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Abstract

Due to improvements in electronics manufacturing, electronic implants keep decreasing in size
and are moving towards integrated-circuit (IC) based designs. As implant electronics become
significantly smaller with the use of ICs, traditional implant packaging become a limiting factor
on implant miniaturization. Additionally, current packaging techniques can be expensive, and time
and labor intensive. Building electronic packages can require many materials, multiple machines,
and several manufacturing steps. This thesis explores cold spray as an alternative packaging
method that would address the issues associated with traditional packaging. Cold spray could be
used to create conformal packaging around electronic implants. Two biocompatible packaging
materials, ultra high molecular weight polyethylene (UHMWPE) and titanium, were cold sprayed
on two different electronic material substrates, silicon and polyimide. The results from these
experiments are presented in this work.
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1 Introduction

1.1 Electronic Implant Packaging

Medical electronic implants are devices that improve or save people's lives. Pacemakers

ensure a properly functioning heart, spinal neural stimulators reduce or remove chronic back pain,

brain neural stimulators fix motor or psychiatric problems, and other electronic implants

coordinate movements between prosthetic limbs and the body.

Electronic implants have changed and improved over the past century. In the 1950s and

1960s the first battery powered and the first implantable pacemakers were invented by Earl Bakken

and Wilson Greatbatch, respectively. One of the issues with the first implantable pacemaker

invented by Greatbatch was the hermetic (airtight) seal of the device. The devices were not always

hermetic and bodily fluids often penetrated through the device, destroying the electronics [1]. A

hermetic seal is essential to prevent the failure of implanted electronics. From the invention of the

pacemaker to today, packaging techniques to create hermetic seals have improved. With modem

technology, hermetic seals can be created consistently with many different implant packaging

methods.

Electronic implant packages not only need to achieve a hermetic seal, but must also be long-

term biocompatible and corrosion resistant in the human body. These requirements greatly limit

the materials that can be used in implant packages. Current packages generally use metals,

ceramics, and glass to create hermetic seals. Recent research has also looked at polymers to

package electronic implants [2]. However, since all polymers absorb some amount of moisture,

they are non-hermetic packages because they do not form fully hermetic seals [3]. However, for

some polymers the percentage of absorption is so low that they may be acceptable for specific

applications. Even with all the current options for packaging, there is still the challenge of sealing

electronics compactly and inexpensively.
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1.1.1 Simple Metal Can Packages

Some of the most common metals used in medical implants are grades of titanium, cobalt

chromium, tantalum, nitinol, zirconium, stainless steel, gold, platinum, and nickel alloys [4]. Of

these metals, titanium is one of the most commonly used to hermetically package medical

electronics since it is biocompatible, corrosion resistant, lightweight, strong, and easy to weld [5],

[6]. Usually, these metal electronic implant packages come in the form of cans where two sides

are created and are then bonded together once the electronics are placed inside. Metal can packages

are very common among current implantable devices on the market since they are simple and

relatively inexpensive to manufacture compared to alternative package designs. The metal sides

of the can are usually either machined from bulk material or are cast in molds. Laser welding is

the most common bonding technique. However, electrical resistance welding, electrode welding,

rolled seam welding, cold welding, crimp connection, and soldering may also be used. Many

pacemakers and neural stimulators use these metal can packages. For example, a Medtronic

pacemaker with a titanium can package can be seen in Figure 1. Notice the visible line between

the two metallic sides where the can was bonded together around the electronics.

Figure 1. Medtronic pacemaker with a titanium can package [7]. The connection between the two
sides of the can is more clearly shown in the magnified section.

1.1.2 Incorporating Feedthrough Pins in Package

Feedthrough pins are incorporated in hermetic packages to connect external electrical

components to the electronics sealed within the package. The addition of feedthrough pins in a

hermetic package can make the package design more complicated.

A schematic of a metal can with feedthrough pins acquired from a Hermetic Packaging and

Sealing document from SCHOTT can be seen in Figure 2 [8]. In Figure 2(a) the feedthrough pins
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are hermetically sealed to the base plate by melting glass around them. This glass also acts as an

insulation barrier between the pins and the baseplate. Figure 2(b) shows that after the pins are

attached to the baseplate, an electronic component is placed on the baseplate and connected to the

feedthrough pins. Afterwards, a metal cap is placed around the electronics and is bonded to the

base plate, as see in Figure 2(c) - 2(d).

(a(b) (c) (d)

Figure 2. Schematic of hermetic packaging of electronics with feedthrough pins. (a) Feedthrough
pins are put through the base plate and glass is melted around the wires to create a hermetic seal.
(b) An electronic component is added to the baseplate and is wire bonded to the feedthrough pins.
(c-d) A cap is added to the device and is bonded to the base plate. Images reprinted with permission
of SCHOTT AG [8]. SCHOTT produced and owns all images.

Another way to create feedthrough pins is by using a nonconductive base plate to act as the

insulation barrier between the feedthrough pins and the surrounding metal casing. Then to create

a hermetic seal, metal is brazed around the feedthrough pins. An example of gold brazed around

64 platinum/iridium pins in a ceramic alumina base plate can be seen in Figure 3 [9]. With either

of these manufacturing techniques, the cross-sectional area that the wires take up on the base plate

increases (either due to the glass or brazed metal). Therefore, the number of feedthrough pins that

can fit on a feedthrough plate is restricted, which can be a limiting factor for implant design.

Figure 3. (a) Gold brazed around 64 platinum/iridium feedthrough pins in a ceramic alumina
base plate. (b) Closer view of brazing around feedthrough pins [9].
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1.1.3 Packages for RF Transmission

For some implant applications radio-frequency (RF) wave transmission is essential for the

function of the implant. RF transmission between the implant and an external sources can be used

for two main tasks: energy transfer and communication.

Energy transfer occurs when inductive coupling is achieved between a coil within the

implant and a coil external to the patient. Power is sent to the coil that is external to the patient

which then creates a magnetic field. This magnetic field then induces a voltage in the receiver coil

in the implant [10]. The power received in the implant can then be used to charge a battery or to

directly provide power to electronics in the implant. A schematic of mutual inductance for energy

transfer can be seen in Figure 4 [10]. RF waves can also be used to transfer data between the

implant and an external device. Data can be transmitted by modulating the signal applied to the

external coil. A variety of modulation schemes including amplitude modulation, frequency

modulation, and phase shift keying have been applied to medical implants.

Tissues

(S~ ~'Power

Outside coil Inside coil

Figure 4. Schematic of inductive coupling to charge an implantable medical device (IMD) [10].

There are several implant packages that allow RF transmission. One technique is to use the

metal can design and make the sides of the can extremely thin. Bulk metal is not RF transparent.

However, RF waves can transmit through thin metal with acceptable signal loss. If the can is made

thin enough, enough of the signal will be able to reach the internal electronics of the implant.

Although this is not the most efficient package for RF transmission, it is still commonly used due

to the strength of the metal material and the simplicity of the packaging which reduces the time

and cost to manufacture the package.
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Packages that require efficient RF transmission generally incorporate RF transparent

materials into the package design. Current materials that are known to be RF transparent,

biocompatible, and can create hermetic seals are ceramics and glass. Biocompatible ceramics

include alumina, zirconia, and hydroxyapatite [4]. Hydroxyapatite is bioactive, meaning tissue can

grow on its surface, while alumina and zirconia are bioinert. Therefore, because alumina and

zirconia are bioinert, they are generally better choices for electronic packages than bioactive

hydroxyapatite.

Many packages that incorporate ceramic or glass into their design for RF transparency still

use metal as the main package material due to the advantages of metals such as high strength,

ductility, and easier manufacturing methods. The ceramic or glass components are incorporated

into these designs as windows.

There are many methods that can be used to incorporate glass windows into metal

packages. One manufacturing technique places the glass component within the metal frame and

then this assembly is heated up past the glass softening point to allow for the glass to bond to the

metal frame. At these high temperatures, the finish of the glass may be affected. Therefore post-

process grinding and polishing may be required to achieve the finish that is needed [11].

Alternatively, glass windows can be soldered to the frame with metal-alloy solder or solder-glass

materials. Images acquired from SCHOTT of a glass window placement in a metal package can

be seen below in Figure 5 [8].

(a) (b) (C) (d)

Figure 5. (a-b) A glass window is bonded to the metal cap. Then the (c) metal cap and baseplate
are laser welded together to form the (d) final product. Images reprinted with permission of
SCHOTT AG [8]. SCHOTT produced and owns all images.
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Ceramic windows are placed in metal packages in a very similar way as glass windows.

However, the bonding between the ceramic component and the metal can is usually done with a

brazing processes. In Figure 3(a) you can see gold brazed between the alumina base plate and the

titanium flange [9].

When an implant is small, needs efficient RF transmission, and is not expected to be

subjected to substantial stresses, packages made entirely out of glass are good enclosure options.

Glass packages are a popular choice for smaller electronics, such as radio-frequency identification

(RFID) tags. Images acquired from SCHOTT's Hermetic Packaging and Sealing document can

be seen in Figure 6 below [8]. These images show the process of enclosing electronics within a

glass package. This package starts off as a hollow glass tube. The electronics are placed inside and

then both ends of the tube are melted to enclose the electronics with a hermetic seal. The ends of

the tubes are melted with a light-only source, such as a laser. Using a lighting source rather than a

flame ensures that no impurities will enter the package [8].

(a) (b) (c)

Figure 6. (a) The electronics and glass can be seen side by side before assemble. (b) The electronics
are placed within the glass tubing. (c) The open end of the glass tube is heated up by a laser to seal
the enclosure. Images reprinted with permission of SCHOTT AG [8]. SCHOTT produced and
owns all images.

1.1.4 Non-Hermetic Packages

The materials and manufacturing processes to create hermetic packages can be costly, and

time and labor intensive. Moreover, current packages are generally rigid and large. In order to

address these limitations of current packaging techniques, alternatives using non-hermetic

packages have also been explored. Many biocompatible polymers have been explored for implant
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packages. However, most are unsuitable since the water absorption of the polymers are too high,

which leads to an increase in the enclosure's humidity and consequently early failure of the

electronics. Current medical electronic implants do use polymers, such as polyurethane and

silicone rubber, for connector blocks where leads plug in (see the top of the pacemaker in Figure

1), for insulation around leads, for seals, and to over-mold implants. These polymers are used in

current implants when either insulation, flexibility, or a softer material is necessary. However,

generally polymers aren't utilized to package the core electronics due to their water absorption

properties. However, new research has been exploring the possibility of using polymers to package

the electronics.

The most promising research on packaging with polymers has been looking at using liquid

crystal polymers (LCP) [2], [12]. LCPs have good mechanical properties and water absorption

between 2% and 4% (percent mass increase when placed in water) which is lower than many other

biocompatible polymers [2]. Although the water absorption is low, over long periods of time water

absorption can lead to increased humidity within the package, causing the electronic components

to fail. In order to test the long-term reliability of electronics packaged in LCP, accelerated soak

tests have been conducted. One research paper reported functional electronics within a LCP

encapsulation after 300 days in a PBS soak test [13]. Researchers from Seoul National University,

Kangnam Sacred Heart Hospital, and Seoul National University College of Medicine ran

calculations to determine the amount of time that will pass before the internal cavity of a LCP

enclosure in saline reaches a relative humidity of 63%. The research found an estimated time of

15.3 years and 64.3 years for LCP encapsulations that were 25 Pm and 100 Pm thick, respectively

[12]. Therefore, depending on the electronics' sensitivity to humidity, the desired lifetime of the

electronic implant, and the strength needed in the implant packaging, LCP packages may or may

not be an acceptable packaging alternative.

If LCP is found to be an acceptable alternative to traditional hermetic packaging, it can

result in lower material cost and simpler manufacturing. One research paper describes the

following manufacturing processes to create a LCP package. The two sides of the implant package

can be thermoformed from high temperature LCP into a desired shape. A low temperature LCP

can be placed between the two LCP thermoformed parts. Then, these parts can be pressed together

with high pressure and heat to melt the low temperature LCP and create a hermetic seal. Water
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cooling is also used during the pressing step to prevent overheating of the internal electronics [13].

Figure 7 illustrates this manufacturing process [13].

) LCP Package Ld Telemetry Coil

(5) Welding Line

Stimulator
(DLCP MEA --------

C)Water Cooling ~~IhI~h

.. ... .... ----- ® Fusion BondInG

High Temp. LCP Chip (ASIC, Discrete)

Low Temp. LCP Ceramic PCB
Conductor PDMS

Figure 7. Example of manufacturing processes used to create a LCP package for implants [13].
2011 IEEE.

Another method to hermetically seal electronics transitions from having a hermetic seal at

the system-level, Figure 8 (a), to a hermetic seal at the component-level, Figure 8 (b) [14]. In

component-level hermetic packaging, silicone rubber is usually molded over the electronics to

create a non-hermetic seal to prevent corrosion and water condensation on the electronic

components [14]. Therefore good adhesion between this polymer layer and the underlying

electronics is necessary.

As can be seen in the images of Figure 8, for similar electronics, system-level hermetic

packages are generally larger than component-level hermetic packages due to wasted space within

the one large hermetic package. The component-level hermetic packaging with the conformal

silicone encapsulation can result in much smaller final implant dimensions. This is what makes

this packaging technique so attractive. However, the success of this packaging technique depends
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on whether the small components can be designed in their own hermetic packages. Additionally,

it adds complexity since it requires a hermetic package for each individual component and

insulation on wires running between components. Moreover, since each individual component

must be individually hermetically sealed, each component can act as a point of failure to the device.

Therefore, with more possible points of failure, it raises the overall failure rate of the device. Some

research has also looked at creating encapsulations without hermetically sealing the internal

components. With a 75 pm thick LCP coating rather than an LCP enclosure, it can take 3.5 years

before the internal components reach 63% humidity [12]. Therefore, this may be an option if the

implant needs to be small in size and only needs to function in the body for a few years or less.

(A)
hermetic feedthrough

silicone rubber encapsulation

coil for inductive hermetic package
coupling electronic circuit

(B)
hermetically sealed electronic components

silicone rubber encapsulation

coil for inductive

electrodes

couplig biostable printed circuit boad,
e;g. alumina

Figure 8. (a) System level hermetic packaging. (b) Component-level hermetic packaging.
Modified from T. Stieglitz [14]. ( 2010 Springer.
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1.1.5 Summary of Packaging Methods for Electronic Implants

Several types of packages can be used to hermetically seal electronic implants. The

simplest and most widely used is the metal can design. This packaging technique is a good choice

since it results in a high strength package and has lower manufacturing costs. However, when

efficient RF transmission is required, the metal can design may not be an appropriate choice since

RF waves will be attenuated through the metal. Efficient RF transmission can occur through glass

packages, and ceramic or glass windows in metal packages. Moreover, when direct connections

between the electronic implant and components external to the package are needed, feedthrough

pins must be incorporated into the package. Feedthrough pins can complicate a package design

since many wires must come out of the package while keeping a hermetic seal. Additionally, the

wires must be electrically insulated from any other metal that is a part of the package.

Recent research has also looked at using non-hermetic polymer packaging of electronic

implants in order to either reduce costs, increase flexibility, and/or reduce the size of implant.

Although all polymers absorb some amount of water, the research suggests that non-hermetic

polymer packaging may be an acceptable alternative in specific applications. If the electronics in

an implant can withstand higher humidity levels or if the implant is intended for short-term use,

polymers may be an acceptable and lower cost alternative to traditional hermetic packages.

Additionally, an alternative to traditional system-level hermetic packaging is component-

level hermetic packaging with a polymer encapsulation. This packaging technique can

significantly reduce the overall dimensions of electronic implants. However, this technique adds

complexity to the design since each component must be hermetically sealed and wires between

components must be properly insulated. In this design, each component may be a source of failure,

therefore this results in higher failure rates than system-level packages that contain fewer hermetic

seals. Therefore, this packaging technique may not be a good choice unless it is crucial for the

dimensions of the implant to be as small as possible. Polymer encapsulations with no hermetic

seals can also be used but this significantly reduces the number of years the implant can function

before it fails from high humidity levels around the electronics.
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Each packaging technique has its advantages and disadvantages. The best package for a

specific electronic implant is highly dependent on requirements such as strength, RF transparency,

number of feedthrough pins needed, size, and the expected lifetime of the implant.

1.2 Drawbacks of Current Packaging Techniques

Although many packages successfully seal electronics from the environment, there is still

room to improve upon current packaging designs and process techniques. Conventional implant

packages such as the metal can packages are bulky which limits the miniaturization of implants,

therefore also limiting where they can fit within the human body due to size constraints.

Additionally, current packaging techniques can be expensive, and time and labor intensive.

Electronic implant packages generally do not follow the contours of the device since this

would take more time to design and would be more expensive to manufacture. Therefore, instead

of being conformal packages, the packages are generally made large enough to incorporate the

largest component of the electronics and battery. This type of packaging is therefore larger than it

needs to be to fully surround the electronics. Additionally, some implantable electronics require

multiple components in the package such as RF transparent windows or feedthrough pins. These

additional components can increase the dimensions of the final package and increase the

manufacturing cost.

