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Abstract
We consider incremental combinatorial optimization problems, in which a solution is constructed
incrementally over time, and the goal is to optimize not the value of the final solution but the
average value over all timesteps. We consider a natural algorithm of moving towards a global
optimum solution as quickly as possible. We show that this algorithm provides an approximation
guarantee of (9 +

√
21)/15 > 0.9 for a large class of incremental combinatorial optimization

problems defined axiomatically, which includes (bipartite and non-bipartite) matchings, matroid
intersections, and stable sets in claw-free graphs. Furthermore, our analysis is tight.
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1 Introduction

Usually, in the context of combinatorial optimization, a single solution is sought which
optimizes a given objective function. This for example could be designing (or upgrading) a
network satisfying certain properties. But the solution might be large, and implementing it
may mean proceeding in steps. As the adage says “Rome wasn’t built in a day”. Therefore it
becomes important to consider not just the value of the (final) solution, but also the values
at intermediate steps. Such incremental models have gained popularity in the last years
[7, 1, 9], because of their practical applications to network design problems, disaster recovery,
and planning.

As a first approximation to this extra level of complexity, we consider the setting in which
we want to evaluate our solution at each time step, and would like to maximize the sum of
the values of the intermediate solutions. To formalize this, consider a finite ground set E of
q elements, together with a valuation v : 2E → Z+. The valuation function measures some
quantity of interest over a subset of E, for example, the size of a maximum matching, the
maximum value of an independent set in a matroid, or a maximum flow. Our goal is to find
a permutation σ : E → {1, . . . , |E|} that maximizes

f(σ) =
q∑
i=0

v ({e ∈ E : σ(e) ≤ i}) . (1)

This is a very general class of problems, which also includes for example scheduling problems,
production planning problems and routing problems; such problems typically involve finding
a permutation of tasks to perform.
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6:2 Approximating Incremental Combinatorial Optimization Problems

Even for simple, polynomially computable valuations v, the problem of finding the best
σ might be NP-hard. This applies for example to the situation in which E corresponds to
some of the edges of a directed or undirected graph G = (V,E0 ∪E) with capacities on its
edges, and v(F ) represents the maximum flow value from s to t (where s, t ∈ V ) in the graph
(V,E0 ∪ F ). The NP-hardness of this incremental problem was shown by Nurre and Sharkey
[9], see also Kalinowski et al. [7].

On the tractable side, the incremental problem (1) can be solved efficiently if v(F )
represents the weight of a maximum-weight independent subset of F in a matroid M with
ground set E. Indeed, an optimum permutation can be obtained from a maximum-weight
independent set B for the entire ground set E in the following way. First, order B in order
of non-increasing weight followed by all elements of E \B in an arbitrary order. In the case
of the incremental spanning tree problem, this was also derived in [6].

In this paper, we consider a class of valuations v which arise naturally from unweighted
combinatorial optimization problems, and for which we are able to provide a worst-case
analysis of a greedy-like algorithm. This class of valuations is defined axiomatically. First,
we require that v takes nonnegative integer values,
(A1): ∀F ⊆ E : v(F ) ∈ N
and is monotonically non-decreasing and can only increase by at most 1 when an element is
added:
(A2): ∀A ⊂ E,∀e ∈ E \A : v(A) ≤ v(A ∪ {e}) ≤ v(A) + 1.
Additionally, we assume that for any k with v(∅) = minF v(F ) ≤ k ≤ maxF v(F ) = v(E),
there exists a set of cardinality at most k achieving the value k:
(A3): For all k : v(∅) ≤ k ≤ v(E), ∃A ⊆ E : |A| ≤ k and v(A) = k.
Consider, for example, an independence system I on E0 ∪ E, i.e. I ⊆ 2E0∪E and I is closed
under taking subsets. Then if we define v(F ) for F ⊆ E as the cardinality of the largest
independent subset of E0 ∪ F , we can easily see that v(·) satisfies (A1), (A2) and (A3). This
generalizes the matroid setting mentioned previously.

We further assume one additional key property, that v satisfies the following discrete
convexity property:
(A4) Discrete Convexity: ∀A,C ⊆ E with v(C) − v(A) > 1,∃B : v(B) = v(A) + 1 and
|B| − |A| ≤ |C|−|A|

v(C)−v(A) . Furthermore if A ⊂ C then A ⊂ B ⊂ C.
This discrete convexity is not satisfied by all independence systems. However, we show in
Section 2 that if a certain family of polyhedra is integral then the discrete convexity property
is satisfied.

