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Quantum plasmons with optical-range frequencies in doped few-layer graphene
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Although plasmon modes exist in doped graphene, the limited range of doping achieved by gating restricts
the plasmon frequencies to a range that does not include the visible and infrared. Here we show, through the
use of first-principles calculations, that the high levels of doping achieved by lithium intercalation in bilayer and
trilayer graphene shift the plasmon frequencies into the visible range. To obtain physically meaningful results,
we introduce a correction of the effect of plasmon interaction across the vacuum separating periodic images of
the doped graphene layers, consisting of transparent boundary conditions in the direction perpendicular to the
layers; this represents a significant improvement over the exact Coulomb cutoff technique employed in earlier
works. The resulting plasmon modes are due to local field effects and the nonlocal response of the material to
external electromagnetic fields, requiring a fully quantum mechanical treatment. We describe the features of these
quantum plasmons, including the dispersion relation, losses, and field localization. Our findings point to a strategy
for fine-tuning the plasmon frequencies in graphene and other two-dimensional materials.
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I. INTRODUCTION

Collective excitations of electrons in metals, generically
referred to as plasmons, have been attracting new attention
recently in the realm of nanoparticles and low-dimensional ma-
terials. In these systems, new plasmonic phenomena continue
to be discovered, beyond what was observed in conventional
crystalline solids. These phenomena include quantum interfer-
ence of plasmons, observation of quantum coupling of plas-
mons to single-particle excitations, and quantum confinement
of plasmons in nanometer-scale particles and materials. These
phenomena, intriguing in their own right, are also important
for multifaceted applications. Plasmonic nanostructures are
finding applications in integrated nanophotonics [1], biosens-
ing [2–4], photovoltaic devices [5–7], single-photon transis-
tors [8], single-molecule spectroscopy [9], and metamaterials
[10,11]. The current interest in quantum nanophotonics and
plasmonics is in part, driven by new materials, particularly low-
dimensional solids, that access new ranges of frequency and
transmission speeds. The reduced dimensionality of plasmons
in two-dimensional (2D) materials provides ultrasubwave-
length confinement with phase velocities several orders of
magnitude lower than the speed of light [12]. In the present
work we show that by properly controlling the density of
metallic electrons in few-layer graphene, the prototypical
2D metal, the plasmon frequency can be pushed into the
visible to near-infrared range, a feature highly desirable for
optoelectronic applications and heretofore unattainable.
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Graphene is quite special for 2D plasmonics [13], exhibit-
ing intriguing properties such as extremely high electrical
mobility [14] and easily tunable electron- and hole-doping
concentrations (ne,nh) through gating [14,15]. The plasmon
frequencies in graphene are controlled through doping [13],
where typical doping concentration values achieved by gating
are ≈1011 cm−2, and the heaviest doping reached [16] is
nh > 1013 cm−2. Plasmons in gate-doped graphene typically
emerge in the infrared to terahertz ranges and seldom in the
mid- or near-infrared range [4,16,17]. So far, reaching the
visible range for 2D plasmons in graphene, a crucial require-
ment for optoelectronic applications, has remained elusive.
Searching for materials beyond graphene to achieve plasmons
with optical frequencies is a possible route. For example,
one possibility is the family of 2D materials referred to as
transition-metal dichalcogenides (TMDCs), but plasmons in
these materials are predicted to appear at terahertz frequencies
[18,19]. Another possible solution, the plasmon mode on
Be(0001) [13] observed in the visible range [20], cannot be
interpreted as a true 2D plasmon since it has finite penetration
depth into the underlying bulk material. A recent report by
Huang et al. [21] predicts that the triangular polymorph of
a 2D boron sheet exhibits visible frequency plasmons. But
freestanding triangular 2D boron is dynamically unstable [22],
and its experimental synthesis is quite difficult, which makes
it challenging for device applications.