Due to improvements in electronics manufacturing, electronic implants keep decreasing in

size and are moving towards integrated-circuit (IC) based designs. As implant electronics become

significantly smaller with the use of ICs, the traditional packages become a limiting factor on

implant miniaturization.

Another drawback of current packaging techniques for medical implants is the time and

labor intensive processes. Building electronic packages can require mamy materials, multiple

machines, and several manufacturing steps. Another major expense to creating these sealed

packages is the amount of time and man hours needed just to design the package in the first place.

Implants for different applications will have different electronic components, different battery

sizes, different amounts of feedthrough pins, and different needs in general. Therefore, with each
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new implant product, generally a new package must be designed by engineers which adds on to

the man hours spent creating the package, consequently increasing the overall cost of the implant.

1.3 Cold Spray Process to Package Medical Electronics

In order to address many of these drawbacks seen in conventional medical device packages,

a manufacturing process called cold spray was investigated as a new packaging method. The Army

Research Laboratory has worked with the cold spray process for a period of decades and continues

to explore new applications for this technology. Cold spray has previously been researched for use

in passive implants [15]. However, there has not been research on cold spray being used to seal

active electronic implants. Using cold spray to package electronic implants has several possible

advantages over traditional packaging techniques. Cold spraying electronics would create

conformal coatings, therefore leading to the smallest possible package. Hermetic seals are likely

possible since cold sprayed materials have resulted in dense coatings. This manufacturing method

would also be simpler and streamlined. To create the package, implants would be set under the

cold spray machine and the coating would be sprayed on as the nozzle traverses back and forth

over the implant. One other major advantage would be the significant reduction or possibly even

elimination of package design time.

In order to investigate the possibility of using cold spray to package electronic implants, the

Army Research lab provided funding to Draper. For this research, Draper connected with VRC

Metal Systems, L.L.C. (VRC) to cold spray samples. VRC has several years of experience with

the cold spray manufacturing process. VRC contributed their expertise in the cold spray process

and Draper contributed thorough knowledge of integrated circuits and implant design for the

research. Additionally, Northeastern University was involved in this research. Professor Sinan

MUftU and post-doc Ozan Ozdemir from Northeastern University worked with Draper to select

biocompatible powders to use with the cold spray system. Ozan Ozdemir also contributed to this

research by running computational fluid dynamic (CFD) models of the cold spray process for

specific powder and substrate materials. Initial process parameters for the cold spray experiments

were selected from the outputs of the CFD model.
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2 Cold Spray Process and Cold Sprayed Biocompatible

Materials

2.1 Overview of the Cold Spray Manufacturing Process

The cold spray process accelerates feedstock powder to supersonic speeds with highly

pressurized process gas. These high-speed particles are sprayed out of a nozzle as it scans back

and forth above the substrate surface. When the particles contact the substrate, the high-speed

impact causes the particles and substrate to deform and mechanically bond to one another. A

particle will only adhere to the substrate if the particle's velocity is at or above a specific velocity

called the critical velocity. The critical velocity is dependent on the particle material properties,

size, and the substrate material. Since the cold spray process keeps the powder material in the solid

state while it is deposited, it minimizes oxidation and phase transformations of the feedstock

material which are issues that can occur with other thermal spray processes that melt the powder,

such as plasma spray and high-velocity oxy-fuel (HVOF) [15], [16]. A schematic of the cold spay

manufacturing process can be seen in Figure 9.

Figure 9. Simplified model of a cold spray system.

Some cold spray systems are manual. With these systems, the nozzle is manipulated by

someone that moves it back and forth over the substrate. Manual systems have the advantage of
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allowing complex movements of the nozzle over the substrate. Complex movements might be

needed when cold spray is used to fill cracks in material or the system needs to build up original

geometries. Automated systems have been built using a robot arm to move the spray nozzle. This

automated system can keep a constant stand-off distance and traverse speed as it scans across the

substrate. This leads to reliable and consistent coatings across samples. More advanced robotic

systems can also spray coatings with multiple different nozzle angles rather than just perpendicular

to the substrate. In the current research, VRC's cold spray system was used. Their cold spray

system is automated and their robotic system is shown in Figure 10.

Figure 10. VRC's robotic cold spray system.

2.2 Overview of Biocompatible Materials that have been Cold

Sprayed

Recent research has been using the cold spray process to deposit biocompatible materials.

Most of this research has been conducted within the last ten years. This section is a review of long-

term biocompatible materials that have been cold sprayed: stainless steel, titanium, tantalum,

titanium dioxide (TiO2), hydroxyapatite (HA), and ultra-high molecular weight polyethylene

(UHMWPE). The review discusses porosity values found in the cold sprayed materials as well as

any corrosion, biocompatibility, and cytotoxicity tests that have been conducted on them.
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2.2.1 Stainless Steel Coatings

Density of Stainless Steel Coatings

Dense coatings of stainless steel have been achieved with the cold spray process. Porosity

values range from 0.2% to 8.5% depending on powder particle shape and size, substrate material,

and process parameters [17]-[21]. Spencer et al. tested 316L SS powder with particle sizes of -22

pm, -10 pm, and -5 pm (these are powders where the particles were small enough to pass through

a 22 pm, 10 pm, and 5 pm mesh, respectively), and showed that as the particle size got smaller,

the coating became more homogeneous and porosity decreased. Although the very fine particle

size created extremely dense coatings, it did cause inconsistent feed rates in the flow and caused

the nozzle to clog, making it difficult to create thick coatings. Spencer et al. also realized that with

a combination of two monosized powders of different sizes, the packing density of the powder can

be improved. Therefore, Spencer et al. also created two mixed powder feedstocks: 50/50 vol.% of

-22 pm and -5 pm particles and 50/50 vol.% of -10 pm and -5 pm particles. The coating from the

mixture of -22 pm and -5 pm particles still had visible porosity while the coating from the mixture

of -10 pm and -5 pm particles had a density similar to the -5 pm particle coating, without the

negative effects of inconsistent feeding and nozzle clogging [18].

Sova et al. also analyzed material porosity due to particle size. Powders with d50 of 18 pm,

28 pm, and 36 pm were used and the resulting porosities were 5%, 5.5%, and 8.5%, respectively

[20]. Sova et al. also observed that at high traverse speeds the porosity appeared to be the highest

between layers, forming layers of high porosity parallel to the surface. At low traverse speeds the

porosity appeared to be in layers angled at approximately 300 from the substrate. This 30' angle

was most likely due to the velocity profile of the particles coming out of the nozzle with the highest

velocity particles near the center of the nozzle and lower velocity particles near the edges. Sova et

al. also performed a laser post treatment on the cold sprayed material that came from the coarsest

powder. This was done in order to reduce the porosity near the surface. This laser treatment ended

up affecting the coating from the surface to a depth of -200 pm. Within the laser treated region

the porosity was reduced from 8.5% to less than 1% due to the melting and bonding of these

particles [20]. This reduction in surface porosity also drastically improved the corrosion properties

of the coating and this is further discussed in the next section on corrosion properties of cold

sprayed stainless steel coatings.
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In other work done by AL-Mangour et al. (2014), both helium and nitrogen gas were used.

Both of the gas systems were set to the highest possible temperature that did not cause clogging of

the nozzle. The results showed that helium gas created denser coatings of 316L SS than those

created by nitrogen gas most probably due to the higher particle velocities (996 138 m/s

compared to 838 84 m/s) and therefore greater plastic deformation of the particles upon impact

[19]. AL-Mangour et al. (2014), also showed that annealing both the nitrogen and helium coatings

caused a decrease in the coating porosities and annealing at temperatures of 800'C and above

resulted in porosities of 0.2% or less for both coatings [19]. This is in agreement with other work

that has also shown that heat treatments reduce the porosity of cold sprayed materials [21].

Research done by Villa et al. analyzed how changes in pressure and temperature inputs to

the cold spray process affected the quality of 316L SS coatings. The coatings were sprayed with

temperatures between 600'C and 800'C and pressures between 20 bar and 40 bar [22]. The optimal

coating was determined after analyzing three characteristics of the coatings: deposition efficiency,

thickness, and porosity. Through the experiment, Villa et al. found that the coating created with

the highest temperature and pressure resulted in the optimal coating with a low porosity, the highest

deposition efficiency, and the greatest thickness. Villa at al. also observed that as the temperature

increased, it consistently increased the coating quality. On the other hand, an increase in pressure

did not necessarily always correlate with a better coating. Increasing pressure would increase the

particle velocity and could therefore increase the plastic deformation of the particles upon impact.

However, if the temperature was low with high pressure, it caused erosion of the substrate.

Therefore, thermal softening of the particles appeared to be necessary for the binding of the

particles to the substrate.

Corrosion Properties of Stainless Steel Coatings

Research on corrosion properties of cold sprayed stainless steel have been promising. Work

by Spencer et al. showed that for a 4% porous coating, as the thickness of the coating increased

from 40 pim to 305 pm, the corrosion protection increased and the corrosion properties became

closer to that of bulk 316L SS [18]. In another piece of work, 316L SS powder was combined with

L605 chromium alloy powder to increase the corrosion resistance of cold sprayed stainless steel.
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Mixtures were made with 316L SS powder combined with 25%, 33%, or 50% L605 chromium

alloy powder by volume. The actual coatings contained 23%, 31%, and 33% of the chromium alloy

for the powder mixtures containing 25%, 33%, and 50% of L605 respectively [17]. The coatings

obtained with the 25% and 33% L605 powders resulted in porosities below 2% while the 50%

L605 powder coating resulted in a porosity of approximately 4.5% and it also contained cracks

[17]. Corrosion properties of the coatings were analyzed with a potentio-dynamic polarization test.

The 50% L605 powder mixture had poor corrosion properties. However, the 25% and 33% L605

powder coatings had better corrosion resistance than cold sprayed pure stainless steel, and both

had a corrosion rate close to bulk stainless steel [17]. Annealing of the coatings further deceased

the corrosion rate. Additionally, it was found that after annealing the cold sprayed pure stainless

steel coating at 1 100'C for one hour, its corrosion properties became close to that of bulk stainless

steel as well [17]. Other work has also shown that heat treatments of cold sprayed 316L SS results

in a significant decrease in corrosion rate, bringing the corrosion rate much closer to that of bulk

316L SS [21].

Another approach to improve the corrosion properties of cold sprayed coatings is by using

a laser post-treatment. Corrosion properties of cold sprayed coatings depend on the overall porosity

and the quality of interparticle bonding. Laser post-treatment causes localized melting in the

surface of the coating which significantly decreases porosity and causes better bonding of the

particles in that region. Therefore, with these properties at the surface of the coating, it can

significantly improve the corrosion properties of the whole coating. In work by Sova et al., a laser

treated coarse particle coating, an as-sprayed coarse particle coating, an as-sprayed fine particle

coating, and bulk 316L SS were subjected to an anodic polarization corrosion test following the

ASTM G 5-94 standard. The as-sprayed coarse coating had the worst corrosion properties and had

the highest corrosion current density. The finer particle coating had a slightly reduced corrosion

current density. The laser treated coarse coating had a significantly lower current density that was

close to bulk 316L SS corrosion properties [20]. Table 1 includes the cold spray process parameters

used to create different stainless steel coatings.
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Table 1. Process inputs and coating properties of cold sprayed 316L SS.
Cold Sprayed 3161 SS from the Literature

Powder Particle diameter: Standoff Traverse Deposition
Author Powder shape avg. or ranges (pm) Substrate Gas Gas temperature ('C) Gas pressure (bar) distance (mm) speed (mm/s) thickness (Am) Post-processing steps Porosity(%

75% 316LSS -g1.2

+ 25% L605 Heat treated at 400 'C for 1 hr. 1

chromium 3400 Heat treated at 800 'C for 1 hr. 1

roym aHeat treated at 1000 T for 1 hr. <1

a loS: Heat treated at 1100 T for 1 hr. <1
66.6% 316L .rrguar 0.81

AL-Mangour et SS + 33.3% L605 316L SS: 23.9, Heat treated at 400 C for 1 hr. <0.8

al4 (2013) L605 chromium L605 chromium mild steel N2 700 40 80 300 2500 Heat treated at 800 C for 1 hr. <0.8
chromium alloy: 33.5 Heat treated at 1000 T for 1 hr. <0.8

alloy spherl Heat treated at 1100 T for 1 hr. <0.8

50%/o316L SS -44A5

+ 50% L605 Heat treated at 400 'C for 1 hr. 4

chromium 470 Heat treated at 800 'C for 1 hr. 3.2

mildy Heat treated at 1000 "C for 1 hr. 2.5
Heat treated at 1100 *C for 1 hr. 2.5

-51.6
Heat treated at 400 'C for 1 hr. 0.8

N2 700 Heat treated at 800 *C for 1 hr. 5 0.2

mild Heat treated at 1000 *C for 1 hr. 5 0.2
AL-Mangour et 316L SS irregular -45 +15 carbon -- -40 80 300 3000 Heat treated at 1100 'C for 1 hr. :5 0.2

Heat treated at 400 *C for 1 hr. 0.2
He 350 Heat treated at 800 'C for 1 hr. s 0.2

Heat treated at 1000 *C for 1 hr. :5 0.2
Heat treated at 1100 *C for 1 hr. 5 0.2

-22 pm <50 to 305 4

K. Spencer et -10 pm cast AZ91 E <1
al. 316L SS spherical -5 pm alloy He 320 6.2 12 50 - - <1

50%: -22, 50%: -5 a
50%: -10, 50%Y: -5 <1

High: 600 - 800 Low: 20 -40 463 20 -
High: 600 - 800 Medium: 20 - 40 458 17
High: 600 - 800 High: 20 -40 495 17

Medium: 600 - 800 Low: 20 -40 463 32
M. Villa et al. 316L SS spherical 31.5 Al-7075-T6 N2 Medium: 600 -800 Medium: 20 - 40 40 500 479 19 -

Medium: 600 - 800 High: 20 - 40 474 18
Low: 600 -800 Low: 20 -40 336 33-
Low: 600 -800 Medium: 20 -40-
Low: 600 -800 High: 20 -40 --

18 500 120 1900 and 3800 5
30 1900 and 3800

28 600 120 1900 and 3800 -5.3
Soya et al. 316LSS spherical aluminum N2 -40 50 30 1900 and 3800

120 1900 and 3800 8.5

36 720 1900 Laser treatment on coating Top: <1

30 1900 and 3800
3_ 1900 Laser treatment on coating Top: <1

- - 0.8
Sundararajan 316LSS -45 +15 um mild steel Air 475 20 is - - Heat treated at 400 *C for 1 hr. 0.76

et al. - Heat treated at 800 C for 1 hr. 0.36
- Heat treated at 1100 *C for 1 hr. 0.2

C-'
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2.2.2 Titanium Coatings

Density of Titanium Coatings

A wide range of titanium coating porosities have been accomplished through the cold spray

process. Commercially pure titanium and Ti-6A1-4V feedstock powder have resulted in porosities

ranging from almost no porosity to 22.3% [16], [23]-[27]. Additionally, Hamweendo et al. added

nickel to titanium feedstock powder in order to improve the mechanical properties of the coating.

This titanium-nickel coating resulted in a porosity between 17% and 30% [26]. In almost all the

research found in the literature, titanium was sprayed on metal substrates, but work by Gardon et

al. successfully sprayed titanium on Polyetheretherketone (PEEK), a bioinert material, in order to

increase the substrate's bioactivity. Gardon et al. was able to deposit titanium powder on PEEK

when lower energetic spraying parameters were used; more energetic spraying parameters caused

thermal softening of the substrate which caused titanium particles to become embedded in the

substrate rather than building up on the substrate to form a coating [28].

In work by Wong et al., titanium was deposited on substrates with both helium and

nitrogen. In order to compare the gases, the particle velocities were matched by changing the input

pressure and temperature for each gas. At higher particle velocities, the nitrogen coatings were

much denser than those achieved by helium. This was probably due to the higher gas temperatures

used for the nitrogen coatings. Higher temperatures would have thermally softened the powder

particles and the substrate. This thermal softening most likely allowed more plastic deformation

and better bonding between the particles and the substrate. After observing this effect from high

gas temperatures, Wong et al. sprayed coatings with nitrogen gas at 800'C and a slower traverse

speed of 5 mm/s to heat up the substrate even more. This coating resulted in a porosity of

approximately 0.1% and oxidation of the substrate around the spraying area was seen. Then

nitrogen was sprayed at 800'C and a traverse speed of 150 mm/s and the porosity was found to

still be very low, at 0.9%, and no oxidation was seen on the substrate. Additionally, Wong et al.

also sprayed a coating with helium gas with an input temperature of 350'C and a pressure of 4

MPa. With these input parameters, a very high particle velocity of 1173 m/s was achieved. The

coating that resulted had no detectable porosity. Zahiri et al. also found that using helium instead

of nitrogen gas resulted in denser coatings. This work also found that shorter stand-off distances

and smaller particles resulted in lower porosities [29].
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Other research found that when the powder material and the substrate had similar strength,

it resulted in a critical velocity higher than if there was a mismatch in strength between the powder

material and substrate. Additionally, when the powder was soft and the substrate hard, it resulted

in critical velocities lower than if the powder was hard and the substrate was soft [30]. Research

by Christoulis et al. also showed the importance of the substrate and powder combination. This

research looked at creating dense coatings on five different substrates with the same coarse

titanium powder. These substrates included aluminum AISI 1050-H16, aluminum AISI 2017-T4,

copper, stainless steel AISI 304L, and Ti-6A-4V. The particles that were sprayed on AISI 1050

with nitrogen gas penetrated far into the substrate and many of these particles still appeared to be

spherical in shape and the substrate experienced a large amount of deformation. The copper

substrate also had significant deformation but less than the AISI 1050 substrate. With the higher

strength stainless steel 304L substrate, both the substrate and the particles deformed. With the very

hard Ti-6A1-4V substrate, there was minimal deformation in the substrate and substantial plastic

deformation in the particles. With nitrogen gas, no coating was formed on the AISI 2017 material.