I Theorem 1. Let I ⊆ 2E0∪E be any independence system. Let P (I) ⊆ RE0∪E be the convex
hull of incidence vectors of all independent sets in I. If for every integer k,

P (I) ∩
{
x |

∑
e∈E0∪E

xe = k

}

is integral then (A4) holds for v : 2E → Z+ defined as v(F ) = max{|I| | I ∈ I, I ⊂ E0 ∪ F}.

In Section 2, we show that this holds for example when I corresponds to the matchings in a
(not necessarily bipartite) graph, or to the independent sets common to two matroids, or
to the (independent or) stable sets in a claw-free graph. This last example, although more
esoteric, is interesting as a complete description of P (I) by linear inequalities is unknown
but we can nevertheless rely on the above theorem. The incremental valuation problem in
the case of bipartite matchings was already considered in [7], where the authors propose
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Algorithm 1: Quickest-To-Ultimate for Incremental Valuation
Input :A valuation function v as above.
Output :A permutation σ of E

1 Compute O ⊆ E of minimum cardinality such that v(O) = v(E);
2 Set F = ∅;
3 for i = 1 to v(E)− v(∅) do
4 Compute S ⊂ O \ F such that v(F ∪ S) ≥ v(∅) + i and |S| is minimum;
5 Set F = F ∪ S;
6 end
7 Output σ consistent with how elements were added to S;

several approximation algorithms, the best achieving an approximation ratio of 3/4. Other
problems falling under the framework discussed here were not considered before.

For any valuation satisfying (A1) − (A4), we provide an approximation algorithm for
the incremental valuation problem. For an efficient implementation, we assume that we
can compute efficiently (or have oracle access to) the valuation v(·) and we can also find
efficiently a minimum cardinality set O with v(O) = v(E). Our algorithm first computes a
smallest set O ⊆ E achieving v(O) = v(E), and then starting from S = ∅ with value v(∅),
repeatedly and greedily adds a smallest subset of O to increase v(S) by 1 until all elements of
O have been added and then finishes the ordering with the elements of E \O. This algorithm
is formally described in Section 3 and in Algorithm 1. In Section 3, we present a worst-case
analysis of this algorithm:

I Theorem 2. For any valuation satisfying (A1)− (A4), Algorithm 1 (Quickest-to-Ultimate)
is a γ-approximation for the incremental valuation problem, where

γ = 9 +
√

21
15 > 0.9055.

The proof of this result is given in Section 4. We also show that the bound of γ is tight in
the sense that there are instances of the valuation problem in which the algorithm cannot do
better.

2 Problems in this Framework

2.1 Maximum matchings
One of the basic problems that falls in this framework is the Incremental Matching Problem.
Given a graph G = (V,E0 ∪ E), where E0 denotes the edges already present at the start,
we would like to find an ordering of the edges of E so as to maximize the average size of
the maximum matching in E0 union the edges already selected. This corresponds to the
valuation with v(F ) = µ(E0 ∪ F ) where µ(A) equals the size of the maximum matching in
the graph (V,A). The bipartite version of this problem is considered in [7], and two different
greedy approximation algorithms are presented. The first one, Quickest-Increment, is
a locally greedy algorithm that seeks to minimize the number of edges needed to increase
the size of the matching by one, until we reach a maximum matching of the entire graph.
Kalinovski et al. [7] prove an approximation guarantee of 2

3 for this algorithm. Their second
algorithm, Quickest-to-Ultimate, is globally greedy, in the sense that it first computes
a maximum matching of the entire G, and then only adds edges from this matching, in a
locally greedy fashion. For this algorithm, [7] prove an approximation bound of 3

4 . In this

APPROX/RANDOM’17



6:4 Approximating Incremental Combinatorial Optimization Problems

paper, we generalize this algorithm to a larger class of incremental problems and improve
the guarantee to 0.9055 · · · .

This matching problem, even in the non-bipartite case, fits in the framework discussed here.
One can show that this valuation v(F ) = µ(E0 ∪ F ) satisfies the discrete convexity property
(A4), by considering maximum matchings in A and C, and their symmetric difference and
carefully arguing about it. Although this is possible, this does not generalize easily to other
problems.

Discrete convexity, however, is easier to argue polyhedrally as we show next.

2.2 Polyhedral characterization for discrete convexity
Let I ⊆ 2E0∪E be any independence system, and let v(F ) = max{|I| : I ∈ I and I ⊆ E0∪F}.
Let P = conv{χ(I) : I ∈ I} be the convex hull of all independent sets, and as we will see, we
do not necessarily need to know a complete description of P in terms of linear inequalities.
We will show Theorem 1 that discrete convexity (A4) holds if, for any integer k,

P ∩ {x : x(E ∪ E0) = k}

is integral.

