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Abstract. We study classical solutions to the one-phase free boundary problem in which the free boundary
consists of smooth curves and the components of the positive phase are simply-connected. We show that

if two components of the free boundary are close, then the solution locally resembles an entire solution
discovered by Hauswirth, Hélein and Pacard, whose free boundary has the shape of a double hairpin. Our

results are analogous to theorems of Colding and Minicozzi characterizing embedded minimal annuli, and a

direct connection between our theorems and theirs can be made using a correspondence due to Traizet.

1. Introduction.

The one-phase free boundary problem in a disk B ⊆ R2,

u ≥ 0 in B
∆u = 0 in B+(u) := {x ∈ B : u(x) > 0}
|∇u| = 1 on F (u) := ∂B+(u) ∩B

(1)

arises as the Euler-Lagrange equation for the functional

I(u,B) =

ˆ
B

|∇u|2 + 1{u>0} dx u : B → [0,∞) (2)

and appears in a variety of applications (e.g. jet flows in hydrodynamics, see [CS05]). The interior regularity
theory of minimizers of the functional I(u,B) with fixed boundary conditions on ∂B is well understood. Alt
and Caffarelli [AC81] proved that the free boundary F (u) is locally a graph of a C∞ function (and hence
analytic by [KN77]). Alt and Caffarelli also proved partial regularity of free boundaries in higher dimensions
and established a strong analogy between the theory of free boundaries and the theory of minimal surfaces.

In keeping with [AC81] and many subsequent results ([ACF84, Caf87, Caf89, Wei98, CJK04, DSJ11,
JS]) one should expect that most theorems about minimal surfaces have counterparts in the theory of free
boundaries and vice versa. Here we consider classical solutions to (1) that are higher critical points rather
than minimizers of the functional I(u,B) with one additional purely topological assumption, namely that

no connected component of F (u) is compact in the open disk B. (3)

By classical solution we mean one for which F (u) is a finite union of analytic curves. The topological
assumption is equivalent to saying that the connected components of the positive phase are simply-connected.
It is also equivalent to saying that the analytic curves, although they may become tangent at interior points,
end at ∂B.

Our work is inspired by the groundbreaking work of Colding and Minicozzi on the structure of limits of
sequences of embedded minimal surfaces of fixed genus in a ball in R3 ([CM04a, CM04b, CM04c, CM04d]).
As it turns out, because of recent work of Traizet [Tra14], there is a direct overlap between our a priori
estimates and rigidity results for families of solutions to (1) and the description of embedded minimal
topological annuli due to Colding and Minicozzi.

Our starting place is the family of simply-connected planar regions Ωa = aΩ1, discovered by Hauswirth,
Helein, and Pacard [HHP11], which solve the free boundary problem (1). They are defined by

Ωa := {(x1, x2) ∈ R2 : |x1/a| < π/2 + cosh(x2/a)}, a > 0.
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The boundary ∂Ωa consists of two curves that we will refer to as hairpins. Hauswirth et al found a positive
harmonic function Ha(x) = aH1(x/a) on Ωa that satisfies the free boundary conditions Ha = 0 and |∇Ha| =
1 on ∂Ωa. Extending Ha to be zero in the complement of Ωa, we have an entire solution to (1). (See Section
10 for the explicit formula for Ha using conformal mapping.)

Our first main result characterizes blow-up limits of classical solutions with simply-connected positive
phase.

Theorem 1.1. Let uk be a sequence of classical solutions of (1) in the disk BRk = BRk(0), with radius
Rk ↗∞, satisfying 0 ∈ F (uk) and (3). Then a subsequence converges uniformly on compact subsets of R2

to some rigid motion of one of the following

(a) P (x) := x+
2 , a half-plane solution,

(b) Wb(x) := x+
2 + (x2 + b)−, for some b ≥ 0, a two-plane solution, or

(c) Ha(x), for some a > 0, a hairpin solution as mentioned above and defined in (27) of Section 10.

Note that unlike property (3), connectivity of the positive phase is not inherited in the limit. For example,
blow-up limits of suitable translates and dilates of H1 are two-plane solutions.

Theorem 1.1 is closely related to earlier classifications of entire solutions with simply-connected positive
phase due to Khavinson, Lundberg and Teodorescu [KLT13] and Traizet [Tra14]. Traizet showed that
classical entire solutions satisfying (3) must be of the form (a), (b), or (c). Khavinson et al showed that
the same conclusion is true under a natural, weak regularity assumption on the free boundary known as the
Smirnov property. We were not able to use this result to prove our theorem, and this is a central technical
difficulty of the paper. Instead, we define another notion of weak solution that we can show is preserved
under blow-up limits. Our weak solutions will satisfy both the properties of non-degenerate viscosity solutions
introduced by L. Caffarelli and variational solutions introduced by G. Weiss. This PDE-theoretic approach
has the benefit that it does not rely on complex function theory and so it could conceivably be extended to
a higher-dimensionsional setting.

Our next result says that near points where the curvature of the free boundary is large, the boundary
resembles a double hairpin.

Theorem 1.2. Given δ > 0 there exist positive numbers r, κ, ε and ε1 with 0 < ε1 < ε/2 < 1/100, and
an integer N0 ≥ 0 such that if u is a classical solution of (1) in B1, satisfying (3), then there are N ≤ N0

points {zj}Nj=1 ⊆ B3/4, with the properties:

(a) The curvature of F (u) is less than κ at any point of F (u) ∩
(
B1/2 \

⋃N
j=1Br(zj)

)
.

(b) Near zj, u is approximated by a hairpin solution, i.e. there exists some aj < ε1r such that

|u(zj + x)−Haj (ρjx)| ≤ δaj for all |x| ≤ 2aj/ε

for some rotation ρj.
(c) In B2r(zj)\Baj/ε(zj) the free boundary consists of four curves which are graphs in some common direction

with small Lipschitz norms. More precisely, there exist f, g : R→ R such that f < g,

‖f‖L∞ + ‖g‖L∞ ≤ δr, ‖f ′‖L∞ + ‖g′‖L∞ ≤ δ,

and

{u = 0} ∩ (B2r(zj)\Baj/ε(zj) = zj + ρj({x : f(x1) ≤ x2 ≤ g(x1)} ∩ {x : aj/ε < |x| < 2r})

The proof of parts (a) and (b) of Theorem 1.2 follow from the classification of blow-up solutions in
Theorem 1.1. The proof of part (c) uses conformal mapping and is of independent interest. The usual
flat =⇒ Lipschitz step in regularity theory implies that the boundaries are Lipschitz graphs with small
Lipschitz constant separately on each dyadic annulus, 2k−1 < |x− zj | < 2k for aj/ε0 < 2k < r0. What part
(c) rules out is the possibility of a spiral. It can be viewed as a quantitative version of the flat =⇒ Lipschitz
step, in which no information is used about the solution in a neighborhood |x − zj | < 50aj . Colding and
Minicozzi call the analogous bound in the setting of minimal surfaces an effective removable singularities
theorem [CM04c, Theorem 0.3]. This crucial estimate plays a large role elsewhere in their work as well.

The technique of conformal mapping then allows us to obtain a more detailed rigidity theorem on a
fixed-size neighborhood of each hairpin-like structure.
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Theorem 1.3. There are absolute constants r0, κ0, and N0 such that if u is a classical solution to (1) in B1

satisfying (3), then there is N , 0 ≤ N ≤ N0 and N saddle points {zj}Nj=1 of u with the following properties:

(a) F (u) has curvature at most κ0 on F (u) ∩B1/2\
N⋃
j=1

Br0(zj).

(b) For each j, aj := u(zj) ≤ r0/100, and there is an injective conformal mapping

φj : B2r0 ∩ Ω̄aj → R2 such that φj(0) = zj , and Br0(zj)
+(u) ⊂ φj(B2r0 ∩ Ωaj ) ⊂ B4r0(zj)

+(u).

Moreover, there is θj ∈ R such that for all z ∈ B2r0 ∩ Ωaj ,

|φ′j(z)− eiθj | ≤ |z|/(100r0); |φ′′j (z)| ≤ 1/(100r0).

(c) If κ denotes the curvature of F (u) and κa denotes the curvature of ∂Ωa, then

|κ(φj(z))− κaj (z)| ≤ 1/(100r0), z ∈ B2r0 ∩ ∂Ωaj .

To interpret part (c) of this theorem, note that

κa(z) ∼ a/|z|2, z ∈ ∂Ωa

Hence

|z| ≤
√
ar0 =⇒ κa(z)� 1

100r0

Furthermore, a is comparable to the separation distance between the two hairpins. Thus, for points closer
to zj than the geometric mean of the separation distance between the two hairpins and the distance r0, the
bound in part (c) says that the curvature of the approximate hairpins is close to that of the standard model.
In particular, the two components of the zero set are convex in this range. At distances significantly larger
than this geometric mean, one can no longer guarantee that κ(φj(z)) is positive, but the bound in part (c)
still implies that |κ(φj(z)| ≤ 1/(50r0). This is a nontrivial bound. At the largest scale, r0 < |z| < 2r0 it is
the same as the standard interior 2nd derivative bounds for flat free boundaries, but at smaller dyadic scales
it is a stronger curvature constraint.

In [Tra14], Traizet found a remarkable change of variables that converts the free boundary problem into
a problem about minimal surfaces with a plane of symmetry. If |∇u| < 1, then the minimal surfaces are
embedded, and otherwise they are immersed. This means that although neither problem is strictly contained
in the other, there is direct overlap between the results of Colding and Minicozzi and the results proved here.
The extra hypothesis |∇u| < 1 removes nearly all the difficulties from the free boundary classification problem
we are considering because in that case the zero set of u consists of convex components. Nevertheless, in
this simple overlapping case Traizet’s change of variables allows us to make a direct comparison with results
of [CM02].

Under Traizet’s correspondence, the standard double hairpin becomes the standard catenoid,

Σρ = {(x1, x2, x3) ∈ R3 : (x2/ρ)2 + (x3/ρ)2 = cosh2(x1/ρ))}, ρ > 0.

Denote Br := {x ∈ R3 : |x| < r}.

Corollary 1.4. Let M ⊆ BR be an embedded minimal surface, homeomorphic to an annulus, with ∂M ⊆
∂BR. Suppose that M is symmetric with respect to the reflection x3 7→ −x3 and that M+ = M ∩ {x3 > 0}
is a simply-connected graph over the x1x2-plane. Suppose that the shortest closed geodesic of M has length ε
and passes through the origin in BR. There are absolute constants R0 <∞ and ε0 > 0 such that if R ≥ R0

and ε ≤ ε0, then there exists ρ > 0,

|2πρ− ε| ≤ ε/100

and an injective conformal mapping φ : Σρ ∩ B1 → M that is isometric up to a factor 1 ± |x|/100, and the
Gauss curvatures K of M and Kρ of Σρ are related by

|K(φ(x))−Kρ(x)| ≤

{
(1/100)(ε/|x|2), |x| ≤

√
ε

1/100,
√
ε ≤ |x| ≤ 1
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Note that because Kρ(x) ∼ −ρ2/|x|4 and ε ≈ ρ, in the range |x| <
√
ε, the curvatures are close. This

is the same bound as (but in much less generality than) the sharpest result of Colding and Minicozzi (see
[CM02, Remark 3.8]). On the other hand, our corollary gives nontrivial rigidity for both distance distortion
and curvature in the range

√
ε � |x| � 1. This range is not addressed in [CM02], and the present result

suggests that there may be interpolating rigidity estimates all the way to unit scale that are valid in the case
of general embedded minimal annuli.

1.1. Outline of the paper. The first seven sections of the paper are devoted to the proof of Theorem 1.1.
In Section 3 we establish the universal Lipschitz and nondegeneracy bounds enjoyed by the sequence of
solutions uk. Section 4 describes the two notions of weak solutions – viscosity and variational – that are
preserved under the limit. In Section 5 we recall the Weiss Monotonicity Formula [Wei98] and use it to
characterize the blow-up/blow-down limit of a weak nondegenerate solution; there are two possibilities (up
to rigid motion): the half-plane solution P (x) = x+

2 or

V (x) = s|x2| for some 0 < s ≤ 1.

Weak solutions approaching the half-plane solution are well understood by the classical results of Caffarelli
[Caf87, Caf89] and our focus will be to understand the structure of classical solutions that are close to V .
The first step is carried out in Section 6, where we prove some auxiliary lemmas concerning the structure
of their free boundary. We also establish the key fact that the gradient magnitude of weak solutions, which
blow down to V , is bounded above by 1; this, in turn, translates to the strong geometric property that F (u)
has non-negative curvature wherever it’s smooth. The latter will be a key element in the proof of Theorem
1.1, carried out in Section 7.

In Section 8 we start exploring the local structure of a solution u, satisfying (3), in the unit disk B1.
We delineate a dichotomy – if near a point p of the free boundary there are two connected components of
the zero phase close enough to each other at a distance O(a), then u resembles |x2| (up to a rigid motion)
in a unit-size neighborhood Br0(p) (this scenario will ultimately lead to u resembling a hairpin solution);
otherwise, the free boundary has bounded curvature at p. Sections 9 and 10 are devoted to exploring the first
branch of the dichotomy. In Section 9 we show that that the free boundary from scale r0 all the way down to
scale O(a) consists of four curves that have bounded turning in the outer scales. In the penultimate Section
10 we finally see the hairpin arising in the inner scale and we systematically treat both scales by constructing
an injective holomorphic map (Lemma 10.5) from the positive phase of u in Br0(p) to the positive phase of
an appropriate hairpin solution Ha. Obtaining estimates on the second derivative of the map in Lemma 10.6
allows us to relate the curvature of F (u) to the curvature of F (Ha) of a model hairpin solution.

In the last Section 11 we exploit the Traizet correspondence to prove Corollary 1.4.

2. Notation.

The disk of radius r centered at x = (x1, x2) ∈ R2 will be denoted by Br(x). When the argument is
absent, we are referring to the disk centered at the origin, Br := Br(0). The unit vectors along x1 and x2

will be denoted by e1 and e2, respectively. The three-dimensional ball of radius r, centered at p ∈ R3, will
be denoted by Br(p).

If Ω is an open set of R2 and u : Ω→ R is a non-negative function, define the positive phase of u to be

Ω+(u) := {x ∈ Ω : u(x) > 0}

and its free boundary F (u) := ∂Ω+(u) ∩ Ω.
If S ⊆ R2, a δ-neighborhood of S will be denoted by

Nδ(S) :=
⋃
x∈S

Bδ(x).

Denote the distance between two non-empty sets U, V by

d(U, V ) = inf{|p− q| : p ∈ U, q ∈ V },

while the Hausdorff distance between two compact subsets K1,K2 of R2 will be denoted by

dH(K1,K2) = inf{δ > 0 : K1 ⊆ Nδ(K2) and K2 ⊆ Nδ(K1)}.

By H1 we shall refer to the one-dimensional Hausdorff measure.
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In all that follows C, c, c′, c̃, c0, c1, c2, etc. will denote positive numerical constants. The constants in the
O-notation, wherever used, are also meant to be numerical.

3. Preliminaries.

Let u be a solution of (1) in a disk B ⊆ R2 that satisfies (3). In our forthcoming arguments we shall often
be working with some connected component U of [Br(x)]+(u), where Br(x) b K b B for some compact
set K. Claim that U is a piecewise smooth domain; that will provide us with enough regularity to apply
the Divergence Theorem in U . It suffices to show that only finitely many connected components of F (u)
intersect ∂Br(x) and that each intersects it only a finite number of times. Let γ be any connected component
of F (u) intersecting K. Since for each p ∈ F (u), F (u) ∩ Bε(p)(p) is locally the graph of a smooth function

when ε(p) is small enough, the compact γ ∩K has a finite subcover {Bε(pi)(pi), pi ∈ γ ∩K}Ni=1, so that

d (γ ∩K, (F (u) \ γ) ∩K) ≥ δ(γ) :=
1

2
min{εpi}Ni=1. (4)

But {Nδ(γ)(γ ∩ K)}γ , where γ ranges over all connected curves of F (u) intersecting K, is a cover of the

compact F (u) ∩ K, so it has a finite subcover {Nδ(γj)(γj ∩ K)}Mj=1. Because of (4), each element of the
subcover contains only γj ∩ K and nothing else from F (u) ∩ K, so there are only finitely many curves γ
intersecting K and thus Br(x). Each such γ intersects ∂Br(x) only a finite number of times, because by the
classical result of [KN77], the free boundary F (u) is real analytic.

We shall now prove two fundamental regularity properties that classical solutions of (1) given (3) satisfy:
universal Lipschitz bound and universal non-degeneracy away from the free boundary. To elucidate the latter
part of our claim, let us state the relevant definition.

Definition 3.1. A non-negative function u : Ω → R is non-degenerate if there exists a constant c > 0,
such that

sup
Br(x)

u ≥ cr

for every Br(x) ⊆ Ω centered at a point x0 ∈ F (u).

First, let us show that classical solutions enjoy a universal Lipschitz bound.

Proposition 3.1 (Lipschitz bound). Let u be a classical solution of (1) in BR(0). If the largest disk in
B+
R(u), centered at x, touches F (u), then

|∇u|(x) ≤ C.
for some numerical constant C > 0. In particular, if 0 ∈ F (u)

‖∇u‖L∞(BR/2) ≤ C. (5)

Proof. If u(x) = m, then by Harnack’s inequality c1m ≤ u(y) ≤ c2m on ∂Br/2(x). Let h be the harmonic
function in the annulus Ar(x) := Br(x) \Br/2(x), whose boundary values are:

h = c1m on ∂Br/2(x)

h = 0 on ∂Br(x).

By the maximum principle h ≤ u in Ar and so by the Hopf lemma,

hν(p) ≤ uν(p) = 1,

where ν denotes the inner-normal to B+
R and p ∈ F (u) is a point of touching between F (u) and Br(x). On

the other hand, hν(p) ≥ c′m/r, thus
m ≤ C ′r.