This was most likely due to a thick oxidation layer on the metal. However, when helium gas was

used, a coating was formed since this oxidation layer was ruptured with the higher velocity of the

particles. The copper, steel, and Ti-6A1-4V substrates were also sprayed with helium gas which

resulted in coatings with lower porosities due to the higher impact velocities achieved [31].

As was just discussed, dense coatings of titanium have been created with the cold spray

process. Other research though has specifically looked at creating porous coatings which would

be beneficial for osseointigration on orthopedic implants. To create these extremely porous

coatings, researchers spray titanium with a secondary material and then the secondary material is

removed after the cold spray process. Sun et al. sprayed magnesium with titanium and then the

magnesium was removed through sintering which resulted in a titanium coating porosity of 48.6%

[24]. In other research, Qiu et al. sprayed aluminum with titanium and then the aluminum was

removed through alkaline leaching, resulting in a coating porosity of 48 3% [25].

Corrosion Properties of Titanium Coatings

Research by Zhou et al. looked at the corrosion properties of as-sprayed titanium coatings

and titanium coatings that had been heat treated at 850'C for 5 hours in Argon with 5% hydrogen.
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A potentiodynamic polarization test was run on these coatings, bulk titanium, and heat treated bulk

titanium. The results from the test showed that the heat treatment of the cold sprayed coating

substantially decreased the corrosion rate, increased the corrosion potential, and stabilized the

coating at high potentials. Zhou et al. also averaged the corrosion potential and corrosion current

from the polarization curves. The heat treated coating had a decrease in corrosion current (0.45

0.05 piA/cm2 compared to 1.37 0.09 pA/cm2) and an increase in corrosion potential (-445 mV

compared to -376 mV) [32]. This indicated that the heat treatment significantly improved the

corrosion properties of the coating. This heat treated coating had a comparable corrosion potential

to the bulk titanium that had a corrosion potential of -326 mV [32]. However, the heat treated

coating still had a much higher corrosion current compared to bulk titanium (0.13 0.03 pA/cm2 )

and heat treated bulk titanium (0.14 0.05 pA/cm 2) [32].

Titanium-hydroxyapatite coatings and bioactivity and cytotoxicity tests

Research papers have also looked at adding hydroxyapatite (HA) to titanium coatings for

osseointegration. Choudhuri et al., used 20% and 50% HA mixed with either commercially pure

titanium (CP-titanium) or sponge titanium to create coatings. Any HA mixture with the spherical

titanium could not be built up on the substrate. However, with the sponge titanium, the 20% HA

mixture resulted in a dense coating while the 50% HA mixture resulted in a coating with broken

HA particles and a limited coating thickness [33]. As stated earlier, Qui et al. used the technique

of spraying aluminum with titanium and then removed the aluminum through alkaline leaching to

create porous coatings. Qui et al. also sprayed three-part mixtures of titanium, aluminum, and HA

to create coatings that could help initiate osseointegration. Powder mixtures of 50% Ti, 45% Al,

and 5% HA and mixtures of 50% Ti, 40% Al, and 10% HA were used with two different HA

powders to create four different mixtures with HA. All of the coatings produced with HA resulted

in porosities greater than 60% [25]. Also in this research, an in vitro biological test was done in

simulated body fluid (SBF) which showed that the HA coatings had significantly more Ca2+

mineralization than the coating without HA, and the 10% HA coatings had approximately twice

as much mineralization as the 5% HA coatings [25]. Qui et al. also performed a cytotoxicity test

for 48 hours on the 10% HA coatings and the HA-free coating. All of the coatings either maintained

the. same number of cells or there was an increase in cell viability, which indicated that the coatings
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were not toxic to the cells [25]. A table of the cold spray parameters used for titanium coatings can

be seen in Table 2.
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Table 2. Process inputs and coating properties of cold sprayed titanium.

rnil C r i Ti tniu.m frnm tha I iteratiire

w

pW y
Gas

Particle diameter: temperature Gas pressure Standoff Traverse Deposition Post-processing Final porosity
Author Powder Powder shape avg. or ranges (pm) Substrate Gas ("C (ba r) distance (mm) speed (mm/s) thickness (pm) steps N%

500 25 400-

Ti spherical 45 500 35 400

Soo 35 100 --

Choudlhuri et 80% Ti + 20% H A Ti: spherical Ti: 45, H A: - Ti and Al N2 700 38 25 10-
al. [33] HA: spherical bten5

Ti sponge 45 500 35an40

80% Ti + 20% HA Ti: sponge Ti. 45, HA: 600 35

50% Ti + 50% HA HA: spherical 700 30 200 -

aluminum: N2 550 660 10.1

AIS5 1050-H416 [He 450 -

aluminum: _N2 500
AISI 2017-T4 He 450 1400 1.2

Christoulis et Ti spherical 60, -70 + 45 copper - 30 40 100 - - 0.4
al. [31] He 450 1400 0.8

stainless N2 550 611.
steel: AISI -- -sel II He 450 1360 1.8

;0L N2 550 589 13.2
Ti-6AI-4V

He 450 1320 3.0

1000

Gardon et al. [28 Ti angular 20 to 90 PEEK N2

Hamweendo et 50% Ti + 50% Ni TI: angular
Ni: irregular Air 10 17.0 to 30.0

al. ['61 copp-
Ti angular-

- - 5.4

Ti anular22.4Vacuum heat
Ti spherlr 224 - treatment at 850'C 21.6

for 4 hr.
Li et al. [23) Ti-6AI-4V Air 520 28 30 - 2.

Ti-6I-4V sphrica 47Vacuum heat
Ti-6l-4 sperial 7 - treatment at 850'C 29.7

for 4 hr.



Table 2 continued. Process inputs and coating properties of cold sprayed titanium.

Cold Sprayed Titanium from the Literature
Particle diameter: Gas Gas pressure Standoff Traverse Deposition Post-processing Final porosity

Author Powder Powder shape Substrate Gas temperatureavg. or ranges (pm) C) (bar) distance (mm) speed (mm/s) thickness (pm) steps M

Al removed by
alkaline leaching.

50% Ti+ 50% Al Ti: irregular Ti: <20, Al: 75 to 105 - Vacuum heat 48
Al: Irregular tetetatreatment at

1200'C for 2 hr.
50% Ti +45%Al +50T+5A+ Ti: Irregular annealed -61

Qiu et ak [25] 5% HA Ti: <20, Al: 75 to He 370 6.9 12.5 1.67 A o

50% Ti + 40% Al + A irregular 105 , HA: 15 grade 2 cP-TA
5H0% A HA: spherical alkaline 63

10%HA _____________________ la chir>g. Va cuu.m
50% Ti + 45% Al +

Ti: irregular - heat treatment at 66
5% H A A:rrulr Ti: <20, Al: 75 to8OCfr1h.

50% Ti + 40% Al + A: sperucal 105, HA: 25
10% HA HA: spherical 

65

Vacuum sintering
at 1250'C for 1 hr.

Ti: 10 to 45
Sun et al. [24] 25% Ti + 75% Mg spherical Mg: 63 to 73 Ti He 340 10 - - Mg completely 48.6

Mg: 63 to 73 rmvdbremoved by
__________________evaporation. ______

S2 5Top= 26
N2 2 Bottom19.5

He 100 5 Top= 14.6
-ottorn0.8

42 60r 303Top= 
7.8

N2 60 301344Bottom=5,0
330Tp=1.

Wong et al. mild carbon He 70 7.5 401030 TopH r d.2
t[2 ] Ti spherical -2re - C Tno=A1r

[7 el N2 800 40 1172 Top=om1.9

He 50 14 1064 Top= 101
fottor7.0

N2 800 40 150 - 0.9

N2 800 40 5 .0.1

He 350 40 8 330 -0.0

24 20 -9.5

24 50 -10.0
22

N2 24 80 -12.5

(29]ietal Ti angular aluminum 600 24 100 1.667 -14.0
(2]24 20 -8.0

16 _______ ________ 0.5

He 15 20 Heat treatment at
_________ ___________450C for 30 min. _____

Heat treated at
Zhou et al. [32] Ti irregular -325 wrought Ti N2 500 35 15s 600 850C in Argon

with 5% hydrogen
_______________________________________________ ________ _________ _________________ ________ _________ frfo r. 5__hr._

W



2.2.3 Tantalum Coatings

Density of Tantalum Coatings

Cold sprayed tantalum has resulted in very dense coatings. In work by Kumar et al. the

porosity of as-sprayed tantalum with compressed air was less than 0.3%, while coatings that had a

post-spraying heat treatment for 2 hours at 500'C resulted in less than 0.2% porosity and heat

treatments at 750'C and above resulted in less than 0.1% porosity [34]. Work by Texler et al.

optimized process inputs to spray tantalum coatings. The optimized coatings with nitrogen gas had

comparable coating quality to coatings created by more expensive helium gas. Coating densities

and tensile strengths were very comparable between the coatings created from the two gases [35].

Corrosion Properties of Tantalum Coatings

Corrosion studies on cold sprayed tantalum coatings have also been performed. Koivuluoto

et al. compared on older cold spray system to a new model which allowed higher input pressures

and temperatures to see the difference in the corrosion properties of the coatings from the two

systems. The older system used a temperature of 530'C and a pressure of 32 bar while the newer

system used 800'C and 38 bar. Koivuluoto et al. also used a finer particle size with the newer

spraying system (-30+10 Vim compared to -38+10 pm). Open-cell potential measurements were

taken and the coating created from the older system had a potential close to that of the substrate,

while the coating from the newer system had a potential close to that of bulk tantalum [36]. This

result suggests that the coating created from the older system had through porosity to the substrate

while the coating from the new system did not have through porosity from the surface to the

substrate. A salt spray fog test was also done on the newer system coating and no changes were

seen on the surface suggesting that the coating was dense [36]. Koivuluoto et al. also performed

polarization corrosion tests in a 3.5 wt% NaCl and 40 wt.% H2SO4 solution. The results showed

that the newer system coating and bulk tantalum had corrosion current densities very similar to

each other in both solutions while the coating created from the older system had a much higher

corrosion current density [36].
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In another piece of work, Kumar et al. conducted a polarization test in a 1 M KOH solution

for bulk tantalum, an as-sprayed tantalum coating, and tantalum coatings heat treated at 500, 750,

1000, 1250, and 1500'C. This paper showed that as the heat treatment temperature increased, the

corrosion current density decreased from 7.184 pA/cm 2 to 0.703 pA/cm 2, approaching the

corrosion current density of bulk tantalum which is 0.528 pA/cm2 [34]. Therefore, higher heat

treatments helped improve the corrosion properties of cold sprayed tantalum. A table of the cold

spray parameters used for tantalum coatings can be seen in Table 3.

34



Table 3. Process inputs and coating properties of cold sprayed tantalum.

Cold Sprayed Tantalum from the Literature

Powder Particle diameter:
shape I avg. or ranges (gm)

Gas Standoff Traverse Deposition
pressure distance speed thickness Porosity

(bar) (mm) (mm/s) (pm) Post-processing steps (%)

32 470

38 450 -

15 10 800

- < 0.3

Vacuum heat treated <0.2

at 500*C for 2 hr.

Vacuum heat treated <0.1
at 750*C for 2 hr.

Vacuum heat treated < 0.1
at 1000*C for 2 hr.

Vacuum heat treated <0.1
at 1250"C for 2 hr.

Vacuum heat treated
at 15000C for 2 hr.

< 0.1

Author Powder

Ta angular
Koivuluoto
et al. [36]

Kumar et

at. [34]

wr'

-38+10

-30 + 10

15-45

Substrate

carbon
steel: Fe52

steel

Gas
temperature

(C)

530

800

450

Gas

N2

AirTa I sponge 20

T.el et5 Ta angular < 40 aluinum ]e annealed

He annealed



2.2.4 Hydroxyapatite Coatings

Density of Hydroxyapatite Coatings

Hydroxyapatite is a very common material used on the surfaces of dental and orthopedic

implants to promote osseointegration. Plasma spray is the most commonly used process to deposit

HA. However, the high temperatures of this process can cause the HA to change into other calcium

phosphate phases. Therefore, depositing HA with the cold spray process could eliminate this

problem since it uses much lower temperatures. Cold spray systems using room temperature

compressed air and preheated substrates have resulted in dense HA coating between 10 gm and 50

pm thick [37], [38]. A fractional factorial experimental design was created by Hasniyati et al. to

optimize cold sprayed HA. From those experiments, the standoff distance, surface roughness, and

substrate heating temperature were found to be significant factors for the thickness, nanohardness,

and elastic modulus of the coatings [37].

Bioactivity of Hydroxyapatite Coatings

In work done by Noorakma et al., a magnesium alloy was cold sprayed with a

hydroxyapatite coating and tests were run in simulated body fluid (SBF). The average thickness

of the HA coatings were 25 pm. Parts were placed in SBF for 14 days and the solution pH was

monitored. Coatings were checked at day 0, 1, 4, 10, and 14. At day 10, HA coatings showed

apatite formation and continued apatite formation through day 14 [38]. This coated magnesium

alloy proved to be both biodegradable and bioactive, two good qualities that are needed in many

medical applications. A table of the cold spray parameters used for hydroxyapetite coatings can be

seen in Table 4.

36



Table 4. Process inputs and coating properties of cold sprayed hydroxyapatite.
...... ..... ..... ...... ..... ..... ..... ..... ..... ..... ..... ...... ..... ..... ...... ..... ..... ..... ...... ..... ..... ..... ...... ..... ..... ...... ..... ..................................................... ............... .................. ... ........... ..... ........... . ....,.... ... ........ ..... ..... ...... ..... ..... ...... ..... .. ... ..... ...... ..... ..... ..--+

Cold Spraye Hydroxyapetite from the Literature
Average Substrate Substrate surface Gas Gas Standoff

particle preheated roughness (grit of temperature pressure distance Deposition

Author Powder diameter (pm) Substrate Gas temperature (*C) sandpaper) (C) (bar) (mm) thickness (pm)

55 0040 21.96

350 200 20 18.73

350 2000 20 18.19

350 2000 40 13.03

550 240 40 23.56

550 240. 40 24.43

550 2000 40 21.84

Hasniyati 350 240 40 20.31

NHramamagnesium Ai.oo

et al. [37 Air 550 2000 room temp 10 20 32.63

350 2000 40 17.48

550 240 20 49.77

350 240 40 21.48

550 240 20 39.08

350 240 20 35.09

350 240 2 89

550 2000 20__ 25.58___

N oa m HA4magnesium Air 400 1000 room te p 1402

et al. [381 lo:A5

W



2.2.5 UHMWPE Coatings

Cold spray systems have also been used to deposit the biocompatible polymer UHMWPE.

Work done by Ravi et al. showed that UHMWPE coatings, from 60 Im particles, could be

deposited with coating thicknesses of 3 mm and 1 mm for aluminum and polypropylene substrates,

respectively. When trying to spray with a converging-diverging nozzle followed by a 100 mm

diverging nozzle, UHMWPE coatings could not be created. However, after adding on a second

diverging nozzle to the end of the first, it created a discontinuity of the stream between the two

nozzles, therefore allowing the gas particles to decelerate and increase the temperature of the

stream. This addition of the second diverging nozzle allowed for thermal softening of the particles

which would help increase the particles' plastic deformation upon impact. This setup resulted in a

monolayer being formed on the aluminum substrate but caused erosion on the polypropylene

substrate. In order to improve the coatings, Ravi et al. added 4% nano-alumina to the feedstock

[39]. This nano-alumina could then bind to the surface of the UHMWPE particles and increase the

UHMWPE-UHMWPE particle bonding. With this mixture, 3-4 mm thick coatings were deposited

on aluminum when the input temperature was 350'C and the input pressure was between 3 bar and

4 bar. With the polypropylene substrate, 1 mm thick coatings were achieved when the input

temperature was 170'C and the input pressure was between 3 bar and 4 bar. Additionally, the

UHMWPE coating on the aluminum substrate showed signs of delamination so the coating was

heated at 200'C for 10 minutes to improve the bond. The deposited and rebounded particles were

also analyzed with differential scanning calorimetry. The particles in the coating showed signs of

melting and recrystallizing while the particles that were rebounded did not melt during the cold

spray process. This melting may be essential to the deposition of the UHMWPE particles onto the

substrate. Table 5 includes the cold spray process parameters used to create the UHMWPE

coatings.

