D 1 , D 2 ) = p(rf~xTow, mnTO,ANP, 1 ) (7.13)

which is the PDF of a normal distribution under the GPR formulation.

The GPR models for TOW prediction (Section 7.3) give the complete predictive distribution

for the TOW (which is a normal distribution). Therefore, under these GPR models for TOW,

Equation 7.12 becomes
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P(rflX-Tow, q D1 i D2 ) =J P(Thf JXTOW, MTO, D1)P(mTOJO, D 2 )dmTO

(7.14)

~ P(Thf x-Tow, mTojD1). (7.15)
nsi=1

When GPR models are used to predict the TOW, q and D 2 hold specific meanings. q is

the vector of predictor variables used in the GPR TOW prediction models (i.e., S, poc, VGS 1,

and VGS2 as mentioned in Section 7.2). D 2 is the training set used to build the GPR models to

predict the TOW. Equation 7.15 approximates Equation 7.14 through a Monte Carlo approxi-

mation with n, samples of the TOW drawn from its Gaussian predictive distribution given by

the GPR models for TOW prediction. In this study, n, is chosen to be 1,000. Equation 7.15

therefore, shows that the desired predictive distribution of the fuel flow rate under a GPR model

of the TOW can be approximately modeled as a Gaussian Mixture distribution with n, equally

weighted components.

7.6.2 Results

Depending on how the TOW variable is predicted, there are two variants of the GPR models

developed to predict the fuel flow rate:

1. Model 1: This variant predicts the TOW predictor variable, that is input to the GPR fuel

flow rate models, using the ANP method; and

2. Model 2: This variant predicts the TOW predictor variable using the GPR models devel-

oped in Section 7.3 for TOW prediction.

The predictive distributions for the fuel flow rate marginalized over the TOW for Model 1

(Equation 7.13), and Model 2 (Equation 7.15) are used to calculate the mean predictions and

the 95% highest density prediction intervals for the fuel flow rates. Table 7.4 tabulates the

predictive performance of these models on the unseen prediction dataset (combined validation

and test datasets) in climb out and approach for different aircraft types. Statistical multiple
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comparison tests (at a significance level of 5%) have been performed to determine which of the

two models performs better on different evaluation metrics.

Table 7.4: Fuel flow rate model predictive performance using estimated TOW. MAE, PC, NLPI
for the fuel flow rate predictions are determined in climb out and approach using unseen predic-
tion data (combined validation and test data). Each cell entry records the mean and the standard
deviation (within parentheses) of the evaluation metric.

A/C Type Phase MAE (%) PC (%) NLPI (%)
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Climb out 3.8 (1.5) 3.9 (1.8) 83.9 92.4 13.6 17.0

A319-112 (16.3) (12.1) (0.5) (1.2)
Approach 16.8 16.8 95.0 95.7 94.3 96.5

(5.4) (5.4) (4.8) (4.3) (12.1) (12.5)
Climb out 4.2 (2.2) 4.3 (2.4) 91.6 96.0 20.9 25.1

A320-214 (14.5) (9.0) (1.3) (2.2)
Approach 16.2 16.6 94.6 95.0 104.6 99.3

(6.3) (6.2) (4.9) (4.2) (95.2) (51.8)
Climb out 7.8 (4.4) 6.5 (2.9) 72.5 93.7 21.2 29.8

A321-111 (25.0) (10.0) (1.2) (1.7)
Approach 18.1 17.2 91.5 93.4 76.1 80.8

(4.7) (4.5) (5.5) (5.0) (11.0) (12.6)
Climb out 5.1 (1.9) 3.6 (1.5) 83.1 92.4 19.7 19.9

A330-202 (11.9) (8.2) (1.4) (1.4)
Approach 27.3 28.0 91.0 91.1 146.9 141.7

(10.1) (11.3) (7.1) (7.3) (22.1) (24.4)
Climb out 3.0 (1.9) 2.8 (2.0) 89.8 90.8 12.6 12.9

A330-243 (19.6) (20.7) (0.7) (0.8)
Approach 20.8 20.6 90.8 91.1 111.3 110.8

(11.5) (11.5) (9.0) (9.0) (20.6) (21.3)
Climb out 9.1 5.1(5.4) 66.6 83.9 13.9 17.1

A340-541 (12.3) (32.9) (22.4) (0.5) (4.9)
Approach 19.6 17.6 95.7 96.5 120.9 120.8

(5.5) (3.3) (3.9) (2.7) (22.5) (18.1)
Climb out 5.3 (2.4) 3.0 (1.5) 83.2 98.1 19.2 19.5

B767-300 (20.0) (4.3) (1.2) (2.0)
Approach 20.0 19.8 93.3 95.6 147.8 147.0

_ _ (7.4) (6.7) (7.5) (5.2) (58.6) (212.6)
Climb out 8.1 (4.3) 6.7 (2.5) 87.0 93.0 29.0 31.8