We propose here an alternative approach for breaking the
impasse by doping few-layer graphene structures to levels
beyond what is achievable through gating. Although there
have been previous reports of optical-frequency plasmons in
graphene monolayers with adsorbed Li atoms (LiC2) [23], this
configuration is energetically unstable, as we have established
in previous work [24], and therefore is unlikely to form
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experimentally; encapsulating the Li atoms between graphene
layers, as in the structures proposed and studied here, is
required to stabilize the doped system. Experiments have
proved the feasibility of inserting metal atoms like lithium
(Li) between layers of 2D materials [25,26], resulting in heavy
doping. Inspired by this, we use a theoretical approach based on
first-principles electronic structure calculations to explore the
possibility of observing quantum plasmons in the visible range
for Li-intercalated two- and three-layer graphene. The origin
of 2D plasmons is related to the local-field effects and the
nonlocal response of the material to external fields [27]. Hence,
the study of these waves demands a fully quantum mechanical
description of the material properties, which compels us to
call them “quantum” 2D plasmons. We effectively capture
the quantum nature of these plasmons through our accu-
rate, high-fidelity first-principles calculations, distinguished by
(i) our methodology, which correctly confines plasmons in two
dimensions, and (ii) a realistic estimate of carrier lifetime,
a crucial factor that determines plasmon losses. Our results
show that quantum plasmons in few-layer graphene are indeed
feasible. This opens new pathways for fine-tuning a wide
range of plasmon frequencies, including the visible range, in
2D structures by controlling the concentration and type of
intercalants.

II. COMPUTATIONAL METHODS

Our first-principles calculations are based on density func-
tional theory (DFT) as implemented in the GPAW package
[28,29]. The interaction between ionic cores and valence elec-
trons is described by the projector augmented-wave method
[30,31]. A vacuum of 25 Å is included to minimize the interac-
tion between periodic images along the direction perpendicular
to the plane of the sheets (z direction). The Kohn-Sham wave
functions are represented using a plane-wave basis with an
energy cutoff of 340 eV, and the exchange correlation energy
of electrons is described using the local-density-approximation
functional. For the linear response calculations, which are
used to estimate the dielectric functions [32], we sample
the Brillouin zone with a 256 × 256 × 1 grid of k points to
include an accurate description of intraband transitions. For the
dielectric response calculations we use a plane-wave energy
cutoff of 30 eV. All the other parameters were converged to
within 0.05 eV of the plasmon energies, using the methodology
developed by Andersen et al. [18,33] for calculating the
quantum plasmon modes.

The potential φ(r,ω) and charge density ρ(r,ω) of the
quantum plasmon modes are obtained as left and right eigen-
functions (which satisfy the Poisson equation) of the dielectric
operator ε̂(ω), diagonalized in the plane-wave basis:

ε̂(ω)φn(ω) = [1̂ − v̂ χ̂0(ω)]φn(ω) = λn(ω)φn(ω), (1)

where ω and r denote the frequency and in-plane spatial
vector, respectively. Here ε̂(ω) is expressed in terms of
the noninteracting linear response operator χ̂0(ω) and the
Coulomb interaction operator v̂ = 1/|r − r′|. The condition
for observing a plasmon at frequency ωp is Re[λn(ω)] = 0 or,
equivalently, a peak in the loss function, −Im[λn(ω)]/|λn(ω)|2.

A key ingredient in obtaining the plasmon dispersion
relations and losses is the carrier lifetime τ . To obtain reliable

values of τ , we used DFT results for the energies and matrix
elements of both electrons and phonons (see the Supplemental
Material [34] and Ref. [35]). This takes into account the
detailed electronic structure effects such as the response of
electrons far from the Dirac point, as well as scattering against
both acoustic and optical phonons, including umklapp and
intervalley processes [35–38]. Doping, that is, a change in
the position of the Fermi level EF changes the value of τ ,
and hence calculations were carried out for several different
values of EF ranging from the neutral (undoped) value to
1.5 eV above it (see the Supplemental Material [34] for details
of formulation and [35] for values of τ ). Interestingly, our
results show that the extremely large τ ≈ 1 ps for freestand-
ing undoped graphene drops to ≈ 29 fs in doped graphene.
For simplicity and computational efficiency, we use doped
monolayer graphene to obtain the values of τ for positions
of EF that correspond to those of the Li-doped bilayer and
trilayer graphene; this is a reasonable approximation because,
at high doping concentrations we expect that the effects of
interlayer electron-phonon and electron-electron coupling on
τ in intercalated graphene will be rather small compared to the
effects of changing the position of EF , which is properly taken
into account by the procedure described.