2.2.6 TiO 2 Coatings

Some less conventional cold spray feedstock powders, such as TiO2 have been researched

for medical applications as well. Kliemann et al. cold sprayed TiO2 onto four different substrates:

pure titanium, stainless steel, copper, and aluminum. All coatings of TiO 2 were minimal and
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deposition efficiencies were less than 6% [40]. TiO2 coatings could only be produced on the most

ductile of substrates, and even then, the particles of TiO2 on the substrate were crushed.

Additionally, the coating could not build up past a first initial layer, because new ceramic particles

bounced off the thin, non-ductile ceramic coating already present on the substrate. Table 5 includes

the process inputs used for the TiO2 coatings.
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Table 5. Process inputs and coating properties of cold sprayed UHMWPE and TiO 2.

Cold Sprayed UHMWPE and TiO2 from the Literature
Particle Gas Gas Standoff Traverse Deposition Post-

Powder diameter: avg. Accelerating temperature pressure distance speed thickness Deposition processing
Author Powder shape or ranges (pm) Substrate gas (C) (bar) (mm) (mm/s) (pm) efficiency (%) steps

aluminum 45 -

UHMWPE UHMWPE: 60 350-380 No coating.
irregular polypropylene Errosion of -

Ravi et al. Air3_t_4__20___urfce

(39] 96% UHMWPE: A000t Heat treated
UHMWPE irregular, UHMWPE: 60, aluminum 350 4000 - at 200'C for

+ 4% nano- nano- alumina: - 10 min.

alumina alumina: - polypropylene 170 1000 -

titanium - >5 on first pass

stainless 
- -5 on first passKliemann TiO2 spherical 3 to 50 steel: AISI 304 N2 800 40 60 320 -

et al. [40] copper - >3 on first pass

aluminum - >2 on first pass
alloy: AIMg3 I > o f pass
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2.2.7 Cold Sprayed Biocompatible Materials Conclusion

Several different biocompatible coatings have been created with the cold spray process.

Dense coatings of stainless steel, titanium, tantalum, HA, and UHMWPE have been accomplished.

Furthermore, research on cold sprayed metals showed that post-spray heat treatments can decrease

coating porosity. In general, coating porosity decreased and coating thickness increased with an

increase in input gas temperature and pressure. However, high pressures without a significant

amount of heat can cause erosion of the substrate. Additionally, lower porosity coatings could be

achieved when the powder had smaller particle sizes. Very porous coatings of titanium were also

accomplished through several methods, some of which included secondary materials in the powder

feedstock that were removed after the cold spray process. Although successful coatings have been

accomplished for some biomaterials, good quality TiO 2 coatings have not been accomplished due

to the material's low ductility and brittle nature. Corrosion properties tended to improve with

increased coating thickness, reduced porosity, and improved metallurgic bonds. For highly dense

coatings with strong metallurgic bonds, corrosion properties are similar to bulk material.

Bioactivity and cytotoxicity tests have also been performed on titanium coatings and

titanium coatings with HA. The results showed that the titanium coatings with HA had significant

Ca2+ mineralization and did not appear to be toxic to the cells. Pure HA coatings have also been

tested in SBF and showed good bioactive properties.

2.3 Mechanical Properties of Cold Sprayed Biocompatible Materials

Many cold sprayed biocompatible materials have also had different tests conducted on

them in order to document the mechanical properties of the coatings. The types of mechanical tests

are wide ranging: adhesion and cohesion strength tests, three-point bending tests, compression

strength tests, lug shear tests, fatigue tests, hardness tests, tensile strength tests, and abrasion tests.

The following section is a review of the mechanical properties found for biocompatible coatings

created by the cold spray process. The mechanical properties of dense coatings are compared to

that of bulk material and porous coatings are compared to that of bulk material as well as porous

coatings achieved through other thermal spray methods.
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2.3.1 Mechanical Properties of Stainless Steel Coatings

As was discussed earlier in section 2.2.1, Villa et al. varied cold spray process parameters

for 316L SS feedstock with nitrogen gas temperatures between 600'C and 800'C and pressures

between 20 bar and 40 bar. Hardness tests were conducted on the materials resulting from each

varied input. The tests were performed according to the ASTM E38 standard. Hardness values

ranged from 310 61 HV to 358 36 HV, depending on process parameters [22]. Also, Villa et

al. tested the hardness of the feedstock powder and found a hardness value of 180 45 HV. Bulk

medical grade 316L SS has a hardness value generally ranging from 170 HV to 220 HV [4]. The

tested powder was in this range but the coating had a much higher hardness value. The higher

hardness values seen in the coatings were probably due to work hardening of the material during

the cold spray process.

Sova et al. also measured high hardness in 316L SS cold sprayed coatings which would

indicate work hardening. The smallest particle size distribution resulted in -290 HV and the largest

particle size distribution resulted in -330 HV [20]. A laser post-treatment was also conducted on

the coarse particle coating. The laser treated area had a reduced hardness of -170 HV [20]. Sova

et al. also tested the adhesion strength of these coatings to their aluminum substrates and found for

all coatings the adhesion strength was between 80 MPa and 85 MPa [20].

Further work by Villa et al. analyzed the wear resistance of a cold sprayed 316L SS coating

and found a wear rate of 0.9*10-4 mm 3/Nm, which was a similar wear rate to coatings obtained

through the high-velocity oxy-fuel (HVOF) process, with values ranging from 1.15*10-4 mm 3/Nm

to 1.60*10-4 mm 3/Nm [41].

As mentioned earlier, AL-Mangour et al. (2014) conducted heat treatments on cold sprayed

coatings and saw a reduction in coating porosity. Additionally, how the heat treatments affected

the mechanical properties of the coatings was analyzed as well. These properties were analyzed

for nitrogen and helium process gas. The results showed that the as-sprayed coatings resulted in

hardness values of 393 14 HV and 452 16 HV for the nitrogen gas and helium gas, respectively

[19]. The hardness of the coatings were much higher than the hardness of the as-received powder

and that of bulk material. Again, this would suggest a work hardening effect on the particles from

the cold spray process. The coatings showed an increase in hardness after annealing at 400'C and
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a decrease in hardness after annealing at temperatures 700'C and above. Annealing at 1 100 C

lowered the coating hardness for both nitrogen and helium gas coatings to a value close to that of

the as-received powder (185 15 HV) [19]. The nitrogen coating annealed at 1 100 C resulted in

a hardness values of -175 HV, while the helium coating annealed at 1 100'C resulted in a hardness

value of -195 HV [19]. Other work by Sundararajan et al. found that heat treatments between 400

'C and 1 100'C consistently decreased the hardness of their coatings and substantially increased

the elastic modulus. As sprayed specimens had an elastic modulus of 98.43 GPa while heat treated

specimens at 1100 'C had an elastic modulus of 164.42 GPa [21].

AL-Mangour et al. (2014) also tested the tensile strength of their coatings, following the

ASTM E8 standard with rectangular specimens. AL-Mangour et al. (2014) conducted two tensile

tests for as-sprayed nitrogen samples and nitrogen samples annealed at 400, 800, 1000, and 1 100'C

and only one sample was tensile tested for the as-sprayed helium and helium samples annealed at

1000, and 1100'C. The tensile strength of the as-sprayed helium coating, 230 MPa, was

approximately twice that of the as-sprayed nitrogen coating at 113 5 MPa [19]. Annealing of the

nitrogen coatings at 800'C and above caused an increase in the tensile strength with a maximum

strength of 571 50 MPa after a heat treatment at 1000'C [19]. However, annealing of the helium

coating at 1000 C or 1 100 C showed no increase in the tensile strength of the coating, possibly

due to the formation of small pore defects along the boundaries of the interconnected particles

after annealing. For both coatings, the annealing process generally increased the ductility of the

coatings [19]. AL-Mangour et al. (2014) also tensile tested bulk 316L SS and found a tensile

strength of 1048 6 MPa and it had an elongation of 91 11%. According to the ASM Medical

Materials Database, bulk 316L SS for medical applications generally has a tensile strength of 341

MPa to 1007 MPa and an elongation of 22.3 to 57.7% [4]. Therefore, the tensile strengths from

the as-sprayed coatings were well below the value seen in bulk material. However, the nitrogen

coating annealed at 1000'C led to a tensile strength of 571 50 MPa and an elongation of 14.2

1.1% which was a major improvement from the as-sprayed coatings. This tensile strength is also

much closer to the bulk material in the experiment and the tensile strength is within the range listed

for 316L SS in the ASM Medical Materials Database although the ductility was still limited.

As was discussed earlier, other work by AL-Mangour e-t al. (2013) created thick coatings

from 316L SS feedstock with an added chromium alloy, L605, to improve the strength of the
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coating. Hardness values for these coatings included 432.8 HV, 440.3 HV, and 301 HV for 25%,

33%, and 50% L605 feedstock powder, respectively [17]. Additionally, tensile tests were

conducted with the ASTM E8 standard on the 25% and 33% L605 feedstock coatings. The tensile

strengths were -150 MPa and -180 MPa for the as-sprayed 25% and 33% L605 feedstock coatings,

respectively [17]. Annealing at 400, 800, 1000, and 1100*C continually increased the tensile

strength and ductility of the coatings. The 33% L605 coating reached a maximum tensile strength

of 685 MPa and a ductility of -19% after being annealed at 11000 C [17]. The mechanical

properties of cold sprayed 316L SS can be seen in Table 6.
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Table 6. Mechanical properties of cold sprayed 316L SS.
Cold Soraved 316L SS from the Literature

Mechanical Elongation Tensile Adhesion Other
Author Powder Substrate Post-processing steps strength test N% Elastic Modulus (GPa) strength (MPa) strength (MPa) mechanical tests Other mechanical test results

_____ -_ 31.L SS + .5 - -13 0 432.81 HV
2S% L605 Heat treated at 400 "C for 1 hr. -5 - 9150 -

chromium Heat treated at 800 "C for 1 hr. . 8 - 4'500
alyHeat treated at 1000 'C for I hr. "'13 - "'610 _______ _____________

Heat treated at 1100 'C for 1 hr. "'19. - -'660 - ~190 HV

666%3115 _________________-"3 . " "180 _______ 440.3 HV
6a6.d% 1605 Heat treated at 400 'C for 1 hr. '2 - "200 - Vickers _

AL-Mangour et Heat treated at 800 'C for 1 hr. 22.4 E -. - 4'450 - m.crohardness

al. (2013) [17] chrom3w-m~4tandardH

alcoy Heat treated at 1000 'Cfor 1 hr. s1 1 640 test
Heat treated at 1100 'C for 1 hr. -19 -685 - 4 HV

50% 316L155 + ________301____

50% L605 Heat treated at 400 "C for 1 hr. - -"-____________

chromium Heat treated at 800 'C for 1 hr. - - - -

Heat treated at 1000 "C for 1 hr. - - 2 - ~235 HV

Heat treated at 1100 "C for 1 hr. 12.8_- _ 23_ _-_ ~195_HV

-1.30.1 113 5 393 14HV
Heat treated at 400 'C for 1 hr. MTS 810 at 1 0.1 -91 9 - 425 MV
Heat treated at 800 'C for 1 hr. romtm. 3.7 1.0 .349 56 - 225 HV
i-Heat treated at 1000 Cfor1hr. 14.2 1.1 - Vickers HV

AL-Mangour et mid Heat treated at 1100 'C forl1hr. AT E8 22.7 3.6 "433 39 ickrs ""175 HV
al. (2014) [19] 31236 microhardness V5 16

Heat treated at 400 .C for 1 hr. f. - test 460 HV
rectangular

Heat treated at 800 -C for 1 hr. - - -260 MV
Heat treated at 1000 'C for 1hr. spcmn. 10.6 __________ 202 " 235 MV
Heat treated at 1100 "C for 1 hr. 12.8 .230 " 195 MV

- d n 338 44 V
Vickers 340 66HV

__e_.2_____m mmicrohardness 358 36 v; wear rate of
test. Abrasslve 353 36 MV

[M. Vil eta. 36 S--05T wear test 314 t58 HV

- -2- following the 333 57 V
_________________ _______________ ASTM G65-04 310 61 HV

mtstandard. --

82 "290 MV

___srtr__tmnt___n ___tng - -Coating - 80ing and 170 HV or th
adhesionVikr

-______________ tegh - -ic-ers

Soya et al. [20] 3161. SS aluminum steghmicrohardness "300 MV
test using - 80 ts

the pin -

method -"330 MV for normal area of
Laser treatment on coating - " 80 coating and "170 MV for the

85 laser treated section
Laser treatment on coating - - - 80

- Elastic - 98.43 - - Vicers 2.924 Gpa; 98.43 Gpa
Sundararajan 3161.5 mild steel Heat treated at 400 *C for 1 hr. modulus -104.89 - - 2.604 Gpa, 104.89 Gpa

et al. [21] Heat treated at 800 *C for 1 hr. from - 161.8 -e- 2.202 Gpa, 161.80 Gpa
test 2.202 Gpa, 161.80 Cpa

________________H eat treated at 1100 'C for 1 hr. nanoindent - 164..42 -______ - ________ 2.114 Gpa, 164.42 Gpa

4:nh



2.3.2 Mechanical Properties of Titanium Coatings

Dense as well as very porous coatings of titanium have been created with the cold spray

process. In work by Choudhuri et al., the strength of multiple titanium coatings were tested with a

pull-off adhesion/cohesion test. The coatings tested included coatings from spherical titanium

feedstock, sponge titanium feedstock, and coatings with a mixed feedstock of sponge titanium and

HA. The cohesion strength for spherical titanium coatings were 15.3 MPa and 47.4 MPa for

transverse speeds of 400 mm/s and 100 mm/s respectively [33]. For the sponge titanium coatings,

failure of the tests were within the epoxy, suggesting that the adhesion and cohesion strength of

the coating was greater than that of the epoxy that had a strength of -65 MPa [33]. The spherical

titanium cohesion strength was well below the tensile strength of bulk titanium which ranges from

240 MPa to 670 MPa [4], [42]. Since the sponge titanium coating adhesion test failed in the epoxy,

its tensile strength could not be determined. However, the tensile strength must be greater than 65

MPa. The coatings of sponge titanium with hydroxyapatite failed in cohesion as well at 24.45 MPa

and 18.2 MPa for 20% and 50% hydroxyapatite in the powder feedstock, respectively [33].

Choudhuri et al. also mentions that these adhesion/cohesion strengths of the coatings are

comparable or better than results given in the literature for plasma sprayed HA coatings at -10-15

MPa.

Wong et al. also looked at mechanical properties of dense titanium coatings. These coatings

were sprayed with both helium and nitrogen. Hardness measurements were similar for coatings

created from helium and nitrogen gas. The hardness measurements ranged from 161 HV to 218

HV on these coatings [27]. Also, this research showed consistently higher hardness values near

the substrate and lower hardness values near the surface of the coating. A similar trend in hardness

for as-sprayed titanium coatings was seen in work by Zhou et al. In that work, the hardness at the

surface was 172 22 HV while the hardness near the substrate was 221 18 HV [32]. This trend

in hardness can be attributed to the coating being denser near the substrate and more porous near

the surface. The denser coating is created near the substrate due to more deformation in the

particles. These particles are deformed when they deposit and then they are deformed again by

other particles impacting on them. The particles near the surface of the coating however are only

deformed when they deposit since no following particles impact on them. This added deformation

in the particles near the substrate causes this section of the coating to be harder. In both the work
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by Wong et al. and the work by Zhou et al., the resulting hardness values are below that of two

recorded hardness values of bulk material, 264 14 HV [9] and 200.26 5.43 HV [10]. This is

contradictory to what has been found in other cold spray research. Other research has shown work

hardening of the particles during the deposition process [19], [22], [34], [35]. Zhou et al.

contributed the observed lower hardness to the sponge titanium powder that was used. However,

this same theory would not be able to be applied to the work done by Wong et al. since spherical

particles were used. Wong et al. did notice that the particles and substrate that experienced the

highest temperature led to the lowest hardness value. This could be due to thermal effects that

softened the coating. [29]. Additionally, Zhou et al. annealed the coatings in their research which

caused an increase in the hardness, the opposite of what is usually seen after annealing cold sprayed

coatings. Again, Zhou et al. attributes this to a more homogenous coating being formed and

removing the defects seen in sponge titanium. This may be further supported by other research by

Zahiri et al. which found that hardness values increased with lower porosity in the cold sprayed

material. In the work by Zahiri et al., a large range of hardness values were obtained depending on

the coating porosity. When the porosity was low enough, it resulted in hardness values greater than

that seen in bulk material, again suggesting a work hardening effect from the cold spray process.

When the least porous coating (less than 0.5%) was heat treated, this did result in a decrease in the

coating hardness to a hardness value close to annealed grade 2 CP titanium [29].

