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Abstract

A probability measure Pn on the symmetric group Sn is said to be

record-dependent if Pn(σ) depends only on the set of records of a

permutation σ ∈ Sn. A sequence P = (Pn)n∈N of consistent record-

dependent measures determines a random order on N. In this paper

we describe the extreme elements of the convex set of such P . This

problem turns out to be related to the study of asymptotic behavior of

permutation-valued growth processes, to random extensions of partial

orders, and to the measures on the Young-Fibonacci lattice.

1 Introduction

Let Sn be the group of permutations of [n] := {1, . . . , n}. A position j ∈ [n]
is called an upper record position or simply a record in a permutation σ ∈ Sn if
σ(j) = maxi∈[j] σ(i). Let R(σ) ⊂ [n] be the set of records of σ. A probability
measure Pn on Sn is called record-dependent (RD) if Pn is conditionally
uniform given the set of records, or, equivalently, if the probability mass
function Pn(σ) depends only on R(σ).

A natural way to connect permutations of different sizes is suggested by
viewing a generic permutation σ ∈ Sn as a (total) order on [n], in which i
precedes j if i appears in a lower position, that is σ−1(i) < σ−1(j). Restricting
the order to the smaller set [n− 1] yields a projection πn

n−1 : Sn → Sn−1, by
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which each permutation σ is mapped to a permutation which we call coherent
with σ. Likewise, two probability measures, Pn on Sn and Pn−1 on Sn−1,
are said to be coherent if the restriction sends Pn to Pn−1. It turns out that
for coherent measures if Pn is RD, so is Pn−1.

In this paper we are interested in coherent sequences of RD-measures
P = (Pn)n∈N. Each such sequence defines a Markovian permutation growth
process, with backward transition probabilities like under the uniform dis-
tributions. On the other hand, a coherent sequence uniquely determines a
probability measure, denoted by the same symbol P , on a ‘n = ∞’ object,
which is the space of orders on N. The measure P will be called an RD-
measure, meaning that the projection of P to each [n] is RD. Our main re-
sults (Theorem 3.3 and Proposition 3.5) explicitly characterize the extreme
elements of the convex set of such RD-measures P . The characterization
problem belongs to the circle of de Finetti-type questions around sufficiency
and stochastic symmetries [1, 14], and can be viewed in different contexts
like the boundary problem for a branching scheme [16] or processes on causal
posets [2, 3].

A straightforward example of an RD-measure on Sn is

Pn(σ) =
1

Z
θ|R(σ)|, σ ∈ Sn, (1)

where θ ∈ (0,∞) and Z = θ(θ + 1) · · · (θ + n− 1). For θ = 1 this is the uni-
form distribution. By the ‘fundamental bijection’, which identifies the one-
row notation for writing a permutation with the cycle notation for another
permutation, this measure is mapped to the well-known Ewens distribution
with weights 1

Z
θ|cycles(σ)| [19, 7]. However, unless θ = 1 the measures (1) are

not coherent in the sense of the present paper. A qualitative difference ap-
pears if we look how the number of records |R(σ)| grows with n. For (1) the
order of growth is logarithmic, while for the measures studied here the right
scale for |R(σ)| is linear, with the case of the uniform distribution being the
sole exception.

The case of the uniform distribution is special among the RD measures.
The uniform distribution on Sn is important in statistics, as it appears by
ranking samples from continuous distributions. In this connection various
quantities, such as record times, record values, interrecord times and others
attracted lots of attention. We refer the reader to the review [4] for classical
results on the theory of records.

In the literature there is a number of other permutation growth models
build on principles similar to ours: the probability mass function depends, for
each n, on a statistic S, while coherence of random permutations of different
sizes is defined via a system of projections. When S is the cycle type of a
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permutation, the model can be embedded into Kingman’s theory of exchange-
able partitions [16, 25]. When S is the set of descents, a coherent sequence of
random permutations is associated with a random order on N which has the
property of spreadability [9]. Also Pitman’s partially exchangeable partitions
[24] and random sequences of compositions of integers [17, 7] can be recast
in terms of coherent random permutations. Furthermore, certain parametric
deformations of the uniform distribution fit in the framework, with S being a
numerical statistic like the number of cycles, descents, pikes, inversions, etc
(see [10, 7] for examples and references).

Both the choice of a statistic S and the choice of a system of projections
connecting symmetric groups affect properties of the permutation growth
model. If we replace |R(σ)| in (1) by the number of lower records, the mea-
sures will become coherent under our projections πn

n−1. On the other hand,
changing the system of projections one can achieve the coherence of distribu-
tions (1). The alternative projections were considered in [7] for permutations
with distribution depending on statistics of both upper and lower records.

Comparing with the previous work, the main distinction of the present
setting is in the structure of the set of extreme RD-measures P . In e.g. [7,
16, 17, 24] the extremes are described in terms of infinitely many continuous
parameters, which are asymptotic frequencies (on a linear scale) of certain
components of a growing permutation. In contrast to that, in our model the
parametrization of the extreme RD-measures involves an integer sequence
and a real number.

Somewhat unexpectedly, a parametrization of extremes similar to ours
has appeared in the work of Goodman and Kerov [12]. They studied random
growth processes on the Young-Fibonacci lattice, which is an important ex-
ample of a differential poset (as introduced by Stanley [26] and Fomin [6]),
and proved a result very much in line with our Theorem 3.3. Although we
see some further similarities with the setting of [12], the connection remains
obscure, and it would be very interesting to have more clarity in this point.

A prototypical instance of differential poset is Young’s lattice. The study
of coherent measures on Young’s lattice, that is growth processes with values
in Young diagrams, is a deeply explored subject related, in particular, to
the theory of group representations, total positivity of matrices, and asymp-
totics of Schur symmetric functions, see [16, 27] and references therein. In
particular, the identification of the extreme coherent measures is equivalent
to the classification of the characters and finite factor representations of the
infinite symmetric group S∞. Our results on the RD-measures can be also
interpreted in this spirit, as the classification of traces on the AF–algebra
associated with the branching scheme (Bratteli diagram) of permutations.