Proof of Theorem 1. For A (resp. C), let IA (resp. IC) be a maximum independent subset
of E0 ∪ A (resp. E0 ∪ C). So, v(A) = |IA| and v(C) = |IC |. Let ` = |IC | − |IA|. Now
consider y = 1

`χ(IC) + (1 − 1
` )χ(IA). By convexity y ∈ P and by construction, we have

y(E ∪ E0) = |IA|+ 1. Thus, y ∈ P ∩ {x : x(E ∪ E0) = |IA|+ 1}, and by integrality of this
polytope, we have that there exists x = χ(S) ∈ P ∩ {x : x(E ∪ E0) = |IA|+ 1} with

|S ∩ E| = min{x(E) : x ∈ P ∩ x(E ∪ E0) = |IA|+ 1}

≤ y(E) = 1
`
|IC ∩ E|+ (1− 1

`
)|IA ∩ E|

≤ 1
`
|C|+ (1− 1

`
)|A| = |A|+ |C| − |A|

v(C)− v(A) .

Thus B = S ∩ E satisfies the first part of the claim in Theorem 1.
Now consider the case in which A ⊆ C. Proceeding as before, we get

y ∈ P ∩ {x : x(E ∪ E0) = |IA|+ 1} ∩ {x : xe = 0 ∀e ∈ E \ C},

and this is again an integral polytope since it is the face of an integral polytope. Now
minimizing x(E \A) over

P ∩ {x : x(E ∪ E0) = |IA|+ 1} ∩ {x : xe = 0 ∀e ∈ E \ C},

we get x = χ(T ) ∈ P ∩ {x : x(E ∪ E0) = |IA|+ 1} with T ⊆ E0 ∪ C and

|T ∩ (E \A)| ≤ y(E \A) = 1
`
|IC ∩ (E \A)| ≤ |C| − |A|

v(C)− v(A) .

This means that B = A ∪ (T ∩ E) is such that A ⊆ B ⊆ C,

|B| ≤ |A|+ |C| − |A|
v(C)− v(A)

and v(B) ≥ v(T ) = |IA|+ 1. Thus either v(B) = |IA|+ 1, or we can eliminate one by one
elements of B \A as long as v(·) is not equal to v(A) + 1. Eventually, we find a set with the
right requirements. J



M.X. Goemans and F. Unda 6:5

2.3 Maximum stable set in claw-free graphs
A graph G = (V,E) is claw-free if it does not include K1,3 (the star on 4 vertices) as an
induced subgraph. The line graph of any graph is claw-free, but the converse is not true
as there exist claw-free graphs which are not line graphs. Minty [8] and Sbihi [10] have
shown that the maximum stable (or independent) set in a claw-free graph is polynomially
solvable. When the claw-free graph is a line graph, this extends Edmonds’ algorithm [4, 3]
for maximum matching, as the maximum matching problem in a graph is equivalent to the
maximum stable set problem in its line graph.

By taking the line graph, we can extend the incremental matching problem to an
incremental stable set problem in a claw-free graph G = (V,E) in which we are given an
initial vertex set V0 and our task is to choose an ordering of the remaining vertices in
V \ V0 so to maximize the average size of a maximum stable set in the corresponding prefix.
Thus, here v(F ) denotes the size of the largest stable set in G[V0 ∪ F ]. As said before, if
the claw-free graph is not a line graph, this is a strictly more general problem than the
incremental matching problem.

A complete description of the stable set polytope P for claw-free graphs is still unknown
(see, eg, section 69.4a in Schrijver [11]), but we can nevertheless use Theorem 1 to show that
(A4) holds (the other conditions (A1), (A2) and (A3) obviously hold).

I Theorem 3. Let P be the stable set polytope of a claw-free graph G = (V,E). Then for
any integer k, we have that

P ∩

{
x ∈ RV |

∑
v∈V

xv = k

}

is integral.

Proof. We exploit the known adjacency properties of the stable set polytope (of any graph).
Chvátal [2] has shown that two stable sets S1 and S2 in G are adjacent vertices in the stable
set polytope if and only if their symmetric difference S14S2 induces a connected subgraph
of G. When the graph is claw-free, this connected subgraph G[S14S2] must be a path, and
therefore this means that −1 ≤ |S1| − |S2| ≤ 1.

Consider any vertex x∗ of P∩
{
x ∈ RV |

∑
v∈V xv = k

}
. x∗ must lie on a face of dimension

at most 1 of P , and therefore must be in the line segment between two adjacent vertices of
P . But since the sizes of these stable sets can differ by at most 1, we derive that x∗ must be
a vertex of P , and integrality follows. J

Thus our approximation algorithm result applies to the incremental maximum stable set
problem in claw-free graphs.