Thus,

|∇u|(x) ≤ c0
r

 
∂Br/2

u dH1 ≤ c0c2m

r
≤ C,

for some numerical constant C.
Statement (5) follows once we point out that for x ∈ BR/2 the largest ball contained in B+

R(u) and centered
at x, will certainly touch F (u). �

The universal nondegeneracy property is established through the following proposition.
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Proposition 3.2. Let u be a classical solution of (1) in BR(0), for which (3) is satisfied. Assume further
that 0 ∈ F (u). Then

sup
Br(0)

u = max
∂Br(0)

u ≥ 1

2π
r for all 0 < r < R.

Proof. Since u is continuous and subharmonic, the maximum principle implies supBr(0) u = max∂Br(0) u.

Let ũ(x) := r−1u(rx) denote the r-rescale of u. It suffices to show that sup∂B1
ũ ≥ 1/2π.

Let φ : [0, 1]→ R be the function

φ(t) =

{
1
2 0 ≤ t ≤ 1

2
1− t 1

2 < t ≤ 1
.

and let ψ(x) = φ(|x|). Let U be the component of B+
R/r(ũ) = r−1B+

R(u) in B1 whose boundary contains the

origin. Then if ũν denotes the inner normal to U ,

−
ˆ
U

∇ψ · ∇ũ dx = −
ˆ
U

div(ψ∇ũ) dx =

ˆ
∂U∩B1

ψũν dH1 =

ˆ
∂U∩B1

ψ dH1.

On the other hand, if r̂ denotes the unit vector field in the radial direction,

−
ˆ
U

∇ψ · ∇ũ dx =

ˆ
U\B1/2

div(ũr̂)− div(r̂)ũ dx =

=

ˆ
∂B1∩U

ũ dH1 −
ˆ
∂B1/2∩U

ũ dH1 −
ˆ
U\B1/2

ũ

|x|
dx.

Therefore, as H1(∂U ∩B1) ≥ 2,ˆ
∂B1∩U

ũ dH1 ≥
ˆ
F (ũ)∩U

ψ dH1 ≥ 1

2
H1(∂U ∩B1) ≥ 1.

Hence, sup∂B1∩U ũ ≥ 1/2π. �

4. Weak solutions.

In this section we define the two notions of weak solutions that will be useful in classifying the limits of
sequences of classical solutions. Let

I[u,Ω] =

ˆ
Ω

|∇u|2 + 1{u>0} dx Ω ⊆ R2

be the one-phase energy functional whose Euler-Lagrange equation is the free boundary problem (1).

Definition 4.1. The function u ∈ H1
loc(Ω) is a variational solution of (1) if u ∈ C(Ω)∩C2(Ω+(u)) and

0 = L[u](φ) :=
d

dε

∣∣∣∣
ε=0

I[u(x+ εφ(x))] =

ˆ
Ω

(
|∇u|2 + 1{u>0}

)
div φ− 2∇uDφ(∇u)T dx

for any φ ∈ C∞c (Ω;R2).

The next proposition is standard and says that any globally defined limit of uniformly convergent vari-
ational solutions that are uniformly Lipschitz continuous and uniformly non-degenerate, inherits the same
properties.

Proposition 4.1. Let {uk} ∈ H1
loc(BRk), Rk ↗ ∞, be a sequence of variational solutions of (1) which

satisfies

• (Uniform Lischitz continuity) There exists a constant C, such that ‖∇uk‖L∞(BRk ) ≤ C;

• (Uniform non-degeneracy) There exists a constant c, such that supBr(x) uk ≥ cr for every Br(x) ⊆
BRk , centered at a free boundary point x ∈ F (uk).

Then any limit u ∈ H1
loc(R2) of a uniformly convergent on compacts subsequence uk → u satisfies

(a) {uk > 0} → {u > 0} and F (uk)→ F (u) locally in the Hausdorff distance;
(b) 1{uk>0} → 1{u>0} in L1

loc(R2);
(c) ∇uk → ∇u a.e.

Moreover, u is a Lipschitz continuous, non-degenerate variational solution of (1).
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Proof. Obviously, u is a global Lipschitz continuous function with ‖∇u‖L∞(R2) ≤ C and u ∈ H1
loc(R2). One

proves properties a) through c) arguing as in [CS05, Lemma 1.21]. The non-degeneracy of u follows from
the non-degeneracy of uk combined with the fact that F (uk)→ F (u) locally in the Hausdorff distance.

To show that u is a variational solution as well, note that since ∇uk → ∇u a.e. and |∇uk| and |∇u| are
bounded above by C, the Dominated Convergence Theorem implies that for every φ ∈ C1

c (R2;R2)

0 = lim
k→∞

L[uk](φ) = L[u](φ).

�

The second notion of weak solution that will make use of is that of a viscosity super/sub-solution ([CS05]).

Definition 4.2. A viscosity supersolution (resp. subsolution) of (1) is a non-negative continuous function
w in Ω such that

• ∆w ≤ 0 (resp. ∆w ≥ 0) in Ω+(w);
• If x0 ∈ F (w) and there is a disk B ⊆ Ω+(w) (resp. B ⊆ {w = 0}) that touches F (w) at x0, then

near x0 in B (resp. Bc), in every non-tangential region,

w(x) = α〈x− x0, ν〉+ + o(|x− x0|) for some α ≤ 1 (resp. α ≥ 1),

where ν denotes the inner (resp. outer) unit normal to ∂B at x0.

A function w is a viscosity solution if w is both a viscosity super- and subsolution.

The class of viscosity solutions is well-suited for taking uniform limits in compact sets.

Lemma 4.2 (Limit of viscosity solutions). Let uk ∈ C(Ω) be a sequence of viscosity solutions of (1) in Ω
such that uk → u uniformly and u is Lipschitz continuous. Then u is also a viscosity supersolution of (1)

in Ω. If, in addition, Ω+(uk) → Ω+(u) locally in the Hausdorff distance, then u is a viscosity subsolution,
as well.

Proof. Clearly ∆u = 0 in Ω+(u), so we only need to check that the appropriate free boundary conditions
are satisfied.

Let us show that u satisfies the viscosity supersolution condition at the free boundary. Assume there is a
disk B touching x0 ∈ F (u) from the positive phase. Without loss of generality, x0 = 0 and the unit normal
of ∂B at 0 is ν = e2. According to [CS05, Lemma 11.17], u has the linear behaviour:

u(x) = αx2 + o(|x|) in non-tangential regions of B

for some 0 < α <∞ where ν denotes the inner unit normal to ∂B at x0. Claim that α ≤ 1. Fix ε > 0 small.
If we blow up at 0,

uλ(x) := λ−1u(x0 + λx)→ αx2 in B1 ∩ {x2 > ε} uniformly as λ→ 0.

Denote (uk)λ(x) = λ−1u(λx) the dilate of uk at 0. By the uniform convergence of uk to u, for some fixed
small enough λ > 0

|(uk)λ(x)− αx2| < αε/2 in B1 ∩ {x2 > ε} for all large enough k. (6)

Consider the perturbation Dt of the domain B1 ∩ {x2 > ε} defined by

Dt = {x ∈ B1 : x2 > ε− tη(x1)},

where 0 ≤ η(x1) ≤ 1 is a smooth bump function supported in |x1| < 1/2 with η(x1) = 1 for |x1| ≤ 1/4. We
know that D0 b Ω+((uk)λ) and since 0 ∈ F (uλ)

F ((uk)λ) ∩Bε 6= ∅. (7)

for all large enough k. Pick a k such that both (6) and (7) hold. Then for some 0 < t0 < 2ε the domain
Dt0 ⊆ Ω+((uk)λ) will touch F ((uk)λ) at some p ∈ F ((uk)λ)∩ {|x1| < 1/2}. Define a harmonic function v in
Dt0 with boundary values

v(x) =

{
αx2 − αε on ∂B1 ∩ {x2 > ε}

0 on B1 ∩ {x2 = ε− t0η(x1)}



8 DAVID JERISON AND NIKOLA KAMBUROV

Thus, by the maximum principle v ≤ (uk)λ in Dt0 , so that near p in non-tangential regions of Dt0 , for some
α̃ ≤ 1

v(x) ≤ (uk)λ(x) = α̃〈x− p, ν(p)〉+ o(|x− x0|),

where ν(p) is the inner normal to ∂Dt0 at p. On the other hand, a standard perturbation argument gives
vν(p) = α+O(ε). Since ε is arbitrary, we conclude α ≤ 1.

Let us now assume that Ω+(uk)→ Ω+(u) in the Hausdorff distance and show that u satisfies the viscosity
subsolution condition at the free boundary. Let there be a disk B touching F (u) at x0 from the zero phase.
Without loss of generality, x0 = 0 and the unit outer normal at ∂B is e2. According to [CS05, Lemma 11.17],
for some 0 ≤ β <∞

u(x) ≤ βx+
2 + o(|x|).

Given ε > 0 we can dilate u and uk near 0 sufficiently, so that

(uk)λ(x) ≤ uλ(x) + ε/2 ≤ βx+
2 + ε in B1

for some fixed large λ and all large enough k. Moreover, since Ω+((uk)λ)→ Ω+(uλ), we can choose k large
enough such that

Ω+((uk)λ) ∩B1 b {x2 > −ε/2} and F ((uk)λ) ∩Bε/2 6= ∅.

Let Et be the domain

Et = {x ∈ B1 : x2 > −ε+ tη(x1)}

and note that for some 0 < t0 < 2ε, Et0 ⊇ Ω+((uk)λ) ∩ B1 and ∂Et0 touches F ((uk)λ) ∩ B1 at some point
q ∈ F ((uk)λ ∩ {|x1| < 1/2}. Define a harmonic function w in Et0 having boundary values:

w(x) =

{
βx+

2 + min
(
(2(x2 + ε)+), ε

)
on ∂B1 ∩ {x2 > −ε}

0 on B1 ∩ {x2 = −ε+ t0η(x1)}

Thus, the maximum principle implies that near q, in non-tangential regions of Ω+((uk)λ),

w(x) ≥ (uk)λ(x) = β̃〈x− q, ν(q)〉+ o(|x− x0|),

for some β̃ ≥ 1. Hence, wν(q) ≥ β̃ ≥ 1. On the other hand, a standard perturbation argument gives
wν(q) = β +O(ε). Since ε is arbitrary, we conclude that β ≥ 1. �

5. Characterization of blow-downs and blow-ups.

The notion of a variational solution is incredibly useful precisely because it admits the application of the
powerful Weiss Monotonicity Formula.

Lemma 5.1 (Weiss’ Monotonicity Formula, Theorem 3.1 in [Wei98]). Let u be a variational solution of (1)
in Ω ⊆ Rn and that BR(x0) ⊆ Ω. Then

Φ(u, r) := r−n
ˆ
Br(x0)

(
|∇u|2 + 1{u>0}

)
dx− r−n−1

ˆ
∂Br(x0)

u2 dHn−1 (8)

satisfies the monotonicity formula

Φ(u, r2)− Φ(u, r1) =

ˆ
Br2 (x0)\Br1 (x0)

2|x|−n−2
(
∇u · (x− x0)− u

)2
dx ≥ 0 (9)

for 0 < r1 < r2 < R.

Lemma 5.2. Let u be a variational solution of (1) in Rn which is globally Lipschitz. Assume 0 ∈ F (u) and
let v be any limit of a uniformly convergent on compacts subsequence of

vj(x) = R−1
j u(Rjx)

as Rj →∞. Then v is Lipschitz continuous and homogeneous of degree one.
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Proof. Denote vj(x) = R−1
j u(Rjx) and note that vj are also global variational solutions of (1) and Φ(vj , r) =

Φ(u, rRj). According to Lemma 5.1 the quantity Φ(u,R) is non-decreasing as R → ∞ and, moreover, it is
uniformly bounded since u is Lipshitz continuous. Hence, for any fixed 0 < r1 < r2

0 = lim
j→∞

(
Φ(u, r2Rj)− Φ(u, r1Rj)

)
= lim
j→∞

(
Φ(vj , r2)− Φ(vj , r1)

)
and (9) yields

lim
j→∞

ˆ
Br2\Br1

2|x|−n−2
(
∇vj · x− vj

)2
dx = 0.

Possibly passing to a subsequence such that∇vj ⇀ ∇v weakly in L2, the lower semicontinuity of the L2-norm
with respect to weak convergence implies

ˆ
Br2\Br1

2|x|−n−2
(
∇v · x− v

)2
dx = 0.

Thus, ∇v · x = v a.e. whence it is a standard exercise to conclude that v is homogeneous of degree one.
�

Proposition 5.3 (Characterization of blowdowns). Let u be both a viscosity and a variational solution of
(1) in R2, which is Lipschitz-continuous and non-degenerate. Assume 0 ∈ F (u) and let v be any limit of a
uniformly convergent on compacts subsequence of

vj(x) = R−1
j u(Rjx)

as Rj → ∞. Then v is either V1(x) = x+
2 or V2(x) = s|x2| for some 0 < s ≤ 1 in an appropriately chosen

Euclidean coordinate system.

Proof. As a consequence of Proposition 4.1, Lemma 4.2 and Lemma 5.2 applied to the sequence vj we
conclude that v is a Lipschitz continuous, non-degenerate, viscosity and variational solution of (1), which is
homogeneous of degree 1. Thus, after possibly rotating the coordinate axes

v(x) = c1x
+
2 + c2x

−
2 ,

where c1 ≥ c2 ≥ 0. We have the following two cases.
Case 1 (c2 = 0). By non-degeneracy we must have c1 > 0 and since every point x0 ∈ F (v) = {x2 = 0} has
a tangent disk from both the positive and zero set of v, then c1 = 1.
Case 2 (c2 > 0). Every point x0 ∈ F (v) = {x2 = 0} has a tangent disk from the positive phase of v only, so
from the fact that v is a viscosity solution we can just conclude that 1 ≥ c1 ≥ c2. On the other hand, v is
also a variational solution and an easy computation gives

0 = L[v](φ) = (c21 − c22)

ˆ
R
φ2(x1, 0)dx1

for any φ = (φ1, φ2) ∈ C1
c (R2;R2). Thus, c1 = c2 = s. �

Exactly analogous arguments apply to blow-up limits of Lipschitz continuous weak solutions, so we have
the analogous characterization:

Proposition 5.4 (Characterization of blow-ups). Let u be a both a viscosity and a variational solution of
(1) in Ω ⊆ R2, which is Lipschitz-continuous and non-degenerate. Assume 0 ∈ F (u) and let v : R2 → R be
any limit of a uniformly convergent on compacts subsequence of

vj(x) = ε−1
j u(εjx)

as εj → 0. Then v is either V1(x) = x+
2 or V2(x) = s|x2| for some 0 < s ≤ 1 in an appropriately chosen

Euclidean coordinate system.
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6. Auxiliary Lemmas.

Lemma 6.1. Let u be a classical solution of (1) in a domain B2, which has Lipschitz norm L and such that

|u(x)− s|x2|| < ε in B2 (10)

for some 0 < s ≤ 1 and some small ε > 0. Then there exists a universal constant c > 0 such that

‖∇u‖L∞(B1/2) ≤ 1 + cL
√
ε.

Proof. Assumption (10) implies B+
2 (uR) ⊂ {|x2| > ε/s}. Thus, at any p ∈ ∂B1 ∩ {|x2| > 2Mε/s}} for a

large M ≤ s/2ε, we have BMε/s(p) ⊂ B+
2 (u) so that u− s|x2| is harmonic in BMε/s(p). Hence,

|∇u(p)− s∇|x2|(p)| ≤
c′

Mε/s

 
∂BMε/s

∣∣u− s|x2|
∣∣ dH1 ≤ c′

M/s
,

which in turn leads to

|∇u(p)|2 ≤
(
s+

c′

M/s

)2

≤ 1 +
3c′

M/s
. (11)

Define the function v : B2 → R

v =

{
|∇u|2 − 1 in B+

2 (u)
0 otherwise.

Then v is continuous in B2 and since

∆|∇u|2 = 2|D2u|2 + 2∇(∆u) · ∇u = 2|D2u|2 ≥ 0 in B+
2 (u),

v is subharmonic in B+
2 (u). Let vh : B1 → R be the harmonic function whose boundary values on ∂B1 are

given by

vh(x) = max{v(x), 3c′s/M} x ∈ ∂B1.

By the maximum principle, vh > 0 in B1 and vh ≥ v in B+
1 (u), whence v ≤ vh in B1. By Poisson’s formula,

for any x ∈ B1/2

vh(x) ≤ c
ˆ
∂B1

vh dH1 = c

(ˆ
∂B1∩{|x2|≤Mε/s}

vh dH1 +

ˆ
∂B1∩{|x2|>Mε/s}

vh dH1

)

≤ c̃L2εM/s+
c̃

M/s
, (12)

where the last inequality is a consequence of (11) and the Lipschitz control of u. Choosing M = s/(
√
εL})

yields

v ≤ vh ≤ 2c̃L
√
ε in B1/2

which is the desired estimate. �

Lemma 6.2. Let uk be a sequence of classical solutions of (1) in BRk , Rk ↗∞ that are uniformly Lischitz
continuous and assume the sequence converges uniformly on compact subsets of R2 to u : R2 → R with
0 ∈ F (u). If a blowdown limit of u

uRj (x) = R−1
j u(Rjx)→ s|x2| uniformly on compacts as Rj →∞,

for some 0 < s ≤ 1, then

|∇u| ≤ 1 a.e.

Proof. Fix ε > 0 and find j large enough so that

|uRj − s|x2|| < ε/2 in B2.

Then for all large enough k, such that |uRj − (uk)Rj | < ε/2 in B2, we have

|(uk)Rj − s|x2|| < ε,

so that Lemma 6.1 yields the estimate

‖∇uk‖L∞(BRj/2) = ‖∇(uk)Rj‖L∞(B1/2) ≤ 1 + C
√
ε,
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where C is a bound on the Lipschitz norm of uk. At every x ∈ {u > 0}, for d = u(x), the disk Bd/2C(x) ⊆
{u > 0} as well as Bd/2C(x) ⊆ {uk > 0} for all k large enough. Since uk → u uniformly in Bd/2C(x), where
the functions are harmonic, we also get ∇uk(x)→ ∇u(x) as k →∞. Since ∇u(x) = 0 a.e. x ∈ {u = 0},

‖∇u‖L∞(BRj/2) = lim
k→∞

‖∇uk‖L∞(BRj/2) ≤ 1 + C
√
ε.