In another piece of work, Cizek et al. cold sprayed Ti-6A1-4V substrates with pure titanium

and then fatigue tested the specimens. The cold sprayed specimens had a shorter fatigue life

compared to plasma sprayed, grit blasted, and as received Ti-6A1-4V substrates. Cizek et al.

mentions that this short fatigue life may be due to the direction that the cracks formed and

propagated (orthogonal to the coating surface). Additionally, Cizek at al. calculated the elastic

modulus from the resonance frequencies from the fatigue experiments. The cold sprayed coating

had an elastic modulus of 31.2 GPa, which Cizek et al. mentions is 31.6% of the elastic modulus

of bulk titanium which is 116 GPa [16]. This value for bulk titanium that Cizek et al. uses is close

to that found in the ASM Medical Materials Database which has the elastic modulus ranging from

99 to 111 GPa [4]. Therefore, the as-sprayed coating had an elastic modulus significantly lower

than that of bulk titanium.
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As described earlier, Sun et al. created very porous coatings of titanium by spraying

titanium with magnesium and then later removing the magnesium through a sintering process. Sun

et al. tested this 48.6% porous coating with an adhesion and cohesion test following the ASTM

C633 standard and failure occurred at 42 MPa. Most of the failure occurred in the epoxy which

indicated that both the cohesion and adhesion strength were greater than 42 MPa [24]. This

adhesion strength is greater than the adhesion strength achieved for porous titanium coatings

created from plasma spray which failed at <10 MPa [44].

Sun et al. also conducted a three-point bending test and a compression test on the coatings.

The resulting bending modulus was 14.47 1.21 GPa and the bending strength was 106.93 10.79

MPa [24]. The compressive modulus and compressive yield strength were 3.99 0.12 GPa and

178.66 13.20 MPa, respectively [24]. Sun et al. mentions that bulk titanium implants have a

bending and compressive modulus around 105 GPa, which is much higher than what was seen in

these coatings. However, Sun et al. mentions that the lower modulus and strength values could be

beneficial for orthopedic implants. Many orthopedic implants that are placed in bones have high

modulus values which causes them to take a significant amount of the load placed on the bone.

This causes the bone around the implant to experience less stress. This absence of stress in the

bone causes the bone to become less dense and weaker. Therefore, this porous material that Sun

et al. created could allow for better bone ingrowth because of the porous nature and the lower

modulus of the material would help avoid significant stress shielding in the bone.

The other research conducted by Qui et al. also created porous titanium coatings. Qui et al.

cold spraying 50% titanium, 40% aluminum, and 10% HA for two different HA particles. Qui et

al. then removed the aluminum with alkaline leaching and the coatings were then annealed at

800'C for 16 hours. Lug shear tests resulted in a shear strength of 20 MPa for the coatings, which

was half of the shear strength that the coatings had before the removal of the aluminum [25]. Since

this was a very porous coating, the shear strength was expected to be well below the bulk titanium

shear strength of 290 MPa [4]. A table of the cold sprayed titanium materials and their mechanical

properties can be seen in Table 7.
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Table 7. Mechanical properties of cold sprayed titanium.

Cold SprayedTitanium from the Literature
Elastic Yield Tensile

Mechanical strength Modulus strength strength
Author Powder Substrate Post-processing steps test (G Pa) (Mpa) (MPa) Other mechanical tests Other mechanical test results

Ti -- 15.3-

C: o dhuri Pull-of adeso 47.4u
et al. [33] 80% Tj + 20% H A TI and Al bond test

Ti - - >65-
80% Ti + 20% HA 24.4
50% Ti + 50% H A - - 18.2

Elastic modulus Fatigue test. Result is

Cizek et al. Ti Ti-6AI-4V -calculated from 36.7 - - listed as life cycles 0.91
[16] resonance frequency compared to as-

of material received substrate.

50% Ti+ 50% Al Al removed by alkaline leaching.--

Qiu et al. -50% Ti + 45% Al + 5% H A (15 pm) annrea..l:: Vacuum heat treatment at 1200'C- - -

[2] 50% Ti + 40% Al + 10% HA (15 pm) grade 2 CP-Ti Al removed by alkaline leaching. - Lug shear test 20 MPa
50% Ti + 45% Al + 5% HA (25 m) Vacuum heat treatment at 800'C for -

50% Ti + 40% Al + 10% HA (25 pm) 16 hr, 18 MPa
Bending Young's modulus:

14.478.21 Gpa; bending

Sun et al. Vacuum sintering at 1250'C for 1 hr. Adhesion/cohesion Three-point bending strength: 106.93 10.79 Mpa.

r25% Ti + 75% Mg Ti Mg completely removed by test according to - - 42 t. Compressive Young's

[2] evaporation. AST-C633 tmodulus: 3.99 0.12 GPa;
compressive yield

strength: 178.66 13.20 Mpa.

- - Top=190 HV; Bottom=192 H V

Top=187 HV; Bottom=188 HV

To=88 HV oto=9 HV

Whoug et al. mlcabnVickers mlcrohardness Botm 21 1

W (.,] TI .el test- I'amni a Top=205 HV; Bottom=218 HV
test Top=188 HV; Bottom=198 HV

- --207 HV

- --161 HV

Top=189; Bottom=206 HV
- -- 150 HV

- -140 HV

Zahiri et al. - -- - -Vickers microhardness 15H

[29] Ti aluminum - -- test 100 HV

- --300 HV

Heat treatment at 450'C for 30 min. - - -230 HV

Top: 172:t 22 HV

- - . -Middle: 207 1 30

Zhou et al. TwruhTiVickers microhardness Bottom: 2211i18

[32] Tea wreughd Tt80Ci Agnwt test Top: 258 t 68 HV
Heattretedat 50" in rgo wih - - -Middle: 251 89

5% hydrogen for 5 hr, Bottom: 210 30



2.3.3 Mechanical Properties of Tantalum Coatings

Cold sprayed tantalum coatings tend to be very dense with low porosity. Trexler et al.

created coatings with hardness values in the range of 238 HV and 245 HV before annealing, and

225 HV and 226 HV after annealing (hardness units given in the paper were converted from HRC

to HV). The average hardness of bulk tantalum ranges from 65.1 HV to 235 HV [4]. Therefore,

the as-sprayed coatings created by Trexler et al. are near the higher end of hardness values seen in

bulk tantalum. This could possibly indicate work hardening during the cold spray process, which

has been observed in other studies. Additionally, Trexler et al. performed tensile tests according

to the ASTM E8 standard. Coatings created with nitrogen as the carrier gas used rectangular cross

sections, while coatings created with helium used round cross sections for the tensile test. As-

sprayed coatings resulted in tensile strengths of 7.7 MPa and 13.3 MPa for the nitrogen and helium

gases, respectively [35]. After the annealing process, the tensile strengths of the coatings were 10.8

MPa and 10.9 MPa and the elongation values were 42% and 35% for the nitrogen and helium gas,

respectively [35]. This was a significant increase in the ductility compared to less than 1% ductility

seen in the as-sprayed coatings. Although Trexler et al. proved that very comparable coatings of

tantalum could be created with nitrogen and helium gas, the tensile strength of both coatings were

much lower than the tensile strength of bulk tantalum that ranges from 170 MPa to 650 MPa [42].

Research by Kumar et al. was able to accomplish significantly higher tensile strengths for

tantalum. Kumar et al. used air as the process gas and the as-sprayed coating had a tensile strength

of 48.49 MPa and with a 15000 C heat treatment, the tensile strength increased to 320 MPa [34].

The as-sprayed coating by Kumar et al. was much stronger than what was seen by Trexler et al.

Additionally, after the annealing processes, the tensile strength of the coating was increased to a

value similar to what is seen in bulk tantalum. Kumar et al. also measured the elastic moduli of the

coatings from nanoindentation measurements. As the temperature of the heat treatment increased,

not only did the tensile strength increase, but the elastic modulus generally increased as well. The

as-sprayed coating had an elastic modulus of -100 GPa while the coating heat treated at 1500'C

resulted in an elastic modulus of ~125 GPa [34]. Although the elastic modulus increased with the

heat treatment, the value was still below that seen in bulk titanium which ranges from 180 GPa to

188 GPa [4].
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Also, Kumar et al. showed that increasing the annealing temperature decreased the

hardness of the coatings. As-sprayed, the coating hardness was -375 HV and after annealing at

1500'C the hardness was -200 HV [34]. Again, these high hardness values seen from cold spray

suggest work hardening during the coating process. The heat treatments reduced the hardness of

the coatings and brought the hardness value within the range seen in bulk tantalum, 65.1 HV to

235 HV [4]. A scratch test was also conducted on these coatings to find the critical load before

debonding occurred. The critical load increased with the temperature of the annealing treatment.

The as-sprayed coating had -4 N critical load, and the coating treated at 1500'C had a critical load

of -31 N [34]. A table of cold sprayed tantalum coatings and their mechanical properties can be

seen in Table 8.
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Table 8. Mechanical properties of cold sprayed tantalum.

Cold Sprayed Tantalum from the Literature

Post-processing Mechanical strength Elongation Elastic Tensile Other Other mechanical
Author Powder Substrate Gas steps test (%) Modulus (GPa) strength (MPa) mechanical tests test results

-- 100 48.49 -375 H V0.1; ~4N

Vacuum heat

treated at - 115 -- 350 HV;~-8N
500*C for 2 hr.

Vacuum heat

treated at Elastic modulus 120 Vickers 325 HV; 9N
Kumar 750C for 2 hr. from nanoindenter. microhardness
et al. Ta steel Air Vacuum heat m icronente - ---- --- -8 -
[34] treated at 3-kN microtensile140 test. Scratch

1000'C for 2 hr. testing machine; test.
Vacuum heat

treated at - 125 - -300 HV; -10N
1250*C for 2 hr.

Vacuum heat

treated at - ~125 320 -200 HV;-31N
1500'C for 2 hr.

ASTM E8-04 for
N2 - rectangular 0.285 - 7.7 19.85 HR C

specimens
ASTM Standard E8-04

Trexler He - for round axial 0.296 - 13.3 Rockwell C 21.3 HRC

et al. Ta aluminum Aspecimens hardness
[35] ASME-4frmeasurement

N2 annealed rectangular 42 - 10.8 14.18 HRC
specimens

ASTM Standard E8-04
He annealed for round axial 35 - 10.9 14.9 HRC

specimens

U,
Nj



2.3.4 Mechanical Properties of Hydroxyapatite Coatings

Dense hydroxyapatite coatings have been created on magnesium substrates with the cold

spray process. Two different pieces of literature have documented elastic modulus and hardness

values for hydroxyapatite coatings on magnesium [37], [38]. The research from both of these

papers had similar input parameters, such as room temperature compressed air with preheated

magnesium substrates.

In one of these papers, Noorakma et al. achieved 25 pm thick hydroxyapatite coatings. The

elastic modulus and hardness of the coating was determined from a nanoindentation test. From

these tests, Noorakma et al. found an elastic modulus of 9 GPa and hardness of 90 MPa [38].

Similar values were found in research done by Hasniyati et al. from nanoindentation tests on

hydroxyapatite coatings with different process inputs. Elastic modulus values ranged from 9.09

GPa to 45.69 GPa and the hardness ranged from 35.01 MPa to 462.61 MPa. Bulk hydroxyapatite

has an elastic modulus between 73 GPa to 117 GPa and a hardness value around 3.43 GPa [4].

Therefore, the coatings in these papers had elastic moduli well below that of bulk hydroxyapatite.

Moreover, the hardness values of the coatings appeared to be significantly lower than that of bulk

hydroxyapatite. This lower hardness is the opposite of what is usually found will metal coatings

from the cold spray process.

Hasniyati et al. used the steepest ascent method from a DOE to determine the input

parameters needed to create the best hydroxyapatite coating. The input parameters that were

manipulated were the surface roughness, standoff distance, substrate temperature, and number of

coating layers. The output parameters that were recorded for the coatings were the thickness of the

coating, elastic modulus, and hardness. After analysis, Hasniyati et al. found that the number of

coating layers was an insignificant factor on the resulting mechanical properties, however all other

inputs were found to be significant [37]. For the tested range of inputs, it was found that a decrease

in standoff distance, and an increase in both temperature and roughness (decrease in sandpaper grit

number) resulted in coatings with higher hardness and elastic modulus values [37]. A table of cold

sprayed hydroxyapatite coatings and their mechanical properties can be seen in Table 9.
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Table 9. Mechanical properties of cold sprayed hydroxyapatite.

Cold Sprayed Hydroxyapetite from the Literature

Substrate Substrate surface Standoff Deposition Elastic Other
preheated roughness (grit of distance thickness Mechanical Modulus Other mechanical

Author Powder Substrate temperature (0C) sandpaper) (mm) (pm) strength test (GPa) mechanical tests test results
550 2000 40 21.96 13.96 69.49 Mpa
350 2000 20 18.73 16.81 47.58 MPa
350 2000 20 18.19 15.26 39.12 MPa
350 2000 40 13.03 9.09 36.82 MPa
550 240 40 23.56 23.46 156.87 MPa
550 240 40 24.43 19.3 73.6 MPa
550 2000 40 21.84 Elastic 14.7 Nanoinentation 67.72 MPa

Hasniyati . 350 240 40 20.31 modulus 13.8 67.23 MPa
et al. [37] HA magnesium 550 2000 20 32.63 from 30.73 ts meas 197.65 MPa

350 2000 40 17.48 nanoindenter 11.08 35.01 Ma
550 240 20 49.77 45.69 462.61 MPa
350 240 40 21.48 16.32 65.61 MPa
550 240 20 39.08 43.06 429.02 MPa
350 240 20 35.09 33.26 255.92 MPa
350 240 20 38.97 36.33 323.71 Mpa
550 2000 20 25.58 23.46 156.87 Mpa

Elastic Nanoindentation
Noorakma HA agnesium 400 1000 40 25 modulus from 9 test to measure 0.09 GPa
et al. [38] alloy: AZ51 nanoindenter hardness
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2.3.5 Cold Sprayed Biocompatible Materials Mechanical Properties Conclusion

The cold spray process has been used with many biocompatible materials and some

research has looked at the mechanical properties of these coatings. Mechanical properties can

drastically change depending on the initial powder, the processing parameters, and post processing

steps. From the research, it can be generalized that cold sprayed coatings tend to have hardness

values greater than that of the bulk material, suggesting that the particles experience work

hardening during the cold spray process. However, in two pieces of work with titanium coatings,

the hardness of the coating was actually less than that of bulk material possibly due to the powder

properties or the thermal conditions of the process.

Additionally, the tensile strength and elastic modulus of as-sprayed coatings tend to be well

below that of the bulk materials. Moreover, the as-sprayed coatings tend to act in a brittle nature

with lower ductility than bulk material. However, high heat treatments around 800'C to 1500'C

on the coatings can decrease the hardness and porosity and drastically increase the tensile strength,

elastic modulus, and ductility of the coatings.
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3 Selection of Substrates and Powders for Cold Spray

Experiments

3.1 Substrate Material Selection

In order to test the applicability of the cold spray manufacturing process to coat ICs, the

test substrates needed to mimic the materials appearing in ICs as closely as possible. ICs are built

up layer by layer and a simplified version of one of Draper's ICs can be seen in Figure 11 (not

drawn to scale).

Figure 11. Simplified model of an IC cross-section.

ICs are very thin and the bottom layer is generally silicon and the top layer polyimide.

Therefore to coat completely around ICs, the cold spray process would need to deposit a coating

on both silicon and polyimide material. Hence, these two materials were chosen as substrates for

the experiments.

3.2 Cold Spray Powder Material Selection

Electronic implant packages have many requirements to be successful in the body. The

packages must be sealed, biocompatible, and must protect the underlying electronics from outside

forces. Many packages also need RF transparency to allow for communication to an outside source

57



or to allow for battery charging. All of these requirements were taken into account when choosing

what material should be used for the cold sprayed conformal packaging.

One of the most important aspects of electronic implant packages is biocompatibility. A

list of long-term biocompatible materials was created from the ASM Medical Materials database.

This list was then reduced to materials that have been previously cold sprayed in dense coatings.

Materials that have already been proven to be compatible with the cold spray manufacturing

process were chosen in order to reduce the time needed to optimize cold spray parameters for the

specific powder. From the literature, it was found that the long-term biocompatible materials that

have been successfully cold sprayed in dense coatings include 316L stainless steel (316L SS),

commercially pure (CP) titanium, grade 5 titanium (Ti-6A1-4V), tantalum, and UHMWPE [16]-

[21], [23], [27]-[29], [31]-[36], [39]. A description of these cold sprayed coating properties was

included in the previous chapter, Chapter 2: Cold Spray Process and Cold Sprayed Biocompatible

Materials.

From these possible coating materials, UHMWPE was chosen to test as a packaging

material in this research. UHWMPE was selected since the cost is significantly lower than the

other material options and it was the only material that was RF transparent. RF transparency would

allow for communication or charging of the electronic implant from a source external to the body.

UHMWPE is also non-conductive and is softer than metals, which are advantages of the material.