The adjacency argument in the proof of Theorem 3 generalizes in the sense that Theorem 1
is equivalent to imposing that any pair of adjacent vertices of P (I) differ in cardinality by at
most one unit.

2.4 Matroid intersection
Another generalization of the incremental version of the bipartite matching problem is to
consider the incremental version of matroid intersection. Let M1 and M2 be matroids defined
on the same ground set, say E0 ∪E, and for F ⊆ E, let v(F ) be the cardinality of the largest
common independent set to the two matroids within E0 ∪ F .

APPROX/RANDOM’17



6:6 Approximating Incremental Combinatorial Optimization Problems

For matroid intersection, we can directly use Theorem 1 to show that the discrete convexity
holds. The matroid intersection polytope P has been characterized by Edmonds [5], and the
integrality of P ∩ {x|

∑
i xi = k} follows simply by truncating both matroids to size k. Thus

Theorem 1 can be used to prove (A4) and Theorem 2 can be used to derive a better than
0.9-approximation algorithm for the incremental maximum matroid intersection problem.

3 Quickest-To-Ultimate for Incremental Problems

Algorithm Quickest-To-Ultimate (Q2U in short, see Algorithm 1) was introduced by Kalin-
owski et al. [7] for the problem of incremental flows (defined in the introduction). The
general idea behind this algorithm is to reach the maximum valuation possible in the shortest
number of steps. In the setting of incremental flows, finding the smallest set O of edges whose
addition gives a maximum flow is a hard problem, and they resort to a mixed integer program
for finding O. In this direction it is known that the incremental flow problem is NP-hard
even if the capacities are restricted to be one or three [9]. In the case of unit capacities, Q2U
becomes a polynomial approximation algorithm, and in [7] it is shown that it finds a solution
with at least half the value of the optimum for the incremental flow problem with unit
capacities, and they also show a matching family of examples in which this approximation
ratio is attained as the size of the graph grows. In the case of bipartite matchings, a further
restriction of the problem, Q2U is shown to find a solution to the incremental matching
problem of value at least 3/4 of the optimum, and they show an instance in which the value
obtained by Q2U is 68

69 of the value attained by the optimal solution. Theorem 2 and the
example given in Section 3.1 below close this gap for a more general class of valuations,
which includes the incremental matching problem.

We show Theorem 2, that for any valuation satisfying (A1)-(A4) the performance guarantee
of the algorithm is at least 9+

√
21

15 > 0.9055. The proof appears later in this section, and our
analysis is tight as we show next.

3.1 Bad instance for Quickest-to-Ultimate

In the special case of matchings, and even bipartite matchings (or any setting which includes
bipartite matchings), the analysis is tight. Consider, indeed, a graph formed by a disjoint
copies of P3, a path with 3 edges, and one copy of P4b+3, a path with 4b + 3 edges, see
Figure 1. The edges of E0 correspond to each middle edge in the copies of P3, and every
fourth edge of P4b+3, starting with the second one. The remaining edges are edges of E. The
valuation is v : E → N, where v(S) is the size of a maximum matching using edges from
E0 ∪ S.

In this graph, we have q := |E| = 2a+ 3b+ 2 edges to be added, the original matching
has size m := a+ b+ 1, and it can grow by r := a+ b+ 1. The minimum number of edges
we need to add to reach this maximum matching is cr := 2a+ 2b+ 2. Quickest-to-Ultimate
adds these edges in pairs that increase the matching, so it adds two edges for each increment
in the maximum matching. The value it attains is then falg = (q+ 1)(m+ r)−

∑a+b+1
i=1 2i =

3a2 + 5b2 + 8ab+ 7a+ 9b+ 3. On the other hand, here is a better solution. The solution
first adds the b edges of P4b+3 that increase the maximum matching from m to m+ b, then
it adds a pairs of edges to increase the matching by a and then it adds 2b + 2 edges to
increase the matching by one. This gives a value f with fopt ≤ f = (q+ 1)(m+ r)−

∑b
i=1 i−∑a+b

i=b+1(2(i− b) + b)− (2a+ b+ 2b+ 2) = 3a2 + 11
2 b

2 + 9ab+ 7a+ 17
2 b+ 4. A straightforward

optimization over a and b, yields that the minimum value of falg

fopt
is attained when a and b
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Figure 1 Solid black edges are edges of E0 and dashed edges are the edges of E.

go to infinity, with a = δb, with δ =
√

21
6 −

1
2 , with value of 9+

√
21

15 . This is the worst case for
Q2U and matches the bound we prove in Theorem 2.

4 Analysis

Before diving into the analysis of Q2U, we introduce some notation and exhibit some convexity
properties of various sequences associated with these incremental problems.