Letting Rj →∞, followed by ε→ 0, yields the result. �

Lemma 6.3. Let u be a classical solution of (1) in Ω ⊆ R2. Then the signed curvature κ of F (u) is given
by

κ = −1

2

∂(|∇u|2)

∂ν
,

where ν is the unit normal pointing towards Ω+(u).

Proof. The curvature of a level set of a function v at a point where |∇v| 6= 0 is given by

κ = div

(
∇v
|∇v|

)
.

(Note that κ > 0 when the curvature vector points in the direction of −∇v, e.g. the curvature of the 0-level
set of v(x, y) = log(x2 + y2) is positive 1). Since in a small enough neighborhood U of each x ∈ F (u) we can
define a harmonic v which agrees with u on U ∩ Ω+(u), the curvature of F (u) is given by the curvature of
the v = 0 level set. Using in addition |∇v|(x) = 1, we compute

κ =
∆v

|∇v|
− ∇v · ∇|∇v|

|∇v|2
= − (|∇v|2)ν

2|∇v|2
= −(|∇u|2)ν/2.

�

Remark 6.4. If u is a classical solution of (1) in Ω ⊆ R2 with |∇u| < 1 in Ω+(u), then F (u) has strictly
positive curvature.

Proof. The result follows immediately from Lemma 6.3 after an application of the Hopf Lemma to |∇u|2,
which is subharmonic in Ω+(u):

∆|∇u|2 = 2|D2u|2 + 2∇u · ∇(∆u) = 2|D2u|2 ≥ 0 in Ω+(u).

�

Lemma 6.5. Let u be a classical solution of (1) in Ω ⊂ R2, whose Lipschitz norm is L <∞. If V ⊆ Ω+(u),
V b Ω is a bounded, piecewise C1 domain, then

L−1H1(∂U ∩ F (u)) ≤ H1(∂U \ F (u)).

Proof. Applying the Divergence Theorem in U :

0 = −
ˆ
U

∆u dx =

ˆ
∂U∩F (u)

uν dH1 +

ˆ
∂U\F (u)

uν dH1 = H1(∂U ∩ F (u)) +

ˆ
∂U\F (u)

uν dH1,

where uν is the inner unit normal to ∂U . The result then follows from |uν | ≤ L H1-a.e. on ∂U . �

Lemma 6.6. Let u be a classical solution of (1) in B3, which is Lipschitz continuous with norm L and for
which assumption (3) is satisfied. There exists δ = δ(L) > 0 small enough such that if

{u = 0} ⊂ B3 ∩ {|x2| < δ}
there are at most two connected components of B+

2 (u) which intersect B1, namely the connected component(s)
containing N = (0, 1) and S = (0,−1).

Proof. Consider a connected component U of B+
2 (u) that contains neither N nor S; then it must be that

U ⊆ B2 ∩ {|x2| < δ}. Assuming that U intersects B1, by assumption (3) we have H1(∂U ∩ F (u)) ≥ 2. On
the other hand, U is a piecewise C1 domain with ∂U \F (u) ⊆ ∂B2 ∩{|x2| < δ}, so that H1(∂U \F (u)) ≤ cδ
for some numerical constant c > 0. But then by Lemma 6.5

2/L ≤ L−1H1(∂U ∩ F (u)) ≤ H1(∂U \ F (u)) ≤ cδ,
which would be impossible if δ < 2/Lc. �
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Lemma 6.7. Let u be a classical solution of (1) in B4 for which assumption (3) is satisfied. Assume further
that (0, 1) and (0,−1) belong to two separate connected components of B+

2 (u). Then there exists δ0 > 0 small
enough such that if for any 0 < δ ≤ δ0

{u = 0} ⊆ {|x2| < δ},

the free boundary F (u) inside {|x1| < 1/2} consists of two disjoint graphs:

F (u) ∩ {|x1| < 1/2} = {x2 = φ+(x1) : |x1| < 1/2} t {x2 = φ−(x1) : |x1| < 1/2},

for which φ+ > φ− and

‖φ±‖C1,α(−1/2,1/2) ≤ Cδ
for some numerical positive constants C, 0 < α < 1.

Proof. By Proposition 3.1, ‖∇u‖L∞(B2) ≤ L for some numerical constant L, so that by Lemma 6.6, there

exists a small enough δ0 > 0 such that it is precisely the connected components U+ and U− of B+
2 (u),

containing (0, 1) and (0,−1) respectively, that intersect B1. Define the two functions u+ and u− on B1 by
u± = u1U±∩B1 . Then each u± is a classical solution of (1) in B1 whose free boundary F (u±) is contained in
a flat strip |x2| < δ with u+ = 0 in B1∩{x2 < −δ} and u− = 0 in B1∩{x2 > δ}. By the classical result of Alt
and Caffarelli [AC81], in |x1| < 1/2 the free boundary F (u±) is the graph of a function φ± : (−1/2, 1/2)→ R,
which satisfies

‖φ±‖C1,α(−1/2,1/2) ≤ Cδ
for some α > 0, C > 0. Noting that F (u) ∩B1 = F (u+) t F (u−), we are done. �

7. Characterization of the limit.

Recall the setup. We have a sequence {uk} of classical solutions of (1) in expanding disks BRk , Rk ↗∞
with 0 ∈ F (uk). Because of Proposition 3.1, uk are uniformly Lipschitz on compact subsets of R2, so that
up to a subsequence, uk converges uniformly on compacts to some u : R2 → R. Moreover, since uk are
uniformly non-degenerate by Proposition 3.2, and, trivially also, weak solutions (variational and viscosity),
then by Proposition 4.1 and Lemma 4.2, u is a global weak solution, which is Lipschitz continuous and
non-degenerate. Thus, by Propositions 5.3 and 5.4, u blows down/blows up at a free boundary point to a
half-plane or a wedge solution.

We shall show that, in for appropriately chosen Euclidean coordinates, u has to be one of the four:

• a half-plane solution P (x) = x+
2

• a two-plane solution Wb(x) = x+
2 + (x2 − b)−, for some b < 0

• a wedge solution W0(x) = |x2|
• a hairpin solution Ha, whose {Ha > 0} = {(x1, x2) : |ax1 − (1 + π/2)| < π/2 + cosh(ax2)} for some
a > 0.

The proof of the classification Theorem 1.1 is realized in a sequence of propositions. Proposition 7.1 covers
the scenario when u blows down to a half-plane solution, while Proposition 7.2 covers the case when the
blowdown is a wedge solution. In the latter there is a dichotomy, u can be either a two-plane solution or
satisfy |∇u| < 1 globally in its positive phase. The second scenario is the more subtle one and its treatment
is carried out in several steps assembled under Proposition 7.3: in the first we employ a 2-point simultaneous
blow-up to show that the free boundary is smooth everywhere but possibly one point; in the second step we
prove the free boundary is actually smooth everywhere using the strong geometric constraint of positive free
boundary curvature to argue that the zero phase contains a nontrivial sector with vertex at the exceptional
point (cf. Lemmas 7.5 and 7.6); in the final step we establish that the free boundary must consist of exactly
two smooth proper arcs, so that u has to be a hairpin solution, according to [Tra14, Theorem 12].

Let us commence with

Proposition 7.1. Let uk, u be as in Theorem 1.1 and assume 0 ∈ F (u). If a blowdown limit of u at 0 is a
half-plane solution:

R−1
j u(Rjx)→ x+

2 as Rj ↗∞,

(with coordinates chosen appropriately), then u = x+
2 itself.
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Proof. Since uRj → x+
2 uniformly on compacts, the free boundary F (u) is asymptotically flat, i.e.

F (u) ∩BRj ⊆ {|x2| ≤ εj}

with the aspect ratio εj/Rj → 0 as j →∞. By the classical theorem of Alt and Caffarelli [AC81], F (u) has
to be the straight line {x2 = 0} and u = x+

2 . �

Proposition 7.2. Let uk, u be as in Theorem 1.1 and assume 0 ∈ F (u) and that a blowdown limit of u at
0 is a wedge solution:

R−1
j u(Rjx)→ s|x2| as Rj ↗∞,

(with coordinates chosen appropriately) for some 0 < s ≤ 1. Then either u = x+
2 + (x2− b)− for some b ≤ 0,

or

|∇u| < 1 in {u > 0}.

Proof. From Lemma 6.2 we have the bound |∇u| ≤ 1 a.e. Noting that |∇u|2 is a smooth subhamornic
function in {u > 0}:

∆|∇u|2/2 = 2|D2u|2 ≥ 0, (13)

the Strong Maximum Principle entails that if |∇u|2(x0) = 1 at some x0 ∈ {u > 0}, then |∇u|2 ≡ 1 in the
entire connected component U of x0. Equation (13) implies that |D2u|2 = 0 in U , so that u is an affine
function in U . Thus U is a half-plane, say U = {x2 < b} for some b ≤ 0 and u = (x2 − b)− in U . The latter
also implies that u has to blow down precisely to |x2|, i.e. s = 1.

We shall now show that v = u1R2\U is a viscosity solution itself. Once this is established, we can apply

the previous Proposition 7.1 to v (as v has to blow down to x+
2 ), so that v will have to be v = x+

2 itself. We
will then be able to conclude that u = v + (x2 − b)− = x+

2 + (x2 − b)−.
Note that v is trivially a viscosity supersolution (as u is), so let us focus on showing that v is also a

viscosity subsolution. Let p ∈ F (v) and let B ⊆ {v = 0} be a touching disk to F (v) at p from the zero phase.
If there exists a disk B′ ⊆ B such that ∂B ∩ ∂B′ = p and B′ ⊆ {u = 0}, then the subsolution condition for
v will be inherited from u. Otherwise, every B′ ⊆ B with ∂B ∩ ∂B′ = p will have to intersect the half-plane
U = {x2 < b}, and thus B ⊆ U and p ∈ ∂U . But then, applying Proposition 5.4, we see that any blowup of
u at p will have to equal |(x− p) · e2|, where e2 is a unit vector in the direction of x2. Hence, near p

v(x) = ((x− p) · e2)+ + o(|x− p|) in any nontangential region of Bc,

so that the subsolution condition is satisfied again.
�

Proposition 7.3. Let uk, u be as in Theorem 1.1. Further assume that |∇u| < 1 in {u > 0}. Then u is a
hairpin solution.

Proof. We shall prove the proposition in three steps. In the first we show that F (u) is smooth everywhere
but possibly one point. In the second step we invoke Lemma 7.5 to establish that F (u) is, in fact, smooth
everywhere. In the final step we show that F (u) consists of two disjoint proper arcs, so that by a result of
Traizet [Tra14, Theorem 12] u has to be a hairpin solution.
Step 1. In order to establish the claim of the first step above, we have to prove that for no two distinct
points P1, P2 ∈ F (u) it can happen that u blows up to wedge solutions at both P1 and P2. From this it
follows that at every point of F (u) but possibly one, u has to blow up to the only other alternative – a
half-plane solution (according to Proposition 5.4) so that F (u) is smooth there.

Assume the contrary. Denote uε(x) := ε−1u(εx) and (uk)ε(x) := ε−1uk(εx). If u blows up to wedge
solutions at P1 and P2, Proposition 4.1a) implies there exist some unit vectors a1 and a2 such that given an
arbitrary small λ > 0, one can find a sequence εj ↘ 0 small enough such that for any ε = εj small enough

dH
(
{uε = 0} ∩B4(Pi/ε), {Pi/ε+ tai : |t| ≤ 4}

)
< λ/2 i = 1, 2.

Further, for that particular fixed ε, Proposition 4.1a) implies that for all k large enough

dH
(
{(uk)ε = 0} ∩B4(Pi/ε), {uε = 0} ∩B4(Pi/ε)

)
< λ/2 i = 1, 2.

As a consequence, for all k large enough

dH
(
{(uk)ε = 0} ∩B4(Pi/ε), {Pi/ε+ tai : |t| ≤ 4}

)
< λ i = 1, 2. (14)
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For ease of notation, denote v := uε, vk := (uk)ε and Qi = Pi/ε, i = 1, 2; let bi be the vector ai rotated by
π/2. According to Lemma 6.6, there are at most two connected components of B2(Qi)

+(vk) that intersect
B1(Qi) – the one(s) that contain Ni = Qi + bi and Si = Qi − bi. We shall now show that there has to be
just one if λ is small enough and k is large enough.

Assume N1 and S1 belong to two separate connected components U+,k and U−,k of B2(Q1)+(vk). Com-
bining this with (14) allows us to invoke Lemma 6.7 and conclude that F (vk)∩{|(x−Q1) ·a1| < 1/2} consists
of the graphs Σ+,k and Σ−,k of some functions φ+,k > φ−,k over the line segment I = {Q1 + ta1 : |t| < 1/2}:

F (vk) ∩ {|(x−Q1) · a1| < 1/2} = Σ+,k t Σ−,k where Σ±,k = {y + φ±,k(y)b1 : y ∈ I}.

Moreover, the functions φ±,k satisfy the uniform bound

‖φ±,k‖C1,α(I) ≤ Cλ.

Hence, there exist C1,α functions φ± : I → R and a subsequence φ±,kl such that

φ±,kl → φ± in C1(I) as l→∞.

But since F (vk) → F (v) locally in the Hausdorff distance, it must be that F (v) ∩ {|(x − Q1) · a1| < 1/2}
consists precisely of the C1,α graphs

Σ± = {y + φ±(y)b1 : y ∈ I}

and

B2(Q1)+(v) ∩ {|(x−Q1) · a1| < 1/2} = U+ t U−,
where U+ = {y + tb1 : t > φ+(y) : y ∈ I} ∩ B2(Q1) and U− = {y + tb1 : t < φ−(y) : y ∈ I} ∩ B2(Q1).
Moreover, since vk1U±,k are viscosity solutions in B2(Q1) ∩ {|(x − Q1) · a1| < 1/2} and vk1(U±)k → v1U±
uniformly there, Lemma 4.2 implies that v1U± are viscosity solutions there as well. As their free boundary
is C1,α, they are in fact classical solutions. But |∇v| < 1 in {v > 0}, so that according to Corollary 6.4,
both Σ+ and Σ− have positive curvature. However, this is impossible, because 0 ∈ Σ+ ∩ Σ−, as v blows up
at 0 to a wedge solution.

Hence N1 and S1 belong to the same connected component of B2(Q1)+(vk) and similarly N2 and S2

belong to the same connected component of B2(Q2)+(vk) for λ small enough and all k large enough.
Let

αL = ∂B4(Q1) ∩ {x : |(x−Q1) · b1| < λ, (x−Q1) · a1 < 0}
αR = ∂B4(Q1) ∩ {x : |(x−Q1) · b1| < λ, (x−Q1) · a1 > 0}.

By our topological assumption F (vk)∩B4(Q1) consists of arcs whose ends lie on αL ∪ αR. Define FL (resp.
FR) to be the set of points of F (vk) ∩B4(Q1) that lie on arcs whose both ends are on αL (resp. αR). Then

F (vk) ∩B4(Q1) = FL t FR.

This is so, because the existence of an arc which has one end on αL and the other on αR would contradict
the fact that N1 from S1 belong to the same connected component of B2(Q1)+(vk).

Note that F (vk)∩B4(Q1) consists of a finite number of connected arcs. This follows from the analyticity of
F (vk) which implies that only finitely many connected arcs of F (vk) can intersect ∂B4(Q1), each intersecting
it finitely many times. As a consequence, the sets FL and FR are closed and being bounded, they are compact.
Hence, there exists a point p ∈ FL and a point q ∈ FR such that

|p− q| = dist(FL, FR) < 2λ,

where the bound follows from (14). Denote by γL the arc of F (vk) ∩B4(Q1) containing p, and by γR – the
arc containing q.

Claim that the straight line segment τ1 := {(1 − t)p + tq : 0 < t < 1}, connecting p to q, lies in
B4(Q1)+(vk). Since p and q realize the distance between FL and FR, it must be that τ1 ∩F (vk) = ∅, so that
either τ1 ⊆ B4(Q1)+(vk) or τ1 ⊆ {vk = 0} ∩ B4(Q1). The latter alternative, however, is impossible, since
γL ∪ τ1 ∪ γR would disconnect N1 from S1 in B2(Q1)+(vk).

Let us look globally at the connected arc(s) of F (vk) that contain p and q. One possibility is that p and
q belong to the same arc. Let us argue that this is not the case. Denote by γ the arc of F (vk) with ends p
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and q. Then γ ∪ τ is a simple closed arc and it encloses a piecewise C1 Jordan domain in the positive phase.
Applying Lemma 6.5 to it, we see that, as H1(τ1) < 2λ,

2λL > H1(τ1)L ≥ H1(γ), (15)

where L denotes the Lipschitz norm of vk. However, since γL ∪ τ1 ∪ γR ⊆ γ t τ1 connects αL to αR,

H1(γ) +H1(τ1) ≥ 2
√

42 − λ2,

so that H1(γ) > 7 for all λ small. Since L is bounded above by a universal constant, taking λ small enough
leads to a contradiction in (15).

Thus, we may assume that p and q belong to distinct arcs of F (vk). We know that v blows down to
a wedge solution (otherwise |∇v(x)| = 1 at some x) and without loss of generality, we may assume the
blowdown is exactly s|x2|. Thus, for any δ > 0 there exists M = M(δ) large enough such that for all k large
enough

{vk = 0} ∩BM ⊆ {|x2| < δM}.