III. TRANSPARENT BOUNDARY CONDITIONS

The standard approach for eliminating spurious effects due
to the finite size of the vacuum [39] is inadequate for plasmons
with small in-plane wave vectors q, and increasing the size of
the vacuum region until these effects become negligibly small
requires very expensive calculations. A significant method-
ological contribution of the present work is the formulation
and implementation of transparent boundary conditions which
overcome the drawbacks of the Coulomb cutoff method and
offer a more accurate description of the quantum plasmon
fields. Let z− and z+ be the bounds of the supercell (simulation
box) along the z direction (vacuum region), with the (x,y) plane
being periodic. We apply a one-dimensional Fourier transform
in the z direction to obtain a real-space representation in this
coordinate. The response operator under the random-phase
approximation (RPA) then has the form

χ̂0φ(z,Gxy,q,ω)

=
∫ z+

z−

∑
G′

xy

χ0
Gxy,G′

xy
(z,z′,q,ω)φ(z′,G′

xy,q,ω)dz′, (2)

where Gxy, G′
xy are vectors of the in-plane reciprocal lattice.

For values of z,z′ inside the supercell, z− < z,z′ < z+, the ker-
nel χ0

Gxy,G′
xy

(z,z′) is deduced from χ0
G,G′ by Fourier transform.

The kernel is extended with zero values for z or z′ that lie in the
vacuum region outside this cell. We observe that Eq. (1) can
be reformulated as the generalized eigenvalue problem [34]:

χ̂0φn(z,Gxy,q,ω)

= 1 − λn

4π

(
|q + Gxy|2 − ∂2

∂z2

)
φn(z,Gxy,q,ω), (3)

with the additional constraint that |φn| → 0 as z → ±∞ so
the problem is well posed. The left-hand side vanishes in the
vacuum region, and Eq. (3) reduces to the one-dimensional
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Poisson equation. For any nonzero value of |q + Gxy|, we thus
obtain an explicit solution,

φn(z,Gxy,q,ω) = φn(z±,Gxy,q,ω)e−|q+Gxy||z±−z|

for z � z− and z � z+. The continuity of φn and its first
derivative with respect to z leads to the transparent boundary
conditions at z = z±:

∂φn

∂z
(q,Gxy,z±,ω) = ∓|q + Gxy|φn(q,Gxy,z±,ω), (4)

which implies that the charge density and potential do not
see the periodic boundary along the z direction for any value
of q and hence decay to zero as z → ±∞. The imposition
of additional constraints generalizes the previous approaches
[39,40], which makes the transparent boundary conditions an
improvement over the former techniques. We solve numeri-
cally by finite differences the eigenvalue problem in Eq. (3)
restricted to the finite band z− � z � z+, with the boundary
conditions of Eq. (4) (see the Supplemental Material for details
[34]).

IV. RESULTS AND DISCUSSION

We model Li-intercalated graphene (G) multilayers with
an in-plane

√
3 × √

3 multiple of the primitive unit cell of
graphene, with the G/Li/G (bilayer) and G/Li/G/Li/G (trilayer)
structures. There is one Li atom per unit cell between each
pair of layers (see Fig. 1) [24,41]. For the trilayer, we consider
the structure with the two Li atoms at the same hollow site
but between two different pairs of graphene layers, as this
is the stablest configuration [41]. Li intercalation makes AA
stacking energetically more preferable [24], and hence, both
bilayer and trilayer structures are inversion symmetric. The
separation between the layers increases by 0.14 and 0.11 Å
relative to its value in the AA stacked graphene bilayer (3.52 Å)
for the bilayer and trilayer, respectively. Due to band folding
in the