We denote v(∅) by m, v(E) by m+ r, and |E| by q. For any permutation σ of E, define

di(σ) := |{j ∈ {0, . . . , q} : v ({e ∈ E : σ(e) ≤ j}) ≤ m+ i− 1}|,

which is the number of elements needed for the solution σ to get to a valuation m+ i. We
will denote by d∗i the values of di(σ∗) for an optimal solution σ∗ to (1), and by di the values
of di(σ) for the permutation σ output by Q2U.

Define for each i ∈ {0, . . . , r}

ci := min{|S| : v(S) ≥ m+ i}.

By definition, we have ci ≤ di and similarly ci ≤ d∗i . Also by (A2) we must have ci ≥ i, and
by (A3),

ci ≤ m+ i, (2)

for i ∈ {0, . . . , r}.
We show that our assumptions imply that both the sequence {ci}ri=1, and the sequence

{di}ri=1 satisfy a convexity property.

I Lemma 4. The sequence {ci}ri=1 satisfies

ci+1 − ci ≥ ci − ci−1, 1 ≤ i ≤ r − 1.

Proof. To see this, apply (A4) to the respective solutions Si−1, Si, Si+1 where

Sj = arg min
S
{|S| : v(S) ≥ m+ j}.

Note first that by (A2) we have that v(Sj) = m + j for j = i − 1, i, i + 1. This implies
v(Si+1)−v(Si−1) = 2 > 1, and so by (A4), there exists B such that v(B) = v(Si−1)+1 = m+i
and 2(|Si| − |Si−1|) ≤ 2(|B| − |Si−1|) ≤ (|Si+1| − |Si−1|). This implies Lemma 4. J

The solution given by Q2U also satisfies this same convexity property.

APPROX/RANDOM’17



6:8 Approximating Incremental Combinatorial Optimization Problems

I Lemma 5. The sequence {di}ri=1 corresponding to Q2U satisfies

di+1 − di ≥ di − di−1, 1 ≤ i ≤ r − 1.

Proof. To see this, denote by Si the set computed in the inner loop of the algorithm at step
i. That is Si ⊂ Fr \ (S1 ∪ . . .∪ Si−1) such that |Si| is minimum and v(S1 ∪ . . .∪ Si) ≥ m+ i.
Minimality of |Si|, and property (A2) imply that v(S1 ∪ . . . ∪ Si) = m + i, and then di =
|S1∪ . . .∪Si|. Now take i ∈ {1, . . . , r−1}. Then v(S1∪ . . .∪Si+1)−v(S1∪ . . .∪Si−1) = 2 > 1,
and then by property (A4) there is a B such that v(B) = m+i and 2(|B|−di−1) ≤ di+1−di−1.
Finally by minimality of |Si| we must have di ≤ |B|, which implies the claim. J

We could also show that any optimum ordering σ∗ satisfies the same convexity property:
d∗i+1 − d∗i ≥ d∗i − d∗i−1 for all i, although we will not need this. This requires the second part
of (A4) which says that if A ⊆ C then B can be chosen to be sandwiched by A and C.

4.1 Local minima
We also show that the convexity property (A4) implies a relationship between local and global
optima, that will be used to derive the optimal upper bound for the Quickest-To-Ultimate
Algorithm 1.

I Lemma 6. Let S and T be two subsets of E, such that v(S) = m+ |S| and v(T ) = m+ |T |,
and let S be maximal with this property, that is for any S′ ⊃ S we have v(S′) < m+ |S′|.
Then, 2|S| ≥ |T |.

This is a generalization of the well-known result that any maximal matching is at least half
the size of a maximum matching.

Proof. If |S| ≤ |T |, there is nothing to prove, so we assume that |T | > |S|. Now use (A4) with
A = S and C = S ∪T . Then there is a set B with S ⊂ B ⊂ S ∪T such that v(B) = v(S) + 1
and

|B| − |S| ≤ |S ∪ T | − |S|
v(S ∪ T )− v(S) ≤

|T |
|T | − |S|

.

On the other hand, by the maximality of S, we must have |B| − |S| ≥ 2. Putting these two
together yields

2 ≤ |T |
|T | − |S|

,

or equivalently

2|S| ≥ |T |. J

4.2 Quickest-To-Ultimate
To analyze Quickest-To-Ultimate, we need to introduce some additional parameters related
to the instance being considered. Define

p = max{|P | : P ⊂ E, v(P ) = m+ |P |},

the maximum size of a set that, if added sequentially, increases the valuation at each step.
In other words, p = max{i : ci = i}. Clearly p ≤ r. Also, by maximality of p, we have that{

ci = i i ≤ p
ci ≥ p+ 2(i− p) i > p.