B777-300ER (10.1) (7.7) (3.4) (5.8)
Approach 17.4 16.5 93.8 94.1 99.5 101.8

_ (5.6) (5.3) (5.6) (5.2) (17.0) (17.9)
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In climb out, the ANP-TOW prediction model (Model 1) gives a fuel flow rate median

MAE, PC, and NLPI of 5.2%, 83.6%, and 19.5%, respectively. The GPR-TOW prediction

model (Model 2) gives a fuel flow rate median MAE, PC, and NLPI of 4.1%, 92.7%, and

19.7%, respectively. For the majority of the aircraft types, Model 2 gives a lower or similar

MAE as compared to Model 1, and a higher or similar PC as compared to Model 1. Thus,

for the majority of the aircraft types, using the GPR-TOW model gives a better or similar fuel

flow rate predictive performance as compared to the ANP-TOW prediction model. However,

the NLPI for Model 2 is greater than or equal to that for Model 1. This is expected as Model

2 propagates uncertainty in TOW to that in fuel flow rate and hence, leads to bigger prediction

intervals.

In approach, the ANP-TOW prediction model (Model 1) gives a fuel flow rate median MAE,

PC, and NLPI of 18.9%, 93.6%, and 108.0%, respectively. The GPR-TOW prediction model

(Model 2) gives a fuel flow rate median MAE, PC, and NLPI of 17.4%, 94.6%, and 106.3%,

respectively. For the majority of the aircraft types, Model 2 gives a lower or similar MAE

as compared to Model 1, and a higher or similar PC as compared to Model 1. Thus, for the

majority of the aircraft types, using the GPR-TOW model gives a better or similar fuel flow rate

predictive performance as compared to the ANP-TOW prediction model. However, the NLPI

for Model 2 is greater than or equal to that for Model 1 for the majority of the aircraft types.

This is again expected as Model 2 propagates uncertainty in TOW to that in fuel flow rate and

hence, leads to bigger prediction intervals.

It should be noted that the difference in fuel flow rate predictive performance for the GPR-

TOW and the ANP-TOW prediction models in climb out is starker than that observed in ap-

proach. There is a greater number of aircraft types giving similar performance from the two

models in approach as compared to climb out. This observation can also be made from Table

7.1 where the increase in fuel flow rate MAE is greater in climb out than in approach for a

similar deviation of the estimated TOW from its true value.

Finally, Table 7.5 compares the fuel flow rate predictive performance in climb out and ap-

proach when exact TOW values (Section 5.3.1) are used as inputs to that when GPR-estimated

TOW values (Equation 7.15) are used as inputs. In the majority of the cases, using exact TOW
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Table 7.5: Comparison of fuel flow rate model predictive performance using exact and esti-
mated TOW. MAE, PC, NLPI for the fuel flow rate predictions are determined in climb out
and approach using unseen prediction data (combined validation and test data). Each cell entry
records the mean and the standard deviation (within parentheses) of the evaluation metric.

A/C Type Phase MAE (%) PC (%) NLPI (%)
Exact GPR- Exact GPR- Exact GPR-
TOW Estimated TOW Estimated TOW Estimated

TOW TOW TOW
Climb out 2.8 (1.3) 3.9 (1.8) 92.7 92.4 14.0 17.0 (1.2)

A319-112 (11.8) (12.1) (1.0)
Approach 16.7 16.8 (5.4) 95.3 95.7 (4.3) 95.9 96.5

(5.9) (4.7) (13.6) (12.5)
Climb out 3.5 (2.1) 4.3 (2.4) 95.1 96.0 (9.0) 21.0 25.1 (2.2)

A320-214 (9.0) (1.3)
Approach 16.4 16.6 (6.2) 95.1 95.0 (4.2) 71.4 99.3

(6.3) (4.0) (155.5) (51.8)
Climb out 4.3 (1.4) 6.5 (2.9) 92.2 93.7 21.7 29.8 (1.7)

A321-111 (8.0) (10.0) (1.1)
Approach 16.8 17.2 (4.5) 92.8 93.4 (5.0) 79.0 80.8

(4.4) (5.6) (14.8) (12.6)
Climb out 4.1(1.6) 3.6(1.5) 92.0 92.4(8.2) 18.2 19.9(1.4)

A3022(9.5) (1. 1)
A330-202 Approach 27.3 28.0 91.3 91.1 (7.3) 145.9 141.7

(10.9) (11.3) (7.5) (26.7) (24.4)
Climb out 3.1 (1.9) 2.8 (2.0) 91.6 90.8 12.6 12.9 (0.8)

A330-243 (17.4) (20.7) (0.9)
Approach 21.2 20.6 91.0 91.1 (9.0) 109.2 110.8

(11.8) (11.5) (9.3) (20.1) (21.3)
Climb out 4.1(2.7) 5.1(5.4) 83.7 83.9 14.4 17.1 (4.9)