Finally, we mention that some of the extreme RD-measures can be viewed
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in the context of order-invariant measures on fixed causal sets, as introduced
recently by Brightwell and Luczak [3]. We add details to this aspect of our
study in Section 7.

2 Record-dependent measures and orders on N

We write permutations σ ∈ Sn in the one-row notation as permutation words
σ(1) . . . σ(n). Note that position 1 is the smallest and σ−1(n) is the largest
element of the set of records R(σ). For instance, permutation σ = 2 6 5 7 1 4 ∈
S7 has records R(σ) = {1, 2, 4}.

With σ ∈ Sn one associates an order on [n], in which letter i precedes j if
i appears in a lower position, meaning that σ−1(i) < σ−1(j). The restriction
of the order to [n− 1] yields a projection πn

n−1 : Sn → Sn−1, which amounts
to removing letter n from the permutation word. Explicitly, for i ∈ [n− 1]

πn
n−1(σ)(i) =

{
σ(i), if i < σ−1(n),

σ(i+ 1), if i ≥ σ−1(n).

For example, π4
3 sends 3 4 1 2 to 3 1 2. More generally, the iterated projection

πn
m : Sn → Sm is defined for 1 ≤ m < n as the operation of deleting letters

m+ 1, . . . , n from the permutation word σ(1) . . . σ(n).
Let O be the projective limit of the symmetric groups Sn taken together

with projections πn
n−1. Thus, an element of O is a coherent sequence (σn)n∈N,

which has σn ∈ Sn and σn−1 = πn
n−1(σn) for n > 1. Let π∞

n denote the
coordinate map sending (σ1, σ2, . . . ) ∈ O to σn ∈ Sn. The coherence of
permutations immediately implies the following statement.

Proposition 2.1. O is in bijection with the set of total orders on N. The
projection π∞

n amounts to restricting the order from N to [n].

In what follows we identify elements of O with the orders corresponding to
them. We endow each Sn with the discrete topology, and endow O with the
product topology of projective limit, which corresponds to the coordinate-
wise convergence. In this topology O is a compact totally disconnected space.

Let M(O) be the space of Borel probability measures on O. Each measure
P ∈ O has marginal measures Pn := π̂∞

n (P ) which satisfy the coherence
condition Pn−1 = π̂n

n−1(Pn) for n > 1, where and henceforth f̂ denotes the
pushforward of measures under a mapping f . Conversely, by Kolmogorov’s
measure extension theorem each coherent sequence (Pn) determines a unique
measure on O.
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Let MR(Sn) be the set of RD-measures on Sn, as defined in the In-
troduction. We call P ∈ M(O) an RD-measure if the marginal measures
satisfy Pn ∈ MR(Sn) for every n. We denote MR(O) the convex set of
such RD-measures, and denote extMR(O) the set of extreme elements of
MR(O).

The permutation statistic R(σ) is consistent with projections π̂n
n−1 in the

following sense.

Lemma 2.2. If Pn is an RD-measure on Sn then its projection Pn−1 :=
π̂n
n−1(Pn) is an RD-measure on Sn−1.

Proof. Recall that for σ ∈ Sn, the position σ−1(n) is the maximal element
of R(σ). Note that σ can be uniquely recovered from σ−1(n) and πn

n−1(σ).
Thus, for τ ∈ Sn−1 and A ⊂ [n] the number k of permutations σ which satisfy
R(σ) = A and τ = πn

n−1(σ) depends only on A and B := R(τ) ⊂ [n − 1].
Specifically, k = 1 if for some j ∈ [n] the set A can be obtained by the
following deletion-insertion operation: delete from B all elements greater
than j−1 then insert j in the remaining set. Otherwise k = 0. For instance,
taking n = 7 and B = {1, 3, 5} we have k = 1 for

A = {1}, {1, 2}, {1, 3}, {1, 3, 4}, {1, 3, 5}, {1, 3, 5, 6}, {1, 3, 5, 7}.

The assertion follows since

Pn−1(τ) =
∑

A⊂[n]

∑

σ:πn
n−1

(σ)=τ,R(σ)=A

Pn(σ)

depends only on B.

An alternative coordinatization of permutations is sometimes useful. For
a permutation σ define ri as the rank of σ(i) among σ(1), . . . , σ(i). That is
to say, ri = k if σ(i) is the kth smallest element in {σ(1), . . . , σ(i)}. We call
the ri’s ranks (other terminology found in the literature is ‘relative ranks’ or
‘initial ranks’). The correspondence σ 7→ (r1, . . . , rn) is a bijection between
Sn and [1]× · · · × [n]. Under the uniform distribution on Sn the ranks are
independent random variables, with ri uniformly distributed on [i].

Remark. The representation of permutations by rank sequences does not
sit well with the projections πn

n−1, which in terms of the ranks ri are rather
involved. In [7] other projections (r1, . . . , rn) 7→ (r1, . . . , rn−1) were used to
study measures (1) and their generalizations.

For ρ ⊂ [n] satisfying 1 ∈ ρ, let P ρ be the elementary measure, which is
the uniform distribution on the set of permutations {σ ∈ Sn : R(σ) = ρ}.
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Note that P ρ is a product measure in the rank coordinates: the ri’s are
independent, ri is uniformly distributed on [i−1] for i /∈ ρ, and ri = i almost
surely for i ∈ ρ. The set of RD-measures MR(Sn) is a simplex with 2n−1

extreme elements P ρ.
The convex set MR(O) is a projective limit of the finite-dimensional

simplices MR(Sn). By the general theory (see e.g. [11]) MR(O) is a Choquet
simplex, i.e. a convex compact set with the property of uniqueness of the
representation of a generic point as a convex mixture of the elements of
extMR(O). In view of this property it is important to determine the set of
extreme RD-measures extMR(O).