(3)
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For Q2U, we are interested in the quantity s, the number of times the set S in the inner
loop is a singleton. Note that by Lemma 5, these s iterations occur at the beginning, so an
equivalent way to define s is

s = max{i ∈ {1, . . . , r} : di = i}.

Our objective is to relate the quantities s and p, which will give us some control over the
approximation ratio falg/fopt. We must have s ≤ p, since otherwise it would contradict the
maximality of p. To get a lower bound on s, define S to be the set of the first s elements
added by the algorithm, and T = P ∩ O, where O is the set of elements chosen by Q2U
to first reach v(E) and P is a set of p elements with v(P ) = m + p. Note that we have
v(S) = m+ |S| and v(T ) = m+ |T |, and S must be maximal, by definition of s. Then by
using Lemma 6, we conclude that 2|S| ≥ |T | = |P ∩O|. This implies that

q = |E| ≥ |O ∪ P | = |O|+ |P | − |O ∩ P | ≥ cr + p− 2s. (4)

And we also know that

q ≥ cr. (5)

Finally, we need the following inequality. Observe that all the elements that are used by the
algorithm come from O, and conversely, all the elements of O must be used by the algorithm to
reach valuation v(E), by minimality of cr. This means that |O| = cr = dr =

∑r
i=1(di−di−1),

and using the definition of s, then cr = s+
∑r
i=s+1(di − di−1), from which it follows that

cr ≥ 2r − s. (6)

We are now ready to prove Theorem 2.

Proof of Theorem 2. For any permutation σ, we can rewrite f(σ) as

f(σ) = (q + 1)(m+ r)−
r∑
i=1

di(σ). (7)

In particular, for the optimum permutation σ∗ and its optimum value fopt = f(σ∗), we have:

fopt = (q + 1)(m+ r)−
r∑
i=1

d∗i ≤ (q + 1)(m+ r)−
r∑
i=1

ci. (8)

Using (3) and distinguishing between i ≤ p, p < i < r and i = r, we can write:

fopt ≤ (q + 1)(m+ r)− p2/2− p/2 + pr − r2 + r − cr. (9)

Now, denoting the value obtained by Q2U as falg, and using the definition of s, we have

falg = (q + 1)(m+ r)−
r∑
i=1

di = (q + 1)(m+ r)−
s−1∑
i=1

i−
r∑
i=s

di. (10)

To upper bound the last term of (10), we use the following lemma, whose proof is given
in the appendix.

APPROX/RANDOM’17
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I Lemma 7. Let f : {0, . . . , a} → N be a discrete convex function, i.e. f(i + 1) − f(i) ≥
f(i) − f(i − 1), such that f(0) = 0 and f(a) = b. Furthermore let b = ka + t, where
t ∈ {0, . . . , a− 1}. Then,

a∑
i=0

f(i) ≤ (b+ ka2 + t2)/2 = (a+ 1)b
2 − t(a− t)

2 .

Applying this to f(i) = ds+i − s, we obtain

falg ≥ (q + 1)(m+ r)− s(s− 1)/2− (r− s+ 1)s− (r− s+ 1)(cr − s)/2 + t(r− s− t)/2,

where t = cr − s mod r − s. Or after simplification:

falg ≥ (q + 1)(m+ r)− rs/2− (r − s− 1)cr/2 + t(r − s− t)/2. (11)

We need to find the minimum value attainable by falg/fopt ≤ 1, which is a lower bound
on the approximation ratio. We will show that this lower bound coincides with the upper
bound given by the example in Section 3.1. Denote by Popt (resp. Palg) the right-hand-side
of inequality (9) (resp. (11)). To find this lower bound, we maximize Popt/Palg over all
integral q,m, cr, r, p, s and t satisfying the conditions:
1. r ≥ p ≥ s ≥ 0
2. (5): q ≥ cr
3. (4): q ≥ cr + p− 2s
4. (6): cr ≥ 2r − s
5. m+ r ≥ cr
6. t = cr − s mod r − s.
We first show that the we can ignore all but the quadratic terms in the variables q,m, r, p, s, t.
If we double each of q,m, cr, r, p, s, then t also doubles by 6, and all inequalities 1-5 are still
satisfied. Furthermore, if we denote P ′opt and P ′alg the respective values of the bounds after
doubling, we have

P ′opt
P ′alg

= 4Popt − 2(m+ r) + p− 2r + 2cr
4Palg − 2(m+ r) + cr

≥ 4Popt − 2(m+ r) + cr
4Palg − 2(m+ r) + cr

≥ Popt
Palg

,

where in the first inequality we have used that cr − 2r + p ≥ cr − 2r + s ≥ 0, by 4, and the
second inequality follows from 5.. So, for the extremum, we can assume there are no linear
terms:

Popt
Palg

≤ q(m+ r)− p2/2 + pr − r2

q(m+ r)− rs/2− (r − s)cr/2 + t(r − s− t)/2 .