A340-541 (22.7) (22.4) (0.9)
Approach 17.6 17.6 (3.3) 95.4 96.5 (2.7) 123.8 120.8

(3.4) (3.7) (20.0) (18.1)
Climb out 2.9 (1.5) 3.0 (1.5) 97.5 98.1 (4.3) 17.7 19.5 (2.0)

B767-300 (4.5) (1.4)
Approach 19.0 19.8 (6.7) 95.5 95.6 (5.2) 121.6 147.0

(6.2) (5.2) (46.5) (212.6)
Climb out 6.5(1.7) 6.7(2.5) 91.7 93.0(7.7) 31.6 31.8(5.8)

B7730R(9.2) (5.8)
B777-300E Approach 17.2 16.5 (5.3) 94.4 94.1 (5.2) 99.8 101.8

(4.9) (4.7) (16.3) (17.9)
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values gives a statistically significantly similar or better fuel flow rate predictive performance.

In climb out, using estimates of TOW as inputs leads to an up to 51.2% increase in MAE, and up

to 37.3% increase in NLPI as compared to using exact values of TOW. Similarly in approach,

using estimates of TOW as inputs leads to an up to 2.3% increase in NLPI as compared to using

exact values of TOW. Thus, the practical implementability of models which first estimate TOW

and then use the TOW estimate as an input to further estimate the fuel flow rate is expectedly

accompanied with a drop in the fuel flow rate predictive performance.
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Chapter 8

Conclusions

This thesis developed a data-driven methodology to model aircraft engine fuel flow rate and

fuel burn using a knowledge of its trajectory. The methodology resulted in models which can

give mean predictions as well as prediction intervals for the fuel flow rate and the mass of

fuel consumed. This chapter summarizes the key findings of the thesis, and describes some

promising directions for future research.

8.1 Summary

The main objective of this thesis was to develop a framework to model aircraft engine fuel flow

rate and fuel burn for a flight, given its trajectory. The fuel flow rate was directly mapped to

the aircraft trajectory using statistical data-driven models, thereby bypassing many intermediate

parameters such as drag, net thrust. Operational data from flight data recorders were used for

model identification, enabling the development of models that were representative of real flight

operations. The thesis focused on the problem of predicting both the instantaneous fuel flow

rates, as well as the total mass of fuel consumed in different phases of flight. Statistical algo-

rithms were applied to operational data, and enabled the generation of mean estimates as well

as prediction intervals for the fuel flow rates. These prediction intervals quantified the cumu-

lative extent of operational variability in fuel fuel rates as well as model uncertainty. Different

regression approaches were investigated, and Gaussian Process Regression (GPR) was found to

151



give good predictive performance. An understanding of the aircraft dynamics was leveraged to

select features relevant for model development. To enable practical implementation, only those

features which were derivable from trajectory data were retained as input variables.

8.1.1 Airborne fuel flow rate modeling

Different models were built to model the fuel flow rate in the different airborne phases (viz.,

ascent, climb out, cruise, descent, approach) for each of 8 aircraft types. Thus, the models are

local experts for each phase and are expected to give better predictive performance than a single

model built for the entire flight. Validation studies using different statistical algorithms revealed

the GPR-based batch prediction algorithm to give the best fuel flow rate predictive performance.

Input features for these models included the aircraft dynamic pressure multiplied by the refer-

ence wing area, the aircraft takeoff weight, the ratio of the aircraft vertical speed to its ground

speed, the ground speed, the rate of change of ground speed, and the aircraft altitude above the

arrival airport elevation. These GPR models gave the entire predictive distribution of the fuel

flow rate given an input vector. Being nonparametric, GPR does not require a choice of the form

of the regression features prior to model training. The regression functions can therefore, adapt

themselves during model training to the system complexity represented by performance data.

The GPR-based batch prediction algorithm was evaluated using different evaluation metrics on

unseen test data not used for model training. The metrics evaluated the statistical models for

the accuracy of their mean and interval predictions. The GPR-based batch prediction models

(using a known TOW) gave a median value of the mean error (ME) in the fuel flow rates of

0.8% in ascent, 0.4% in climb out, 2% in cruise, 7.5% in descent, and 6.4% in approach across

the different aircraft types on test data. The median value of the mean absolute error (MAE)

across the different aircraft types was 4.6% in ascent, 3.8% in climb out, 10.9% in cruise,

22.4% in descent, and 18.0% in approach. The GPR models were compared for their predictive

performance with current state-of-the-practice APMs such as Base of Aircraft Data (BADA),

the Senzig-Fleming-Iovinelli models, and the ICAO Databank models with Boeing Fuel Flow