3 Constructions of the extreme RD-measures

A natural concept of ‘a uniformly distributed random order’ on N is the
probability measure P ∗ ∈ MR(O) whose projection to Sn is the uniform dis-
tribution for every n. A characteristic feature of P ∗ is exchangeability, that
is the invariance under bijections of N. The order can be neatly constructed
in terms of a sequence (ξi) of independent random variables uniformly dis-
tributed on the unit interval, by letting i to precede j iff ξi < ξj. It is clear
from this construction that the exchangeable order is almost surely dense
and has neither maximal, nor minimal elements. Thus, N with this order
is isomorphic (as an ordered space) to (Q, <) P ∗-almost surely, as it follows
from the classical characterization of dense orders due to Hausdorff (see [13,
Section III.11]).

Under the uniform distribution on Sn the number of records satisfies
|R(σ)|/ logn → 1 in probability, as is well known [4]. It will be clear from
what follows that P ∗ is the only RD-measure with sublinear growth of |R(σ)|
as n → ∞. We introduce next a family of random orders for which the
number of records is asymptotically linear in n. The idea is to exploit the
ranks as in the construction of extreme elements of MR(Sn). To that end,
we need some preliminaries.

We define an infinite permutation as a bijection σ : N → N and denote S

the set of such bijections. The symmetric group Sn is naturally embedded
in S as the set of bijections that satisfy σ(j) = j for j > n, and the infinite
symmetric group is identified with S∞ = ∪∞

n=1Sn. Each σ ∈ S defines an
order on N by the familiar rule: i precedes j iff σ−1(i) < σ−1(j). This order
is of the type of the ordered set (N, <), with the jth minimal element being
σ(j). By the virtue of this correspondence S is embedded in O. Note that
the support of the exchangeable order is disjoint with S, i.e. P ∗(S) = 0.

With σ ∈ S we associate an infinite sequence of ranks r1, r2, . . . , where
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ri is the rank of σ(i) among {σ(1), . . . , σ(i)}. More generally, for i ≤ j let
ri,j be the rank of σ(i) among {σ(1), . . . , σ(j)}. The bivariate array ri,j is
determined by the diagonal entries ri by the virtue of the recursion

ri,i = ri, ri,j+1 = ri,j + 1(rj+1 ≤ ri,j), (2)

where 1(′C ′) is 1 when the condition ′C ′ is true and is 0 otherwise. Moreover,
the sequence ri,i, ri,i+1, . . . is nondecreasing and eventually stabilizes at the
value

σ(i) = lim
j→∞

ri,j . (3)

Thus, σ ∈ S is uniquely determined by the sequence of ranks (ri). This
correspondence suggests a criterion to identify the sequences of ranks corre-
sponding to infinite permutations.

Lemma 3.1. A sequence (ri)i∈N with ri ∈ [i] defines a bijection σ ∈ S iff for
every i the nondecreasing sequence ri,i, ri,i+1, . . . defined recursively by (2) is
bounded. In this case σ is given by (3).

Now let α = (αk) be a strictly increasing sequence of positive integers.
For notational convenience we assume that the sequence is infinite, but our
considerations also apply to finite sequences with obvious modifications. As-
sume that

∞∑

k=1

1

αk

< ∞. (4)

Let P (α,1) be the product measure on [1]× [2]× · · · which makes the coordi-
nates ri independent and satisfying

(i) ri ≡ i for i /∈ {α1 + 1, α2 + 1, . . . },

(ii) ri is uniformly distributed on [i− 1] for i ∈ {α1 + 1, α2 + 1, . . . }.

Lemma 3.2. A random sequence (ri) with distribution P (α,1) almost surely
determines, via (2) and (3), a random element of S.

Proof. Fix i and condition on the event ri = s. If i /∈ {α1, α2, . . . } then
ri,i+1 = s. If i ∈ {α1, α2, . . . } then the expected value of ri,i+1 is s + s/i.
Iterating we see that the expected value of ri,j converges, as j → ∞, to

s
∏

k :αk≥i

(
1 +

1

αk

)
,

which is finite in view of (4). Therefore, Fatou’s lemma implies that ri,j is
bounded in j and Lemma 3.1 can be applied.

7



Using the correspondence between the rank sequences (ri) and the infinite
permutations we consider P (α,1) as a measure on O supported by S. Similarly
to Sn, for σ ∈ S we define position j to be a record if σ(j) = maxi∈[j] σ(i).
Then under P (α,1) the records are positions not of the kind αk+1. Note that
if the sequence α is finite, then P (α,1) is supported by S∞.

The dual algorithm There is a dual stochastic algorithm that produces
P (α,1) via the entries of the inverse infinite permutation σ−1(1), σ−1(2), · · · .
Note that the position of integer 1 belongs to {1, α1 + 1, α2 + 1, . . . }, and
that in terms of ranks we have σ−1(1) = max{i : ri = 1}. Hence, introducing
a random variable ν1 with distribution

Prob{ν1 = 0} =

∞∏

m=1

(
1−

1

αm

)
, (5)

Prob{ν1 = k} =
1

αk

∞∏

m=1

(
1−

1

αk+m

)
, k = 1, 2, . . . , (6)

the position of 1 can be defined as σ−1(1) = y1, where

y1 = 1(ν1 = 0) + (αν1 + 1)1(ν1 6= 0).

Given the value σ−1(1), define a new sequence α′ by the following rules

(i) if σ−1(1) = 1 and α1 ≥ 2 then α′
k = αk − 1 for k ≥ 1,

(ii) if σ−1(1) = 1 and α1 = 1 then α′
k = αk+1 − 1 for k ≥ 1,

(iii) if σ−1(1) = αi + 1 then α′
k = αk for k < i and α′

k = αk+1 − 1 for k ≥ i.

