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A FAMILY OF MAPS WITH MANY SMALL FIBERS

HANNAH ALPERT AND LARRY GUTH

ABSTRACT. The waist inequality states that for a continuous map from S™ to
RY, not all fibers can have small (n — g)-dimensional volume. We construct
maps for which most fibers have small (n — ¢)-dimensional volume and all
fibers have bounded (n — g)-dimensional volume.

Let n,g € Nwithn > ¢ > 1, and let f : S — RY be a continuous map. Let
p: R*™1 — RY? be a surjective linear map, and let p = p|g». The waist inequality
states that the largest fiber of f is at least as large as the largest fiber of p:

sup Vol,_q f ' (y) > sup Vol,_,p~*(y).

yERY y€ERa
See [11, [B], [], and [6] for proofs of the waist inequality, or [5] for a survey. In the
case ¢ = 1, the waist inequality is a consequence of the isoperimetric inequality on
S™. The isoperimetric inequality can also be used to prove that the portion of S™
covered by small fibers of f is not very big; that is, for all e, we have

Vol,, f_l{y : Vol,_, f_l(y) < e} < Vol, p_l{y : Voln_qp_l(y) <e}l.

The theorem presented in this paper describes how the same statement does not
hold in the case ¢ > 1. We have also included an appendix with a more precise
statement of the waist inequality and the isoperimetric inequality.

Theorem 1. For every n,q € N with n > g > 1, and for every € > 0, there is a
continuous map f : S™ — R? such that all but € of the n-dimensional volume of S™
is covered by fibers that have (n — q)-dimensional volume at most . Moreover, we
may require that every fiber of f has (n — q)-dimensional volume bounded by C,, 4,
a constant not depending on €.

In what follows, I"™ = [0,1]™ denotes the n-dimensional unit cube, and 9I"™ de-
notes its boundary. A tree refers to the topological space corresponding to a graph-
theoretic tree: topologically, a tree is a finite 1-dimensional simplicial complex that
is contractible.

The bulk of the construction comes from the following lemma, in which we
construct a preliminary “tree map” ¢, ,s from I™ to a tree. Later, to construct
f we will change the domain from I™ to S™ by gluing several tree maps together,
and we will change the range from the tree to R? by composing with a map from
a thickened tree to R9. In the tree map i, . s, the parameter r corresponds to the
depth of the tree. As r increases, the typical fiber of the map becomes smaller. The
parameter ¢ corresponds to the total volume of the larger fibers.

Lemma 1. For every n,r € N, there is a rooted tree T), , such that for every § >0
there is a continuous map t, s : I"™ — Ty, with the following properties:
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FIGURE 1. Every fiber of ¢35 s has length at most 6, and most
fibers have length at most 1.

(1) Every fiber of ty, s is either a single point, the boundary of an n-dimensional
cube of side length at most 1, or the (n — 1)-skeleton of a 2 X 2 X ++-+ X 2
array of n-dimensional cubes each of side length at most %

(2) All but § of the volume of I is covered by fibers of tp r.s that are boundaries
of n-dimensional cubes of side length at most 277"

(3) tn,rs(0I™) is a single point, the root of Ty, ;.

(4) FEach vertex has at most 2™ daughter vertices.

Proof. We construct the tree and tree map recursively in r. For r = 0, the tree
Ty.0 is a single edge which we may identify with the interval [0, 1], with 0 being the
root. For any d, we set t,0,5(z) = dist(z,0I™) for all x € I™.

Now let » > 0. To construct T, ,, we take the disjoint union of one copy of
[0,1] and 2™ copies of T}, ,—1, and identify the root of every copy of T, ,_1 with
1 € [0,1]. The root of T, , is 0 € [0,1]. We define ¢, , 5 piecewise as follows. For
some small choice of §; > 0, we define ¢, s on the closed d;-neighborhood of 01"
to [0,1] C T, » by

1
tn,r,&(x) = 6—1dlSt((E, 5)[")
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Then, translating the coordinate hyperplanes to pass through the center of I"™ we
divide the remainder of the cube into a 2 X 2 x --- x 2 array of cubes Q1,...,Q2n
each of side length slightly less than % Foreach j =1,...2" let A; : Q; — I" be
the map that scales (); up to unit size, and let ¢; : T), ,—1 — T}, » be the inclusion
of the jth copy of T}, »_1 into T}, . Then for some small choice of §; > 0, we put

tnrslQ; =15 0tnr—16, 0 ).