Method 2 corrections - all components of the FAA's AEDT used for fuel burn, emissions, and

noise modeling. Unlike most other studies which tend to compare models on the basis of the
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mean values of the evaluation metrics, in this thesis, models were statistically compared so that

the variance in the metrics across different flights is also taken into account. These statistical

comparisons showed that the GPR models gave a lower MAE on the fuel flow rates as compared

to the other APMs. The GPR models achieved a reduction in median MAE of as much as 48%

in ascent, 71 % in climb out, 49% in cruise, 31% in descent, and 77% in approach. Moreover,

currently used APMs focus only on point estimation of fuel flow rates, and do not quantify the

uncertainty therein. The GPR models gave the complete predictive distribution of the fuel flow

rates which can be used to generate 95% prediction intervals. These prediction intervals gave

a median value of the prediction coverage (PC) of 95% in ascent, 91.8% in climb out, 96.1 %

in cruise, 93.2% in descent, and 94.4% in approach across the different aircraft types on test

data. The closeness of these empirically observed PCs to 95% indicated good model specifica-

tion. The simultaneous emphasis on mean estimation as well as uncertainty estimation is a key

highlight of this thesis.

The Gaussian predictive distributions of the fuel flow rates using the GPR models led to the

fuel burn (i.e., the mass of fuel consumed in a phase of flight) being modeled through Gaussian

Mixture distributions. The GPR-based models gave a median ME in the fuel burn across the

different aircraft types (using a known TOW) of 0.4% in ascent, 0.3% in climb out, -0.1% in

cruise, 3.7% in descent, and 2.0% in approach. The median MAE in fuel burn given by these

GPR models was 2.2% in ascent, 2.0% in climb out, 7.2% in cruise, 8.2% in descent, and 5.5%

in approach. The GPR models achieved a reduction in median MAE of as much as 54% in

ascent, 80% in climb out, 34% in cruise, 66% in descent, and 89% in approach as compared

to currently used APMs. The proposed GPR-based models achieved a median value of the

mean error of 0.2% (across flights of 8 different aircraft types), and a median value of the mean

absolute error of 3.8% in the total airborne fuel burn. These results constitute a significant

improvement over existing fuel burn models (for example, a nearly 20% improvement over the

BADA model).
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8.1.2 Fuel flow rate during taxi-out

On the airport surface, the fuel flow rate was modeled as a function of the ambient temperature,

ambient pressure, taxi ground speed, takeoff mass, and the taxi acceleration. Examination of

fuel flow rate profiles led to the identification of two distinct regions: A baseline fuel flow re-

gion and a fuel flow spike region. Since a very large part of the taxi-out fuel consumption was

observed to occur during the baseline fuel flow region, only the baseline fuel flow was consid-

ered for modeling in this thesis. Two different models were developed to predict the baseline

fuel flow rate: An OLS regression -based parametric model for the mean baseline fuel flow rate,

and a GPR-based nonparametric model for the instantaneous baseline fuel flow rate. Both the

models were found to give similar ME (about -3% for the A330-343 and -1.8% for the B777-

300ER) and MAE (6.3% for the A330-343 and 2.7% for the B777-300ER) in taxi fuel flow rate

(using a known TOW). Thus, both the models gave similar mean predictions for the fuel flow

rate. When compared to the AEDT models, the statistical models developed were found to give

a reduction in MAE of 84% for the A330-343 and 94% for the B777-300ER. The GPR-based

models gave a higher prediction coverage due to their ability to model variability in the baseline

fuel flow as compared to the OLS regression-based models which modeled only the mean of

the baseline fuel flow rates. The GPR-based models could thus capture uncertainty in baseline

fuel flow more accurately as compared to the OLS regression-based models. In terms of the taxi

fuel burn predictions, the statistical models gave an ME of -4.7% (MAE 4.9%) for the A330-

343 and an ME of -3.0% (MAE 3%) for the B777-300ER, achieving a reduction in MAE of as

much as 93% as compared to the AEDT models. The practical utility of the statistical models

developed was successfully demonstrated by evaluating model predictive performance using

trajectory predictor variables from ground-based surveillance data sources (such as ASDE-X).

8.1.3 Takeoff weight predictions

Takeoff Weight (TOW) was identified as a predictor variable for modeling fuel flow. Fuel flow

rate predictions were shown to be sensitive to TOW. Since the operational value of TOW on

a per-flight basis is not available, statistical models were developed to estimate TOW using
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trajectory information during takeoff ground roll. GPR-based models using ground speeds at

the start and the end of takeoff ground roll, ambient density, and ground roll distance as input

variables were found to give a TOW predictive performance similar to or better than that given

by the ANP models used in AEDT for TOW estimation. The GPR-based models gave a median

TOW prediction ME of 0.2% and MAE of 3.6%. The statistical models were able to account

for uncertainty in TOW prediction and gave a median prediction coverage of 92.3%. When

model TOW estimates were used as inputs to the fuel flow rate models, it was observed that

the GPR-based models of TOW prediction gave a fuel flow rate predictive performance similar

to or better than the ANP models for the majority of the aircraft types studied. In climb out,

the median MAE and PC across the different aircraft types (using TOW estimated by GPR)

were 4.1% and 92.7% respectively. In approach, the median MAE and PC across the different

aircraft types (using TOW estimated by GPR) were 17.4% and 94.6% respectively. Using the

TOW prediction models along with the fuel flow rate models developed in this thesis results in

a framework to predict the fuel flow rate solely from trajectory information.