Note that we may take M large enough so that both Q1 and Q2 belong to BM/3 and τ1 ⊆ B+
M/2(vk). Denote

αL,M = ∂BM ∩ {x1 < 0, |x2| < δM} αR,M = ∂BM ∩ {x1 > 0, |x2| < δM}.

and let γp be the arc of F (vk)∩BM containing p, and γq – the arc of F (vk)∩BM containing q. Let us show
that γp and γq cannot both have an end on αL,M (and, similarly, they cannot both have an end on αR,M ).
Assume they do: let γ̃p ⊆ γp be the subarc connecting αL,M to p and γ̃q ⊆ γq be the subarc connecting
αL,M to q and let α̃ be (smaller) circular arc on ∂BM from the end ∂BM ∩ γ̃p to the end ∂BM ∩ γ̃q. Then

α̃ ∪ γ̃p ∪ γ̃q ∪ τ1 encloses a Jordan domain Õ and let O ⊆ Õ+(vk) be the connected component of Õ+(vk)
whose boundary contains τ1. Applying Lemma 6.5 to O, we quickly reach a contradiction for small δ, as

H1(F (vk) ∩ ∂O) ≥ H1(γ̃p) +H1(γ̃q) ≥M/2 +M/2 = M

while

H1(∂O \ F (vk)) ≤ H1(τ1) +H1(α̃) < 2λ+ cδM < 1 + cδM.

Therefore, it must be that γp has both its ends on αL,M while γq has both its ends on αR,M . Of course, an
analogous scenario holds near Q2 as well: we can find a straight line segment τ2 ⊆ B+

4 (Q2)(vk) ⊆ B+
M/2(vk)

of length H1(τ2) < 2λ, one end of which belongs to a free boundary arc with ends on αL,M and the other
contained in a free boundary arc with ends on αR,M . Moreover, d(τ1, τ2) ≈ d(Q1, Q2) = ε−1d(P1, P2) can be
taken to be of at least unit size

d(τ1, τ2) ≥ 1

if ε is initially taken small enough. However, we can now appeal to Lemma 7.4 below to rule out the arising
picture when λ and δ are small enough. This completes the first step of the proof.
Step 2. We have just established that F (u) is smooth everywhere but possibly one point – without loss of
generality, this exceptional point sits at the origin. Then each component of F (u)\0 is a smooth submanifold
of R2, hence diffeomorphic to either the circle S1 or the real line R. Let us establish that the former possibility
does not arise. Assume that there is a connected component of F (u) \ 0 that is a smooth, simple closed
curve α. Choose δ > 0 small enough, such that N2δ(α) ∩ (F (u) \ α) = ∅ (such a δ exists since α is compact

and F (u) \ α is closed). But since F (uk)→ F (u) locally in the Hausdorff distance, for K := N3δ/2(α)

F (uk) ∩K ⊆ Nδ(F (u) ∩K) = Nδ(α)

for all k large enough. However, this is impossible, since by the topological assumption (3), the free boundary
of uk has to “exit” Nδ(α):

(F (uk) ∩K) \ Nδ(α) = F (uk) ∩
(
N3δ/2(α) \ Nδ(α)

)
6= ∅.

This places us in the assumptions of Lemma 7.5 below, through which we establish the smoothness of F (u)
everywhere.
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Step 3. Each connected component of F (u) is diffeomorphic to R and thus, the image of some embedding
β : R → R2. The embedding has to be proper, i.e. limt→±∞ β(t) = ∞. Otherwise, there exists a sequence,
say ti → ∞, such that limi→∞ β(ti) = Q ∈ R2. But Q ∈ F (u) as F (u) is closed, and since F (u) is smooth

at Q, for a small enough r > 0 F (u) ∩Br(Q) is a connected arc β̃ that contains Q in its interior. But then

it has to be that β̃ ∩ β 6= ∅, so that by connectedness β̃ ⊆ β. The last statement contradicts the finite limit
of {γ(ti)}. Therefore, each connected component of F (u) is a smooth curve, which is the image of a proper
embedding of R into the plane – we shall call such curves “proper arcs”. Furthermore, each proper arc of
F (u) has strictly positive curvature.

In this last step of the proof of the Proposition, we shall show that F (u) consists of precisely two proper
arcs. Then we can invoke [Tra14, Theorem 12] to conclude that u is the hairpin solution.

As we know, u blows down to a wedge solution s|x2|, so for a sequence of δj ↘ 0 we can find a sequence
Rj ↗∞, so that F (u) ∩BRj ⊆ {|x2| < δjRj} and {x2 = 0} ∩BRj ⊆ NδjRj (F (u)). Define

αL,j = ∂BRj ∩ {x1 < 0, |x2| < δjRj} αR,j = ∂BRj ∩ {x1 > 0, |x2| < δjRj}.

Claim that each connected arc γ ∈ F (u) that intersects BRj “enters and exits” BRj either through αL,j or
αR,j if Rj is large enough, i.e.

∂BRj ∩ γ ⊆ αL,j or ∂BRj ∩ γ ⊆ αR,j .

If not, then let U be the connected component of {u > 0} such that γ ⊆ ∂U . Then it’s easy to see that u1U
is a viscosity solution of (1) whose free boundary is asymptotically flat, and thus u1U has to be a half-plane
solution, which is impossible since |∇u| < 1.

As a consequence of the above argument, combined with the fact that F (uRj ) → {x2 = 0} locally in
the Hausdorff distance, it must be that F (u) consists of at least two proper arcs. Assume that F (u) has at
least three: γ1, γ2 and γ3, and let j0 be large enough such that ∂BRj0 ∩ γi ⊆ αL,j0 or ∂BRj0 ∩ γi ⊆ αR,j0 ,
i = 1, 2, 3. Note that because γi has positive curvature, if say ∂BRj0 ∩ γi ⊆ αL,j0 , then ∂BRj ∩ γi ⊆ αL,j for

all j ≥ j0 (similarly, if γi “enters and exits from the right” at scale Rj0 , it will do so at any larger scale).
It has to be that at least two of these arcs “enter and exit” from the same side, say γ1 and γ2 “enter and
exit” from the right. Let 0 < M < Rj/3 be large enough such that {x1 = M} intersects both γ1 and γ2,
and consider any connected component V of

{u > 0} ∩ {M < x1 < M +Rj/3}.

Applying Lemma 6.5 to the piecewise C1 Jordan domain V ,

H1(∂V ∩ F (u)) ≤ CH1(∂V \ F (u)) ≤ 4δjRj ,

while clearly H1(∂V ∩ F (u)) ≥ 2Rj/3. This leads to a contradiction when j →∞ as δj → 0.
�

The proof of the proposition is complete modulo the following three technical lemmas.

Lemma 7.4. Let u be a classical solution of (1) in B2M for some large M , whose Lipschitz norm is L.
Assume that (3) is satisfied and that

{u = 0} ∩BM ⊆ {|x2| < δM}

for some δ > 0. Assume further that F (u) ∩ BM consists of arcs, each having its two ends either in αL or
in αR, where

αL = ∂BM ∩ {x1 < 0, |x2| < δM} αR = ∂BM ∩ {x1 > 0, |x2| < δM}.

Let FL (resp. FR) denote the set of points of F (u)∩BM that lie on arcs both whose ends belong to αL (resp.
αR). Then there exist small positive δ0 = δ0(L) and λ = λ(L) < 1 such that if 0 < δ < δ0, one cannot find
two straight-line open segments τ1 and τ2 of length less that λ in B+

M/2(u), each having one end in FL and

one in FR, and such that dist(τ1, τ2) ≥ 1.

Proof. Assume that for some δ, λ such segments exist; we’ll derive a contradiction by taking δ and λ small
enough and universal. Let τ1 have ends pL ∈ FL and pR ∈ FR, and τ2 connect qL ∈ FL to qR ∈ FR. The
following three different scenarios regarding the relation between these points may hold.
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Scenario 1. The points pL, pR, qL, qR belong to distinct arcs in FL and FR: γp,L, γp,R, γq,L and γq,R,
respectively. Each of these arcs is divided into two subarcs by its respective point – that start on the point
and end on ∂BM ; let us choose one of these two and denote it by γ′[·],[·], say our choice of a subarc on γp,L
will be denoted by γ′p,L. Then note that Γp := γ′p,L ∪ τ1 ∪ γ′p,R and Γq := γ′q,L ∪ τ2 ∪ γ′q,R are disjoint

simple curves and BM \ (Γp ∪ Γq) consists of three connected components, only one of which is contained in
{|x2| < δM} ∩BM ; let us call it D. Consider a connected component U of D+(u) that has τ1 as part of its
boundary. Obviously, U is piecewise C1 with

H1(F (u) ∩ ∂U) ≥ 2M
√

1− δ2 −H1(τ1) ≥ 2M
√

1− δ2 − λ and H1(∂U \ F (u)) ≤ 4 arcsin(δ)M

Applying Lemma 6.5 to U , we reach the inequality

2M
√

1− δ2 − λ ≤ 4 arcsin(δ)ML,

which cannot be satisfied if δ and λ are small enough.
Scenario 2. Two of the points that “connect to one side” belong to the same arc, while their counterparts
belong to distinct arcs: say the points pL and qL belong to the same arc γL in FL, while pR and qR belongs
to two distinct arcs γp,R and γq,R, respectively, in FR. This time let γ′L denote the subarc of γL whose
ends are pL and qL and let γ′p,R, γ′q,R be determined in the same fashion as in Scenario 1 above. Then

Γ := γ′p,R ∪ τ1 ∪ γ′L ∪ τ2 ∪ γ′q,R is a simple curve in BM with ends on αR, so that BM \ Γ consists of two

connected components, only one of which is contained in {|x2| < δM}; let us again call it D. Consider a
connected component U of D+(u) that has τ1 as part of its boundary (and thus τ2 and γ′L). Then U is
piecewise C1 with

H1(F (u) ∩ ∂U) ≥ H1(γ′L) + min{H1(γ′p,R),H1(γp,R \ γ′p,R)}+ min{H1(γ′q,R),H1(γq,R \ γ′q,R)}

since it is either γ′p,R or (γp,R\γ′p,R) (and similarly, γ′q,R or (γq,R\γ′q,R)) that belongs to ∂U . But each of these

curves intersects both ∂BM/2 and ∂BM , so that its length is at least M/2. As H1(γ′L) ≥ dist(τ1, τ2) ≥ 1, we
get

H1(F (u) ∩ ∂U) ≥ 1 +M,

while on the other hand

H1(∂U \ F (u)) ≤ 2 arcsin(δ)M.

Applying Lemma 6.5 to U we see that

1 +M ≤ 2 arcsin(δ)ML,

which is violated when δ is small enough.
Scenario 3. In this last scenario, pL and qL belong to the same arc γL of FL, and pR and qR belong to the
same arc γR of FR. Let γ′L denote the subarc of γL with ends pL, qL and γ′R denote the subarc of γR with
ends pR, qR. Then Γ := τ1∪γ′L∪ τ2∪γ′R is a simple closed curve that encloses a piecewise C1 Jordan domain
U ⊆ B+

M (u) with

H1(F (u) ∩ ∂U) = H1(γ′L) +H1(γ′R) ≥ 2dist(τ1, τ2) ≥ 2,

while

H1(∂U \ F (u)) = H1(τ1) +H1(τ2) ≤ 2λ.

Lemma 6.5 then yields

2 ≤ 2λL,

which is impossible if λ is small enough. �

Lemma 7.5. Let u : R2 → R be a non-degenerate viscosity and variational solution of (1) with |∇u| < 1 in
{u > 0}. Assume further that F (u) is smooth everywhere but possibly the origin 0 ∈ F (u) and that F (u) \ 0
has no connected component that is a closed curve. Then F (u) is smooth at the origin as well, and u is a
classical solution of (1) globally.

Proof. Every connected component γ of F (u)\0 is a smooth connected submanifold of R2, and since it is not
diffeomorphic to circle S1 by hypothesis, it has to be diffeomorphic to the real line R. Thus, it is the image
of an embedding γ : R→ R2 and it must be that for any sequence tn →∞ (or tn → −∞) limn→∞ γ(tn) is
either ∞ or 0. Otherwise, there would be some sequence tn → ±∞ such that γ(tn) converges to some finite
limit q ∈ F (u), where q 6= 0, because F (u) is closed. But F (u) is smooth at q, so that for a small enough
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r > 0, F (u)∩Br(q) is a connected arc β that contains q in its interior. Since β ∩γ 6= ∅, it follows that β ⊆ γ
by connectedness, which contradicts the convergence γ(tn)→ q.

As a first step, we claim that F (u) ∩ ∂B1 consists of finitely many points. Otherwise, there would exist
a sequence of points pn ∈ F (u) ∩ ∂B1 that converges to some p ∈ F (u) ∩ ∂B1; denote by γ the connected
component of F (u) \ 0 containing p. Since F (u) is smooth at p it would have to be that for all large enough
n, pn ∈ γ. However, that contradicts the fact that γ is an analytic curve different from the circle ∂B1.

Second, assume that F (u) \ 0 has a connected component α, an image of a smooth α : R → R2, such
that limt→±∞ α(t) = 0. Then α is a simple closed curve, so that it encloses a bounded connected domain U .
Obviously U ⊆ {u = 0}, as the Strong Maximimum Principle prevents U from containing points x where
u(x) > 0. Because of Corollary 6.4, α has positive curvature, so we can apply Lemma 7.6 to conclude that
{u = 0} ⊇ U contains a non-trivial sector based at 0. As a result, the blow-up of u at 0 cannot be the wedge
solution and can only be the one-plane solution. Therefore F (u) has to be smooth at 0.

Thus, we may assume that for each connected component γ of F (u) \ 0, γ(tn) → ∞ for some sequence
tn →∞ or tn → −∞. In particular, each connected component that intersects the unit ball B1 will exit it at
least once. Thus, there are finitely many such connected components, as F (u)∩∂B1 consists of finitely many
points. Furthermore, the very same reason implies that it is impossible to have γ(tn)→∞ for one sequence
tn → ∞ (or −∞), while γ(t̃n) → 0 for another sequence t̃n → ∞ (or −∞). Thus, either limt→±∞ γ(t) = 0
or limt→±∞ γ(t) =∞.

Next we note that 0 cannot be an isolated point of F (u), so there exists a sequence of points Pn ∈ F (u)
such that Pn → 0. Since there are only finitely many connected components of F (u) \ 0 intersecting B1,
there exists a subsequence Pnk that belongs to a single connected component γ1, so that limt→∞ γ1(t) = 0.
Then it must be limt→−∞ γ1(t) =∞, so the latest “entry time” for γ1 into B1,

T := sup{t : γ1(t) ∈ (B1)c}

satisfies |T | < ∞. Consider the connected component V of ({u = 0} ∩ B1)◦ having γ1

(
[T,∞]

)
as part of

it boundary. Obviously, 0 ∈ ∂V and claim that there exists another curve γ2 : (−∞, 0] → R2 such that

γ2

(
(−∞, 0]

)
⊂ ∂V ∩ (F (u) \ 0) with limt→−∞ γ2(t) = 0. If not,

(
∂V \ γ1

(
[T,∞]

)
∩ F (u) consists of finitely

many free boundary arcs with ends p2k and p2k+1 on the unit circle ∂B1, k = 0, 1, 2, . . . , l. Here we have
chosen the enumeration of the points {pi} in such a way that the shorter circular arc p̂1p2 ⊆ ∂V , and that
has pi+1 following pi in the direction (clockwise or counterclockwise) set by p1 and p2. In this way, the
circular arcs ̂p2k+1p2k+2 ⊆ ∂V , k = 0, 1, . . . , l − 1. Let q ∈ F (u) ∩ ∂B1 be the next point after p2l+1 on the
unit circle as we traverse it in the same direction. Then it must be that p̂2l+1q ⊆ ∂V and that the connected
component of (F (u) \ 0) ∩ B1, having q as one of its ends, is also part of ∂V . Since the other end of that
component can neither lie on ∂B1 nor be 0, it has to be that q = p0. This is, however, impossible as u cannot
be zero on both sides of γ1. So, there exists a free boundary curve γ2 ⊂ ∂V ∩ (F (u) \ 0), disjoint from γ1,
with γ2(−∞) = 0 = γ1(∞). From here it is not hard to see that V is a Jordan domain. Again, Corollary
6.4 says that γ1 and γ2 have positive curvature, and we can invoke Lemma 7.6 to establish that V contains
a non-trivial sector based at 0. As before, the blow-up limit of u at zero has to be the half-plane solution,
so that F (u) is smooth. �

Lemma 7.6. Let U ⊆ R2 be a Jordan domain with 0 ∈ ∂U and let γ1 ∈ C2([0,∞),R2) and γ2 ∈
C2((−∞, 0],R2) be some regular parameterizations (γ′i 6= 0, i = 1, 2) of two simple disjoint subarcs of ∂U ,
for which limt→∞ γ1(t) = limt→−∞ γ2(t) = 0, and such that traversing ∂U in the counterclockwise direction
corresponds to t increasing. Assume further that their curvatures are strictly positive. Then Br ∩U contains
a non-trivial sector of Br.

Proof. First let us introduce some notation. For a point p in γi, i = 1, 2, let L(p) be the tangent line to γi
at p. If p = γi(t0) for some t0, let τ(p) = γ′i(t0)/|γ′i(t0)| be the unit tangent vector to p in the direction of
γ′i(t0); let ν(p) be the unit normal vector to γi at p that one gets by rotating τ(p) by π/2. Denote by H+(p)
and H−(p) the two half-planes:

H±(p) = {x :∈ R2 : (x− p) · (±ν(p)) > 0}.

For any two points p = γi(t1) q = γi(t2), t1 < t2, define θ(p, q) to be the angle γ′i(t) sweeps as t increases
from t1 to t2. Then the fact that γi has positive curvature is equivalent to θ(γi(t), γi(t+ s)) being a positive,
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Figure 1. The curves γ1 and γ2.

strictly increasing function of s for s > 0 and any fixed t. For any p ∈ γi(t) and α > 0, denote by Tα(p) the
point q ∈ γi such that θ(p, q) = α, if it exists. Let s(p, q) be the open segment of γi with ends p, q ∈ γi.

