A FAMILY OF MAPS WITH MANY SMALL FIBERS

HANNAH ALPERT AND LARRY GUTH

ABSTRACT. The waist inequality states that for a continuous map from $Sⁿ$ to \mathbb{R}^q , not all fibers can have small $(n-q)$ -dimensional volume. We construct maps for which most fibers have small $(n - q)$ -dimensional volume and all fibers have bounded $(n - q)$ -dimensional volume.

Let $n, q \in \mathbb{N}$ with $n > q \geq 1$, and let $f : S^n \to \mathbb{R}^q$ be a continuous map. Let $\hat{p} : \mathbb{R}^{n+1} \to \mathbb{R}^q$ be a surjective linear map, and let $p = \hat{p}|_{S^n}$. The waist inequality states that the largest fiber of f is at least as large as the largest fiber of p .

$$
\sup_{y \in \mathbb{R}^q} \text{Vol}_{n-q} f^{-1}(y) \ge \sup_{y \in \mathbb{R}^q} \text{Vol}_{n-q} p^{-1}(y).
$$

See $[1], [3], [4]$ $[1], [3], [4]$ $[1], [3], [4]$ $[1], [3], [4]$, and $[6]$ for proofs of the waist inequality, or $[5]$ for a survey. In the case $q = 1$, the waist inequality is a consequence of the isoperimetric inequality on $Sⁿ$. The isoperimetric inequality can also be used to prove that the portion of $Sⁿ$ covered by small fibers of f is not very big; that is, for all ε , we have

$$
\text{Vol}_n \ f^{-1}\{y : \text{Vol}_{n-q} \ f^{-1}(y) < \varepsilon\} \le \text{Vol}_n \ p^{-1}\{y : \text{Vol}_{n-q} \ p^{-1}(y) < \varepsilon\}.
$$

The theorem presented in this paper describes how the same statement does not hold in the case $q > 1$. We have also included an appendix with a more precise statement of the waist inequality and the isoperimetric inequality.

Theorem 1. For every $n, q \in \mathbb{N}$ with $n > q > 1$, and for every $\varepsilon > 0$, there is a continuous map $f: S^n \to \mathbb{R}^q$ such that all but ε of the n-dimensional volume of S^n is covered by fibers that have $(n - q)$ -dimensional volume at most ε . Moreover, we may require that every fiber of f has $(n-q)$ -dimensional volume bounded by $C_{n,q}$, a constant not depending on ε .

In what follows, $I^n = [0,1]^n$ denotes the *n*-dimensional unit cube, and ∂I^n denotes its boundary. A tree refers to the topological space corresponding to a graphtheoretic tree: topologically, a tree is a finite 1-dimensional simplicial complex that is contractible.

The bulk of the construction comes from the following lemma, in which we construct a preliminary "tree map" $t_{n,r,\delta}$ from I^n to a tree. Later, to construct f we will change the domain from I^n to S^n by gluing several tree maps together, and we will change the range from the tree to \mathbb{R}^q by composing with a map from a thickened tree to \mathbb{R}^q . In the tree map $t_{n,r,\delta}$, the parameter r corresponds to the depth of the tree. As r increases, the typical fiber of the map becomes smaller. The parameter δ corresponds to the total volume of the larger fibers.

Lemma 1. For every $n, r \in \mathbb{N}$, there is a rooted tree $T_{n,r}$ such that for every $\delta > 0$ there is a continuous map $t_{n,r,\delta}: I^n \to T_{n,r}$ with the following properties:

²⁰¹⁰ Mathematics Subject Classification. 53C23.

FIGURE 1. Every fiber of $t_{2,2,\delta}$ has length at most 6, and most fibers have length at most 1.