8.2 Opportunities for future research

The results presented in this thesis indicate the significant potential of data-driven models of

aircraft engine performance. They also suggest interesting future research directions, both in

terms of model refinement, and the application of similar approaches to other related problems.

8.2.1 Model refinements and extensions

During the course of this research, we identified potential model refinements that could be

investigated in future research.

Models for a wider range of aircraft operations

This study was restricted to the modeling of nine aircraft types, considering operations at only

89 airports. In addition, these airports were of limited geographical diversity, being primarily

located in Europe. As in the case of any data-driven approach, the developed models may not
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be valid if the inputs vary significantly from those used in the training dataset. As a result,

the models are likely to be representative of a small fraction of global aircraft operations. An

important direction of future research would be to develop models that span a wider range of

aircraft and engine types, as well as operating environments. The framework and methodologies

proposed in this thesis can be easily extended to do so.

Modeling airline-specific variations

The data used in this study were obtained primarily from one airline (although they included

flights from two airlines, geographically dispersed). In practice, some variability is to be ex-

pected due to differences in airline operating procedures. An interesting topic of research would

be to build airline-specific fuel burn models, and to analyze the differences between them.

Developing generalized models

Each model developed in this thesis is specific to a particular aircraft and engine type combina-

tion. Future work can look into developing generalized models which can estimate the fuel flow

and fuel burn for a family of aircraft/engine types. This will reduce the total number of models

needed to be developed. As discussed in Section 5.7, one way to develop generalized models

would be to train them using a combined dataset from a family of similarly performing aircraft

variants (such as the A320 family, or the A330-200 family).

Incorporating high-fidelity weather data

The models considered in this thesis used the ground speed as an input variable, and did not

explicitly consider the impact of winds. Additionally, the ambient temperature and pressure

were assumed to vary according to the ISA model. In practice, winds (especially the jet stream

during cruise) are likely to affect the trajectory and fuel burn of individual flights. Sensitivity

studies using AEDT indicate that headwind values have a large contribution to variability in

fuel consumption and emissions [111]. As noted in Chapter 5, current archives of weather are

not of the same spatial and temporal resolution as trajectory data, and were therefore, not con-

sidered as features in the models developed to date. A potential topic of future research involves
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evaluating the benefits that could be achieved through the incorporation of approximate weather

observations as inputs. Such inputs could be obtained, for example, by interpolating 3-hourly

weather predictions given by the Global Forecast System of the National Centers for Environ-

mental Prediction [112]. Over the next few years, it is expected that aircraft will broadcast wind

observations, resulting in higher-fidelity wind data.

Prediction of total fuel burn

This thesis focused on determining statistical models of fuel flow rate at each instant along the

trajectory. The fuel flow rates were then aggregated to predict the total fuel burn of the flight.

As mentioned in Chapter 5, if the only desired output is the total fuel burn, it may be possible

to improve prediction performance by treating the total fuel burn as the predicted output (rather

than the fuel flow rate). It is expected that more precise estimates of fuel burn can be obtained

by directly modeling the fuel burn as the output variable of interest. This problem would be an

interesting question for future research.

Additional features and model refinements

The models can also be refined through the incorporation of additional features. For example,

the great circle distance could be included as a feature for TOW prediction. Another improve-

ment would be the automated identification of flight phases. In this thesis, the flight trajectory

was divided into the standard flight phases (taxi, takeoff roll, ascent, cruise, descent) through

a manual identification (that is, with pre-specified conditions) of change points. The effect of

aircraft and engine degradation on fuel burn can be modeled by including the age of the aircraft

or the engine, if available, as a predictor variable. Finally, more accurate estimates of fuel flow

rates and fuel burn in the taxi-out phase can be obtained by modeling the fuel flow spike regions,

in addition to the baseline fuel flow rates. BADA Family 3 was considered in the comparative

analyses conducted in this thesis, because of the wide range of aircraft types it includes. Future

work would study comparisons with the BADA Family 4 models as well.
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8.2.2 Extensions to other aircraft and engine performance characteristics

Finally, this thesis focused on fuel burn as a quantity of interest. However, the methods pre-

sented in this thesis can be easily extended to other aspects of aircraft performance, such as

thrust, aircraft landing weight, etc. These would be important topics for future research.
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Appendix A

FDR Data: Fields

Table A. 1: FDR-I data fields.

Sr. Description Unit in FDR SI Unit

No.