Let ν2 be distributed as in the right-hand side of (5), (6) but with α′ in place
of α. Finally, let σ−1(2) be the y2th element of N \ {σ−1(1)} for y2 = 1(ν2 =
0) + (αν2 + 1)1(ν2 6= 0). Then we iterate on N \ {σ−1(1), σ−1(2)} and so on.

In Section 6 we will give a more direct proof that all positions eventu-
ally get filled, hence the output of the dual algorithm is indeed a random
permutation σ−1 ∈ S.

Finally, we construct a larger family of RD-measures by interpolating
between P ∗ and P (α,1)’s. Fix α satisfying (4) and 0 < p ≤ 1. Split N in
two infinite subsets N1 and N2 by assigning each integer independently to
N1 with probability p and to N2 with probability 1 − p. Using increasing
bijections we can identify N1 and N2 with two copies of N. We construct an
order by requiring that every i ∈ N1 precedes every j ∈ N2 and (using the

8



identifications with N) by ordering N1 according to P (α,1) and ordering N2

according to P ∗. The distribution of the resulting order is denoted P (α,p).
Let Ω denote the set comprised of a point ∗ and of pairs (α, p), where α is a

strictly increasing sequence of positive integers satisfying (4), and 0 < p ≤ 1.
The space Ω is a topological cone obtained by collapsing one face of the
cylinder {α}× [0, 1] in the point ∗. In this topology the convergence to (α, p)
is component-wise, and the convergence to ∗ means that the p-component
goes to 0. For a generic point ω of Ω (either ∗ or some (α, p)), P ω will denote
the corresponding measure.

Theorem 3.3. Measures P ω with ω ∈ Ω comprise the set extMR(O) of the
extreme RD-measures. The topology on Ω agrees with the topology of weak
convergence of measures on O.

Taken together with the uniqueness property of Choquet simplex, this result
implies:

Corollary 3.4. For every P ∈ MR(O) there exists a unique probability
measure µ on Ω, such that

P =

∫

Ω

P ωµ(dω).

The next result is a law of large numbers for the extreme measures P ω.

Proposition 3.5. Let O be a random element of O distributed according to
P (α,p). Then P (α,p)-almost surely

(i) for every k the kth non-record position in π∞
n (O) converges to αk + 1

as n → ∞,

(ii)

lim inf
n→∞

(π∞
n (O))−1(n)

n
= p.

The proofs of Theorem 3.3 and Proposition 3.5 are postponed to later
sections.
Remark 1. If αk is not defined, then under convergence to αk + 1 we
mean that if for large n the kth non-record position in π∞

n (O) exists, then it
converges to +∞.
Remark 2. Under P (α,p) the number of records is asymptotically linear
in n, so that |R(π∞

n (O))|/(np) → 1 in probability. Under P ∗ the position of
n in π∞

n (O) has uniform distribution on [n], hence, relation (ii) holds with
p = 0.
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4 The branching graph representation

In this section we recast the setting of RD-measures on permutations within
a general formalism of central measures on branching graphs [16, 18].

The succession of permutations of different sizes and their record sets is
representable in the form of an infinite graded graph R. It is convenient to
encode each admissible ρ ⊂ [n] into a binary word ρ(1) . . . ρ(n) starting with
ρ(1) = 1. For instance, {1, 3, 4} ⊂ [5] becomes 10110. Let Rn denote the set
of all 2n−1 such binary words of length n.

Consider a graded graph R with the set of vertices
⋃∞

n=1Rn, and with
edges connecting vertices on neighboring levels according to the rule: two ver-
tices ρ = ρ(1) . . . ρ(n) ∈ Rn and τ = τ(1) . . . τ(n + 1) ∈ Rn+1 are connected
by an edge, denoted ρ ր τ , if there exists k ∈ [n + 1] such that

(i) ρ(i) = τ(i) for i < k,

(ii) τ(k) = 1,

(iii) τ(i) = 0 for i > k.

The first four levels of R are shown in Figure 1.

1
�
�
�
�

❅
❅
❅
❅

10 ❵❵❵❵
✑
✑
✑
✑

✡
✡
✡
✡
✡
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◗
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❏
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❏
❏
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❜
❜
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✡
✡
✡
✡
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★
★
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❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇

❅
❅
❅
❅

✟✟
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1000

1001

1010

1011

1100

1101

1110

1111

Figure 1: The first four levels of graph R.

A (standard) path in R is a sequence of vertices (ρi) such that ρi ∈ Ri

and ρi ր ρi+1. Let Γ be the set of infinite paths ρ1 ր ρ2 ր . . . , and let Γn

be the set of paths ρ1 ր . . . ր ρn of length n. We view Γ as the projective
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limit of finite sets Γn, and we equip Γ with the usual topology of projective
limit of discrete spaces. Recall that R(σ) ∈ Rn for σ ∈ Sn.

Proposition 4.1. The map

Φn : σ → (R(πn
j (σ)), j ∈ [n])

(where πn
n is the identity map) is a bijection between Sn and Γn. Similarly,

the map
Φ : O → (R(π∞

n (O)), n ∈ N)

is a homeomorphism between O and Γ.

Proof. Let σn = π∞
n (O). As in the proof of Lemma 2.2, σ−1

n (n) is uniquely
determined by R(σn) and R(σn−1). On the other hand, σn is uniquely deter-
mined by σ−1

j (j), j ∈ [n], by the virtue of a correspondence analogous to the
bijection between Sn and the sequence of n ranks.

Identifying finite paths with permutations, and infinite paths with orders
on N we use the same symbols as above for measures and projections. For
instance, π∞

n denotes the projection Γ → Γn which cuts the tail of a path up
to the first n terms.