- (1) Every fiber of $t_{n,r,\delta}$ is either a single point, the boundary of an n-dimensional cube of side length at most 1, or the $(n-1)$ -skeleton of a $2 \times 2 \times \cdots \times 2$ array of n-dimensional cubes each of side length at most $\frac{1}{2}$.
- (2) All but δ of the volume of I^n is covered by fibers of $t_{n,r,\delta}$ that are boundaries of n-dimensional cubes of side length at most 2^{-r} .
- (3) $t_{n,r,\delta}(\partial I^n)$ is a single point, the root of $T_{n,r}$.
- (4) Each vertex has at most 2^n daughter vertices.

Proof. We construct the tree and tree map recursively in r. For $r = 0$, the tree $T_{n,0}$ is a single edge which we may identify with the interval $[0, \frac{1}{2}]$, with 0 being the root. For any δ , we set $t_{n,0,\delta}(x) = \text{dist}(x,\partial I^n)$ for all $x \in I^n$.

Now let $r > 0$. To construct $T_{n,r}$, we take the disjoint union of one copy of [0, 1] and 2^n copies of $T_{n,r-1}$, and identify the root of every copy of $T_{n,r-1}$ with $1 \in [0,1]$. The root of $T_{n,r}$ is $0 \in [0,1]$. We define $t_{n,r,\delta}$ piecewise as follows. For some small choice of $\delta_1 > 0$, we define $t_{n,r,\delta}$ on the closed δ_1 -neighborhood of ∂I^n to $[0,1] \subset T_{n,r}$ by

$$
t_{n,r,\delta}(x) = \frac{1}{\delta_1} \text{dist}(x, \partial I^n).
$$

Then, translating the coordinate hyperplanes to pass through the center of $Iⁿ$ we divide the remainder of the cube into a $2 \times 2 \times \cdots \times 2$ array of cubes Q_1, \ldots, Q_{2^n} each of side length slightly less than $\frac{1}{2}$. For each $j = 1, \ldots 2^n$, let $\lambda_j : Q_j \to I^n$ be the map that scales Q_j up to unit size, and let $i_j : T_{n,r-1} \to T_{n,r}$ be the inclusion of the jth copy of $T_{n,r-1}$ into $T_{n,r}$. Then for some small choice of $\delta_2 > 0$, we put

$$
t_{n,r,\delta}|_{Q_j} = i_j \circ t_{n,r-1,\delta_2} \circ \lambda_j.
$$

Properties 1, 3, and 4 are easily satisfied by the construction. To ensure property 2, we need to choose δ_1 and δ_2 . The volume of I^n that is covered by large fibers fibers not equal to the boundary of a cube of side length at most 2^{-r} —is at most $\delta_1 \cdot 2n + 2^n \cdot \delta_2 \cdot 2^{-n}$, because the area of ∂I^n is 2n and because the portion of each Q_j that is covered by large fibers has volume at most $\delta_2 \cdot \text{Vol}(Q_j) < \delta_2 \cdot 2^{-n}$. Thus we may choose $\delta_1 = \frac{\delta}{4n}$ and $\delta_2 = \frac{\delta}{2}$.

Proof of Theorem [1.](#page-0-0) We may replace $Sⁿ$ by $\partial Iⁿ⁺¹$ by composing with the (bi-Lipschitz) homeomorphism $\psi : S^n \to \partial I^{n+1}$ given by lining up the centers of S^n and ∂I^{n+1} in \mathbb{R}^{n+1} and projecting radially. We start by constructing a tree T and a tree map $t : \partial I^{n+1} \to T$. For some large choice of r, let T be the tree obtained by identifying the roots of $2(n + 1)$ copies of $T_{n,r}$, one for each *n*-dimensional face of ∂I^{n+1} . For some small choice of δ , define t on each n-dimensional face of ∂I^{n+1} to be the composition of $t_{n,r,\delta}$ with the inclusion of the corresponding $T_{n,r}$ into T.