1 Flight record (given)

2 Fleet (given)

3 Average N1 over all engines from start of event (% of maximum) - -

4 Average N, left inboard engine from start of event (% of maximum) - -

5 Average N, left outboard engine from start of event (% of maximum) -

6 Average N 1 right inboard engine from start of event (% of maximum) - -

7 Average N 1 right outboard engine from start of event (% of maximum) - -

8 Average burner pressure P3 over all engines from start of event psi Pa

9 Average P3 left inboard engine from start of event psi Pa

10 Average P3 left outboard engine from start of event psi Pa

11 Average P3 right inboard engine from start of event psi Pa

12 Average P3 right outboard engine from start of event psi Pa

13 Average total fuel flow all engines from start of event kg/h kg/s

14 Average fuel flow left inboard engine from start of event kg/h kg/s

15 Average fuel flow left outboard engine from start of event kg/h kg/s

16 Average fuel flow right inboard engine from start of event kg/h kg/s

17 Average fuel flow right outboard engine from start of event kg/h kg/s

18 Mean true airspeed (TAS) from start of event (sample interval) knot m/s

19 Mean ground speed (GS) from start of event (sample interval) knot m/s
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Sr. Description Unit in FDR SI Unit

No.

20 Mean vertical speed (inertial) from start of event (sample interval) ft/min m/s

21 Mean Mach number from start of event (sample interval) - -

22 Average atmospheric pressure (ambient, undisturbed air, sample inter- hPa Pa

val)

23 Dynamic pressure (ambient, undisturbed air, sample interval) hPa Pa

24 Mean lateral acceleration (sample interval) g m/s 2

25 Maximum lateral acceleration (sample interval) g m/s2

26 Mean longitudinal acceleration (sample interval) g m/s 2

27 Maximum longitudinal acceleration (sample interval) g m/s 2

28 Mean normal load factor (sample interval) g -

29 Maximum normal load factor (sample interval) g -

30 Mean vertical acceleration (sample interval) g M/s 2

31 Maximum vertical acceleration (sample interval) g m/s 2

32 Average air temperature (ambient, undisturbed air) C K

33 Atmospheric pressure (air pressure dynamic, start of event) lbf/ft 2  Pa

34 Atmospheric pressure (air pressure total, start of event) hPa Pa

35 Atmospheric pressure (air pressure total, start of event) lbf/ft 2  Pa

36 Air temperature (total) at start of event C K

37 Air temperature (total) at start of event (probe 2) 0 C K

38 Headwind at start of event knot m/s

39 Crosswind at start of event knot m/s

40 Wind direction (true) start of event degree rad

41 Wind speed at start of event knot m/s

42 Air density (total, start of event) kg/m 3  kg/m 3

43 EGT average at start of event 0 C K

44 EGT: Left inboard engine at start of event 0 C K

45 EGT: Left outboard engine at start of event 0C K

46 EGT: Right inboard engine at start of event 0 C K

47 EGT: Right outboard engine at start of event 0 C K

48 EPR: Average, percent of maximum at start of event - -

49 Thrust: Percent of maximum at start of event

50 Thrust lever angle (left inboard engine, start of event) degree rad

51 Thrust lever angle (left outboard engine, start of event) degree rad
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Sr. Description Unit in FDR SI Unit

No.

52 Thrust lever angle (right inboard engine, start of event) degree rad

53 Thrust lever angle (right outboard engine, start of event) degree rad

54 Thrust reversers deployed at start of event (true if < 0.5) (even if atleast - -

one thrust reverser deployed)

55 EMS thrust per engine (average over all engines at start of event) lbf N

56 EMS thrust per engine (enhanced, average over all engines at start of lbf N

event)

57 N1 : Average (all engines, percent of maximum) at start of event - -

58 N1 : Left inboard engine at start of event (% of maximum) - -

59 N1 : Left outboard engine at start of event (% of maximum) - -

60 N 1 : Right inboard engine at start of event (% of maximum) - -

61 N 1 : Right outboard engine at start of event (% of maximum) - -

62 Average N 2 over all engines at start of event (% of maximum) - -

63 Average N 3 over all engines at start of event (% of maximum) - -

64 Flap position at start of event degree rad

65 Slat position at start of event degree rad

66 Elevator position at start of event degree rad

67 Horizontal stabilizer position at start of event degree rad

68 Yaw trim position at start of event degree rad

69 Spoiler position average (left) degree rad

70 Spoiler position average (right) degree rad

71 Spoiler position average (left and right) degree rad

72 Pressure altitude at start of event feet m

73 GPS pressure altitude at start of event (best available) feet m

74 Density altitude at start of event feet m

75 Radio height at start of event feet m

76 Height above takeoff (best estimate) at start of event feet m

77 Height above touchdown (best estimate) at start of event feet m

78 Calibrated airspeed (CAS) at start of event knot m/s

79 Airspeed (true) at start of event knot m/s

80 Mach number at start of event

81 Speed of sound at start of event ft/s m/s

82 Speed of sound at start of event knot m/s
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Sr. Description Unit in FDR SI Unit

No.