A probability measure Pn on Γn is called central if the probability of a
path ρ1 ր ρ2 · · · ր ρn, depends only on ρn, i.e. all paths with fixed endpoint
ρn are equiprobable. Similarly, a probability measure P on Γ is central if all
its projections Pn = π̂∞

n (P ) on Γn are central. Let MC(Γ) denote the space
of all central measures on Γ. We remark that each P ∈ MC(Γ) is associated
with a random walk which moves along the paths in R and has standard
(not depending on P ) backward transition probabilities determined by the
condition of centrality, see [16] for more details.

Now Proposition 4.1 implies the following statement.

Proposition 4.2. The map Φ̂ is a an affine isomorphism of the convex sets
MR(O) and MC(Γ).

Let ρn ∈ Rn. The elementary measure P ρn is a unique central measure
on Γn supported by the set of paths of length n with endpoint ρn. Under
the bijection between Sn and Γn, the elementary measure corresponds to the
uniform distribution on the set of permutations σ ∈ Sn with fixed records
R(σ) = ρn. The next standard fact (see e.g. [22, Proposition 10.8] or [5,
Theorem 1.1]) is the main technical tool to identify the set MC(Γ).
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Lemma 4.3. Let P be an extreme point of the convex set MC(Γ). Then for
P -almost all paths ρ1 ր ρ2 ր . . . in R

lim
n→∞

π̂n
k (P

ρn)(A) = π̂∞
k (P )(A), (7)

for all A ⊂ Γk and k ∈ N.

The family of probability measures P ∈ MC(R) representable as lim-
its (7) of elementary measures along some paths (ρn) is called the Martin
boundary of the graph R. (We remark that sometimes the Martin bound-
ary is defined as a larger set of limits along arbitrary sequences (ρn).) By
Lemma 4.3 the set of extremes extMC(Γ) is a part of the Martin boundary.
Convergence (7) is the same as the weak convergence of projections on every
Γk. With this in mind we simply write P ρn → P . The boundary problem
has a straightforward reformulation in terms of permutations.

5 The Martin boundary identification

Theorem 5.1. Let (ρn) ∈ Γ be a path such that the elementary RD-measures
on Sn weakly converge, i.e. P ρn → P. Then P = P ω for some ω ∈ Ω. Thus,
the Martin boundary of R can be identified with Ω.

To prove the result we need a number of auxiliary propositions.
For ρ ∈ Rn with k zeros let ℓ1(ρ) < ℓ2(ρ) < · · · < ℓk(ρ) be the positions

of zeros listed in increasing order,

{ℓ1(ρ), . . . , ℓk(ρ)} = {i : ρ(i) = 0},

and define

L(ρ) :=

k∏

i=1

(
1−

1

ℓi(ρ)− 1

)
.

The following algorithm produces a random permutation with distri-
bution P ρ. Let m1 > m2 > · · · > mn−k = 1 be the positions of 1’s
listed in decreasing order. Since σ−1(n) is the largest record we must
have σ(m1) = n. Next, σ(m1 + 1), . . . , σ(n) is an equiprobable sample
without replacement from {1, . . . , n − 1} = {1, . . . , n} \ {σ(m1)}. Fur-
thermore, σ(m2) is the maximal element of {1, . . . , n} \ {σ(m1), . . . , σ(n)},
thus there is only one choice for σ(m2) after σ(m1), . . . , σ(n) have been de-
termined. Now σ(m3 + 1), . . . , σ(m2 − 1) is an equiprobable sample from
{1, . . . , n} \ {σ(m1), . . . , σ(n)} \ {σ(m2)}. The process is continued until all
positions are filled.

The above algorithm for sampling permutations from P ρ readily implies
the following.
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Proposition 5.2. Let ρ ∈ Rn and let σ be a random permutation from Sn

distributed according to P ρ. The random variable σ−1(1) has the following
distribution:

P ρ(σ−1(1) = h) =





∏k
i=1

(
1− 1

ℓi−1

)
, if h = 1,

1
ℓj−1

∏k

i=j+1

(
1− 1

ℓi−1

)
, if h = ℓj ,

0, otherwise.

Proposition 5.3. Let ρ ∈ Rn, and let σ be a random permutation from Sn

distributed according to P ρ. For 2 ≤ t ≤ n the conditional distribution of
σ−1(t) given σ−1(1) = s1, . . . , σ−1(t− 1) = st−1 is

P ρ(σ−1(t) = h | σ−1(1) = s1, . . . , σ
−1(t− 1) = st−1) =




∏k′

i=1

(
1− 1

ℓ′i−1−w(ℓ′i)

)
, if h = min({1, . . . , n} \ {s1, . . . , st−1}),

1
ℓ′j−1−w(ℓ′j)

∏k′

i=j+1

(
1− 1

ℓ′i−1−w(ℓ′j)

)
, if h = ℓ′j,

0, otherwise,

where ℓ′1 < · · · < ℓ′k′ satisfy

{ℓ′1, . . . , ℓ
′
k′} = {ℓ1, . . . , ℓk} \ {s1, . . . , st−1}

and
w(x) = |{s1, . . . , st−1} ∩ {1, . . . , x− 1}| .

Proposition 5.4. If a path (ρn) ∈ Γ satisfies L(ρn) → 0, then P ρn → P ∗.

Proof. Observe that if for σ ∈ Sn positions of 1, . . . , m are not records,
i.e. if {σ−1(1), . . . , σ−1(m)} ⊂ [n] \ R(σ), then the set of records remains
unaltered when the positions of 1, . . . , m are exchanged. Therefore, under
the RD-measure P ρn the permutation πn

m(σ) is uniformly distributed given
{σ−1(1), . . . , σ−1(m)} ⊂ [n] \ R(σ). Finally, by Propositions 5.2 and 5.3 if
L(ρn) → 0, then

P ρn(σ−1(m) /∈ R(σ)) → 1,

hence π̂n
m(P

ρn) converges to the uniform distribution on Sm, for every m.