The fibers of t have dimension $n-1$. In order to cut the fibers down to dimension $n-q$, we next construct a projection map $p: \partial I^{n+1} \to \mathbb{R}^{q-1}$ such that the fibers of p intersect the fibers of t transversely. The fibers of t have codimension 2 in \mathbb{R}^{n+1} and are aligned with the standard coordinates, so we achieve transversality by using other linear coordinates to construct p. We choose $q-1$ linearly independent vectors $v_1, \ldots, v_{q-1} \in \mathbb{R}^{n+1}$ such that for every two standard basis vectors $e_i, e_j \in \mathbb{R}^{n+1}$ the spaces span $\{e_i, e_j\}^{\perp}$ and span $\{v_1, \ldots, v_{q-1}\}^{\perp}$ intersect transversely; equivalently, the set $e_i, e_j, v_1, \ldots, v_{q-1}$ is linearly independent. For $k = 1, \ldots, q-1$, define the kth component of p to be the dot product of the input with v_k . Then the fibers of $t \times p : \partial I^{n+1} \to T \times \mathbb{R}^{q-1}$ are codimension $q-1$ transverse linear cross-sections of the $(n-1)$ -dimensional fibers of t, and have $(n-q)$ -dimensional volume bounded by some constant depending on n and q .

There exists M large enough that $p(\partial I^{n+1})$ is contained in the $(q-1)$ -dimensional ball $B(M)$ of radius M. We define a map $\phi: T \times B(M) \to \mathbb{R}^q$ such that the number of points in each fiber of ϕ is at most the maximum degree of T, which is $2^n + 1$. Then we define $f = \phi \circ (t \times p)$. The fibers of f, like the fibers of $t \times p$, have $(n - q)$ -dimensional volume bounded by a constant $C_{n,q}$.

The map ϕ is constructed as follows. Let $\phi|_{T\times\{0\}}$ be an embedding of T into \mathbb{R}^q in which the edges map to straight line segments and each daughter vertex has x_1 coordinate greater than that of its parent. Let d be the minimum distance between disjoint edges of $\phi(T \times \{0\})$. Then for every $p \in T$ and $x \in B(M)$, we set

$$
\phi(p,x) = \phi(p,0) + \frac{d}{4} \left(0, \frac{x}{M}\right),\,
$$

where $(0, \frac{x}{M})$ denotes the point in \mathbb{R}^q constructed by adding onto $\frac{x}{M} \in \mathbb{R}^{q-1}$ a first coordinate of 0. If $\phi(p, x) = \phi(p', x')$, then $\phi(p, 0)$ and $\phi(p', 0)$ are at most $\frac{d}{2}$ apart, so p and p' lie on two incident edges of T; also, $\phi(p,0)$ and $\phi(p',0)$ have the same x_1 -coordinate, so these two edges are between two daughters and a common parent, rather than a daughter, a parent, and a grandparent.

To finish the proof, we show that δ and r may be chosen such that all but ε of the *n*-dimensional volume of ∂I^{n+1} is covered by fibers with $(n - q)$ -dimensional volume at most ε . The maximum number of daughter vertices of any vertex of T is 2^n , and most of ∂I^{n+1} is covered by fibers of f that are unions of at most 2^n codimension $q - 1$ transverse linear cross-sections of boundaries of *n*-dimensional cubes of side length at most 2^{-r} . We choose r large enough that every codimension $q-1$ transverse linear cross-section of $2^{-r}\partial I^n$ has $(n-q)$ -dimensional volume at most $\frac{\varepsilon}{2^n}$. The volume of the portion of ∂I^{n+1} covered by larger fibers is at most $2(n+1)\cdot\delta$, so we choose $\delta < \frac{\varepsilon}{2(n+1)}$.

Appendix: The waist inequality and the isoperimetric inequality

In order to be precise about the waist inequality, we need a notion of $(n - q)$ dimensional volume of arbitrary closed subsets in $Sⁿ$. Gromov's version of the waist inequality is stated in terms of the Lebesgue measures Vol_n of the ε -neighborhoods $f^{-1}(y)_{\varepsilon}$ of the fibers $f^{-1}(y)$ of a continuous map f.