Now we proceed with the argument. We shall show that θ(γ1(0), γ1(t)) is bounded from above as a
function of t. Assume not; then Tα(p) exists for any p ∈ γ1 and any α > 0. Claim that there exists a p0 ∈ γ1

such that T 2π(p0) ∈ H+(p0). If not, then for any p ∈ γ1 and k ∈ N,

T (2k+2)π(p) ∈ H−(T 2kπ(p)) b H−(p) as well as

T (2k+3)π(p) ∈ H−(T (2k+1)π(p)) b H−(Tπ(p)).

However, note that because γ1 has positive curvature, we have s(p, Tπ(p)) ⊆ H+(p), as the smallest α > 0
for which s(p, Tα(p)) can intersect L(p) must be greater than π. Thus, H−(Tπ(p)) b H+(p). But since
γ1(t)→ 0 as t→∞ and γ′1 6= 0, then both

T (2k+2)π(p)→ 0 and T (2k+3)π(p)→ 0 as k →∞.

That contradicts the fact that T (2k+2)π(p) ∈ H−(p) whereas T (2k+3)π(p) ∈ H+(p).

Thus, for some p0, T 2π(p0) ∈ H+(p0), so that the whole segment s(p0, T
2π(p0)) ⊆ H+(p0). Denote

pj := T jπ(p0) j ∈ N.

Claim we then have s(p2k−2, p2k) ⊆ H+(p2k−2) for all k ∈ N. Argue by induction. Note that since
s(p2k−1, p2k) ⊆ H+(p2k−1) ∩ H+(p2k), there are exactly two intersection points between s(p2k−2, p2k) and
L(p2k), namely p2k and a point q2k ∈ s(p2k−2, p2k−1) (see Figure 1). If it were the case that p2k+2 ∈ H−(p2k),
the segment s(p2k, p2k+2) would have to leave the convex domain D2k ⊆ H+(p2k) ∩ H+(p2k−1), enclosed
by s(q2k, p2k) and the straight-line segment σ2k := p2kq2k. But obviously s(p2k, p2k+1) ⊆ D2k, so it would
have to be s(p2k+1, p2k+2) that exits D2k. Construct as above the point q2k+1 ∈ s(p2k−1, p2k) being the
second intersection point of L(p2k+1) with s(p2k−1, p2k+1) and let σ2k+1 ⊂ D2k be the straight-line segment
p2k+1q2k+1. Then the convex domain D2k+1, enclosed by σ2k+1 and s(q2k+1, p2k+1), is contained within the
convex D2k, so that s(p2k+1, p2k+2) which enters D2k+1 would have to exit D2k+1 before it exits D2k. That
is, however, impossible as s(p2k+1, p2k+2) ⊆ D2k+1. The induction step is complete.

Let now K ∈ N be large enough such that for all k ≥ K, s(p2k−2, p2k) ⊆ Bδ(0) where δ > 0 is small
enough, such that γ2(0) ∈ B2δ(0)c (such a K exists since γ1(t) → 0 as t → ∞). Since γ2(t) ∈ D2k+1 for all
large |t|, its last ‘time of exit’ from D2k+1

T := sup{t : γ2(t) ∈ D2k+1}
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exists and must satisfy T < 0. Obviously, γ2(T ) must belong to σ2k+1 and γ2 must intersect σ2k+1

transversally, for otherwise the fact that γ2 has positive curvature would imply that for some small ε < 0
γ([T − ε, T + ε]) would lie on one side of σ2k+1 which contradicts the definition of T . Let q̃2k+1 denote the in-
tersection point of L(p2k+1) and s(p2k−2, p2k−1), and let σ̃2k+1 be the straight-line segment p2k+1q̃2k+1. Note
that since γ2 intersects σ2k+1 transversally, σ̃2k+1 ⊆ H−(γ2(T )). Also, since γ2(0) /∈ Bδ(0), γ2([T, 0]) must

exit the domain D̃2k+1 ⊆ Bδ(0), enclosed by s(q̃2k+1, q2k+1) and the straightline segment q2k+1q̃2k+1, having
once entered it. Thus γ2([T, 0]) intersects σ̃2k+1 ⊆ H−(γ2(T ))), so that γ2((T, 0]) must cross L(γ2(T )). Let
T1 be the first time γ((T, 0]) crosses L(γ2(T )):

T1 := inf{t > T, γ2(t) ∈ L(γ2(T ))}.
Note that T1 > T as γ2((T, T + δ)) ⊆ H+(γ2(T ))) for all small enough δ > 0. Furthermore, it must
be that θ(γ2(T ), γ2(T1)) ≥ π but θ(γ2(T ), γ2(T1)) ≤ 2π. The former bound is obvious; the latter is true
for otherwise T 2π(γ2(T )) ∈ H+(γ2(T )), so that by the same argument as before we would have all of
γ2((T, 0]) ⊆ H+(γ2(T )), which would prevent it from crossing L(γ2(T )). As a result, it must be that

(γ2(T1)− γ2(T )
)
· γ′2(T ) < 0,

which in turn implies that γ2((T, T1)) must cross the straighline segment γ2(T )q2k+1, which is impossible.
Therefore, θ(γ1(0), γ(t)) is bounded from above, so that τ1 := limt→∞ γ′1(t)/|γ′1(t)| exists. Exchanging

the roles of γ1 and γ2 in the argument above, we can show that τ2 := limt→−∞ γ′2(t)/|γ′2(t)| exists, as well.
As a result, for all small enough r > 0, γ1 ∩ Br and γ2 ∩ Br are flat graphs over the radii along τ1 and τ2,
respectively. Let Ai = ∂Br ∩ γi, i = 1, 2 be the points of intersection of ∂Br with γ1 and γ2. Because of the
positivity of the curvature, the open straight-line segments connecting 0 to A1 and 0 to A2 are contained in

U for r small enough. Also, since ∂Br ∩ ∂U = {A1, A2}, the whole open circular arc Â2A1 (as we trace the
circle in the counter-clockwise direction) must be contained in the Jordan domain U . Thus, U contains the

entire open circular sector with vertex 0 and arc Â2A1.
�

8. Local structure.

In this section we shall study the shape of the free boundary of solutions of (1), defined in the unit disk,
satisfying the topological assumption (3). This will be carried out by examining blow-up limits of sequences
of solutions in B1, for which exact purpose the classification Theorem 1.1 was developed. We encounter
the following dichotomy: if a component of the zero phase is well separated by the rest of the zero phase,
its boundary has bounded curvature (in terms of the separation) – this is the content of Proposition 8.2
below. Once the separation becomes small enough relative a certain universal scale, we shall see the signs
of a hairpin-like structure arising – this is described in Propositions 8.3 and 8.4.

Let us make the following definition for ease of reference.

Definition 8.1. We shall call the free boundary F (u) of a solution u of (1) δ-flat in B = Br(p) if for some
rotation ρ,

|u(p+ ρx)− x+
2 | ≤ δr for x ∈ Br(0).

Remark 8.1. Denote by δ0 the small universal constant, such that if 0 < δ < δ0 small enough, the Alt-
Caffarelli regularity theory [AC81] states that F (u) ∩Br/2 is a graph in the direction of ρ(e2) with Lipschitz
norm at most Cδ. For such δ we also have the bound

‖ρ∇u− e2‖L∞(B+
r/2

(u)) + r‖D2u‖L∞(B+
r/2

(u)) ≤ cδ.

It implies, in particular, that the curvature of F (u) in Br0/2 is O(δ).

The next proposition treats the scenario where a point of the free boundary F (u) is distance at least s
away from all other components of the zero phase; then we expect a curvature bound on F (u) at the point.

Proposition 8.2. Let u be a classical solution of (1) in B1 that satisfies (3) and assume 0 ∈ F (u). Denote
by Z the connected component of 0 in {u = 0}. For any 0 < s < 1 there exists κ = κ(s) <∞ such that if

d(0, {u = 0} \ Z) ≥ s
then the curvature of F (u) at 0 is at most κ.
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Proof. Assume the proposition is false. Then we have a sequence of counterexamples ul for which the
curvature κl of F (ul) at zero is

κl ≥ l2.
Define the rescales

ũl(x) := lul(x/l) for x ∈ Bl.
Then the curvature k̃l of F (ũl) at 0 satisfies

κ̃l = κl/l ≥ l. (16)

By our classification Theorem 1.1 we see that, up to taking a subsequence, the ũl converge uniformly on
compact subsets to a global solution ũ that is either a one-plane, a two-plane, a hairpin or a wedge solution.

Let δ0 > 0 be the small universal constant defined in Remark 8.1. If ũ is a one-plane solution, then for
all large enough l, in some Euclidean coordinates

|ũl − x+
2 | < δ0/2 in B1,

hence F (ũl ∩ B1) is δ0-flat and k̃l ≤ Cδ0 which contradicts (16). Similarly, if ũ is a two-plane solution, for
some b < 0 and all large enough l

|ũl − (x+
2 + (x2 − b)−)| < min{δ0/2, b/10} in B1.

Thus,
vl := ũl1B1∩{x2>b/2}

is a classical solution of (1) in B1, whose free boundary is δ0-flat in B1, so κ̃l ≤ Cδ0 – a contradiction.
Analogously, we can rule out ũ being a hairpin solution. Assume that it is; then we can find a scale s0

such that for every p ∈ F (ũ)

dH(F (ũ) ∩Bs0(p), L(x) ∩Bs0(p)) < δ0s0/2,

where L(p) denotes the tangent line to F (ũ) at p. Now for all large enough l,

dH(F (ũl) ∩Bs0 , L(0) ∩Bs0) < δ0s0

so that wl(y) := ũl(s0y)/s0 has a δ0-flat free boundary in B1 and the curvature of F (wl) at 0 is bounded by
Cδ0. Thus, the curvature of F (ũl) at 0

κl ≤ Cδ0/s0,

which again contradicts (16).
Finally, assume that ũ = |x2| is the wedge-solution. Then for all l large enough

dH(F (ũl) ∩B4, {x2 = 0} ∩B4) ≤ δ0. (17)

Let N = (0, 1) and S = (0,−1). Note that N and S cannot belong to two separate components of B+
2 (ũl),

for according to Lemma 6.7, F (ũ)∩ {|x1| < 1/2} ∩B4 consists of two graphs of Lipschitz norm at most cδ0,

so that we again get an upper bound for k̃l for all large l. This means that if F (ũl) ∩B3 consists of finitely
many arcs, each of which “attaches” either to αL or αR, where

αL = ∂B3 ∩ {x1 < 0, |x2| < δ0} αR = ∂B3 ∩ {x1 > 0, |x2| < δ0}.
Thus, if FL (FR) denotes the union of the arcs of F (ũl) ∩ B3 that attach to αL (αR), then FL and FR are
disjoint compact sets and so d(FL, FR) is realized for some p ∈ FL and q ∈ FR. Moreover, the straight line
(open) segment τ with ends p and q is contained in B+

3 (ũl) and because of (17), we have

|p− q| = H1(τ) ≤ 6δ0.

On the other hand, note that if Z̃l denotes the connected component of 0 in {ũl = 0} in Bl, we have by
assumption

d(0, {ũl = 0} \ Z̃l) ≥ ls� 1,

hence it must be that both p and q belong to the same boundary arc of ∂Z̃l (they cannot belong to different

boundary arcs of ∂Z̃l, for p and q would have to lie on the boundary of two different connected components
of B+

l (ũ)). Let β ⊆ F (ũl) denote the arc connecting p to q. Then β ∩ τ encloses a piecewise-C2 Jordan

domain V ⊆ B+
l (ũl) and applying Lemma 6.5 to V , we find that

6δ0 ≥ H1(τ) ≥ cH1(β)
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which is impossible for small δ0 as H1(β) ≥ 2. This completes the proof. �

Proposition 8.3. Let u be a classical solution of (1) in B1 that satisfies (3) and assume 0 ∈ F (u). Denote
by Z the connected component of 0 in {u = 0}. Then for any 0 < δ < δ0 small enough there exist 0 < ε0 � 1
and r0 > 0 such that if for any one 0 < r ≤ r0

d(0, {u = 0} \ Z) < ε0r

then for some rotation ρ,
|u(ρx)− |x2|| < δr in Br.

Proof. Fix 0 < δ < δ0. By the scale-invariance of the problem it suffices to show the conclusion of the
proposition holds only for r = r0. Assume not; then for any sequences of εk → 0, rk → 0, there exists a
corresponding sequence of counterexamples uk in B1: namely, if Zk denotes the component of 0 in {uk = 0},
we have d(0, {uk = 0} \ Zk) ≤ εkrk, but

‖uk(ρx)− |x2|‖L∞(Brk ) > δrk (18)

for all rotations ρ. Define the rescaled

ũk(x) := uk(rkx)/rk in B1/rk .

According to the Classification Theorem 1.1, up to taking a subsequence, ũk converge uniformly on compact
subsets of R2 to ũ, being either the half-plane, the wedge, a two-plane or a hairpin solution.

If ũ = x+
2 in an appropriate coordinate system, then for all large enough k

{ũk = 0} ∩B1 ∩ {|x1| < 1/2} = {x ∈ B1 : |x1| < 1/2, x2 < φ(x1)}
for some Cδ0–Lipschitz function φ : (−1/2, 1/2) → R. In particular {ũk = 0} ∩ B1/2 consists of a single
component (the one containing 0). Hence, going back to the original scale,

d(0, {uk = 0} \ Zk) ≥ rk/2 > εkrk

for k large enough, which contradicts our assumption. Similarly, we rule out the case when ũ is the two-plane
solution. If ũ is a hairpin, we can find a scale s0, such that for every x ∈ F (ũ)

dH(F (ũ) ∩Bs0(x), L(x) ∩Bs0(x)) < δ0s0/2,

where L(x) denotes the tangent line through x to the hairpin F (ũ). Then, for all large enough k,

dH(F (ũk)∩Bs0 , L(0)∩Bs0) ≤ dH(F (ũ)∩Bs0 , L(0)∩Bs0)+dH(F (ũk)∩Bs0 , F (ũ)∩Bs0) ≤ s0δ0/2+s0δ0/2 = s0δ0,

so that in Bs0/2, {ũk = 0} ∩Bs0/2 consists of a single component. Going back to scale rk, we see that

d(0, {uk = 0} \ Zk) ≥ s0rk/2 > εkrk

which is a contradiction when k is large enough.
Therefore, ũ must be the wedge solution: ũ = |x2| in an appropriately rotated coordinate system. This

leads to a contradiction with (18), however, because it implies that for all k large enough, we actually have

‖uk(x)− |x2|‖L∞(Brk ) ≤ δrk.
�

Proposition 8.4. For any given 0 < δ < δ0, let ε0, r0 and u : B1 → R be as in Proposition 8.3. Let Z
denote the component of 0 in {u = 0}. Then for any 0 < r ≤ r0 such that

d(0, {u = 0} \ Z) < ε0r,

the free boundary F (u) ∩ Br/2 consists of exactly two arcs FL ⊆ Z and FR ⊆ {u = 0} \ Z. Those are
contained in ρ(Sr/2,δr) for an appropriate rotation ρ = ρr, where

Sr,t := {x ∈ R2 : |x1| ≤ r, |x2| ≤ t},
with the two ends of FL in ρ(αL,r/2) and the two ends of FR in ρ(αR,r/2), where

αL,r = {x ∈ ∂Br : x1 < 0, |x2| < δr} and αR,r = {x ∈ ∂Br : x1 > 0, |x2| < δr}.

Moreover, the minimum distance between the corresponding two components of {u = 0}∩Br/2 is realized for
some points p ∈ FL, q ∈ FR with both p, q ∈ ρ(Sr/3,δr).
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Proof. Fix r and choose Euclidean coordinates appropriately so that ρr is the identity. Let γ be the arc of
F (u) ∩ Br, containing 0. Claim that the two ends of γ both belong to either αL,r or αR,r. Assume not.
Then the points N = (0, r/2) and S = (0, r/2) belong to two distinct connected components of B+

r (u), so
that according to Lemma 6.7, F (u)∩Br ∩ {|x1| < r/4} consists of two disjoint graphs Σ± = {x2 = φ±(x1) :
|x1| < r/4} of Lipschitz norm at most Cδ and

u(x) = 0 for x ∈ {φ−(x1) ≤ x2 ≤ φ+(x1) : |x1| < r/4}
But then d(0, {u = 0} \ Z) ≥ r/4 > ε0r, which contradicts our hypothesis. Hence, we may assume that γ
attaches on αL,r.

Look now at the free boundary in Br/3(P ), where P = (−r/2, 0). Since γ ⊆ Sr,δr connects αL to 0, it

must be that γ disconnects ÑL := P + (0, r/6) from S̃L := P + (0,−r/6) in Br/2(p)+(u). Invoking Lemma
6.7 again, we see that F (u)∩Br/3(P )∩ {|x1 + r/2| < r/6} consists of two graphs of Lipschitz norm at most

Cδ. As a result, the connected component Z̃L of 0 in {u = 0} ∩ Br/2 is bounded by a single free boundary
arc FL and a circular subarc of αL,r/2 that share ends. Another even more significant consequence is that
F (u)∩Br contains no other arcs besides γ that intersect VL := Br ∩{|x1 + r/2| < r/6}. Since {u = 0} has a
component different from Z that is at most ε0r away from 0, F (u)∩Br contains at least one more arc γ̃ 6= γ.
According to the observation above, γ̃ doesn’t cross into the region V , so it has to attach on αR,r. Consider

F (u) ∩ Br/3(Q), where Q = (r/2, 0). Since γ̃ ∩ Bε0r 6= ∅, it must be that γ̃ disconnects ÑR = Q + (0, r/6)

from S̃R = Q+(0,−r/6) in Br/3(Q)+(u). Thus, by Lemma 6.7, F (u)∩Br/3(Q)∩{|x1−r/2| < r/6} consists
of two graphs of Lipschitz norm at most Cδ. Hence, {u = 0}∩Br/2 has only one other connected component

Z̃R and ∂ZR ∩F (u) consists of a single free boundary arc FR. As FR cannot intersect VL and, similarly, FL
cannot intersect VR := Br ∩ {|x1 − r/2| < r/6}, it must be that the minimum distance between Z̃L and Z̃R
is realized for some points p ∈ FL and q ∈ FR with |x1(p)| < r/2− r/6 = r/3 and |x1(q)| < r/3. �

Remark 8.5. Assume we are in the situation of Propositions 8.3 and 8.4 above for some fixed small 0 <
δ < δ0. Then F (u) ∩ Br0/2 consists of two arcs FL and FR, and the minimum distance s = d(FL, FR) is

realized for some points p ∈ FL, q ∈ FR with both p, q ∈ ρr0
(
Sr0/3,δr0

)
. Now apply again Propositions 8.3

and 8.4 to the translate

ũ(y) := u(p+ y) y ∈ B1/2.