Proposition 5.5. Let (ρn) ∈ Γ be a path such that P ρn → P and P 6= P ∗.
Then there exists a 0−1 sequence ρ∞ = (ρ∞(1), ρ∞(2), . . . ) such that

lim
n→∞

ρn(i) = ρ∞(i)

for every i.

13



Proof. Suppose that for some i the sequence ρn(i) does not converge. Then
for infinitely many nj we have ρnj

(i) = 0 and ρnj−1(i) = 1. Then, since
ρnj−1 ր ρnj

, we have

ρnj
(i) = ρnj

(i+ 1) = · · · = ρnj
(nj) = 0.

Therefore, L(ρnj
) → 0 as j → ∞ and Proposition 5.4 implies that π̂

nj

k (P ρnj )
converges to the uniform measure on Sk, so P ρnj → P ∗ which is a contra-
diction.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. If P ρn → P ∗ then there is nothing to prove. Other-
wise by Propositions 5.4 and 5.5, passing if necessary to a subsequence, we
have as n → ∞

1. L(ρn) → p1 for some 0 < p1 ≤ 1,

2. limn→∞ ρn(i) = ρ∞(i) for some 0−1 sequence ρ∞ = (ρ∞(1), ρ∞(2), . . . ).

Let ℓ1(ρ∞) < ℓ2(ρ∞) < . . . be positions of zeros in ρ∞:

{ℓ1(ρ∞), ℓ2(ρ∞), . . . } = {i : ρ∞(i) = 0}.

Set αi = ℓi(ρ∞) − 1 for all i such that ℓi(ρ∞) is defined. Observe that
convergence of L(ρn) entails that

∏
i(1 − 1/αi) converges to some p2 with

p1 ≤ p2 ≤ 1. Now set p = p1/p2. We claim that

Pk = π̂∞
k (P (α,p)).

The claim is shown by comparing the description of P (α,p) via the dual al-
gorithm given in Section 3) with the description of the elementary measures
P ρ given in Propositions 5.2 and 5.3.

Corollary 5.6. The measures P ω, ω ∈ Ω, are record-dependent.

Proof. Indeed, by Theorem 5.1 they are weak limits of record-dependent
measures.

6 The laws of large numbers

In this section we exploit the algorithmic description of measures P (α,p) to
prove Proposition 3.5 and to finish the proof of Theorem 3.3.

First, suppose that p = 1 and fix a sequence α such that
∑∞

i=1 1/αi < ∞.
Recall, that the dual algorithm for P (α,1) constructs successively the entries
σ−1(1), σ−1(2), . . . of the inverse permutation σ−1 : N → N.

14



Lemma 6.1. For every ε > 0 there exist constants C > 1 and n0 such that
the estimate

P (α,1)(σ−1(k) > Cn | σ−1(1) = s1, . . . , σ
−1(k − 1) = sk−1) < ε. (8)

holds for n > n0, k ≤ n and arbitrary distinct s1, . . . , sk−1.

Proof. For shorthand, we write Q for the conditional probability in (8). As
follows from the description of the dual algorithm in Section 3,

P (α,1)(σ−1(1) > Cn) = 1−
∏

i :αi>Cn

(
1−

1

αi

)
.

More generally, a similar formula holds for Q with αi being replaced by other
sequence βi. Following a procedure in Section 3 to derive (βi), we pass from
(αi) to a subsequence and then subtract from each term a nonnegative integer
not exceeding k. Therefore,

Q ≤ 1−
∏

i:αi>Cn

(
1−

1

αi − k

)
≤ 1−

∏

i:αi>Cn

(
1−

1

αi − n

)
.

Since ln(1 + x) ≥ 2x for −1/2 ≤ x ≤ 0, we have the following estimate

−
1

2
ln

(
∏

i:αi>Cn

(
1−

1

αi − n

))
≤

∑

i:αi>Cn

1

αi − n

=
∑

i:αi>Cn

1

αi

+
∑

i:αi>Cn

n

αi(αi − n)
≤

∑

i:αi>Cn

1

αi

+

∞∑

j=Cn

n

(j − n− 1)(j − n)

=
∑

i:αi>Cn

1

αi

+
n

Cn
=

∑

i:αi>Cn

1

αi

+
1

C

Now choose small enough δ > 0 to have 1 − e−δ < ε. Let C > 1
4δ

and
choose n0 such that ∑

i:αi>Cn0

1

αi

< δ/4

(this is possible, since
∑

1/αi converges). Then for n > n0 we obtain Q <
1− e−δ < ε, as desired.

Proposition 6.2. Let O be a random order with distribution P (α,1) and let
σn = π∞

n (O) be the projection of O on Sn. Then P (α,1)-almost surely

σ−1
n (n)

n
→ 1.
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Proof. Choose ε > 0. Recall that a real-valued random variable X stochas-
tically dominates another such variable Y if for any bounded non-decreasing
function f the expected values satisfy Ef(X) ≥ Ef(Y ). Observe that by
Lemma 6.1 the random variable X = |{1 ≤ i ≤ n | σ−1(i) ≤ Cn}| stochas-
tically dominates a sum of n − n0 independent Bernoulli random variables
with the probability of 1 equal to 1 − ε (see Lemma 1.1 in and [20] and
Lemma 1 in [23]). Now using a standard large deviations estimate for the
sum of independent Bernoulli random variables (see e.g. [15], Chapter 27),
we conclude that there exist constants C1 > 0 and C2 > 0 such that

P (α,1)(
∣∣{1 ≤ i ≤ n | σ−1(i) ≤ Cn}

∣∣ > (1− 2ε)n) > 1− exp(−C2n) (9)

for n > n1.
Observe that the set {σ−1(1), . . . , σ−1(n)} is the union of an integer in-

terval {1, . . . ,M} and a subset of the set {α1 + 1, α2 + 1, . . . }.
The convergence of the series

∑
1/αi implies that

|{i | αi ≤ Cn}|

n
→ 0.