Theorem 2 (Waist inequality, [\[4\]](#page-5-2)). Let $f : S^n \to \mathbb{R}^q$ be a continuous map. Then there exists a point $y \in \mathbb{R}^q$ such that for all $\varepsilon > 0$, we have

$$
\text{Vol}_n(f^{-1}(y_\varepsilon) \ge \text{Vol}_n(S^{n-q}_\varepsilon),
$$

where $S^{n-q} \subset S^n$ denotes an equatorial $(n-q)$ -sphere.

The paper [\[6\]](#page-5-3) gives a detailed exposition of the proof of the waist inequality and fills in some small gaps in the original argument. For convenience we introduce a notation for comparing the ε -neighborhoods of two sets: given $E, F \subseteq Sⁿ$, we say that E is **larger in neighborhood** than F, denoted $E \geq_{\text{nbd}} F$, if for all $\varepsilon > 0$ we have

$$
\text{Vol}_n(E_{\varepsilon}) \geq \text{Vol}_n(F_{\varepsilon}).
$$

Then the waist inequality states that for some $y \in \mathbb{R}^q$ we have $f^{-1}(y) \geq_{\text{nbd}} S^{n-q}$.

In the case $q = 1$, we would like to say that the waist inequality is a consequence of the isoperimetric inequality. The classical isoperimetric inequality applies only to regions with smooth boundary, so we need the following version, which is stated and proved in [\[2\]](#page-5-5) and attributed to [\[7\]](#page-5-6):

Theorem 3 (Isoperimetric inequality). Let $A \subseteq S^n$ be a closed set and $B \subseteq S^n$ be a closed ball with $\text{Vol}_n(B) = \text{Vol}_n(A)$. Then we have

 $A \geq_{\text{nbd}} B$.

In the introduction we claimed that in the case $q = 1$, the isoperimetric inequality could be used to prove, in addition to the waist inequality, another statement about the volume of $Sⁿ$ covered by small fibers. Here we formulate the statement more precisely and prove it. The proof implies the waist inequality for $q = 1$.

Theorem 4. Let $f: S^n \to \mathbb{R}$ be a continuous map, and $p: S^n \to \mathbb{R}$ be the restriction to S^n of a surjective linear map $\widehat{p} : \mathbb{R}^{n+1} \to \mathbb{R}$. Then for all $y \in p(S^n)$, we have

$$
\text{Vol}_n\{x \in S^n : f^{-1}(f(x)) \geq_{\text{nbd}} p^{-1}(y)\} \geq \text{Vol}_n\{x \in S^n : p^{-1}(p(x)) \geq_{\text{nbd}} p^{-1}(y)\}.
$$

The proof of this theorem is based on the following lemma:

Lemma 2. Let $X, Y \subset S^n$ be closed sets with $X \cup Y = S^n$. Let $B^X, B^Y \subset S^n$ be closed balls such that their two centers are antipodal in $Sⁿ$ and $\text{Vol}_n(B^X) = \text{Vol}_n(X)$ and $\text{Vol}_n(B^Y) = \text{Vol}_n(Y)$. Then we have

$$
X\cap Y\geq_{\text{nbd}} B^X\cap B^Y.
$$

Proof. First we claim that $(X \cap Y)_{\varepsilon}$ is the disjoint union of $X_{\varepsilon} \setminus X, Y_{\varepsilon} \setminus Y$, and $X \cap Y$. It is clear that $(X \cap Y)_{\varepsilon}$ is the disjoint union of its intersections with $S^n \setminus X$, $S^n \setminus Y$, and $X \cap Y$. Thus it suffices to show that

$$
(X \cap Y)_{\varepsilon} \cap (S^n \setminus X) = X_{\varepsilon} \setminus X.
$$

Because $(X \cap Y)_{\varepsilon} \subseteq X_{\varepsilon}$, we immediately have

$$
(X \cap Y)_{\varepsilon} \cap (S^n \setminus X) \subseteq X_{\varepsilon} \setminus X.
$$

For the reverse inclusion, let $y \in X_{\varepsilon} \setminus X$, and let $\gamma : [0,1] \to S^n$ be a curve of length at most ε with $\gamma(0) = y$ and $\gamma(1) = x \in X$. Let $t \in [0, 1]$ be the greatest value with $\gamma(t) \in Y$. Then $\gamma(t) \in X \cap Y$, so $y \in (X \cap Y)_{\varepsilon}$.