83 Pitch attitude (Captain's or only) at start of event degree rad

84 Rate of change of pitch rate at start of event degree/s2  rad/s2

85 Roll attitude (Captain's or only) at start of event degree rad

86 Rate of change of roll rate at start of event degree/s2  rad/s 2

87 Heading (magnetic) at start of event degree rad

88 Yaw/drift angle degree rad

89 Rate of change of yaw rate at start of event degree/s2  rad/s 2

90 Flight path angle (inertial) at start of event degree rad

91 Lateral acceleration (start of event) g m/is 2

92 Longitudinal acceleration (start of event) g m/s 2

93 Normal load factor (start of event) -

94 Vertical acceleration (start of event) g M/S 2

95 Landing gear down flag (1 = down) -

96 Average brake temperature at start of event 0 C K

97 Latitude at start of event (best available) degree rad

98 Longitude at start of event (best available) degree rad

99 Ground track distance from start of takeoff to start of event nmi m

100 GMT at start of event hr s

101 Time from start (first phase of flight) to start of event s s

102 Gross weight at start of event lb kg

103 CG position at start of event (% of mean)

104 Drag at start of event (clean configuration) lbf N

105 Lift at start of event lbf N
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Appendix B

FDR Data: Airports Considered

Table B. 1: Airport characteristics. 'Lat.' stands for latitude, 'Lon.' stands for longitude, and
'Elev.' stands for elevation.

Sr. Airport IATA Location/City Lat. Lon. AMSL

No. Code Served (0) (0) Elev. (ft)

1 Amsterdam Airport Schiphol AMS Amsterdam 52.31 4.77 -11

2 Suvarnabhumi Airport BKK Bangkok 13.7 100.7 5

3 Ibrahim Nasir International Airport MLE Hulhuld is- 4.18 73.53 6

land (near

Mal6)

4 Bahrain International Airport BAH Manama 26.27 50.63 6

5 Larnaca International Airport LCA Larnaca 34.88 33.63 7

6 Venice Marco Polo Airport VCE Venice 45.5 12.34 7

7 Miami International Airport MIA Miami 25.8 -80.28 8

8 Don Mueang International Airport DMK Bangkok 13.91 100.6 9

9 Nice C6te d'Azur Airport NCE Nice 43.66 7.21 13

10 Fiumicino-Leonardo da Vinci International FCO Fiumicino 41.8 12.25 13

Airport (Rome)

11 John F. Kennedy International Airport JFK New York 40.63 -73.78 13

City

12 San Francisco International Airport SFO San Francisco 37.62 -122.38 13

Bay Area

13 Djerba - Zarzis International Airport DJE Djerba 33.88 10.79 14
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Sr. Airport IATA Location/City Lat. Lon. AMSL

No. Code Served (0) (0) Elev. (ft)

Barcelona El Prat Airport

Gregorio Luper6n International Airport

Copenhagen Airport, Kastrup

Newark Liberty International Airport

London City Airport

General Edward Lawrence Logan Intei

tional Airport

Thessaloniki International Airport "M

donia"

Singapore Changi Airport

Palma de Mallorca Airport

14

15

16

17

18

19

Bandaranaike International Airport

Hazrat Shahjalal International Airport

Soekarno-Hatta International Airport

Doha International Airport

Chhatrapati Shivaji International Airport

Catania-Fontanarossa Airport

Punta Cana International Airport

King Abdulaziz International Airport

Muscat International Airport

Hamburg Airport

Dubai International Airport

King Fahd International Airport

Ninoy Aquino International Airport

Gran Canaria Airport

Julius Nyerere International Airport

BCN

POP

CPH

EWR

LCY

BOS

SKG

SIN

PMI

CMB

DAC

CGK

DOH

BOM

CTA

PUJ

JED

MCT

HAM

DXB

DMM

MNL

LPA

DAR

41.3

19.76

55.61

40.69

51.51

42.36rna-

ice-

Barcelona

Puerto Plata

Copenhagen

Newark, NJ

London

Boston

Thessaloniki

Singapore

Palma de

Mallorca

Colombo

Dhaka

Tangerang

(serves

Jakarta area)

Doha

Mumbai

Catania

(island of

Sicily)

Punta Cana

Jeddah

Muscat

Hamburg

Dubai

Dammam

Manila

Gran Ca-

naria (Canary

Islands)

Dar es Salaam

2.07

-70.57

12.64

-74.17

0.04

-71.01

22.98

104

2.74

79.88

90.4

106.6

51.56

72.87

15.06

-68.37

39.14

58.29

10

55.35

49.79

121

-15.38

39.2
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40.52

1.36

39.56

7.18

23.85

-6.12

25.27

19.09

37.47

18.56

21.67

23.59

53.63

25.26

26.47

14.5

27.94

-6.88

14

15

17

18

19

20

22

22

24

26

27

32

35

37

39

40

48

49

53

62

72

75

78

82



Sr. Airport IATA Location/City Lat. Lon. AMSL

No. Code Served (0) (0) Elev. (ft)