Therefore, (9) implies that

P (α,1)
(
{1, . . . , ⌊(1− 3ε)n⌋} ⊂ {σ−1(1), . . . , σ−1(n)}

)
> 1− exp(−C2n)

for n > n2. But on the event {1, . . . , ⌊(1−3ε)n⌋} ⊂ {σ−1(1), . . . , σ−1(n)} we
have (π∞

n+1(O))−1(n+ 1) > (1− 3ε)n. Hence, for n > n2 we have

P (α,1)

(
σ−1
n+1(n+ 1)

n
> (1− 3ε)

)
> 1− exp(−C2n). (10)

Since
∑∞

n=n2+1 exp(−C2n) < ∞, from (10) and the Borel-Cantelli lemma
follows that for all but finitely many n we have

σ−1
n+1(n + 1)

n
> 1− 3ε,

whence

lim inf
n→∞

σ−1
n (n)

n
> 1− 3ε

almost surely. To finish the proof it remains to observe that ε > 0 is arbitrary
and σ−1

n (n) ≤ n always holds.

Corollary 6.3. The dual algorithm for P (α,1) eventually fills every position,
so that the output is indeed a bijection σ : N → N.
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Proof. Indeed, in the proof of Proposition 6.2 we have shown that for every
k the probability of the event {1, . . . , k} ⊂ {σ−1(1), . . . , σ−1(n)} tends to 1
as n → ∞.

Now we seek for an analogue of Proposition 6.2 for more general P ω.

Proposition 6.4. Let O be a random order with distribution P ∗ and let
σn = π∞

n (O) be the projection of O on Sn. Then P ∗-almost surely

lim inf
n→∞

σ−1
n (n)

n
→ 0.

Proof. Under P ∗ the permutation σn−1 and the position σ−1
n (n) are indepen-

dent, and the latter is uniformly distributed on [n]. Since P ∗(σ−1
n (n) = 1) =

1/n, the event {σ−1
n (n) = 1} almost surely occurs infinitely often as n → ∞,

and the statement becomes trivial.

The analogous statement for general P (α,p) interpolates between Propo-
sitions 6.2 and 6.4.

Proposition 6.5. Let 0 < p < 1, then for the order O with distribution
P (α,p), almost surely

lim inf
n→∞

(π∞
n (O))−1(n)

n
→ p.

Proof. Let O0 and Oα be two independent linear orders on N, such that
the distributions of O0 and Oα are P ∗ and P (α,1), respectively. Recall that
the P (α,p)-distributed order O is constructed from O0 and Oα by splitting
N into two subsets N1 and N2 (with the aid of a coin landing heads up
with probability p), setting O0 on N2 and Oα on N1, and requiring that N1

precedes N2.
Projecting to [n] yields σ = π∞

n (O), constructed as follows. Let M1 =
N1 ∩ [n] and M2 = N2 ∩ [n]. The permutation σ1 = π∞

|M1|
(Oα) uniquely

defines a permutation σ̄1 of the set M1 and σ2 = π∞
|M2|

(O0) uniquely defines
a permutation σ̄2 of the set M2. Permutation σ is obtained by first writing
σ̄1 and then writing σ̄2.

Let us analyze σ−1(n). Choose ε > 0. Almost surely for large enough n
we have

1. p− ε ≤ |M1|/n ≤ p + ε,

2. 1− ε ≤ (σ1)
−1(|M1|)/|M1| ≤ 1.
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The latter is just the statement of Proposition 6.2 and the former follows
from the law of large numbers for Bernoulli trials. Now if n ∈ M1, then
σ−1(n) = σ−1

1 (|M1|) and, thus,

σ−1(n)

n
≥ (p− ε)(1− ε).

If n ∈ M1, then
σ−1(n) > |M1| ≥ (p− ε)n.

Since ε is arbitrary, we conclude that

lim inf
n→∞

(π∞
n (O))−1(n)

n
≥ p.

Next, using Proposition 6.4 we conclude that almost surely there exists
an increasing sequence nm such that for n = nm, m = 1, 2, . . . we have

1. n ∈ M2,

2. σ−1
2 (|M2|) = 1.

This implies that for large enough m,

σ−1(n) = |M1|+ 1 ≤ (p+ ε)n+ 1.

Therefore,

lim inf
n→∞

(π∞
n (O))−1(n)

n
≤ (p+ ε)

Since ε is arbitrary, we are done.

Proposition 6.6. If p > 0, then under P (α,p) the position of the ith non-
record in π∞

k (O) converges to αi + 1 as k → ∞ almost surely.

Proof. First, suppose that p = 1 and recall the algorithmic description of
P (α,1). The permutation π∞

k (O) is read from the order of numbers 1, . . . , k
after the first k steps of the algorithm. Moreover, observe that if after k steps
of the algorithm all positions 1, . . . , αi + 1 are filled, then αi + 1 is precisely
the position of the ith non-record in π∞

k (O). Therefore, our claim is implied
by Corollary 6.3.

For the general p a bulk of integers is appended at the right end of the
permutation, thus not affecting positions of the first few non-records.
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Proof of Theorem 3.3. The set of extremes extMR(O) is contained in the
Martin boundary by Lemma 4.3. On the other hand, by Proposition 3.5 each
measure P ω, ω ∈ Ω, satisfies a law of large numbers specific for this particular
P ω. It follows that the supports of P ω’s are disjoint, hence none of the
measures can be represented as a nontrivial convex mixture over the Martin
boundary. Thus every P ω is extreme, so extMR(O) = {P ω, ω ∈ Ω}. The
coincidence of topologies immediately follows from the explicit description of
measures P ω given in Section 3.