Call Z̃ the connected component of {ũ = 0} containing 0. We establish that for every r such that s/ε0 < r ≤
r0, there is a rotation ρ̃ = ρ̃r such that

|ũ(ρ̃y)− |y2|| < δr in Br

and the free boundary in Br/2, F (ũ)∩Br/2 ⊆ ρ̃(Sr/2,δr) consists of two arcs F̃L ⊆ Z̃ and F̃R ⊆ {ũ = 0} \Z,

the minimum distance between which is realized for 0 ∈ F̃L and q − p ∈ F̃R.

9. Lipschitz bound of free boundary strands.

In this section we shall further elaborate on the finer-scale structure of the free boundary of a solution
that falls under the scenario of Proposition 8.3. More specifically, we shall show that if the separation s
between two components of the zero phase becomes small enough, it forces the free boundary outside that
scale to be the union of four graphs of small Lipschitz constant over a common line.

Theorem 9.1. For any given small 0 < δ < δ0, there exist r0 > 0, ε0 > 0 such that if u is a classical
solution of (1) in B1, satisfying (3), with 0 ∈ F (u) and

dist(0, {u = 0} \ Z) < ε0r0,

then for some p ∈ Br0/3, Br0/2(p)∩F (u) consists of two free boundary arcs FL and FR, the shortest segment
between which is centered at p, the separation

s := dist(FL, FR) < ε0r0.

and for some rotation ρ and functions f, g : R→ R with f < g

{u = 0} ∩
(
Br0/2(p) \B4s/ε0(p)

)
= p+ ρ{4s/ε0 < |x| < r0/2 : f(x1) ≤ |x2| ≤ g(x1)}

where ‖f‖L∞ + ‖g‖L∞ ≤ δr, ‖f ′‖L∞ + ‖g′‖L∞ ≤ δ.
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That is, F (u) ∩
(
Br0/2(p) \ B4s/ε0(p)

)
consists of four graphs over a common line with Lipschitz norm at

most δ.

The proof will be carried out in Lemmas 9.2 and 9.3 below. Assume δ, r0, ε0 are as in Proposition 8.3.
In view of Remark 8.5, we may assume that we are dealing with a solution of (1) in Br0 , which satisfies:

• F (u) ∩ Br0/2 consists of two arcs FL and FR; for some rotation ρr0 the ends of FL belong to
ρr0(αL,r0/2) and the ends of FR belong to ρr0(αR,r0/2), where

αL,r = {x ∈ ∂Br : x1 < 0, |x2| < δr} and αR,r = {x ∈ ∂Br : x1 > 0, |x2| < δr}.

• The minimum distance d(FL, FR) = s is realized for 0 ∈ FL and some point q ∈ FR with 0 < s < ε0r0.
• For every s/ε0 < r ≤ r0,

|u(ρy)− |y2|| < δr in Br for some rotation ρ = ρr.

• For every s/ε0 < r ≤ r0/2, F (u) ∩Br consists of two arcs FL(r) and FR(r) that attach on ρr(αL,r)
and ρr(αR,r).

Set

rk := 2k−1s/ε0 k ∈ N
and let k0 = blog2(r0ε0/s)c, so that rk0 ≈ r0/2. Define FNL and FSL to be the two (closed) subarcs of FL(rk0)
that 0 divides FL(rk0) into: with FNL being the one such that the end point ρ−1

rk0
(FNL )∩αL,rk0 has the greater

x2-coordinate than the end point ρ−1
rk0

(FSL ) ∩ αL,rk0 . Define FNR and FSR , the two subarcs of FR(rk0) that

q divides FR(rk0) into, analogously. Let τ be the straight-line close segment connecting 0 to q, and let βN

and βS be the two circular arcs of ∂Brk0 ∩ {u > 0} with βN containing ρrk0
(
(0, rk0)

)
and βS containing

ρrk0
(
(0,−rk0)

)
. Then τ splits B+

rk0
(u) into two simply-connected regions – the “top” ΩN , bounded by βN ,

FNL , τ , FNR ; and the “bottom” ΩS , bounded by βS , FSL , τ , FSR .
We may choose the coordinate system so that ρr1 is the identity. In the following series of arguments we

shall adopt complex notation: denoting the point (x1, x2) ∈ R2 by the complex z = x1 + ix2 ∈ C.
Let zk ∈ C be the unique point of intersection between ∂Brk and FNR , k = 1, 2, . . . , k0. The region ΩN is

simply connected with piece-wise smooth boundary, so we may define the harmonic conjugate v : ΩN → R
of u, such that v is continuous up to the boundary ∂ΩN and has the normalization

v(z2) = −|z2|.

Now define the holomorphic map U : ΩN → C by

U := iu− v.

Lemma 9.2. The map U constructed above is injective on ΩN \Br2 and its image

U(ΩN \Br2) ⊇ {ξ ∈ C : Im(ξ) ≥ 0, r2(1 + Cδ) ≤ |ξ| ≤ rk0(1− Cδ)} (19)

for some numerical constant C.

Proof. First, let us note that for k = 2, . . . , k0−1, the free boundary in each dyadic annulus F (u)∩Brk+1
\Brk

consists of four graphs of Lipschitz norm at most c′δ for some numerical constant c′ > 0. This is a direct
consequence of Lemma 6.7 applied to u in Brk(±pk), where pk = ρ3rk

(
(3rk/2, 0)

)
, since the zero phase of u

in B3rk ⊇ Brk(±pk) is contained in a (3δrk)-strip that disconnects Brk(±pk)+(u) into two components. An
a result, if we represent the rotation ρrk as a complex phase eiθk , we must have

|eiθk+1 − eiθk | ≤ cδ, (20)

for the Lipschitz graph pieces F (u) ∩Brk+1
\Brk to be appropriately aligned in successive dyadic annuli.

We shall carry out the proof of the lemma in a couple of steps.
Step 1. Define Ak := ΩN ∩Brk+1

\Brk . We shall show that

|U(eiθkζ)− ζ| ≤ Cδ|ζ| for ζ ∈ Ãk := e−iθkAk k = 2, 3, . . . , k0 − 1. (21)

Define Ũ(ζ) := U(eiθkζ) and let ũ := Im(Ũ). First, claim that

|Ũ ′(ζ)− 1| ≤ cδ for ζ ∈ Ãk. (22)
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The Cauchy-Riemann equations say

Ũ ′(ζ) = i∂y1 ũ+ ∂y2 ũ, ζ = y1 + iy2,

so it suffices to show that
∇yũ = e2 +O(δ) in Ãk,

where e2 is the unit vector in the direction of y2. This is a straightforward corollary of

|ũ− y+
2 | < 3δrk in e−iθk

(
ΩN ∩ (B3rk \Brk/2)

)
⊇ Ãk.

and the fact that F (ũ) ∩ (B3rk \Brk/2) consists of two graphs of Lipschitz norm at most c′δ.

Going back to the complex coordinate z = eiθkζ, we see that (22) becomes

|U ′(z)− e−iθk | = |U ′(z)eiθk − 1| ≤ cδ for z ∈ Ak. (23)

Let zk be defined as the unique intersection point between ∂Brk and FNR for k = 1, 2, . . . , k0, as above. Since
there is a piece-wise smooth curve γ(zk, z) ⊆ Ak of length O(rk) connecting zk to any other point z ∈ Ak,
integrating (U ′(s)− e−iθk) along γ(zk, z), we obtain using (23)

|U(z)− e−iθkz − (U(zk)− e−iθkzk)| ≤ C ′δrk z ∈ Ak. (24)

In order to establish (21), it suffices therefore to show that for some large enough numerical constant c̃

|U(zk)− e−iθkzk| ≤ c̃rk, k = 2, 3, . . . , k0 − 1.

We shall use induction. Without of loss of generality, the complex coordinate z is chosen so that θ2 = 0.
Then, since z2 ∈ αR,δr2 ,

|U(z2)− e−iθ2z2| = | − v(z2)− z2| = ||z2| − z2|| ≤ 2δr2.

Assume the statement is true for k. Applying (24) for z = zk+1 ∈ Ak
|U(zk+1)− e−iθkzk+1| ≤ C ′δrk + |U(zk)− e−iθkzk| ≤ (C ′ + c̃)δrk.

Taking into account (20), we see that

|U(zk+1)− e−iθk+1zk+1| ≤ (C ′ + c̃)δrk + |e−iθk+1 − e−iθk ||zk+1| ≤ (C ′/2 + c̃/2 + c)δrk+1.

and the induction step is complete once we pick c̃ = max{2, C ′ + 2c)}.
Step 2. We are now ready to show that U is injective on ΩN \Br2 . Let w1, w2 ∈ ΩN \Br2 be such that
U(w1) = U(w2); without loss of generality |w1| ≤ |w2|. Because of (21), we have

|U(w1)| ≤ (1 + Cδ)|w1| while |U(w2)| ≥ (1− Cδ)|w2|.
Hence,

1 ≤ |w2|
|w1|

≤ |U(w2)|/(1− Cδ)
|U(w1)|/(1 + Cδ)

=
1 + Cδ

1− Cδ
< 2.

so it has to be the case that both w1, w2 belong to Ak−1 ∪Ak for some k. Because of (23) and (20), we have

|U ′(z)− e−iθk | ≤ c′δ for z ∈ Ak−1 ∪Ak.
Let γ(w1, w2) be a piece-wise smooth curve in Dk := Ak−1 ∪ Ak connecting w1 to w2. It is not hard to see
that, because ∂Dk can be locally represented as a graph of a Lipschitz function with Lipschitz norm bounded
by some universal constant L, γ(w1, w2) can be taken such that

H1(γ(w1, w2)) ≤
√

1 + L2|w1 − w2|.
Then

0 = U(w2)− U(w1) =

ˆ
γ(w1,w2)

U ′(z)dz = e−iθk(w2 − w1) +

ˆ
γ(w1,w2)

(U ′(z)− e−iθk)dz,

so that

|w1 − w2| =

∣∣∣∣∣
ˆ
γ(w1,w2)

(U ′(z)− e−iθk)dz

∣∣∣∣∣ ≤ c′δH1(γ(w1, w2)) ≤ c′
√

1 + L2δ|w1 − w2|,

which implies that w1 = w2 when δ is small enough.
Step 3. Finally, we see that (19) follows from (21) and the fact that Im(U) = u ≥ 0 with Im(U)(z) = 0

precisely when z ∈ F (u) ∩ ΩN \Br2 . �
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Lemma 9.3. The two curves F (u)∩ΩN \Br3 are graphs over the line ρrk0 {y2 = 0} with Lipschitz norm at
most cδ for some numerical constant c.

Proof. From Lemma 9.2 we know that the inverse of U is well defined on the annulus

A := {ξ ∈ C : Im(ξ) ≥ 0, r2(1 + Cδ) ≤ |ξ| ≤ rk0(1− Cδ)}.

Then U−1 ◦ exp maps the strip

S = {z ∈ C : 0 ≤ Im(z) ≤ π, log
(
r2(1 + Cδ)

)
≤ Re(z) ≤ log

(
rk0(1− Cδ)

)
}.

conformally onto its image in ΩN \Br2 : with S ∩ {Im(z) = 0}) parameterizing a subarc of the “right”
strand FNR , and S ∩ {Im(z) = π}) parameterizing a subarc of the “left” strand FNL , under U−1 ◦ exp (see
the discussion at the beginning of the section for definitions). Since U ′ 6= 0 on ΩN \ Br2 and ΩN \ Br2 is
simply-connected, one may define a branch of its logarithm logU ′. Finally, define the holomorphic function
F : S → C via:

F := logU ′ ◦ U−1 ◦ exp,

and let

f = Re(F) and g = Im(F).

Since for ζ1, ζ2 ∈ F (u),
∣∣Im( logU ′(ζ2)− logU ′(ζ1)

)∣∣ measures the angle of turning of ∇u along F (u) from
ζ1 to ζ2, we are going to be interested in estimating the oscillations

ωg,L := osc{g(z) : z ∈ S̃ ∩ {Im(z) = π}} ωg,R := osc{g(z) : z ∈ S̃ ∩ {Im(z) = 0}}.

where

S̃ = {z ∈ C : 0 ≤ Im(z) ≤ π, log r2 + c0 ≤ Re(z) ≤ log rk0 − c0} ⊆ S c0 = log 2.

We would like to show that both ωg,L and ωg,R = O(δ), as this would imply that the amount of turning
of ∇u along FNL (FNR ), from ∂B2r2 to ∂Brk0/2, is O(δ), which, in turn, would be enough to conclude that

FNL ∩Brk0 \Br3 and FNR ∩Brk0 \Br3 are in fact graphs of Lipschitz constant O(δ) (as we already know that

FNL ∩ Brk0 \Brk0/2 and FNR ∩ Brk0 \Brk0/2 are graphs of Lipschitz constant O(δ)). To that goal we would

like to obtain estimates on |∇g| in ∂S, which by the Cauchy–Riemann equations satisfies

|∇g| = |∇f | in S.

For convenience, define the following coordinates on S

t = Re(z)− (log
(
r2(1 + Cδ)

)
+A) θ = Im(z)− π/2, where

2A = log
(
rk0(1− Cδ)

)
− log

(
r2(1 + Cδ)

)
= log

1− Cδ
1 + Cδ

+ (k0 − 2) log 2 = (k0 − 2) log 2 +O(δ)

by translating the coordinates (Re(z), Im(z)) appropriately, so that S is parameterized by

S = {|t| ≤ A, |θ| ≤ π/2}.

Note that since |U ′| = |∇u| on F (u) ∩ (ΩN \Br2), we have

|f(t,±π/2)| = log |F| = log 1 = 0 for |t| ≤ A.

Also, by the estimate (22) of Lemma 9.2, we have

|f(±A, θ)| ≤ cδ for |θ| ≤ π/2.

Applying Schwarz reflection across θ = −π/2 and θ = π/2, we can extend f to a harmonic function on

Ŝ := {|t| ≤ A, |θ| ≤ 3π/2}. By the maximum principle |f | ≤ cδ in Ŝ. Denote Ã := A − c0/2. Interior
estimates for f then yield

|∇f(±Ã, θ)| ≤ c̃‖f‖L∞(Ŝ) ≤ C̃δ for |θ| ≤ π/2, (25)

which we can integrate to get

|f(±Ã, θ)| ≤ C̃δ cos θ for |θ| ≤ π/2.
Using multiples of cosh t cos θ as upper and lower barriers for f , we have the bound

−(cδ/ cosh Ã) cosh t cos θ ≤ f ≤ (cδ/ cosh Ã) cosh t cos θ in S̃,
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so that, by the Hopf Lemma, we can conclude

|∇f(t,±π/2)| = |∂θf(t,±π/2)| ≤ (cδ/ cosh Ã) cosh t for |t| ≤ Ã. (26)

This in turn implies the desired

ωg,L ≤
ˆ Ã

−Ã
|∇g(t, π/2)| dt ≤ 2cδ, ωg,R ≤

ˆ Ã

−Ã
|∇g(t,−π/2)| dt ≤ 2cδ.

�

10. Curvature bounds.

Let us describe the family of hairpin solutions explicitly. Define

ϕ(ζ) = i(ζ + sinh ζ).

Then ϕ maps the strip S = {|Imζ| < π/2} conformally onto the domain

Ω1 := {z ∈ C : |Rez| < π/2 + cosh(Imz)}
which supports the positive phase of the hairpin solution of (1)

H(z) =

{
Re
(
V (z)

)
when z ∈ Ω1

0 otherwise.
(27)

where V (z) := cosh(ϕ−1(z)). The dilates

Ha(z) = aH(z/a)

complete the family of hairpin solution (up to rigid motions). Denote by Ωa = aΩ1.
We note a couple of geometric features of these solutions.

• The zero phase {Ha = 0} consists of two connected components separated by distance s = a(2 + π).
• Ha

∣∣
Ωa

has a unique critical point (a non-degenerate saddle) and it is situated at the origin. Indeed,

to verify this, we have to simply check this is the obviously the case for

H(ϕ(ζ)) = Re cosh(ζ) = cosh(y1) cos(y2) when ζ = y1 + iy2 ∈ S.
The value of Ha at the saddle is precisely Ha(0) = a.

• The segments τa,L := [−s/2, 0] ⊆ C and τa,R := [0, s/2] ⊆ C are the steepest descent paths from 0
to each of the two components of {Ha = 0}, respectively. We shall denote τa := τa,L ∪ τa,R.

The following information about the gradient ∇H will also be useful.

Lemma 10.1. For some numerical constant c0 > 0, the gradient ∇H satisfies

|∇H(x)| ≥ min(1/2, c0|x|) when x ∈ Ω1.

Proof. We have

|∇H|(ϕ(ζ)) =

∣∣∣∣ i sinh ζ

ϕ′(ζ)

∣∣∣∣ =

√
sinh2 y1 + sin2 y2

(1 + cosh y1 cos y2)2 + sinh2 y1 sin2 y2

=

√
sinh2 y1 + sin2 y2

cosh y1 + cos y2
ζ = y1 + iy2 ∈ S.

Thus,

|∇H|(ϕ(ζ)) ≥ | sinh y1|
1 + cosh y1

= | tanh(y1/2)| ≥ 1/2 when |y1| ≥ 1.2

We’ll be done once we show that

|∇H|(ϕ(ζ)) ≥ c0|ϕ(ζ)| when |Reζ| = |y1| < 1.2.