√
3 × √

3 unit cell, the high-symmetry K point and
hence the Dirac point of the primitive graphene cell fold onto
the � point in the Brillouin zone (BZ) in our simulations
(see Fig. 1). AA stacking preserves the sublattice symmetry

FIG. 1. Atomic structures (side and top views) and electronic
structures of (a) the bilayer Li-intercalated graphene (G/Li/G) and
(b) the trilayer Li-intercalated graphene (G/Li/G/Li/G). The shaded
regions in (a) and (b) denote the occupied states, and the dashed black
lines show the Dirac point/Fermi level in undoped layers.

of the layers and the linear dispersion of the electron bands
at the Dirac point, unlike AB stacking, where the bands are
parabolic [42]. Intercalation also leads to charge transfer from
Li to the graphene layers and renders the system metallic
(see Fig. 1) with ≈ 0.84e and 0.87e charge transferred from
Li to bilayer and trilayer graphene (determined using Bader
analysis), which corresponds to n = 5 × 1014 cm−2 and n =
1015 cm−2, respectively, subsequently shifting the Fermi level
from the Dirac point into the conduction band by 1.35 eV and
by 1.51 eV for the bilayer and trilayer, respectively, as seen in
Fig. 1.

Since we consider metallic multilayers, more than one
plasmon mode emerges [18,33,42]. Depending on the phase of
the charge density and potential fields, we differentiate them as
symmetric and antisymmetric plasmonic modes [see Figs. 2(a)
and 2(d)]. For small q, the decay length of 2D plasmons extends
beyond the vacuum region, giving rise to interactions with
periodic images and hence spurious fields and pseudocharges at
the vacuum edge. On the other hand, our transparent boundary
conditions correct these periodic interactions and make the
plasmon tails invisible to one another for the same vacuum
length. The charge density with (solid lines) and without
(dotted lines) transparent boundary conditions is shown in
Figs. 2(a) and 2(d) for G/Li/G and G/Li/G/Li/G, respectively.
We also note that the charge transferred from Li is equally
distributed in the unoccupied π∗ orbitals, which is confirmed
from the charge density distribution of the plasmon modes [see
Figs. 2(a) and 2(d)], where the intensity of the fields is equal
and reaches the maximum and minimum values away from the
layers, consistent with the fact that the π∗ orbitals of graphene
extend away from the layers.

We plot the plasmon dispersion along �-M (the �-K
direction is not as interesting in the band structure) with the
magnitude of the real part of q ranging from |q| = q = 0.007
to 0.21 Å−1 since both plasmon modes become very weak
above q = 0.21 Å−1. The symmetric mode is more dispersive
than the antisymmetric mode and varies as

√
q at small q,

corresponding to a classical plasmon with Drude behavior
due to intraband transitions. However, the antisymmetric mode
varies almost linearly with q (has finite frequency at q = 0) and
relates to interband transitions between perfectly nested bands
of the two layers [42]. In G/Li/G the plasmon frequencies are
between 0.8 and 2.2 eV for q � 0.007 Å−1; the antisymmetric
mode is in the optical frequency range even at low q, whereas
the symmetric mode enters into this range at higher q values.
The symmetric mode is always lower in energy than the
antisymmetric mode due to finite coupling [42]. We note that
the acoustic plasmon arising from the anisotropy of the bands
crossing the Fermi level along �-M is not captured in our
calculations due to limitations of the frequency grid, which is
too coarse on the scale required to reveal this feature. However,
this does not affect our conclusions since this particular mode
is damped by the intraband transitions and therefore is not of
interest here.