Now, using the inequality 5, we can eliminate m, and obtain

Popt
Palg

≤ qcr − p2/2 + pr − r2

qcr − rs/2− (r − s)cr/2 + t(r − s− t)/2 .

The remaining constraints are now 1–4 and 6. If s > 0, and q > cr + p− 2s we can decrease
all variables by one unit, and preserve the above inequalities. In so doing, the value of t does
not change, and both the numerator and denominator decrease by the same amount

cr + q − r − 1/2 ≥ 0.

This implies we can decrease all variables by the same amount until one of two things happen.
Either s = 0, or q = cr + p− 2s. In the latter case, since we also have that q ≥ cr by 2, this
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implies that 2s ≤ p. At this point, after eliminating q (and replacing it by cr + p− 2s), the
ratio becomes:

Popt
Palg

≤ (cr + p− 2s)cr − p2/2 + pr − r2

(cr + p− 2s)cr − rs/2− (r − s)cr/2 + t(r − s− t)/2 .

If we decrease all remaining variables by one unit, both the denominator and numerator of
the above fraction decrease by

cr + p− r − 2s+ 1/2 ≥ 0,

since p ≥ 2s and cr ≥ r. And we can continue this process until s = 0. In both cases we
obtain

Popt
Palg

≤ (cr + p)cr − p2/2 + pr − r2

(cr + p)cr − rcr/2 + t(r − t)/2 . (12)

And we need to maximize this over integral solutions to r ≥ p ≥ 0, cr ≥ 2r and t = cr mod r.
We consider two cases, depending on the value of cr.
1. If cr = 3r + k, for k ≥ 0, and we discard the (nonnegative) term involving t in (12), we

obtain:

Popt
Palg

≤ 8r2 + 4rp− p2/2 + k(6r + p+ k)
15r2/2 + 3rp+ k(11r/2 + p+ k) .

As an upper bound, we can take the maximum of this value for k = 0 and the ratio of
the terms involving k, and therefore obtain that:

Popt
Palg

≤ max
(

8r2 + 4rp− p2/2
15r2/2 + 3rp ,

6r + p+ k

11r/2 + p+ k

)
.

The second term on this maximum is at most 12
11 <

1
γ where γ is our desired bound. The

first one, by setting α = r/p ≥ 0, is equal to

8α2 + 4α− 1/2
15α2/2 + 3α .

This ratio is maximized for α = 5
8 +

√
41
8 , and it achieves a value of

112
√

41 + 656
99
√

41 + 615
<

1
γ
.

2. If 2r ≤ cr < 3r, then cr = 2r + t, and (12) becomes:

Popt
Palg

≤ 3r2 + t2 − p2/2 + 3pr + pt+ 4rt
3r2 + t2/2 + 2pr + pt+ 4rt .

It is easy to see that for any constant C, and fixed values of r and p, the set

I = {t ∈ [0, r] : 3r2 + t2 − p2/2 + 3pr + pt+ 4rt
3r2 + t2/2 + 2pr + pt+ 4rt ≤ C},

is a convex set, and so the maximum value of this ratio is achieved at either t = 0 or
t = r. If we set t = r, we obtain

8r2 + 4pr − p2/2
15r2/2 + 3pr <

1
γ
,

APPROX/RANDOM’17
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Algorithm 2: Quickest-Increment for Incremental Valuation
Input :A valuation function v as above.
Output :A permutation σ of E

1 Set F = ∅;
2 for i = 1 to r do
3 Compute S ⊂ E \ F such that v(F ∪ S) ≥ v(∅) + i and |S| is minimum;
4 Set F = F ∪ S;
5 end
6 Output σ consistent with how elements were added to S.;

as we have already verified. If t = 0, we obtain

3r2 + 3pr − p2/2
3r2 + 2pr ,

which is maximized at α = r/p = 1
2 +

√
21
6 , with value 1

γ = 9
4 −

√
21
4 , or γ = 9+

√
21

15 . J

This settles the question of how well Quickest-to-Ultimate approximates the maximum
incremental matching problem.

5 Upper bound for Quickest-Increment

Quickest-Increment (QI) is another algorithm suggested in [7]. The idea is to increase the
size of the current solution by adding as few elements as possible. In that paper, among other
results, it was shown that QI has a performance guarantee of 2/3 in the case of bipartite
matchings, and also they claim a bound of 3/4 if r ≥ 70. It is also conjectured there that,
as r →∞, the approximation guarantee for Quickest-Increment approaches 1. We show a
family of instances that show that this is false.