Since the material is non-conductive, it would be possible to spray all components of the IC

directly, even wires that will carry electricity, such as feedthrough pins. Also, since the UHMWPE

package would be a softer package material than metal, it could be placed in more sensitive tissue

areas.

UHMWPE has many advantages over metal packaging, however it has much lower

material strength compared to metals. For specific implants, strong packaging may be necessary

to protect the internal implant components from external forces and shocks. Moreover, UHMWPE

packages would be non-hermetic and therefore would only be a good choice for shorter term

implants. Metal packaging would be stronger and could result in fully hermetic seals. Therefore,

metal coating options were investigated as well. Of the long-term biocompatible metals that have

been successfully cold sprayed in the literature, tantalum is the softest. Since tantalum is such a

soft metal, cold sprayed tantalum is dense with very low porosity. However, the cost of tantalum

58



powder is substantially higher than that of titanium or stainless steel alloys. The high cost of the

tantalum powder makes it a poor choice for implant packaging. Therefore, the next softest metal,

CP titanium, was chosen since it was a less expensive option and sufficient data demonstrated

dense coatings.
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4 Preparation of Substrates and Creation of Fixture to

Hold Substrates

4.1 Substrate Preparation

Substrates of polyimide and silicon were prepared to be sprayed. Standard 100 mm

diameter single side polished silicon wafers were diced into four equal quarter-wafer pieces. The

non-polished side of the silicon wafers were used as the surface to be cold sprayed.

The polyimide layers in Draper ICs are created by spin-on polyimide. However, in this

research adhesive polyimide was used instead of spin-on polyimide since the adhesive version was

easier to obtain, inexpensive, and allowed for quicker substrate preparation. Five inch wide 1 mil

Kapton tape was acquired and used for these experiments. This tape included a 1 mil thick

polyimide layer on top of a 1.5 mil thick silicone adhesive layer. To create the substrate samples,

the Kapton tape was placed on top of the polished side of the silicon quarter-wafer pieces and the

excess tape around the substrate was cut away.

4.2 Design and Build of Fixture Device to Hold Substrates

Since the substrates were thin and brittle in nature, they needed to be held down securely

with a fixture. VRC had previous experience with brittle substrates and found that if air flow was

able to get under the substrates then this could cause them to flex upward and then break.

Therefore, a fixture device was designed to hold down the substrates while also allowing air to

flow away from the substrates.

The fixture device, shown in Figures 12-16, included a base plate and a mask and was

designed to hold 4 full wafers and 16 quarter wafer pieces. In order to prevent air flow under the

substrates, areas were machined into the base plate for the substrates to be placed in. The

compartments were designed so that when the substrates were placed in them, the substrates would

stick out higher than the top of the base plate to allow for the metal mask plate to make contact
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with the substrates and hold them firmly to the baseplate. The plain silicon wafers were the thinnest

samples chosen for testing, at 500 pm to 550 pm, so the indents in the holder were machined down

250 pm. This design allowed the substrates to be taller than the machined out component. The

SolidWorks model of the base plate can be seen in Figure 12. The base plate also had curved

sections machined down on the corners of the quarter wafer pieces and on both sides of the full

wafers. These areas were machined so the substrates could easily be removed from the base plate.

Additionally, the two curved cutouts on either side of the base plate are there so that bolts can hold

the base plate to the table. Lastly, six threaded holes were machined in the base plate so that screws

and nuts could be used to attach the mask plate on top.

13 in

21 in

Figure 12. Base plate to set wafer substrates in.

The mask plate was designed to hold down the delicate wafers on the base plate during the

cold spray process. In order to prevent the adherence of the mask to the substrates, the mask was

elevated and not in direct contact with the substrates near the mask cutouts. Moreover, 1.5 mm

deep vertical and horizonal rectangles were machined out of the bottom of the mask plate in order

to create paths where the air flow could escape during the cold spray process. The top and bottom

view of the mask plate can be seen in Figure 13.
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The SolidWorks assembly of the mask plate, base plate, and substrates is shown in Figure

14. This figure shows the normal assembly and also the assembly with the mask plate made

transparent to show how the mask plate geometry sits on the base plate and substrates.

A cross-section of the fixture assembly, through one of the quarter-wafer substrates pieces,

can be seen in Figure 15. To give a better perspective of the contact points between the mask plate

and the substrates, Figure 16 shows the cross-section viewed at an angle.

11 in -00

20.5 in

Figure 13. Mask plate component of fixture. On the left is the top view of the mask plate and on

the right is the bottom view of the mask plate.
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Figure 14. Assembly of fixture device to hold wafer substrates. On the left shows the full
assembly and on the right is the full assembly with the top mask plate made transparent.
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Figure 15. Cross-section of base plate, substrate, and mask assembly through one of the quarter
wafer substrate pieces.
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Figure 16. Angled image of cross-section in Figure 15.
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5 Experiments Cold Spraying UHMWPE onto

Substrates

5.1 Methods and Results for UHMWPE Coatings

Spherical UHMWPE powder, MIPELONTm XM-220, was obtained from Mitsui

Chemicals, Inc. (Rye Brook, New York, USA). This powder distribution contained 10% of

particles under 20 pm, 35% between 20 and 30 pm, 35% between 30 and 40 pm, and 20% greater

than 40 pm. The average particle size from the distribution was 30 Pm.

With the UHMWPE powder information, Ozan Ozdemir, a postdoctoral researcher at

Northeastern University, ran his Cold Spray Interactive computational fluid dynamics (CFD)

simulation. The simulation calculated the velocity of different sized particles upon impact and

compared it to the critical velocity of the particles. The ratio of the particle velocity to its critical

velocity is defined by the variable f. If T is greater than 1, then deposition is expected since the

particle velocity is greater than the critical velocity it needs to deposit. Additionally, higher 1q

values would be expected to lead to higher plastic deformation of the particles and improved

coating properties, such as lower porosity. An ideal 'q value would be at least 1.5 to obtain good

dense coatings. The calculations assume that the substrate material and the powder material are

the same. Therefore, these calculations work well when the substrate and powder are the same

material or when building up a coating on already deposited powder. However, it may not be an

accurate calculation to estimate when particles will adhere to substrates when the substrate is a

different material than the powder. With dissimilar materials, there is not enough data to generalize

when adhesion will occur, but qualitative predictions can be made. For example, if a calculation

resulted in an '9 value of 0.95 for homogenous materials, and the actual substrate is of a stronger

material than was in the simulation, the powder would be expected to deform more at impact,

resulting in a i value greater than 1. With an il value greater than 1, you would expect deposition.

This simulation was run for UHMWPE powder with different particle sizes and a range of

input temperatures and pressures. The maximum gas input temperature was set to 130'C since the

melting temperature of the UHMWPE powder was 136'C. Moreover, the maximum pressure input
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was chosen to match the upper end that the cold spray system could handle. The standoff distance

was kept constant at 25 mm and nitrogen was used as the process gas. The results of the simulation

can be seen in Table 10. The outputs in the table show that the i value increased with an increase

in input temperature, an increase in the particle size, and a decrease in pressure. Usually an increase

in the pressure will increase particle velocity, therefore increasing the i value. Yet in this scenario,

an increase in the pressure increased the bow shock at the surface. The bow shock decreases the

velocity of particles heading to the surface and affects smaller, less dense, particles the most. The

bow shock effect is common in cold spray when the standoff distance is short [45].

The results in Table 10 show that none of the i values were greater than 1. However, the

substrates (polyimide and silicon) have much higher tensile strength than UHMWPE, so it was

expected that this would increase the r values. Additionally, UHMWPE had been cold sprayed on

a polymer before, polypropylene, in other research with a low pressure cold spray system [39]. In

this research, with access to a higher pressure cold spray system, it would be expected to help with

the deposition of the material.
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Table 10. Eta (n) value outputs from CFD analysis for UHMWPE powder and 25 mm standoff. Powder particle sizes, temperature inputs,
and pressure inputs are varied. A larger r value generally means better powder deposition.

Particle size dependent rl upon impact
diameter 31(bar)

(urm) & 20 (C)

5 , 273
10 0.502
15 0.582
20 0.621
25 0.644
30 0.638
35 0.650
40 0.660
45 0.668
50 0.674
55 0.680
60 0.685
70 0.694
80 0.702
90 0.708

31(bar) 31(bar) 31(bar) 31(bar) 41(bar) 41(bar) 41(bar) 41(bar) 41(bar) 51(bar) 51(bar) 51(bar)
& 47.5 (C) & 75 (C) & 102.5 (C) & 130 (C) & 20 (C) & 47.5 (C) & 75 (C) & 102.5 (C) & 130 (C) & 20 (C) & 47.5 (C) & 75 (C)

51(bar) 51(bar) &
9. 1 n, c ri 1 1 n tr)

Legend: Color ranges from red to green as the value increases
._._....... __......

Values below the 50th percentile

50th percentile value

V/alues above the SOth percentile

C-)



An experimental design of input temperatures and pressures was created to test the

deposition of UHMWPE on the substrates. Using the results from the CFD simulation, higher

temperatures were chosen since it was clear that higher temperatures would result in a higher 11

value. The i value fluctuated less with pressure changes and therefore a wide range of pressure

inputs were chosen. For the initial experiments, nitrogen was used as the process gas, the standoff

distance was kept at 25 mm, the traverse speed at 250 mm/s, and 5 scans across the surface area

were completed. The temperature inputs ranged from 100*C to 130'C and the pressure ranged

from 30 bar to 50 bar. These substrates were sprayed and no significant buildup of the coating

was observed. Therefore, input parameters were varied to see if any build up could be observed.

The standoff distance was increased to reduce the bow shock effect and the traverse speed was

decreased to allow for more particles to impact on top of each other. Additionally, for some parts

the temperature was increased to soften the particles and the pressure was lowered to decrease the

bow shock effect. Even with the input changes, no coating buildup was observed. The process

inputs for these experiments can be seen in Table 11.

Table 11. Cold spray process inputs for first experiments with UHMWPE powder.

Substrate Temperature Pressure Stand off Trave rse
# Material (OC) (bar) Distance (mm) Speed (mm/s) # layers
1 Polyimide 100 30 25 250 5
2 Polyimide 100 50 25 250 5
3 Polyimide 115 40 25 250 5
4 Polyimide 130 30 25 250 5
5 Polyimide 130 50 25 250 5
6 Polyimide 120 20 100 Held -

7 Polyimide 140 20 100 100 5
8 Polyimide 140 50 100 Held -

9 Silicon 100 30 25 250 5
10 Silicon 100 50 25 250 5
11 Silicon 115 40 25 250 5
12 Silicon 140 20 100 100 5

None of the silicon substrates had any coating deposition nor was substrate erosion

observed. With the polyimide substrates, it was unclear whether the substrates had a thin coating
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of material on them or if the change in the surface appearance was due to erosion. Therefore, the

surfaces were analyzed under a scanning electron microscope (SEM). The substrate surfaces all

looked very similar for parts 1 through 5. The surface of substrate 5 is shown in Figure 17.

Additionally, the substrates where the traverse speed was reduced or the nozzle was held over the

substrate, similar surfaces were seen compared to parts 1 through 5 except that more erosion was

also observed. The surface of one of these substrates, substrate 6, is shown in Figure 18. From

these results for all the parts, it appeared that the particles were not reaching their critical velocity

since no deposition was found on the silicon substrates and only wear was observed on the

polyimide substrates. Moreover, the UHMWPE particles did not appear to have any significant

deformation.

Since no deposition was obtained, further experiments were conducted. The input

temperature was increased which would soften the particles and increase the particle velocity. The

pressure was kept at 30 bar and the standoff distance was placed at 50 mm since any closer standoff

distance was hard to keep without the risk of breaking the fragile substrates. Additionally, the

increased standoff would reduce the bow shock effect. The traverse speed was kept at 100 mm/s.

The process inputs for these experiments are show in Table 12.

Figure 17. Surface image of substrate number 5 obtained from an SEM. No significant UHMWPE
deposition is shown on the polyimide substrate. Process inputs: 130'C temperature, 50 bar pressure, 25

mm standoff, 250 mm/s traverse speed, and 5 passes.
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Figure 18. Surface image of substrate number 6 obtained from an SEM with backscatter detector.
No significant UHMWPE deposition was seen on the polyimide substrate. Process inputs: 120'C
temperature, 20 bar pressure, 100 mm standoff, and the nozzle was held in the same spot over the

substrate.

Table 12. Cold spray process inputs for second run of experiments with UHMWPE powder.

Substrate Temperature Pressure Stand off Traverse
# Material (OC) (bar) Distance (mm) Speed (mm/s) #layers
13 Polyimide 150 30 50 100 5
14 Polyimide 180 30 50 100 5
15 Polyimide 200 30 50 100 5
16 Polyimide 210 30 50 100 5
17 Silicon 210 30 50 100 5

Similar results were found from these experiments. There appeared to be no significant or

noticeable difference between these experiments and the previous ones. As an example, an image

of the surface of substrate 16 is shown in Figure 19.
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Figure 19. Surface image of substrate number 16 obtained from an SEM with backscatter
detector. No significant UHMWPE deposition was seen on the polymide substrate. Process

inputs: 210'C temperature, 30 bar pressure, 50 mm standoff, 100 mm/s traverse speed, and 5
passes.

5.2 Discussion of UHMWPE Experiments

None of the experiments resulted in significant UHMWPE deposition even though the

experiments conducted in this research used pressures that were approximately ten times the

pressures used in other research that successfully deposited thick coatings of UHMWPE [39]. The

other research conducted by Ravi et al. however included nano-alumina particles in the UHMWPE

feedstock in order to build up the coating. With the pure UHMWPE powder in Ravi et al.'s

research, only thin layers of UHMWPE could be deposited on the substrates. In this current

research, it was not possible to include nano-alumina particles since alumina particles under 1 pm

can be harmful inside the human body [4]. The research by Ravi et al. also had to make

modifications to the nozzle to allow for more heat to be exchanged to the particles and it was

observed that the particles did not deposit unless the particles were sufficiently heated. Therefore,

in this research perhaps the lower heat energy in the particles could have been one of the reasons

for a lack of deposition.
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As was stated earlier, higher pressure inputs for cold spray increases the velocity of the

particles and therefore better deposition usually results with metal powders. However, more recent

research investigating the deposition of high density polyethylene (HDPE) on different substrates

discovered that the erosion velocity of HDPE can be very low for specific substrates [46]. Some

substrates had erosion velocities below 250m/s [46]. In this research the UHMWPE particle

velocities were more than twice that at the 25mm standoff distance according to the CFD model.

Therefore, the velocities of the particles in this research may have been above the erosion velocity,

therefore they only eroded the substrate rather than depositing on it.

Additionally, this research used significantly higher pressure inputs than two other papers

that successfully deposited either UHMWPE or HDPE [39], [46]. Higher pressures can increase

the particle velocity, therefore resulting in good deposition. However, with higher pressure inputs,

it could have created a greater bow shock effect that either slowed down or deflected the incoming

UHMWPE particles.

5.3 Conclusion and Next Steps for UHMWPE Experiments

In this research, UHMWPE deposition and buildup was not seen on the polyimide or silicon

substrates. Future research needs to be conducted to see if UHMWPE coatings are possible on

silicon or polyimide substrates. The use of a modified nozzle to increase the temperature of the

particles before impact may need to be tested. Moreover, it was unknown if the particles were

reaching the critical velocity needed for deposition since no deposition was observed and no

particle deformation was seen. This research used higher pressures than other research that

successfully deposited UHMWPE or HDPE [39], [46]. Higher pressures generally result in greater

particle velocities. However, the higher pressure could have created a bow shock at the surface of

the substrate, therefore slowing down particles before they reached the substrate. On the other

hand, other research has found very low erosion velocities for polymers, so in this research the

particles may have been over the erosion velocity as well [46]. Although this is a possibility, it

may be more likely that the particles were not reaching their critical velocity since the particles

did not appear to have any plastic deformation. A wider range of inputs to create varying particle

velocities may need to be tested.
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6 Experiments Cold Spraying Titanium onto

Substrates

6.1 Methods and Results for Titanium Coatings

For the titanium coatings, additional substrates were chosen to be tested. Figure 11 in

section 3.1 showed a simplified model of a Draper IC with a bottom layer of silicon and a top layer

of polyimide. Since silicon is such a hard material, it was expected to be difficult to cold spray

metal powder on it. The silicon substrate would have little to no deformation when metal particles

impact with it. Between the substrate and the particles, only the titanium particles would be

deforming, therefore poor mechanical bonding at the surface would be expected. Additionally,

since polyimide is a polymer and is very soft compared to the titanium powder, the titanium

particles may become embedded in the polyimide rather than build up on it. It was suggested by

the partners at Northeastern University and VRC to add an intermediate layer between the substrate

and the cold spray which would allow for better adhesion of the cold spray coating. Moreover,

they suggested a metal interlayer that would both be strong against impacting particles and that

would also deform and mechanically bond with the impacting particles from cold spray. Therefore,

a sputtered titanium layer was used as an interlayer since Draper had the capability to sputter

titanium onto the substrates at a maximum thickness of 1 pim layer (1 pm thick Ti is not thick

enough to create a strong, hermetic package so cold spraying more titanium to create a thicker

coating is essential). A layer thickness of 1 pim would be thin compared to the particle sizes in the

powder (-20 pim titanium powder). Hence, the substrate material under the sputtered titanium layer

would be important as well, especially if cold sprayed particles were able to penetrate through the

sputtered layer.