We quantify the plasmon losses from the ratio of real to
imaginary components of the wave number, Re[q]/Im[q] [43],
which corresponds to the number of plasmon wavelengths that
propagate before it loses most of its energy [see Fig. 2(c)]. For
the doping in G/Li/G (EF = 1.35 eV), τ ≈ 29 fs was calculated
using our methodology discussed above, which is much shorter
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FIG. 2. Plasmon features for (a)–(c) the G/Li/G system and (d)–(f) the G/Li/G/Li/G system. (a) and (d) Plasmon charge density ρ(r) at
q = 0.007 Å−1 for the symmetric modes (blue and green lines) and the antisymmetric mode (red lines); solid lines (thicker and lighter shade)
are for results with transparent boundary conditions, and dashed lines (thinner and darker shade) are for periodic boundary conditions with the
Coulomb cutoff (see text). (b) and (e) Dispersion relation of plasmons along the � to M direction; the diameter of the circles is proportional
to the strength of the resonance [18]. Shaded areas represent regions of inter- and intraband losses (including damping by optical phonons).
(c) and (f) Re[q]/Im[q] (left axis, solid blue line) and field localization (right axis, dashed magenta line), or “shrinkage,” of the lowest symmetric
mode. τ is ≈29 and 19 fs for the G/Li/G and G/Li/G/Li/G systems, respectively. The gray shaded areas denote the region of interband losses,
and the yellow shaded (hatched) areas denote the visible frequency range, calculated with the Fermi velocity of graphene.

in comparison with τ ≈ 135 fs for EF = 0.135 eV [43]. We give
only the ratio for the symmetric (intraband) mode in Fig. 2(c).
Due to its linear dispersion, the antisymmetric mode shows less
variation in Re[q]/Im[q] compared with the symmetric mode
(see Fig. S1 in the Supplemental Material [34]). The in-plane
propagation length of the plasmons varies directly with this ra-
tio, with the symmetric plasmons propagating longer at longer
wavelengths λair. We also calculate the wave “shrinkage,” or
the field localization of the plasmons, shown in Fig. 2(c); this
corresponds to the ratio by which the plasmon wavelength λp

is smaller than that in vacuum and is approximately 100 times
for bilayer graphene.

There are three important decay modes that lead to plasmon
damping: (i) Landau damping due to intraband losses when
h̄ω < h̄vFq, (ii) interband losses (electron-hole transitions
referred to as single-particle excitations (SPEs) identified as
poles of the response function [42,44]) when h̄ω > h̄ωSPE

(with the damping region defined by h̄ωSPE − h̄vFq < h̄ω <

h̄ωSPE + h̄vFq), and (iii) decay through optical phonons in
graphene for ω > ωph (ωph = 0.2 eV or 6.2 μm) [43] due to
scattering of electrons (that is, plasmonic excitation) due to
phonons. This calculation of the dielectric function under the
RPA does not include the effects of electron-hole interactions,
which are captured only by including a dynamically screened
instead of bare Coulomb interaction. However, these excitons
give rise to a prominent peak in the absorption spectrum
near 4.5 eV [45], which is at a much higher energy than
the visible frequency range. Also, doping has been shown

to increase screening and reduce electron-hole interactions in
graphene, leaving the optical response nearly identical to that of
undoped graphene [45]. Hence, the exclusion of electron-hole
interactions in our calculations does not affect the results.

In the case of G/Li/G, since the optical phonon ωph =
1400 cm−1 ≡ 0.17 eV [41,46] is much smaller than the sym-
metric or antisymmetric plasmon frequencies (0.8 eV to 2.2 eV
for q � 0.007 Å−1), only multiple scatterings by phonons
(which are less likely) will scatter plasmons into the damping
regions. On the other hand, plasmons within the frequency
range ωSPE − ωph to ωSPE can get scattered by phonons into
Landau/interband scattering regions, therefore making ω >