7 Two connections

Order-invariant measures on causal sets We describe now a connec-
tion of the record-dependent measures P (α,1) to a recent work on random
partial orders [2, 3].

A partial order ⊳ on N defines a causal set (N, ⊳) if every element is
preceded by finitely many other elements. A natural extension of ⊳ is an
order-preserving bijection σ : N → N, i.e. i ⊳ j implies σ−1(i) < σ−1(j).
A stem is a finite collection of positions j1, . . . , jk such that there exists a
natural extension with σ−1(1) = j1, . . . , σ

−1(k) = jk.
If j1, . . . , jk is a stem, every Dℓ = {j1, . . . , jℓ}, 1 ≤ ℓ ≤ k, is a down-set

(lower ideal). A stem can be identified with a chain of down-sets D1 ⊂ · · · ⊂
Dk, where |Dℓ| = ℓ. It is not hard to see that an infinite chain of down-sets
D1 ⊂ D2 ⊂ . . . (where |Dℓ| = ℓ) with ∪Dℓ = N uniquely corresponds to a
natural extension of ⊳.

Brightwell and Luczak [2, 3] defined an order-invariant measure as a prob-
ability measure P on the set of natural extensions of ⊳, such that

P (σ−1(1) = j1, . . . , σ
−1(k) = jk) = P (σ−1(1) = ℓ1, . . . , σ

−1(k) = ℓk),

provided {j1, . . . , jk} = {ℓ1, . . . , ℓk}. The condition means that the probabil-
ity of a stem only depends on the corresponding down-set Dk = {j1, . . . , jk}.
It is possible to interpret order-invariant measures as central measures on the
path space of a graded graph of down-sets.

Let (αk) be a strictly increasing sequence of integers as in Section 3,
and let (βk) be the (infinite) sequence complimentary to (αk + 1), so that
{α1+1, α2+1, . . .}∪ {β1, β2, . . . } = N. Consider a partial order ⊳ generated
by the relations

β1 ⊳ β2 ⊳ . . . , αi + 1 ⊳ max{βk : βk ≤ αi},

which mean that (βk) is a chain, and each segment βk+1, βk+2, . . . , βk+1−1
is an antichain covered by βk.
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Obviously from the definitions, σ : N → N is a natural extension of ⊳ if
and only if {βk} is the set of records of σ.

Proposition 7.1. P (α,1) is a unique order-invariant measure for the causal
set (N, ⊳).

Sketch of the proof. Every finite down-set with elements arranged in increas-
ing order is a sequence γ of the kind

1, 2, . . . , βk, βk + 1, βk + 2, . . . , βk+1 − 1, αi1 + 1, . . . , αiℓ + 1,

where either of the segments βk + 1, βk + 2, . . . , βk+1 − 1 or αi1 , . . . , αiℓ can
be empty. Call such γ admissible.

The conditions ensuring that the set of records is (βk) and that γ is
admissible impose constraints on permutation that can be expressed in terms
of the ri. We illustrate this with γ of the form

1, . . . , a, b, c

where a+1 ∈ {bk} and b, c ∈ {αk+1}. The constraints on the ranks become
rj = j for j /∈ {αk + 1}, rj < j for j ∈ {αk + 1} and, to guarantee the
admissibility,

ri ≥ a+ 1 for a < i < b,

rb ≤ a+ 1,

ri ≥ a+ 2 for b < i < c,

rc = a+ 2,

ri ≥ a+ 3 for i > c.

Under P (α,1) the ri’s are independent and each ri is uniformly distributed
on a suitable range. Therefore each possible stem associated with γ has
the same probability, equal to the probability of admissible realization of
rj , j ≤ αiℓ . The order-invariance of the measure follows.

For a finite causal set ([n], ⊳) the analog of order-invariant measure is the
uniform distribution on the extensions of ⊳. The uniqueness assertion follows
from the fact that P (α,1) is a weak limit of such measures as n → ∞ along
(βi), and condition (4) ensures that the limit is a bijection. We omit details,
see [3, Section 9] for a more general result.

The Young-Fibonacci lattice The Young-Fibonacci graph (lattice) was
introduced by Stanley [26] and Fomin [6]. They found out that it shares lots
of the features with the Young graph, which is the object naturally arising in
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the theory of group representations and combinatorics. In particular, Stanley
proved that both graphs are differential posets.

The vertices of the Young-Fibonacci graph at level n are labeled by words
in the alphabet {1, 2}, with the sum of digits equal n. For instance 1111,
211, 121, 112, 22 are all the words on level n = 4. The number of vertices on
nth level is the nth Fibonacci number. Successors of a word are obtained by
either inserting a 1 in any position within the leftmost contiguous block of
2’s, or by replacing the leftmost 1 with 2. For instance, 2212 has successors
12212, 21212, 22112, 2222.

Goodman and Kerov [12] studied the Martin boundary of the Young-
Fibonacci graph. Comparing with their result, it is seen that the Martin
boundary of the Young-Fibonacci graph has the same conical structure as
our Ω. The apex is the Plancherel measure, which (like our P ∗) appears
as a pushforward of the uniform distribution on permutations. The base
is a discrete space comprised of the measures which (like our P (α,1)’s) are
parametrized by infinite words in the alphabet {1, 2} with ‘rare’ occurrences
of 2’s, to satisfy a condition similar to (4). The Plancherel measure of the
Young-Fibonacci graph was further studied in [8].

The arguments of [12] are very much different from the present pa-
per. Goodman and Kerov intensively use the relation to a certain non-
commutative algebra introduced by Okada [21]. Note also that unlike the
Young-Fibonacci graph, the graph of record-sets R is not a differential poset.
Thus, it seems that no direct connection of central measures on R and the
Young-Fibonacci graph exist. This makes the coincidence of the Martin
boundaries even more intriguing.
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