Properties 1, 3, and 4 are easily satisfied by the construction. To ensure property
2, we need to choose §; and d2. The volume of I™ that is covered by large fibers—
fibers not equal to the boundary of a cube of side length at most 27"—is at most
01-2n+2™- 627" because the area of JI" is 2n and because the portion of each
@Q; that is covered by large fibers has volume at most s - Vol(Q;) < d2-27". Thus
we may choose d; = % and 0y = %. O
Proof of Theorem[1. We may replace S™ by 9I"*! by composing with the (bi-
Lipschitz) homeomorphism 1 : S® — JI"*! given by lining up the centers of S™
and OI™*! in R"*! and projecting radially. We start by constructing a tree T' and
a tree map t : 9I"T! — T. For some large choice of r, let T' be the tree obtained
by identifying the roots of 2(n + 1) copies of T}, ., one for each n-dimensional face
of OI™*1. For some small choice of §, define ¢ on each n-dimensional face of I™*+!
to be the composition of ¢, . s with the inclusion of the corresponding 75, , into 7.

The fibers of ¢t have dimension n—1. In order to cut the fibers down to dimension
n — ¢, we next construct a projection map p : 01" — R~ such that the fibers of
p intersect the fibers of ¢ transversely. The fibers of ¢ have codimension 2 in R™t!
and are aligned with the standard coordinates, so we achieve transversality by using
other linear coordinates to construct p. We choose ¢—1 linearly independent vectors

V1. .., 0g—1 € R" such that for every two standard basis vectors e;, e; € R" ! the
spaces span{e;, e;}* and span{vi,...,v,_1}" intersect transversely; equivalently,
the set e;,ej,v1,...,v4—1 is linearly independent. For k = 1,...,q — 1, define the

kth component of p to be the dot product of the input with vg. Then the fibers of
txp: Il T x RI! are codimension ¢ — 1 transverse linear cross-sections of
the (n — 1)-dimensional fibers of ¢, and have (n — ¢)-dimensional volume bounded
by some constant depending on n and q.

There exists M large enough that p(91™ 1) is contained in the (¢—1)-dimensional
ball B(M) of radius M. We define a map ¢ : T'x B(M) — R? such that the number
of points in each fiber of ¢ is at most the maximum degree of T', which is 2™ + 1.
Then we define f = ¢ o (¢t X p). The fibers of f, like the fibers of ¢ X p, have
(n — g)-dimensional volume bounded by a constant C,, .

The map ¢ is constructed as follows. Let ¢|r oy be an embedding of T into R?
in which the edges map to straight line segments and each daughter vertex has x1-
coordinate greater than that of its parent. Let d be the minimum distance between
disjoint edges of ¢(T x {0}). Then for every p € T and x € B(M), we set

o) = 6(p.0) + 5 (0.,

where (O, %) denotes the point in R? constructed by adding onto ; € R?~1 a first
coordinate of 0. If ¢(p,x) = ¢(p’,x’), then ¢(p,0) and ¢(p’,0) are at most % apart,
so p and p’ lie on two incident edges of T'; also, ¢(p,0) and ¢(p’,0) have the same
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x1-coordinate, so these two edges are between two daughters and a common parent,
rather than a daughter, a parent, and a grandparent.

To finish the proof, we show that ¢ and » may be chosen such that all but ¢ of
the n-dimensional volume of 9I"*! is covered by fibers with (n — ¢)-dimensional
volume at most €. The maximum number of daughter vertices of any vertex of T
is 2", and most of OI"*! is covered by fibers of f that are unions of at most 2"
codimension g — 1 transverse linear cross-sections of boundaries of n-dimensional
cubes of side length at most 27". We choose r large enough that every codimension
g — 1 transverse linear cross-section of 27"9I™ has (n — ¢)-dimensional volume at
most . The volume of the portion of OI™t! covered by larger fibers is at most

2'7l
2(n+1) -4, so we choose ¢ < O

_ e
2(n+1)"
APPENDIX: THE WAIST INEQUALITY AND THE ISOPERIMETRIC INEQUALITY

In order to be precise about the waist inequality, we need a notion of (n — ¢)-
dimensional volume of arbitrary closed subsets in S™. Gromov’s version of the waist
inequality is stated in terms of the Lebesgue measures Vol,, of the e-neighborhoods
f71(y)e of the fibers f~1(y) of a continuous map f.