For the initial experiments, four different substrates were chosen. Silicon and polyimide

substrates were kept as the standard substrates to test. Additionally, two more substrates were

included. These were the substrates you would get if you directly sputtered both sides of a Draper

IC. The first was a silicon substrate with a 1 pim thick sputtered Ti. The other substrate was the
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silicon wafer with polyimide tape (1 mil thick polyimide layer on top of a 1.5 mil thick silicone

adhesive layer) on top and then a final 1 pm sputtered Ti layer on top of that.

Angular (crushed from sponge powder) CP-Titanium powder, TI-101, was obtained from

Atlantic Equipment Engineers. The powder was a -20 pm powder (all particles in the powder are

able to pass through a 20 pm mesh) with 99.7% purity. This powder had a higher purity than Grade

1 CP Ti which is 99.5% pure. As a titanium powder becomes more pure, it tends to have a lower

tensile strength [4]. Therefore, the tensile strength of this powder was expected to be less than that

of Grade 1 Ti which is 240 MPa. This was an advantage of the powder since lower tensile strength

results in a lower critical velocity for the particles.

The list of input parameters for the cold spray experiments can be seen in Table 13. All

parts in this table that have the word "broken" rather than a part number means that the substrate

shattered during the spraying process. The first substrate was cold sprayed with a standoff distance

of 50 mm. However, at this close distance, it caused significant bowing and eventual failure of the

substrate. Therefore, the standoff distance was increased to 150 mm for the remaining experiments.

Throughout the experiments, the traverse speed was kept at 250 mm/s which is a fairly common

speed with metal deposition.

For the sputtered titanium on silicon substrates, parts 1 through 3, it appeared that the

sputtered titanium layer was removed by the high pressure and therefore wasn't acting as an

intermediate layer to the incoming cold sprayed titanium particles. Additionally, with these parts,

the cold sprayed titanium eroded the surface and there was so much erosion that there was a visible

indent in the material in the area that was cold sprayed.

Next, parts 4 and 5 were cold sprayed. Deposition was observed but the titanium did not

build up. To test whether buildup would occur, parts 6-9 were sprayed at the same parameters as

parts 4 and 5 but with twice as many layers. For the titanium sputtered on polyimide substrates,

the sputtered layer appeared to be stripped off by the high pressure before any cold spray particles

deposited on the polyimide, which is a similar result to what was found with the sputtered layer

on the silicon substrate. Parts 6-9 had titanium deposited on them, but the deposition did not appear

to be any thicker than the deposition on parts 4 and 5.
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Although titanium deposited on parts 4 through 9, no titanium coating buildup was

observed. In order to better understand the titanium deposition with different temperature and

pressure inputs, a DOE was designed. After spraying part 9, there were just enough titanium

sputtered polyimide substrates left to get data points for a full 22 DOE with 3 center points if the

previous part 7 was included. Although there were not enough polyimide substrates left to get a

full DOE with them as well, as many data points as possible were collected. Table 14 shows the

data points for the DOE. Near the end of the experiments, some silicon substrates were attempted

to be sprayed at similar conditions, but this only caused the silicon substrates to shatter.

Table 13. Cold spray process inputs for first round of experiments with titanium powder.

Temperature Pressure Stand off Traverse
Part # Substrate Material ( C) (bar) Distance (mm) Speed (mm/s) #layers

Broken Sputtered Ti 500 34.5 50 250 -
1 Sputtered Ti 400 34.5 150 250 3
2 Sputtered Ti 500 37.9 150 250 3
3 Sputtered Ti 400 34.5 150 250 6
4 Polyimide 350 34.5 150 250 6
5 Polyimide 300 34.5 150 250 6
6 Polyimide 350 34.5 150 250 12
7 Polyimide +Sputtered Ti 350 34.5 150 250 12
8 Polyimide 300 34.5 150 250 12
9 Polyimide +Sputtered Ti 300 34.5 150 250 12
10 Polyimide 400 48.3 150 250 12
11 Polyimide +Sputtered Ti 400 48.3 150 250 12
12 Polyimide 375 41.4 150 250 12
13 Polyimide +Sputtered Ti 375 41.4 150 250 12
14 Polyimide 375 41.4 150 250 12
15 Polyimide +Sputtered Ti 375 41.4 150 250 12
16 Polyimide 350 48.3 150 250 12
17 Polyimide +Sputtered Ti 350 48.3 150 250 12
18 Polyimide +Sputtered Ti 375 41.4 150 250 12

Broken Silicon 375 41.4 150 250 -
19 Polyimide +Sputtered Ti 400 34.5 150 250 12

Broken Silicon 400 34.5 150 250 -
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Table 14. Cold spray process inputs for data points in DOE and the corresponding substrate
numbers.

essure!
34.5
34.5
48.3
48.3
41.4
41.4
41.4___

Polyimide +
Sputtered Ti PolI

7

19
17
11 1
13
15 1
18

The surfaces of the substrates from the DOE were analyzed under a SEM microscope. All

the surfaces looked very similar and indistinguishable from each another. The surface images of

part 15 can be seen in Figure 20 and Figure 21.

The surface was rock-like in appearance which would suggest that a porous coating had

been formed. To better analyze the substrates, cross-sections were taken. Many papers have taken

cross-sections of cold sprayed material in order to analyze the percentage of porosity [18], [20],

[28]. Being able to analyze the porosity from the DOE parts would give valuable information for

optimizing the input parameters to create the densest coating. Each part was diced into four

sections. One of the diced components was then potted in epoxy, ground, and polished for analysis

on the SEM. Unfortunately, the porosity of the cold sprayed titanium could not be determined

since none of the sprayed parts had a dense titanium coating. All of the cross-sections from the

parts in the DOE looked very similar and no significant difference was seen between them. The

part 11 cross-section images are shown in Figure 22, Figure 23, and Figure 24 as examples.
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Figure 20. Surface image of titanium coating on substrate 15 obtained from an SEM. This type of

surface was seen for both the titanium sprayed on polyimide and polyimide + sputtered Ti

substrates.

Figure 21. Magnified image of Figure 20.
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Figure 22. Cross section of part 11. Titanium cold sprayed on a single polyimide tape layer on
top of a silicon wafer. Buildup of the coating isn't seen.

Figure 23. Magnified image of Figure 22.
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Figure 24. Another magnified image of Figure 22.

From the cross-sections it was clear that dense coatings were not formed. Some of the

titanium particles were even making it all the way through the polyimide and silicone adhesive

layers and down to the silicon substrate. Since all parts had multiple passes of the cold spray nozzle

over the substrate, there was no way to know if the particles were reaching the substrate during the

first pass or if the impact of particles on the following passes were further embedding the particles.

If the particles were continually pushed closer and closer to the substrate with each pass, then

perhaps if the correct parameters were chosen then the coating would build up rather than embed

the particles in the substrate. An increase in input temperature and pressure would increase the

velocity of the particles and cause more deformation at impact, therefore possibly causing coating

buildup.

However, if the particles were embedding during the first pass then perhaps the input

parameters, temperature and pressure, were too high for the soft polyimide substrate. These high

input parameters would significantly increase the velocity of the titanium particles, therefore

possibly allowing the particles to embed far into the material. With these thoughts in mind, more

substrates were sprayed with highly varying inputs to see if any changes in the input conditions

could lead to a coating buildup. The input parameters for these tests are shown in Table 15.
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Table 15. Cold spray process inputs for second round of experiments with titanium powder.

Temperature Pressure Distance Traverse Nozzle
Part # Substrate Material (OC) (bar) (mm) Speed (mm/s) #layers Angle

20 Polyimide 150 24.1 150 20 4 90
150 24.1 150 20 4 90

21 400 34.5 150 250 - 90
. . 150 24.1 150 20 4 90

150 24.1 150 200 - 90
23 Polyimide 150 24.1 150 100 - 90
24 Polyimide 150 24.1 150 50 8 60
25 Polyimide 150 24.1 150 50 4 60

150 24.1 150 50 4 60
350 27.6 150 50 4 90

27 Two Layers of Polyimide 150 24.1 150 50 2 60
150 48.3 150 250 6 90

28* Two Layers of Polyimide 150 24.1 150 50 2 60
150 48.3 150 250 6 90

*This part was chilled for 30 minutes in a freezer before being sprayed.

Throughout the experiments different input temperatures, pressures, traverse speeds, and

nozzle angles were attempted. For part numbers that include two rows in Table 15, the second row

of inputs were sprayed onto the substrates immediately after the first row of inputs. The two step

spraying conditions were conducted since the spray conditions needed for a good initial deposition

on the polyimide may differ from the inputs needed to get good coating buildup. For example,

with part 21, the idea was to use low input parameters to get initial deposition on the soft polyimide

followed by high input parameters in order to get the titanium particles to build up on the already

deposited titanium. Additionally, on other parts, changing the traverse speed and nozzle angle

between passes was attempted as well.

For parts 20 - 26 no coating buildup was observed. Most of these parts started off having

similar depositions as the first experiments. However, after continual passes of the nozzle, the

coating would soon disappear off of the substrate and expose the silicon substrate underneath.

Hence, the process must have eroded away the polyimide and silicone adhesive layer to get down

to the silicon underneath. With following passes, the silicon substrate would erode. Because this

was observed, the process was carefully watched and as soon as a silicon substrate became visible,

the process was stopped. Therefore, some of the boxes in the column "# layers" has "-" which
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stands for an unknown amount of passes that were successfully deposited before the process was

stopped.

For the final two parts, a double layer of the polyimide tape was placed on the silicon since

erosion was commonly observed on the single layer. One part was chilled for 30 minutes in the

freezer before being sprayed. This was done in order to harden the polyimide in an attempt to

prevent the titanium particles form embedding in or eroding the polyimide. Once again however,

no significant coating buildup was observed.

Parts 20 -26 were cross-sectioned and the results looked very similar to all of the previous

cold sprayed titanium cross-sections. However, these parts were cross sectioned in a certain way

in order to show the edge of the sprayed section on the substrate. The two double layered polyimide

substrates had very similar cross-sections to one another and no distinct differences were seen

between the two. The single and double layered polyimide cross-sections revealed some interesting

information. The cross-section of part 24 is shown in Figure 25 and the double layered polyimide

part 27 is shown in Figure 26, Figure 27, and Figure 28.

Figure 25 shows that the sparse titanium layer is actually below the level of the polyimide

layer of the polyimide tape. This was seen in all the single layer polyimide substrates. This

suggested that the titanium deposition only appeared because particles were breaking through the

polyimide layer and then adhering to the silicone adhesive. The double layered polyimide substrate

cross-sections supported this idea as well. Figure 26 clearly shows the particles breaking through

the topmost layer of polyimide and then staying in the topmost silicone adhesive layer. Figure 27

shows a more magnified image of the substrate where a small part of the top layer of polyimide of

the double layered polyimide substrate was still left after cold spraying. This piece of the top layer

of polyimide is outlined by the dashed line in Figure 27. However, most of the cross-sections for

the double layered polyimide looked like Figure 28 where nothing of the topmost polyimide layer

was visible and all of the particles stayed in the topmost silicone adhesive layer.
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Figure 25. Cross section of part 24. Titanium was cold sprayed onto polyimide tape with inputs:
150'C temperature, 24.1 bar pressure, 150 mm standoff, 50 mm/s traverse speed, 8 passes, and

60' nozzle angle. The titanium particles broke through the layer of polyimide.

polyimide

layer

silicone
"le adhesive layer

polyimide

layer
silicone

adhesive layer

silicon wafer
20 pim

Figure 26. Cross section of part 27. Titanium cold sprayed onto a double layer of polyimide tape.
Initial inputs of 150'C temperature, 24.1 bar pressure, 150 mm standoff, 50 mm/s traverse speed,

4 passes, and 600 nozzle angle. After this spray, a secondary spray was conducted with 150'C
temperature, 48.3 bar pressure, 150 mm standoff, 50 mm/s traverse speed, 2 passes, and 90'

nozzle angle. The titanium particles broke through the top polyimide layer and stayed in the first
layer of silicon.
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Figure 27. Cross section of part 27. Titanium was cold sprayed onto a double layer of polyimide
placed on a silicon wafer. The topmost layer of polyimide was not visible in most of the cross

section. However, a few pieces of the top layer of polyimide could be seen. One of these pieces
is outlined in the figure by the dotted line.

Polyimide

layer

11\0ARsilicone
MEN adhesive layer

20 tm silicon wafer

Figure 28. Cross section of part 27. Titanium cold sprayed onto a double layer of polyimide tape
on a silicon wafer. The topmost layer of polyimide is no longer visible.
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From these results, none of the coatings had formed on top of the polyimide surface but

were actually appearing because the particles were sticking to the silicone adhesive underneath the

polyimide. Therefore, the substrates were not a good representation of a polyimide substrate. The

top layer of the polyimide was most likely too thin to handle the impact of the particles. For the

next experiments, a thicker polyimide tape was obtained. This was a 4 mil polyimide tape which

included a 4 mil thick polyimide layer with a 1.5 mil thick silicone adhesive layer underneath. This

much thicker polyimide was chosen since it was expected to be thick enough to prevent any

particles from breaking all the way through it to the silicone adhesive layer.

The thicker polyimide substrates were sprayed with several different input parameters as

seen in Table 16. On all parts some deposition was seen but no buildup was formed, and with each

cold spray pass the polyimide eroded.

Table 16. Cold spray process inputs for titanium powder with thick polyimide substrates.

Substrate Temperature Pressure Standoff Traverse
Part # Material (0C) (bar) Distance (mm) Speed (mm/s) #layers Angle

29 Thick Polyimide 150 24.1 150 100 4 60
150 24.1 150 100 4 90

30 Thick Polyimide 400 48.3 150P 200 4 60
400 48.3 150 200 4 90

31 Thick Polyimide 400 31.0 150 200 4 60
400 31.0 150 200 4 90

32 Thick Polyimide 400 31.0 150 200 4 90
33 Thick Polyimide 150 25.9 150 20 4 90

The deposition of many different types of metals on polymer substrates has been shown to

be difficult in other research. Many papers will use a metal interlayer that is cold sprayed first

before spraying the final metal [47], [48]. One paper was able to obtain thick copper coatings on

polyvinyl chloride (PVC) only after first spraying spherical copper particles as the interlayer

followed by dendritic copper particles [47]. Spherical copper particles or dendritic copper particles

alone however could not be used to build up a coating. It was the combination of the particles and

only in that order that allowed for coating buildup.
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Using this knowledge, a similar approach was used in this research. Spherical copper

particles were attempted to be cold sprayed first on the polyimide to act as an intermediate layer

before spraying the angular titanium powder. The following process input parameters to cold spray

copper on the substrates are shown in Table 17.

Table 17. Cold spray process inputs for spherical copper powder for metal interlayer.

Substrate Temperature Pressure Standoff Traverse Nozzle
Part # #yrMaterial (OC) (bar) Distance (mm) Speed (mm/s) Angle

Broken Thick Polyimide 350 32.4 100 100 4 90
Broken Polyimide 350 32.4 100 100 4 90
Broken Silicon 350 32.4 100 100 4 90
Broken Polished Silicon 350 32.4 100 100 4 90

34 Thick Polyimide 120 20.0 150 100 4 90
35 Polyimide 120 20.0 150 100 4 90
36 Silicon 120 20.0 150 100 4 90
37 Polished Silicon 120 20.0 150 100 4 90
38 Thick Polyimide 120 20.0 180 100 8 90
39 Polyimide 120 20.0 180 100 8 90
40 Polyimide 120 20.0 150 100 4 90

41 Polyimide 120 20.0 150 100 4 90
350 31.0 150 100 4 90

42 Polyimide 120 20.0 150 100 4 90
280 24.1 150 100 4 90
120 20.00 150 100 4 90

43 Polyimide 200 24.1 150 100 4 90
280 24.1 150 150 4 90
280 24.1 150 150 4 90

The parts resulting from

experiments conducted to deposit

the copper sprays ended

titanium on the substrates.

up having the same results

Erosion was observed on the

substrates, erosion occurred on the thick polyimide, and the thinner polyimide broke and some

minor deposition was seen on the silicone adhesive layer.

The difficulty of depositing copper on polymers has been seen in other research as well

and generally in these situations an even softer metal, tin, is used at the intermediate layer. Several

papers have sprayed tin directly onto polymers and some have built up the tin coating successfully

[47]-[49]. Additionally, some of those same papers used tin as an interlayer material and then a
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higher strength metal was cold sprayed on top of it. Since tin is softer than spherical copper, tin

may be an appropriate interlayer material to deposit directly on polyimide.

However, tin was not readily available, so another method was approached. Many ICs have

something called glob tops which are put over semiconductors chips in order to protect against

moisture and to electrically insulate the semiconductor. Glob tops are created from an epoxy that

is placed over the semiconductor. Good glob top epoxies have minimal shrinkage while curing.