Since for some numerical constants 0 < c1 < c2

c1|ζ| ≤ | sinh ζ| ≤ c2|ζ| when |Reζ| = |y1| < 1.2

we have for |Reζ| < 1.2,

|∇H|(ϕ(ζ)) ≥ | sinh ζ|
cosh y1 + cos y2

≥ c1|ζ|
cosh(1.2) + 1

≥ c̃1|ζ|.

Noting that |ϕ(ζ)| ≤ |ζ|+ | sinh z| ≤ (1 + c2)|ζ| when |Reζ| < 1.2, we complete the proof of the lemma. �
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Remark 10.2. Finally, we would like to make the following remark regarding the mapping properties of
Va(z) := aV (z/a) on Ωa. Claim that Va maps both Ω+

a := Ωa ∩ {x2 > 0} and Ω−a := Ωa ∩ {x2 < 0}
conformally onto

H̃a := {ξ : Re(ξ) > 0} \ (0, a].

Indeed, let S± = {ζ ∈ C : ±Re ζ > 0, |Im ζ| < π/2}. Then (aϕ) is a conformal map from S± onto Ω±a and

Va(aϕ(ζ)) = a cosh(ζ) = a cosh y1 cos y2 + ia sinh y1 sin y2 when ζ = y1 + iy2 ∈ S±.
Write

Va(aφ(ζ)) = r(ζ)eiθ(z)

where
r(ζ)2/a2 = |Vaφ(ζ))|2 = sinh2 y1 + cos2 y2 tan θ(ζ) = tanh y1 tan y2.

If θ0 is any angle in (−π/2, 0) ∩ (0, π/2) and c := tan θ0, then tan θ(ζ) = c whenever tan y2 = c coth y1, so
that for these values of ζ,

r(ζ)2/a2 = sinh2 y1 + 1/(tan2 y2 + 1) = sinh2 y1 + 1/(1 + c2 coth2(y1)).

We see that r(ζ) → 0 as y1 → 0 and r(ζ) → ∞ as y1 → ±∞, so Va(aϕ)|S± is onto H∞. When θ0 =
0, i.e. Im(Va(aϕ)) = 0, so it must be that y2 = 0 and thus, r(ζ) = a cosh y1 which ranges in (a,∞).
Hence, Va(aϕ)|S± is surjective onto Ha. To show that say Va(aϕ)|S+ is injective, assume that for some
y1 + iy2, ỹ1 + iỹ2 ∈ S+ with y1 ≤ ỹ1,

cosh y1 cos y2 = cosh ỹ1 cos ỹ2 and sinh y1 sin y2 = sinh ỹ1 sin ỹ2.

Divide the second equation by the first to get

tanh y1 tan y2 = tanh ỹ1 tan ỹ2.

We see that if y1 = ỹ1 we must have y2 = ỹ2 too. Assume y1 < ỹ1; then either y2 = ỹ2 = 0, which then
implies cosh y1 = cosh ỹ1 contradicting the assumption 0 < y1 < ỹ1, or | tan y2| > | tan ỹ2| which implies
cos y2 < cos ỹ2. But in the latter case,

cosh y1 cos y2 < cosh ỹ1 cos ỹ2,

so we get a contradiction again. Similarly, we show the injectivity of Va(aϕ)|S− .

Having amassed enough information about the model hairpin solutions let us explore how well they
approximate classical solutions of (1) whose zero phase has two connected components that are sufficiently
close to each other.

Proposition 10.3. Let u be a classical solution of (1) in B1 that satisfies (3). Assume that {u = 0} consists
of two connected components ZL and ZR and that 0 is the midpoint of a shortest segment between ZL and
ZR. For any given δ1 > 0 and every M > 0, there exists s1 > 0 such that if

s := d(ZL, ZR) ≤ s1,

then after a rotation
|u(ax)/a−H(x)| ≤ δ1 for all |x| ≤M, (28)

where a = s/(2 + π).

Proof. Fix δ1 and M and assume no such s1 exists that makes the proposition valid. Then for some sequence
of sk → 0, there is a sequence of counterexamples uk with the separation between the two components of
{u=0} being sk. Set ak = sk/(2 + π). We can then define the rescales

ũk(x) := u(akx)/ak for x ∈ B1/sk

so that the separation between the two components of the zero phase of ũk is precisely (2 + π) and 0 is at
the midpoint of a shortest segment connecting them. A subsequence ukj converges uniformly on BM to a
global solution ũ and since

dH((BM )+(ũkj ), (BM )+(ũ))→ 0 as j →∞,
it has to be the case that ũ is a hairpin solution, with separation between the two components of {ũ = 0}
precisely (2 + π) and 0 at the midpoint of the shortest segment. Thus, in a rotated coordinate system

ũ = H,
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so we have for all j large enough

|ukj (akjx)/akj −H(x)| ≤ δ1 in BM .

This contradicts the assumption that the ukj are counterexamples. �

The next corollary is a direct consequence of interior estimates applied to the proposition above.

Corollary 10.4. Let u be as in Proposition 10.3 and let H be the hairpin solution defined above. For
every M > 0, any compact domains K,K ′ such that K b K ′ b (BM )+(H) and any δ1 > 0 such that
N2δ1(K ′) ⊆ (BM )+(H), there exists s1 > 0, such that if the separation between the two components ZL and
ZR of {u = 0} satisfies

s := d(ZL, ZR) ≤ s1,

then for a = s/(2 + π), in some rotated coordinate system, the rescale ua := u(ax)/a satisfies

‖ua −H‖C2(K) ≤ CK,K′δ1 (29)

for some constant CK,K′ , dependent on K and K ′. Furthermore, if δ1 = δ1(H) is small enough, u has
a unique critical point x0 in B+

aM/2(u) which is a non-degenerate saddle point with |x0| = O(δ1s), and

the steepest descent paths βL, βR for u from x0 to ZL and ZR, respectively, are contained in an O(δ1s)-
neighborhood of τa (defined above).

Proof. Let s1 be such that according to (28)

|ua −H(x)| ≤ cδ1 for all |x| ≤M,

where we pick c such that H(x) ≥ cd(x, F (H)) (such a c exists because of the non-degeneracy of the hairpin
solution). Then for all x ∈ K ′

ua(x) ≥ H(x)− cδ1 ≥ cd(x, F (H))− cδ1 > 2cδ1 − cδ1 > 0.

Hence v = ua −H is harmonic in K ′ and we get (29) by standard interior estimates.
Let us use this to show that u has a unique critical point in B+

aM/2(u) if δ1 is small enough. Fix δ0 > 0

small and find a scale r0 = r0(δ0, H) such that for every p ∈ F (H) ∩BM/2

dH(F (H) ∩Br0(p), L(p) ∩Br0(p)) < δ0r0,

where L(p) denote the straight line tangent to F (H) at p. Now, for all small enough δ1 < δ0r0

dH(F (ua) ∩Br0(p), L(p) ∩Br0(p)) < c′δ0r0.

Hence, F (ua) is c′δ0-flat in Br0(p) and it must be that for a small enough δ0,

|∇ua −∇H(p)| ≤ Cδ0 in Br0/2(p)+(ua) for any p ∈ F (H) ∩BM/2 (30)

by the classical Alt-Caffarelli theory [AC81]. Thus,

|∇ua| ≥ 1− Cδ0 in Br0/2(p)+(ua)

and so it suffices to show that ua has a unique critical point in

K := {x ∈ B+
M/2(H) : d(x, ∂Ω1} ≥ r0/4}.

Set K ′ := {x ∈ B+
2M/3(H) : d(x, ∂Ω1} ≥ r0/8}. We would like to show that

0 = ∇ua = ∇H +∇v
has a unique solution x0,a in K. Since the Jacobian of ∇H = D2H is invertible at 0, the Inverse Function
Theorem implies that for some c1 > 0, ∇H maps Bc1 diffeomorphically onto a neighborhood O of 0. As
|∇v| ≤ CK,K′δ1 in K, we can choose δ1 small enough such that ∇v ∈ O, whence

∇H(x) = −∇v(x)

has a unique solution x = x0,a ∈ Bc1 . Applying Lemma 10.1, we obtain

|x0,a| ≤ c−1
0 |∇H(x0,a)| = c−1

0 |∇v(x0,a)| ≤ c−1
0 CK,K′δ1.

Furthermore, the equation cannot have another solution in K if δ1 is small enough, because Lemma 10.1
implies that

|∇H(x)| ≥ min(1/2, cc1) > CK,K′δ1 ≥ |∇v(x)| for all x ∈ K \Bc1 .
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Thus, whenever δ1 is small enough, ua has a unique critical point x0,a in K and since

|D2ua(x0,a)−D2H(0)| ≤ |D2ua(x0,a)−D2H(x0,a)|+ |D2H(x0,a)−D2H(0)|
= O(δ1) +O(|x0,a|) = O(δ1),

x0,a is a non-degenerate saddle point.
The O(δ1) proximity between the steepest descent paths for ua and H from x0,a and 0, respectively, to

their zero sets, follows from the O(δ1) bound for ∇(ua −H) in K and (30). �

Let δ0 > 0 be small constant from Remark 8.1. Let us present the set-up that we shall be working in for
the rest of the section. The object of interest is

(1) A classical solution u of (1) in B1 that satisfies (3) such that {u = 0} consists of two connected
components ZL and ZR with 0 being at the midpoint of the shortest segment between the two.

(2) The free boundary F (u) consists of two arcs FL := F (u) ∩ ∂ZL and FR = F (u) ∩ ∂ZR.
(3) We assume that δ1 ≤ δ < δ0, M , s1, s are as in Proposition 10.3 and Corollary 10.4, i.e. the fact

that d(ZL, ZR) = s < s1 implies

|u−Ha| ≤ δ1a in BaM where a = (2 + π)s

and u has a unique critical point x0 in B+
aM/2(u). We denote by βL be the steepest descent path

for u that connects x0 to some p ∈ FL and by βR be the steepest descent path from x0 to some
q ∈ FR. Then β := βL ∪ βR is a smooth arc connecting FL to FR and β ⊆ Naδ1(τa). Without loss
of generality, we may assume that our coordinate system is chosen in such a way that

∇u(p) = e1.

(4) Furthermore, for some rotation ρ

|u(ρx)− |x2|| ≤ δ in all of B1.

and F (u) ∩ (B2/3 \B4Ms) consists of four graphs over ρ({x2 = 0}) of Lipschitz norm at most Cδ.

Let ∂B1/2 intersect FL at the two points pN and pS (subscripts N and S are determined by x2(ρ−1(pN )) >

x2(ρ−1(pS))) and similarly ∂B1/2 intersects FR at the two points qN and qS . Define ΩN ⊆ B+
1/2(u) to be

the domain bounded by the subarc of FL from pN to p, the arc β, the subarc of FR from q to qN and by
the circular arc of ∂B1/2 with ends pN and qN , which contains ρ(0, 1/2). Analogously, define ΩS to be the
domain bounded by subarc of FL from pS to p, the arc β, the subarc of FR from q to qS and by the circular
arc of ∂B1/2 with ends pS and qS , which contains ρ(0,−1/2). Then

B+
1/2(u) = ΩN t β t ΩS .

Let v be the harmonic conjugate of u in the simply-connected B+
1 (u) where we choose the normalization

v(x0) = 0.

Note that this implies v = 0 on all of β, as ∇v is a rotation by π/2 of ∇u which itself is tangent to β.
Furthermore v is increasing (decreasing) at unit speed along FL ∩ΩN (FL ∩ΩS) and decreasing (increasing)
at unit speed along FR ∩ ΩN (FR ∩ ΩS) as we move towards ∂B1/2.

Define the holomorphic map U : B+
1 (u)→ C via

U = u+ iv.

The next lemma confirms that the mapping properties of U are similar to those of Va (defined in Remark
10.2), which allows us to construct an injective holomorphic map from B+

1/2(u) to Ωa0 for some a0 > 0.

Lemma 10.5. Provided δ and δ1 small enough, U is injective on each of ΩN and ΩS and maps each of βL
and βR injectively onto i[0, a0], where a0 := u(x0) = a(1 + O(δ1)). Then the map ψ̃ : B+

1/2(u) \ β → Ωa0
given by

ψ̃(z) :=

(
Va0 |Ω+

a0

)−1 ◦ U(z) when z ∈ ΩN(
Va0 |Ω−a0

)−1 ◦ U(z) when z ∈ ΩS
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is injective and in fact extends continuously to β. The extension ψ : B+
1/2(u) → Ωa0 defines, therefore, an

injective holomorphic map whose image contains

ψ(B+
1/2(u)) ⊇ Ωa0 ∩B1/4

Proof. Let us first show that U is injective in ΩN . Since U maps each of βL and βR injectively onto [0, a0]
and since near x0

U(z) = a0 + c(z − x0)2 +O(|z − x0|3)

by the smoothness of U , for every small enough ε > 0 we can find an arc βε ⊆ ΩN ∩Nε(β) connecting pε ∈ FL
to qε ∈ FR, such that U maps it bijectively onto an arc γε ⊆ Ha with ends U(pε) and U(qε), where

Re(U(pε)) = Re(U(qε)) = 0 and Im(U(pε)) = v(pε) > 0 > v(qε) = Im(U(qε))

Let ΩN,ε be the domain bounded by the subarc of FL with ends pN and pε, βε, the subarc of FR with ends qε
and qN , and the corresponding circular arc p̂NqN of ∂B1/2. Claim that U is injective on the closed Jordan
arc ∂ΩN,ε. We can easily see that U maps (F (u) ∩ ∂ΩN,ε) ∪ βε injectively onto

Γε := γε ∪ {y1 = 0, y2 ∈ [−lL, lR]} \ {y1 = 0, y2 ∈ (v(qε), v(pε))}
where

lL := H1(∂ΩN ∩ FL) ≥ 2/5 and lR := H1(∂ΩN ∩ FR) ≥ 2/5.

It remains to confirm that U is injective on p̂NqN and that U(p̂NqN )∩Γε = U(p̂NqN )∩γε = ∅. Those follow
easily from the fact that

|U ′(z)eiθ − (−i)| ≤ cδ z ∈ p̂NqN (31)

where eiθ represents the rotation ρ.
Since U is injective on ∂ΩN,ε, U(∂ΩN,ε) is a closed Jordan arc that divides C into a bounded domain Db

and an unbounded domain Du. For ξ0 /∈ U(∂ΩN,ε),

Q(ξ0) :=
1

2πi

˛
∂ΩN,ε

dz

U(z)− ξ0
=

1

2πi

˛
U(∂ΩN,ε)

dξ

ξ − ξ0
equals the winding number of the closed Jordan arc U(∂ΩN,ε) around ξ0, i.e. Q(ξ0) = 1 when ξ0 ∈ Db and
Q(ξ0) = 0 when ξ ∈ Du. On the other hand, by the Argument Principle, Q(ξ0) equals the number of zeros
(with multiplicities) of U(z) = ξ0 in ΩN,ε. We can thus conclude that U is injective on ΩN,ε.

Taking a sequence εk → 0 we construct a sequence of domains ΩN,εk such that ΩN =
⋃
k ΩN,εk with U

injective on each ΩN,εk . Therefore, U is injective on all of ΩN . Analogously, we establish the injectivity of
U on ΩS .

Finally, let’s show that ψ extends continuously to β. Let z belong to the interior of the arc βL, and let
{zN,k} ⊆ ΩN , {zS,k} ⊆ ΩS be two sequences such that both

zN,k → z zS,k → z.

Denote ξN,k := U(zN,k) and ξS,k := U(zS,k). Then we see that both

ξN,k → u(z) + i0+ and ξS,k → u(z) + i0+

with u(z) ∈ (0, a0). Then if ζN,k = V −1
a0 |Ω+

a0
(ξN,k) and ζS,k = V −1

a0 |Ω−a0 (ξN,k), we can easily verify that

ζN,k → b+ i0+ and ζN,k → b+ i0−

with b ∈ τa0,L being the unique point of τa0,L that Va0 maps to u(z) ∈ (0, a0). Hence, ψ̃ can be continuously
extended on the interior of βL and similarly, onto the interior of βR. Since this extension is bounded in the
vicinity of x0, it further extends to a holomorphic function ψ in all of B+

1/2(u) with ψ(x0) = 0. Since ψ maps

ΩN injectively into Ω+
a0 and ΩS injectively into Ω−a0 , (βL)◦ injectively into (τa0,L)◦ and (βR)◦ injectively into

(τa0,R)◦, we conclude that ψ is injective on all of B+
1/2(u).

Lastly, we point out that since U maps ∂ΩN ∩ F (u) onto [−lL, lR] and maps ∂ΩN ∩ ∂B1/2 into a curve
that is O(δ1)-close to a half-circle of radius 1/2, according to (31), it has to be that

U(ΩN ) ⊇ Ha0 ∩B1/3.

Thus for all small a0, ψ(ΩN ) = (Va0 |Ω+
a0

)−1
(
U(Ωn)

)
⊇ Ω+

a0 ∩ B1/4. After applying the same argument for

ΩS , we establish the full statement ψ(B+
1/2(u)) ⊇ Ωa0 ∩B1/4.
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�

We shall now use the map ψ to obtain curvature bounds of F (u) in B1/4. On the road to do so, we will
obtain the following crucial estimates on ψ′ and ψ′′.

Lemma 10.6. The injective holomorphic map ψ : B+
1/2(u)→ Ωa0 constructed in Lemma 10.5 satisfies:

|ψ′′(z)| ≤ Cδ and |ψ′(z)− 1| ≤ Cδ(|z|+ a0) for z ∈ B+
1/4(u).

Proof. We know that for z ∈ ∂B1/2 ∩ ∂B+
1/2(u)

|ψ′(z)| = |U ′(z)|
|V ′a0(ψ(z))|

= 1 +O(δ)

because |U ′(z)| = 1 +O(δ) for ∂B1/2 ∩B+
1 (u) and

|V ′a0(ψ(z))| = |V ′(ψ(z)/a0)| = 1 +O(δ) z ∈ ∂B1/2 ∩B+
1 (u)

for all a0 = a(1 +O(δ1)) small enough (depending on δ), because according to Lemma 10.5

|ψ(z)| ≥ 1/4 when z ∈ ∂B1/2 ∩B+
1 (u).