Thus, applying the isoperimetric inequality and additivity of measure, we have

$$
\text{Vol}_n((X \cap Y)_\varepsilon) = \text{Vol}_n(X_\varepsilon) - \text{Vol}_n(X) + \text{Vol}_n(Y_\varepsilon) - \text{Vol}_n(Y) + \text{Vol}_n(X \cap Y) \ge
$$

$$
\geq \text{Vol}_n(B_\varepsilon^X) - \text{Vol}_n(B^X) + \text{Vol}_n(B_\varepsilon^Y) - \text{Vol}_n(B^Y) + \text{Vol}_n(B^X \cap B^Y) =
$$

=
$$
\text{Vol}_n((B^X \cap B^Y)_\varepsilon).
$$

Proof of Theorem [4.](#page-3-0) Without loss of generality we assume $p(S^n) = [0, 1]$ and $y \le \frac{1}{2}$. Then on the right-hand side of the desired inequality we have

$$
\{x \in S^n : p^{-1}(p(x)) \geq_{\text{nbd}} p^{-1}(y)\} = p^{-1}[y, 1 - y].
$$

Define $\alpha, \beta \in \mathbb{R}$ as

$$
\alpha = \sup\{t \in \mathbb{R} : \text{Vol}_n f^{-1}(-\infty, t) \le \text{Vol}_n p^{-1}[0, y]\},\
$$

$$
\beta = \inf\{t \in \mathbb{R} : \text{Vol}_n f^{-1}(t, \infty) \le \text{Vol}_n p^{-1}[y, 1]\}.
$$

For each $t \in [\alpha, \beta]$, apply the lemma with $X = f^{-1}(-\infty, t]$ and $Y = f^{-1}[t, \infty)$ to get $f^{-1}(t) \ge_{\text{nbd}} p^{-1}[y_1, y_2]$ for some $y_1, y_2 \in [y, 1 - y]$. In particular, we have

$$
f^{-1}(t) \geq_{\text{nbd}} p^{-1}(y_1) \geq_{\text{nbd}} p^{-1}(y).
$$

Thus, we have

$$
f^{-1}[\alpha, \beta] \subseteq \{x \in S^n : f^{-1}(f(x)) \geq_{\text{nbd}} p^{-1}(y)\}.
$$

Because $\text{Vol}_n f^{-1}(-\infty, \alpha) \leq \text{Vol}_n p^{-1}[0, y]$ and $\text{Vol}_n f^{-1}(\beta, \infty) \leq \text{Vol}_n p^{-1}[y, 1]$ we have

Vol_n
$$
f^{-1}[\alpha, \beta] \ge \text{Vol}_n p^{-1}[y, 1 - y].
$$

 \Box

REFERENCES

- $[1]$ F.J. Almgren, The theory of varifolds — a variational calculus in the large for the kdimensional area integrated, Mimeographed notes, 1965.
- [2] T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53–94. MR 0445274 (56 #3618)
- [3] M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1–147. MR 697984 (85h:53029)
- [4] _____, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), no. 1, 178–215. MR 1978494 (2004m:53073)
- [5] L. Guth, The waist inequality in Gromov's work, The Abel Prize 2008–2012 (H. Holden and R. Piene, eds.), Springer, 2014, pp. 181–195.
- [6] Y. Memarian, On Gromov's waist of the sphere theorem, J. Topol. Anal. 3 (2011), no. 1, 7–36. MR 2784762 (2012g:53066)
- [7] E. Schmidt, Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I, Math. Nachr. 1 (1948), 81–157. MR 0028600 (10,471d)

MIT, Cambridge, MA 02139 USA E-mail address: hcalpert@math.mit.edu E-mail address: lguth@math.mit.edu