Since placing epoxies onto ICs is already a standard in the industry, then an epoxy-like mixture

used as an interlayer may be an easy additional manufacturing step. However, more than just a

standard epoxy was used. A low shrinkage epoxy was mixed with titanium powder and then placed

on top of the silicon or thick polyimide substrates. Since this mixture had a high percentage of

titanium, it was expected that incoming cold sprayed titanium particles would make metallic bonds

with this titanium, therefore initiating titanium bonding and coating build up. The process inputs

for these experiments are shown in Table 18.

Table 18. Cold spray process inputs for deposition titanium powder on titanium/epoxy mixture
substrates.

Temperature Pressure Standoff Traverse Nozzle
Part # Substrate Material (OC) (bar) Distance (mm) Speed (mm/s) # layers Angle

Broken Ti/Epoxy Mix on Silicon 300 34.5 50 150 2 90
44 Ti/Epoxy Mix on Thick Polyimide 300 34.5 50 150 1 90

45 Ti/[poxy Mix on Thick Polyimide 300 34.5 75 150 1 90
300 34.5 75 20 1 90

46 Ti/Epoxy Mix on Silicon 300 34.5 75 20 1 90
47 Ti/Epoxy Mix on Silicon 300 34.5 75 20 1 90

For all the substrates in the areas that were sprayed, either the Ti/epoxy mixture was blown

away by the high pressure or the spraying eroded away the Ti/epoxy mixture until the powder

reached the substrate material underneath the Ti/epoxy layer. The first Ti/epoxy part that was cold

sprayed had a standoff distance of 50 mm and high temperature and pressure inputs (300'C and

34.5 bar). The close standoff and high inputs were used since with the extra strength of the epoxy,

it was expected that the substrate would be able to handle the higher particle velocities and pressure

on the substrate. However, the first substrate broke soon after starting the spray. The second

88



substrate was tested at the same parameters. On this substrate, the epoxy was soon blown off, also

pulling off some of the polyimide as well. Therefore, for the next substrate, the standoff distance

was increased to 75 mm. Once again, the epoxy in the spraying area was blown off. However, this

time the polyimide underneath remained. The traverse speed was slowed down to 20 mm/s to see

if this would aid in building up the coating. After slowing down the traverse speed, a very obvious

coating was formed. Although deposition efficiency wasn't measured, there appeared to be a high

percentage of powder deposition. Just one pass across the total spraying area resulted in a 1/8 inch

thick titanium coating, as shown in Figure 29. Since this resulted in a good coating, the same

parameters were used on the last two substrates that had silicon underneath the Ti/epoxy layer.

However, with these parts, the epoxy slowly eroded away to expose the silicon. Once the silicon

was exposed, it was also eroded and eventually it eroded all the way through the silicon substrate.

Once the substrates were removed from

some signifigant buildup on it before the epoxy

this part can be seen in Figure 30.

the fixture, it was observed that part 44 also had

blew off and ripped the polyimide. An image of

holes

Figure 29. Images of part number 45, which had a 1/8" thick titainum coating deposited on
polyimide. The image on the left is the top view and the image on the right is the side view. The

image on the left also points out the large holes seen at the surface of the coating. This was
created with an initial pass with process inputs: 300'C temperature, 34.5 bar pressure, 75 mm

standoff, 150 mm/s traverse speed, and a 90' nozzle angle. This was then followed by a second
pass will all the same parameters except for a change in the traverse speed to 20 mm/s.
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Titanium

coating

Figure 30. Top view of part 44. Some initial titanium coating was depositied before the
polyimide tape ripped. This was achieved with process inputs: 300'C temperature, 34.5 bar

pressure, 50 mm standoff, 150 mm/s traverse speed, 1 pass, and a 900 nozzle angle.

Parts 44 and 45 were taken to the SEM to view the surfaces of the titanium coatings. Both

coating surfaces looked very similar and images of part 45 are shown in Figure 31 and Figure 32.

Some particles showed significant deformation and bonding to other particles. However, the

surface still appeared to have quite a bit of roughness to it from undeformed particles. Therefore,

this would suggested that there may be some porosity within the coating due to the particles not

completely flattening out. As pointed out in Figure 29, some visible large holes were seen on the

surface of the coating. A view of one of these holes on the SEM is shown in Figure 33. The hole

appeared large at the surface and smaller as it got closer to the substrate, creating s cone shape.

After imaging the surface, part number 45 was cut into four pieces. Cuting the piece was a

two part process. A 1/8" end mill was used to machine down most of the way through the titanium

coating. Then a diamond grinding wheel was used to cut the rest of the way through the part. The

second step with the diamond griding wheel was necesarry because the silicon is very fragile. One

of these sections after machining is shown in Figure 34. Two of the cut parts were then potted in

epoxy and then ground and polished. The two parts were polished to specific areas in the coating.

90



The first was polished to a regular dense area of the coating. The other cross-section was polished

down until the cross-section showed the middle of one of the large holes that had formed in the

coating. The potted parts are shown in Figure 35.

Figure 31. Surface image of part 45 obtained from an SEM. One pass of process inputs: 300'C
temperature, 34.5 bar pressure, 75 mm standoff, 150 mini/s traverse speed, and a 900 nozzle angle. This

was then followed by a second pass will all the same parameters except for a change in the traverse speed
to 20 mm/s.

Figure 32. Magnified image of Figure 31.
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Figure 33. SEM image of one of the holes seen on the surface of part 45, as pointed out in Figure 29.

Figure 34. Cross-section of 1/8" thick titanium coating on polyimide substrate, part 45, after
machining steps.

Figure 35. Potted cross-sections of thick titanium coating on substrates. The cross-section on the left
is through a dense portion and the cross-section on the right was taken in the center of one of the

large holes seen within the coating.
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The cross-section image from the SEM shown in Figure 36 shows that the coating is very

dense near the polyimide. Using ImageJ software (downloaded from

https://imagej.nih.gov/ij/download.html; developer: NIH), a threshold procedure was done on

three different images near the surface to estimate coating porosity. The coating porosity in this

region was measured to be less than 2%. Figure 37 shows the titanium near the surface of the

coating. In approximately the top 500 pm of the coating, a more porous area was observed.

Porosity measurements were taken in this region again with the ImageJ software. Near the surface,

the coating had approximately 6% porosity.

The bonding region between the cold sprayed titanium and the polyimide was investigated

as well. Figure 38 shows this bonding region. The titanium particles had a good bond to the

polyimide substrate and no gaps were seen between the polyimide and titanium. Also, while

imaging the substrate, near the edges of the titanium coating, the Ti/epoxy mixture was visible, as

shown in Figure 39. This Ti/epoxy mixture however was not seen between the polyimide and

titanium coating. Therefore, the Ti/epoxy mixture most likely did not contribute to the titanium

bonding and build up on the polyimide substrate.

Figure 36. Cross-section image of titanium coating on polyimide tape, part 45, near the substrate.
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Figure 37. Cross-section image of part 45 near the titanium coating surface.

titanium
coating

polyimide
layer

silicone
adhesive layer

-sion wafer

Figure 38. Cross-section image of part 45 showing the bonding of the titanium coating to the
polyimide substrate.
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Figure 39. Image of part 45 near the edge of the titanium coating. The Ti/epoxy mixture
appeared to have no effect on titanium buildup on the polyimide tape.

The other cross-section taken in the middle of one of the large holes was analyzed as well.

Figure 40 shows the cross-section and a more magnified image near the polyimide substrate is

shown in Figure 41. As the figures shows, the hole that was seen at the surface continued all the

way down to the polyimide surface. It appeared that the hole in the titanium started off small at

the polyimide surface and then progressively grew larger as the coating became thicker. On the

polyimide surface, in the middle of the hole, there is an indent which could have resulted from a

titanium particle that bonded with the polyimide and then dislodged. These type of holes have been

observed in other cold spray research and Huang et al. conducted a computational simulation on

impacting particles to investigate the reason for hole formation. The simulation resulted in holes

when two different particles impacted too close to one another. Huang et al. suggested that a

repellant force between the particles can result in the particles being deflected from one another

and initiating a hole [50]. Since the particle feed rate was high and the traverse speed slow, in the

small amount of time that the hole was formed, the particles around the hole site may have built

up so far that it was difficult for other particles near the hole to build up. An image demonstrating

this is shown in Figure 42. In this figure, particle 1 will hit the titanium coating and there will be

a large area of contact with the coating, therefore its energy will cause the particle to deform and
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bond to the coating. However, particle 2 in the figure will have a small area of contact with the

coating, therefore a good bond will not be able to be formed between the particle and the coating.

This effect most likely caused the cone shape of the hole as the coating built up.

Figure 40. Cross-section through one of the holes in the titanium coating of part 45.

Figure 41. Magnified image of Figure 40.

96



Figure 42. Model of proposed reason the hole grew as the titanium coating built up. Particle 1

will hit the titanium coating and there will be a large area of contact with the coating, therefore

its energy will cause the particle to deform and bond to the coating. However, particle 2 in the

figure will have a small area of contact with the coating, therefore a good bond will not be able

to be formed between the particle and the coating.

One last experiment was conducted in this research. This last experiment was conducted

since a major question still remained: did the Ti/epoxy mixture contribute at all to the coating

deposition and buildup on the substrate? Since the previous substrates' top layer of Ti/epoxy

appeared to either be blown away or eroded away before the titanium built up on the polyimide, it

could be possible that the Ti/epoxy mixture had no contribution to the titanium bonding to the

substrate. Moreover, this idea was supported by the SEM image which showed no Ti/epoxy

mixture layer between the polyimide and titanium coating. The most likely reason these substrates

were able to achieve titanium deposition and coating buildup is that the epoxy added rigidity to

the substrates. The extra rigidity of the substrate allowed for a closer standoff distance and high

input temperature and pressure. A shorter standoff distance and high temperature and pressure

inputs would result in higher particle temperatures and velocities at impact. With higher particle

velocities, the particles would be able to deform more upon impact, therefore creating a good bond

layer on the polyimide followed by further buildup of the titanium particles on the titanium

deposition. The warmer particles would also experience thermal softening and would be softer

when they made impact with the substrate.

In order to test this theory, thick polyimide substrates were prepared and epoxy was put on

the backside of the substrates. This way the substrates had a rigidity similar to the previously tested

substrates while still keeping the polyimide as the substrate material to be cold sprayed on. The
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same parameters as before were used: 75 mm standoff distance, 20 mm/s traverse speed, 3000 C

temperature, 34.5 bar pressure, 90 degree nozzle angle, and 1 pass of the nozzle to create a single

layer. Titanium coatings were successfully created on two substrates. This proved that the titanium

could be cold sprayed directly on the polyimide and that the epoxy only added rigidity to the

substrate. This added rigidity enabled shorter standoff distances and greater temperature and

pressure inputs to be used. Images of the titanium coatings on the substrates are shown in Figure

43. These coatings looked very similar to the previous part 45. Both of these new coatings were

dense and had hole defects like those seen in part 45.

Figure 43. Titanium coatings cold sprayed directly on thick polyimide substrates. Process inputs:

300'C temperature, 34.5 bar pressure, 75 mm standoff, 20 mm/s traverse speed, and a 90' nozzle

angle.

6.2 Conclusion for Titanium Coatings

Experiments were created to cold spray titanium coatings onto two different electronic

materials, polyimide and silicon. No coatings could be created on the silicon, and the process only

eroded the surface with all the process inputs tested. Titanium coatings could not be created on the

initial thin polyimide tape substrates either. The titanium particles would break through the
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polyimide material and adhere to the silicone adhesive underneath it. Although the titanium

particles would bond to the adhesive, no buildup could be formed.

Additional experiments were conducted on silicon and polyimide substrates that had an

additional 1 pm thick sputtered titanium layer on top. However, the high pressure of the cold spray

process removed the sputtered layer. Therefore, the same results were found for these experiments.

Since titanium particles were found to break through the thin polyimide material, thicker

polyimide substrates were tested as well. However, with the process inputs tested at the 150 mm

standoff distance, the process only eroded the substrate.

None of the previous experiments worked. Therefore, cold spraying a softer interlayer

material, copper, first followed by the titanium was tested as well. However, no copper could be

deposited or built up on the substrates.

Successful titanium coatings were finally accomplished only after epoxy was added to the

substrates. The epoxy added rigidity to the substrates which allowed for a shorter standoff distance

with high process temperature and pressure inputs. Dense, 1/8" thick titanium coatings were cold

sprayed directly on polyimide substrates. The porosity of the coating near the substrate was less

than 2% and the porosity in the top 500 pm of the coating was approximately 6%. Although the

majority of the coating was dense, some holes traveled all the way from the substrate to the surface

of the coating.

6.3 Future Work for Titanium Coatings

Dense titanium coatings have now been successfully deposited on an electronics material,

polyimide. This opens the door to many possibilities. Since spin on polyimide is used with ICs, it

makes it an easy material to not only deposit on the top of ICs, but on all sides of an IC. If an IC

was completely covered by polyimide, it could then be cold sprayed with titanium to fully seal the

device. The polyimide would need this extra titanium layer on the outside since polyimide absorbs

too much water to act as a barrier between the electronics and human tissue. Additionally, the

strong titanium would act as a protective barrier to the internal electronics.
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To get to the point of packaging electronics by the cold spray process, many steps still need

to be taken. The titanium coatings in this research were only created after epoxy was put on the

substrates to add rigidity. However, putting epoxy on ICs is not a reasonable way to prepare ICs

to be cold sprayed. A more elegant way to add rigidity to the substrates needs to be developed.

This would most likely be accomplished through an improved fixture device. Future research also

needs to look at creating thinner coatings since the 1/8 inch thick coatings are much thicker than

is desirable. A DOE would most likely need to be created to pick the correct input parameters that

result in a thin and dense titanium coating. Additionally, the dense coating would need to be tested

for a hermetic seal to ensure that the coating would be a physical barrier between the electronics

and the surrounding fluid. Corrosion and biocompatibility properties of the material must be tested

as well. Moreover, the adhesion and tensile strengths of the coating must be tested to make sure

they are sufficient for the implant application.

Also, during the cold spray process substrates may heat up. Therefore an analysis may need

to be conducted to measure the heat of the substrate under the polyimide layer to ensure that this

temperature will not cause failure in the IC components. With specific implants it is also very

important to have RF wave transmission through the implant package. Therefore RF wave losses

may need to be characterized for the cold sprayed titanium coating.
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7 Conclusion and Future Work

This research investigated whether cold spray can be used to package electronic implants.

Cold spraying creates conformal coatings, therefore allowing even the smallest ICs to be packaged

with this method. Moreover, cold spraying would be a one-step packaging process, therefore

simplifying electronic implant packaging and reducing manufacturing costs. Two different

biocompatible materials, UHMWPE and titanium, were cold sprayed on two different electronic

material substrates, silicon and polyimide.

No successful coatings of UHMWPE were formed on the silicon or polyimide substrates.

The reason for unsuccessful UHMWPE deposition and buildup is not known. However, some of

the possible reasons for a lack of deposition could be due to the bow shock at the surface, the

particle velocities were below the critical velocity, the particle velocities were above the erosion

velocity, or the particles were not softened enough before impact. Titanium also did not deposit

on the silicon substrates. Instead of depositing, the process eroded away the silicon substrate.

Attempts to cold spray titanium onto sputtered layers of Ti were not successful either. Moreover,

a cold sprayed interlayer of copper was attempted as well but copper deposition and buildup was

not observed on the silicon or polyimide substrates at the process inputs that were used.

Although titanium did not deposit on the other substrates, dense 1/8 inch thick coatings

were created on polyimide substrates after epoxy was added to the back of the substrates to give

them more rigidity and strength. With added rigidity to the substrates, a shorter standoff distance

of 75 mm was possible. With this standoff distance, 300'C temperature, 34.5 bar pressure, 20 mm/s

traverse speed, and 1 pass of the nozzle over the substrate, a dense titanium coating was created

on the polyimide substrate. This was a favorable result since polyimide is already the top

passivation layer on many ICs. Moreover, polyimide can easily be deposited on all other sides of

an IC and then titanium could be cold sprayed on top of the polyimide to create a hermetic seal

around the electronics. The coatings were very dense, with -2% porosity near the substrate and

-6% porosity near the surface. Except for some hole defects in the coating, the porosity did not

appear to be through porosity from the surface to the substrate. Therefore, if process inputs were

optimized with a DOE analysis, even denser coatings may be achieved and hole defects avoided.
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With the deposition of dense titanium coatings on polyimide, the cold spray process

appears to be a promising manufacturing technique to package electronic implants. With this new

manufacturing process, it would be possible to create thin, conformal coatings around even the

smallest electronic implants. Before this manufacturing process can become mainstream, more

stages of testing need to be conducted to prove it as an acceptable alternative to traditional

packaging techniques. These tests include structural tests, such as adhesion and tensile strength of

the coatings, biocompatibility tests, RF transmission measurements through the coating, and

hermeticity tests. With further research and development, this technology has the potential to

drastically change how electronic implants are packaged.
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