Theorem 2 (Waist inequality, [4]). Let f : S™ — R? be a continuous map. Then
there exists a point y € R? such that for all € > 0, we have

Vol (f71(y)=) = Vol (S279),
where S™~9 C 8™ denotes an equatorial (n — q)-sphere.

The paper [6] gives a detailed exposition of the proof of the waist inequality and
fills in some small gaps in the original argument. For convenience we introduce a
notation for comparing the e-neighborhoods of two sets: given E, F C S™, we say
that E is larger in neighborhood than F', denoted E >,,q F, if for all € > 0 we
have

Vol,,(E.) > Vol,,(F).
Then the waist inequality states that for some y € RY we have f~1(y) >ppq S779.

In the case ¢ = 1, we would like to say that the waist inequality is a consequence
of the isoperimetric inequality. The classical isoperimetric inequality applies only
to regions with smooth boundary, so we need the following version, which is stated
and proved in [2] and attributed to [7]:

Theorem 3 (Isoperimetric inequality). Let A C S™ be a closed set and B C S™ be
a closed ball with Vol (B) = Vol,,(A). Then we have
A >ppa B.
In the introduction we claimed that in the case ¢ = 1, the isoperimetric inequality
could be used to prove, in addition to the waist inequality, another statement about

the volume of S™ covered by small fibers. Here we formulate the statement more
precisely and prove it. The proof implies the waist inequality for ¢ = 1.

Theorem 4. Let f : S™ — R be a continuous map, and p : S™ — R be the
restriction to S™ of a surjective linear map p : R**1 — R. Then for all y € p(S™),
we have

Vol {z € S : f7(f(x)) Zupap ()} = Vol {z € S : p~ ' (p(x)) Zuba p~ ' ()}-

The proof of this theorem is based on the following lemma:
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Lemma 2. Let X, Y C S™ be closed sets with X UY = S™. Let BX, BY C S™ be
closed balls such that their two centers are antipodal in S™ and Vol,,(B*X) = Vol (X)
and Vol,,(BY) = Vol,,(Y). Then we have

XNY >.a BXNBY.

Proof. First we claim that (X NY). is the disjoint union of X, \ X, Yz \ Y, and
XNY. Tt is clear that (X NY), is the disjoint union of its intersections with S™\ X,
S™\Y,and X NY. Thus it suffices to show that

(XNY).Nn(S"\ X) =X\ X.
Because (X NY). C X., we immediately have
(XNY).N(S™"\ X) C X\ X.

For the reverse inclusion, let y € X.\ X, and let v : [0, 1] — S™ be a curve of length
at most &€ with v(0) = y and y(1) =2 € X. Let t € [0, 1] be the greatest value with
v(#) €Y. Theny(t) e XNY,soy e (X NY)..
Thus, applying the isoperimetric inequality and additivity of measure, we have
Vol,,((X NY)e) = Vol,(X.) — Vol,,(X) + Vol,,(Yz) — Vol,,(Y) + Vol,(X NY) >
> Vol,(BX) — Vol,,(B¥) + Vol,,(BY) — Vol,,(BY) + Vol,(B* n BY) =

= Vol,((B¥ nBY),).

O

Proof of Theorem [} Without loss of generality we assume p(S™) = [0,1] and y < %
Then on the right-hand side of the desired inequality we have

{zre8™ : p (p(x)) Zwpap '(y)} =p [y, 1 —y).
Define o, 8 € R as

a =sup{t € R: Vol, f~*(—oco,t) < Vol, p~ [0, ]},

B =inf{t € R: Vol, f~*(t,o0) < Vol,, p~ [y, 1]}.

For each t € [, 8], apply the lemma with X = f~1(—o0,t] and Y = f~1[t,0) to
get f71(t) >upa Y1, ye] for some y1,y2 € [y, 1 — y]. In particular, we have

F7HE) Zapa p7 (Y1) Zava 27 ().

Thus, we have

e Bl S {w e 8™ fTH(f (@) Zmpa v~ (1)}

Because Vol,, f~*(—o0,a) < Vol,, p~1[0,%] and Vol,, f~1(3,00) < Vol,, p~1[y, 1] we
have

Vol,, e, 8] > Vol p~ [y, 1 —y].
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