Furthermore, |ψ′| = 1 on F (u) ∩B1/2, so that by the maximum (and minimum) modulus principle,

|ψ′| = 1 +O(δ) in B+
1/2(u). (32)

Since B+
1/2(u) is simply-connected and since ψ′ 6= 0 as ψ is conformal, we can write

ψ′ = eG

for some holomorphic function G on B+
1/2(u). Then

ψ′′ = G′ψ′

and in view of (32), we shall have ψ′′ = O(δ) in B+
1/4(u) once we establish

|G′| ≤ cδ in B+
1/4(u).

Let g = Re(G); as |G′| = |∇g| it suffices to obtain bounds on |∇g| and we know that

g(z) = log |ψ′(z)| =
{

0 z ∈ F (u) ∩B1/2

O(δ) z ∈ B+
1/2(u)

In particular g vanishes on F (u)∩B1/2 and we can apply the boundary Harnack inequality in the Cδ-Lipschitz

domains B1/4(z±)+(u), where z± := ρ(±1/4, 0), in order to establish that

|g(z)| ≤ cδu(z)/u(z± ± i/8) ≤ c′δu(z) in B1/8(z±)+(u)

(since by assumption (4), u(z± ± i/8) ≈ 1/8). Because we have

u ≥ 1/8− δ ≥ 1/10 on ∂B1/4 \
(
B1/8(z+) ∪B1/8(z−)

)
,

we see that |g| ≤ Cδu on ∂B1/4 ∩B+
1 (u) and thus by the maximum principle,

|g| ≤ Cδu in all of B+
1/4(u).

An application of the Hopf Lemma yields

|∇g| ≤ Cδ|∇u| = Cδ on F (u) ∩B1/4.

Finally, we have

|∇g| = |∇|ψ
′|2|

2|ψ′|2
≤ Cδ on B+

1 (u) ∩ ∂B1/4

because of (32) and the fact that on B+
1 (u) ∩ ∂B1/4

∇|ψ′|2 = 2Re
(
∇
(
U ′/(V ′a0 ◦ ψ)

)
ψ′
)

= O(|U ′′|+ |V ′′a ◦ ψ|) = O(δ).

Hence |∇g| ≤ Cδ in all of B+
1/4(u) as desired.
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To get the first derivative bound, we integrate the second derivative bound along a curve γ ⊆ B+
1/4(u)

connecting p ∈ FL ∩ β (the “left” end of the steepest path) to z:

ψ′(z) = ψ′(x0) +

ˆ
γ

ψ′′(ζ) dζ = ψ′(p) +O(δH1(γ)).

Since by definition V ′(ψ(p)) = U ′(p) = 1 (as ∇u(p) = e1)

ψ′(p) = U ′(p)/V ′(ψ(p)) = 1

As γ can be taken to be of length O(|z|+ a0), we obtain the desired bound

|ψ′(z)| − 1| ≤ Cδ(|z|+ a0) z ∈ B+
1/4(u).

�

Theorem 10.7. Given δ > 0 small enough, there exist r0 > 0, ε1 > 0 such that if u is a classical solution
of (1) in B1, 0 ∈ F (u) and

dist(0, {u = 0} \ Z) < ε1r0

then there exists a point p ∈ Br0/3 such that Br0/2(p) ∩ F (u) consists of two free boundary arcs FL and FR,
the shortest segment between which is centered at p, the separation

s := dist(FL, FR) < ε1r0.

Furthermore, u has a unique saddle point x0 in Br0/2(p) and there is an injective holomorphic map

ψ : Br0/2(p)+(u)→ Ωa where a = u(x0)

that extends continuously to ∂Br0/2(p)+(u), mapping ψ(x0) = 0 and F (u) ∩Br0/2(p) into ∂Ωa and satisfying

|ψ′′| ≤ Cδ/r0 |ψ′ − eiθ| < Cδ(|z|+ a)/r0 in Br0/2(p)+(u) (33)

for some θ ∈ R. It relates the curvature κ of F (u) in Br0/2(p) to the curvature κa of ∂Ωar0 via

|κ(z)− κa(ψ(z))| ≤ Cδ/r0 z ∈ F (u) ∩Br0/2(p) (34)

for some numerical constants C, c > 0.

Proof. For δ fixed we find r0, ε0 as in Theorem 9.1. Set δ1 = δ, M = 8/ε0, apply Proposition 10.3 to
find s1 = s1(δ,M) and set ε1 = min(ε0, s1). Then ũ(y) := (2/r0)u(p + ρyr0/2), defined in B1 for some
appropriate rotation ρ ∼ eiθ, falls under the set-up (1-4) and we construct the injective holomorophic map

ψ̃ as in Lemma 10.5 satisfying the estimates of Lemma 10.6, whose rescaled statement is precisely (33).

Let Ũ and Va/r0 be the holomorphic extensions of ũ = Re(Ũ) and H2a/r0 = Re(V2a/r0) such that

Ũ(z) = V2a/r0(ψ̃(z)) in B1/2.

Since the curvature of F (ũ) at z

κ̃(z) = div
∇ũ
|∇ũ|

= −∇ũ · |∇ũ|
2

2|∇ũ|3
= −Re(Ũ ′′(Ũ ′)2)

2|U ′|3
= −1

2
Re(Ũ ′′(Ũ ′)2)

we have, in view of |ψ̃′(z)| = 1 = |V ′2a/r0(ψ̃(z))|,

κ̃ = −1

2
Re
((
V ′′2a/r0 ψ̃

′2 + V ′2a/r0 ψ̃
′′)(V ′2a/r0 ψ̃′)2) = −1

2
Re
(
V ′′2a/r0(V ′2a/r0)2 + ψ̃′′V ′2a/r0(ψ̃)′2

)
= κ2a/r0 ◦ ψ̃ +O(δ),

which is the rescaled version of (34). �

We now have all the ingredients for Theorems 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Fix δ > 0 to be smaller than the flatness constant δ0 (Remark 8.1). Let r0, ε0 be
as in Theorem 9.1. Set δ1 = δ, M = 8ε0 and apply Proposition 10.3 to find s1 = s1(δ,M). Finally, set
ε1 = min{s1, ε0}. For any point q ∈ F (u), let Zq be the component of the zero phase to which q belongs.
Define the set of points

Cprox = {q ∈ F (u) ∩B1/2 : dist(q, {u = 0} \ Zq) < ε1r0}
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in whose neighborhood we expect to see a hairpin structure. According to Theorem 9.1, for every q ∈ Cprox

there exists a z(q) ∈ Br0/3(q) such that F (u) ∩ Br0/2(z) is an approximate hairpin centered at z = z(q) in
the sense that:

• F (u) ∩Br0/2(z) consists of two arcs FL and FR;
• if s = dist(FL, FR), we have for some rotation ρ and functions f, g : R→ R with f < g,

{u = 0} ∩
(
Br0/2(z) \B4s/ε0(z)

)
= z + ρ{4s/ε0 < |x| < r0/2 : f(x1) ≤ |x2| ≤ g(x1)}

where ‖f‖L∞ + ‖g‖L∞ ≤ δr, ‖f ′‖L∞ + ‖g′‖L∞ ≤ δ.

At the same time, Proposition 10.3 says that inside B8sε0(z),

|u(z + ρ̃x)−Ha(x)| ≤ δa.

for a = s/(2 + π) and some rotation ρ̃. Since the free boundary outside B8sε0(z) has to match with the one
inside, we may take ρ̃ = ρ.

A standard covering argument yields a finite number of disks {Br0/2(zj)}Nj=1, where N ≤ N0 = O(r−2
0 ),

which cover Cprox with the centers zj constructed as above. For points p ∈ F (u)∩B1/2 \
⋃N
j=1Br0/2(zj), we

know that

dist(p, {u = 0} \ Zp) ≥ ε1r0,

so by Proposition 8.2, the curvature of F (u) at p is at most κ := κ0(δ).
Defining r := 4r0, ε := ε0/4(2 + π), we get the precise form of the statements in Theorem 1.2. �

Proof of Theorem 1.3. Fix 0 < δ < 1/100 small and let r0 = r(δ)/2 where r is as in Theorem 1.2. Running
the same covering argument in the proof above, we have a collection of disks {B4r0(pj)} for each of which
Theorem 10.7 gives: a unique saddle point zj of u in B4r0(pj) and an injective holomorphic map

ψj : B4r0(pj)
+(u)→ Ωaj where aj = u(zj)

with all the enumerated properties in Theorem 10.7. Defining φj : B2r0 ∩Ωaj → R2 by φj := ψ−1
j we obtain

the precise form of the statements in Theorem 1.3. �

11. The minimal surface analogue.

In [Tra14] (see Theorems 9 and 10) Traizet discovered a remarkable correspondence between global so-
lutions of (1) with |∇u| < 1 and complete embedded minimal bigraphs (minimal surfaces symmetric with
respect to a plane with the two halves, “above” and “below” the plane, being graphical). The correspon-
dence is expressed via the Weierstrass representation formula for immersed minimal surfaces. Recall, if
X : M ⊆ R3 denotes the minimal immersion, the coordinate X3 is a harmonic function on M and one can
locally define a harmonic conjugate X∗3 , so that

dh = dX3 + idX∗3

is a well-defined holomorphic differential onM (viewed as a Riemann surface), the so-called height differential.
Furthermore, the stereographically projected Gauss map g : M → C ∪ {∞} is a meromorphic function on
M . The pair (g, dh) is called the Weierstrass data of the minimal surface and the minimal immersion X is
given, up to translation, by

X(p) = (X1(p), X2(p), X3(p)) = Re

ˆ p

p0

(
1

2
(g−1 − g)dh,

i

2
(g−1 + g)dh, dh

)
(35)

where p0 is a fixed point in M . Conversely, if M is a Riemann surface, and (g, dh) is a pair of a meromorphic
function and a holomorphic 1-form on M , satisfying certain compatibility conditions ([Oss64]), then (35)
defines a minimal immersion of M in R3.

Traizet’s brilliant insight was to define

g = 2
∂u

∂z
and dh = 2

∂u

∂z
dz

in terms of a solution u of (1), and show that, under certain conditions, the Weierstrass data (g, dh) give
rise to the upper half (X3 > 0) of a minimal bigraph. Conversely, a solution u of (1) can be constructed
using the Weierstrass data of a complete embedded minimal bigraph.
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We have used Traizet’s correspondence to state Corollary 1.4, the minimal surface version of Theorem
1.3. We can now turn to the proof.

Proof of Corollary 1.4. Following the argument of [Tra14, Theorem 10], we shall construct a solution of (1),
corresponding to the minimal bigraph M . Let ζ be a complex coordinate on M , let g be the stereographically
projected Gauss map and dh = (2∂X3/∂ζ) dζ be the height differential. Note that |g| = 1 on M ∩{X3 = 0}
as the normal points horizontally there and we may assume that the orientation of M is chosen so that
the normal points down in M+, i.e. |g| < 1 in M+. Furthermore g has the same zeros and poles as dh
(with same multiplicities), thus g−1dh defines a holomorphic non-vanishing one-form on M+. Since M+ is
simply-connected,

ϕ(p) =

ˆ p

0

g−1dh p ∈M+

defines a holomorphic function on M+ (recall 0 ∈M). Claim that ϕ is injective. Define

Ξ := X1 + iX2

on M+ and let Ω̂ = Ξ(M+) be the projection of M+ down to the horizontal plane {X3 = 0}. Since M+ is

a graph, Ξ is a diffeomorphism from M+ to Ω̂, so ϕ will be injective if and only if φ := ϕ ◦ Ξ−1 is injective
on Ω̂. Let a, b be arbitrary points of Ω̂ and let [a, b] ⊆ C denote the straight-line closed segment from a to
b. Then for some N ∈ N we can write

[a, b] =

N⋃
k=1

[z2k−1, z2k] ∪
N−1⋃
k=1

[z2k, z2k+1],

where z1 = a, z2N = b, the interior of [z2k−1, z2k] belongs to Ω̂, while z2k and z2k+1 belong to the same

connected component of ∂Ω̂. Claim that

〈φ(z2k)− φ(z2k−1),
b− a
|b− a|

〉 > |z2k − z2k−1|, (36)

where 〈w1, w2〉 := Re(w1w2) denotes the standard inner product on C. Let α : [0, 1] → M+ be such that
Ξ ◦ α is the constant speed parameterization of [z2k−1, z2k]. For each fixed time t ∈ (0, 1), denote

v :=
1

2
g−1dh(α′(t)) w := −1

2
gdh(α′(t)),

we have |v| > |w| because |g| < 1. Since dϕ(α′(t)) = g−1dh(α′(t)) = 2v and

z2k − z2k−1 = dΞ(α′(t)) = (dX1 + idX2)(α′(t)) =
1

2
g−1dh(α′(t))− 1

2
gdh(α′(t)) = v + w,

we have

〈dϕ(α′(t)),
b− a
|b− a|

〉 = |z2k − z2k−1|−1〈2v, v + w〉 > |z2k − z2k−1|−1|v + w|2 = |z2k − z2k−1|

which leads to (36) once we integrate in t from 0 to 1. On the other hand,

〈φ(z2k+1)− φ(z2k),
b− a
|b− a|

〉 = |z2k+1 − z2k|. (37)

This is the case, because on the component β of M ∩ {X3 = 0}, to which Ξ−1(z2k+1) and Ξ−1(z2k) belong,
we know g−1 = g and dh = −dh, so that

dϕ(β′) = g−1dh(β′) = −gdh(β′) =
1

2
g−1dh(β′)− 1

2
gdh(β′) = dΞ(β′)

and thus, φ(z2k+1)− φ(z2k) = z2k+1 − z2k. Adding up (36) and (37) from k = 1 to N , we derive

〈φ(b)− φ(a), (b− a)/|b− a|〉 > |b− a|

from which the injectivity of φ follows.
We can now define the function

u = X3 ◦ ϕ−1
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on the domain Ω = ϕ(M+), and we can easily verify that u is a positive, harmonic function in Ω that
vanishes on ∂Ω ∩BR where, for z = ϕ(ζ) ∈ F (u)

|∇u|(z) =

∣∣∣∣2∂X3

∂ζ

1

ϕ′(ζ)

∣∣∣∣ = |g(ζ)| = 1.

Furthermore, the metric induced on Ω by the conformal immersion X ◦ϕ−1 is given by the standard formula

ds =
1

2
(|g||dh|+ |g|−1|dh|) =

1

2
(|g|2 + 1)|dz| = λ(z)|dz|

where 1
2 ≤ λ(z) ≤ 1, as |g| ≤ 1 on M+. So, if γ+ = γ ∩M+ denotes the piece of the shortest geodesic

lying in M+, it is mapped by ϕ to a curve γ̃ = ϕ(γ+) ⊆ Ω with Euclidean length O(H1(γ+)) = O(ε) which
connects the two pieces of ∂Ω.

Fix δ < 1/1000 a small positive numerical constant and let r0, ε1 be as in Theorem 10.7. Set R0 = 1/r0

and ε0 = ε1. Extend u by zero in BR0 \ Ω. Then u is a solution of (1) in BR0 , satisfying (3), so Theorem

10.7 gives us an injective conformal map ψ̃ : B+
4 (u)→ Ωa for some appropriate a = O(ε), such that

ψ̃′(z) = 1 +O(δ(|z|+ a)), ψ̃′′(z) = O(δ) for z ∈ B+
4 (u) (38)

and U := Va ◦ ψ̃ is a holomorphic extension of u in B+
4 (u) (recall Va is the holomorphic extension of Ha

given in Section 10). It’s easy to see that ψ̃ gives rise to an injective conformal map from M+ ∩ B2 into the
standard catenoid Σ+

ρ := Σρ ∩ {X3 > 0} (the counterpart to Ωa in the Traizet correspondence), which then
extends by symmetry to a conformal map ψ on all of M ∩ B2. The metric on Ωa induced by its immersion
as Σρ is

dscat = (1 + |V ′a|2)|dz|

while the metric on B+
4 (u) is

ds = (1 + |U ′|2)|dz|

and we check that the pull-back metric ψ̃∗(dscat) satisfies

ψ̃∗(dscat) = (1 + |U ′|2/|ψ̃′|2)|ψ̃′||dz| =
(
1 +O(δ(|z|+ a))

)
ds.

Since a ∼ ρ, the induced conformal map ψ is an isometry up to a factor of
(
1 +O(δ(|x|+ ρ)

)
and

ε = H1(γ) = (1 +O(δ))2πρ =⇒ |ε− 2πρ| = O(δε) < ε/100.

Furthermore, the Gauss curvature of M is given by the standard formula for the curvature of a conformal
metric λ(z)|dz| = (1 + |U ′|2)|dz|

K = −∆ log λ(z)

λ2(z)
= − 4|U ′′|2

(1 + |U ′|2)4

Plugging in U(z) = Va(ψ̃(z)) and applying the estimates (38), we get

K = −4|V ′′a (ψ̃′)2 + V ′aψ̃
′′|2

(1 + |V ′a|2|ψ̃′|2)4
= − 4|V ′′a |2

(1 + |V ′a|2)4
(1 +O(δ(|z|+ ρ)) +O

(
δ

2|V ′′a |
(1 + |V ′a|2)2

)
+O(δ2) =

= Kρ +O
(
δ(r + ρ)Kρ

)
+O(δ

√
|Kρ|) +O(δ2)

Noting that √
|Kρ(q)| = O(ρ/r(q)2)

and that |r(ψ(p))− r(p)| ∼ ρ+ δr(p) we obtain the desired estimate

K(p) = Kρ(ψ(p)) +O

(
δ

ρ

r + ρ

√
|Kρ|

)
+O

(
δ
√
|Kρ|

)
+O(δ2) = Kρ0 +O

(
δ +

√
|Kρ|

)
δ.

�
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