London Heathrow Airport

Beirut-Rafic Hariri International Airport

Abu Dhabi International Airport

Jinnah International Airport

Montr6al-Pierre Elliott Trudeau Inter

tional Airport

Berlin Tegel "Otto Lilienthal" Airport

Los Angeles International Airport

Heraklion International Airport, "Ni

Kazantzakis"

Narita International Airport

Sharm el-Sheikh International Airport

na-

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

DUsseldorf Airport

Antalya Airport

Hannover-Langenhagen Airport

Brussels Airport

Gatwick Airport

Kuwait International Airport

Manchester Airport

Tozeur-Nefta International Airport

Athens International Airport "Eleftherios

Venizelos"

Birmingham Airport

Warsaw Chopin Airport

Frankfurt am Main Airport

Cairo International Airport

Paris Charles de Gaulle Airport

LHR

BEY

AUH

KHI

YUL

TXL

LAX

HER

NRT

SSH

DUS

AYT

HAJ

BRU

LGW

KWI

MAN

TOE

ATH

BHX

WAW

FRA

CAI

CDG

London

Beirut

Abu Dhabi

Karachi

Dorval (Mon-

tr6al)

Berlin

Los Angeles

Heraklion (is-

land of Crete)

Tokyo

Sharm el-

Sheikh

DUsseldorf

Antalya

Langenhagen

(Hannover)

Brussels

Crawley,

West Sus-

sex (serves

London)

Kuwait City

Manchester

Tozeur

Athens

Birmingham

Warsaw

Frankfurt

Cairo

Paris
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51.47

33.83

24.42

24.91

45.46

52.56

33.95

35.34

35.76

27.97

51.28

36.91

52.47

50.9

51.15

29.23

53.36

33.94

37.92

52.45

52.17

50.05

30.11

49

-0.44

35.5

54.66

67.17

-73.75

13.29

-118.4

25.19

140.4

34.39

6.77

30.8

9.71

4.49

-0.17

47.97

-2.28

8.11

23.94

-1.74

20.96

8.59

31.41

2.56

83

87

88

100

118

122

126

128

135

143

147

177

183

184

203

206

257

287

308

328

361

364

382

392



Sr. Airport IATA Location/City Lat. Lon. AMSL

No. Code Served (0) (0) Elev. (ft)

62 KGSKos Island International Airport, "Hip-

pocrates"

Budapest Ferenc Liszt International Airport

London Luton Airport

Toronto Pearson International Airport

Vienna International Airport

Mohammed V International Airport

Chicago O'Hare International Airport

Allama Iqbal International Airport

Milano Malpensa Airport

Indira Gandhi International Airport

EuroAirport Basel-Mulhouse-Freiburg

Bacha Khan International Airport

Luxembourg Findel Airport

Prague Vdclav Havel Airport

Khartoum International Airport

Stuttgart Airport

Geneva International Airport

Zurich Airport

Munich Airport

Benazir Bhutto International Airport

Madrid-Barajas Airport

Damascus International Airport

King Khalid International Airport

Prince Mohammad Bin Abdulaziz Interna-

tional Airport

Kos island

BUD

LTN

YYZ

VIE

CMN

ORD

LHE

MXP

DEL

BSL/

MLH/

EAP

PEW

LUX

PRG

KRT

STR

GVA

ZRH

MUC

ISB

MAD

DAM

RUH

MED
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Budapest

Luton, Bed-

fordshire

(serves Lon-

don)

Toronto

Vienna

Casablanca

Chicago

Lahore

Milan

New Delhi

Basel/

Mulhouse/

Freiburg

Peshawar

Luxembourg

City

Prague

Khartoum

Stuttgart

Geneva

Zurich

Munich

Islamabad,

Rawalpindi

Madrid

Damascus

Riyadh

Medina

36.8

47.42

51.88

43.69

48.11

33.38

41.97

31.52

45.61

28.56

47.61

33.99

49.63

50.11

15.59

48.69

46.24

47.46

48.35

33.61

40.46

33.41

24.96

24.55

27.09

19.25

-0.37

-73.64

16.57

-7.59

-87.89

74.41

8.73

77.09

7.52

71.52

6.23

14.27

32.55

9.24

6.11

8.56

11.78

73.11

-3.55

36.52

46.7

39.7

409

495

526

569

600

656

668

698

768

777

885

1158

1234

1247

1265

1276

1411

1416

1487

1688

2000

2020

2049

2151
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Sr. Airport IATA Location/City Lat. Lon. AMSL

No. Code Served (0) (0) Elev. (ft)

86 Queen Alia International Airport AMM Amman 31.73 36 2395

87 Sdo Paulo/Guarulhos-Governador Andr6 GRU S o Paulo -23.43 -46.48 2459

Franco Montoro International Airport

88 Jomo Kenyatta International Airport NBO Nairobi -1.32 36.93 5327

89 O.R. Tambo International Airport JNB Kempton -26.13 28.23 5558

Park (serves

Johannes-

burg, Preto-

ria)
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