Consider the instance H formed by P7, the path with seven edges, in which the only
edges of E0 are the second and the second to last. Observe that both Q2U and QI have the
same performance on this small graph, and it is even optimal. In this small graph we have
q = 5, r = 2 and m = 2. There are two incomparable choices for di. The first one, given by
Q2U, is d1 = 2 = d2. The second one is given by QI and it is d1 = 1, d2 = 4. They both
have value 18, which is optimum.

Now consider the instance G, which is a copies of H. Both algorithms fail to realize the
optimum. When considering a copies, we obtain q = 5a, r = 2a and m = 2a. Algorithm Q2U
returns di = 2i for i = 1, . . . , 2a, with a value of f = (5a + 1)(4a) −

∑2a
i=1 2i = 16a2 + 2a.

Algorithm QI return di = i for i = 1, . . . , a and di = 4(i− a) + a for i = a+ 1, . . . , 2a, with a
value of f = (5a+ 1)(4a)−

∑a
i=1 i−

∑2a
i=a+1(4i− 3a) = 33a2/2 + 3a/2.

Now suppose we use the QI strategy on k of the a copies and the Q2U strategy on the
rest. Then we get di = i for i = 1, . . . , k, di = k + 2(i − k) for i = k + 1, . . . , 2a − k and
di = 4(i− 2a+ k) + 4(a− k) + k for i = 2a− k + 1, . . . , 2a, and a value of

f = (5a+ 1)(4a)−
k∑
i=1

i−
2a−k∑
i=k+1

(2(i− k) + k)−
2a∑

i=2a−k+1
(5(i− 2a+ k) + 4(a− k) + k)

f = 16a2 + 2a− (3k2/2 + k/2− 2ak).
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Optimizing over k we obtain that for k = 2a/3, this solution has a value of f = 50a2/3+5a/3.
So asymptotically as we take a→∞ the approximation factor for Q2U approaches 24

25 and for
QI is approaches 99

100 . Note that this family of examples has r = 2a→∞, and so contradicts
the conjecture about QI in [7]. Note this also shows that the approximation guarantee of
Q2U is bounded, even when r →∞. It is possible to show a family of examples that show
that when r →∞, the approximation guarantee for QI approaches 7

8 .
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where n is the vector of the nk, vk = k, and

A =


1 1 1 . . .

1 2 2 . . .

1 2 3 . . .
...

...
...

...

 ,
or Ak` = min(k, `). This is a symmetric, positive definite matrix, since its Schur complement
with respect to entry (1, 1) is just a smaller version of the same matrix, and all its coefficients
are positive integers. Note that nT v = b and so it is a constant independent of the vector of
n. The solution given by the following optimization problem gives the required upper bound

maximize nTAn

subject to n1 + n2 + . . . = a

n1 + 2n2 + . . . = b

nk ∈ N k = 1, . . . , b.

We will show with the following lemma that a solution n to this problem has at most
two consecutive non zeros.

I Lemma 8. If there are two positive integers i and j such that j− i ≥ 2, and ni > 0, nj > 0,
then defining

m = n+ (ei+1 − ei)− (ej − ej−1)

we have that m is feasible and mTAm > nTAn.

Proof. Note that m is feasible. On the other hand, since A is symmetric

mTAm− nTAn = (m+ n)TA(m− n).

Now, m− n = (ei+1 − ei)− (ej − ej−1), and then A(m− n) =
∑j−1
k=i+1 ek. The coefficients

of m and n are nonnegative integers, and furthermore (m + n)i+1 > 0, which implies the
result. J

This implies a closed form solution to the problem above.

I Theorem 9. Suppose b = ka + t, for some integer k, and t ∈ {0, . . . , a − 1}. Then the
solution to

maximize nTAn

subject to n1 + n2 + . . . = a

n1 + 2n2 + . . . = b

nk ∈ N k = 1, . . . , b

is given by nk = (k + 1)a− b = a− t, nk+1 = b− ka = t, and its value is ka2 + t2.

Proof. By the lemma above, the solution has at most two non zeros, and they are adjacent.
Let these be ` and ` + 1. The solution is given by the solution to n` + n`+1 = a and
`n` + (`+ 1)n`+1 = b. Given that n has two nonzeros, we can compute

nTAn = k(a− t)2 + 2k(a− t)t+ (k + 1)t2 = k(a− t+ t)2 + t2 = ka2 + t2. J

Lemma 7 is a simple corollary to the above.
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