ωSPE − ωph the region where plasmons are damped by inter-
band transitions and optical phonons. The SPEs at q = 0 were
identified at 0, 0.6, and 2.4 eV, originating from the intraband,
low-energy interband, and electron-hole interband transitions
in G/Li/G. The damping regions are defined by ESPE ± h̄vFq ±
h̄ωph (including scattering by optical phonons), where vF is the
Fermi velocity and ESPE is the single-particle excitation energy
[44,47] [see gray shaded areas in Fig. 2(b)]. Heavy doping by
lithium pushes the electron-hole interband threshold for the
bilayer to ωinter ≈ 1.77 eV (λ = 0.7 μm). Since the optical
frequency range ωop is between 1.59 and 3.26 eV (λ = 0.38
to 0.78 μm) and ωinter < ωop, most of the symmetric and
antisymmetric plasmon modes in this range are not damped
by the interband transitions, indicated by the shaded regions in
Figs. 2(b) and 2(e). Only for q � 0.06 Å−1 are the symmetric
and antisymmetric modes damped.
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To push the interband threshold frequency, and hence the
plasmon frequencies, higher into the optical range (>2 eV),
the Fermi level needs to be moved farther into the conduction
bands. Since the maximum possible intercalation in bilayer
graphene corresponds to the composition C12Li, additional Li
can be incorporated only by having more than two graphene
layers. We therefore explore trilayer graphene since it can
accommodate two Li layers, with the composition Li2C18,
which increases the doping level to EF = 1.51 eV. There are
three modes in the trilayer structure in the 1.2–2.8 eV frequency
range along the �-M direction for q �0.007 Å−1, two of which
are symmetric and one of which is antisymmetric, as shown in
Fig. 2(d). The third (second symmetric) mode emerges due to
the third graphene layer, which brings in additional nesting of
the bands. Similar to the bilayer case, the first symmetric mode
due to intraband excitations exhibits

√
q dependence, and the

other two modes disperse linearly [see Fig. 2(e)]. The loss
function shows larger variations in the peak positions for the
first symmetric mode due to

√
q behavior at low q compared

to the antisymmetric mode (see Fig. S2 in the Supplemental
Material for details [34]). More interestingly, the first sym-
metric and antisymmetric bands in the dispersion spectrum
[red and blue curves in Fig. 2(e)] intersect, and the symmetric
and antisymmetric modes are degenerate for q > 0.067 Å−1

along �-M . The reason behind this unusual degeneracy is the
nesting between the bands at the Fermi level and, consequently,
the absence of coupling between the two modes [42].

The higher doping concentration pushes the interband
threshold frequency ωinter to ≈ 2.0 eV (0.62 μm) for the
first symmetric and antisymmetric modes in G/Li/G/Li/G. The
poles at 0, 0.64, 0.93, and 2.5 eV correspond to the three damp-
ing regions associated with intraband, low-energy interband,
and higher-energy electron-hole interband transitions. Hence,
for 1.59 eV < ω < 2.0 eV (0.62 μm < λair < 0.78 μm) the
first symmetric and antisymmetric modes are undamped. More
importantly, the second symmetric mode gets damped at a
higher frequency (ω > 2.2 eV), so all three plasmon modes are
undamped and emerge in the optical range for q < 0.05 Å−1.
The τ in graphene for such a high doping concentration (EF =
1.51 eV) is quite small, ≈ 19 fs (see the Supplemental Material
[34]). From Re[q]/Im[q] in Fig. 2(f), we find that the first
symmetric mode can be observed further into the mid-infrared
range (from extrapolation; λair > 3 μm), whereas the other
two modes have shorter wavelengths (λair < 0.62 μm). λp is
also shrunk by approximately 100 times [Fig. 2(f)], as in the
case of bilayer graphene, in agreement with previous reports
[43]. We plot only the ratio for the first symmetric (intraband)

mode in Fig. 2(f). Since the antisymmetric and second sym-
metric modes disperse linearly, the variation in Re[q]/Im[q]
is small. These plasmons exhibit “shrinkage” similar to
that of the symmetric mode (refer to Fig. S2 for further
details [34]).

Controlling the number of layers and the concentration
of intercalated Li atoms appears to be a feasible method for
engineering the properties of visible plasmons for applications.
For example, the mid-infrared-region plasmons in both the
bilayer and trilayer Li-intercalated structures can be used for
plasmonic biosensing [4,16]. We caution that certain technical
aspects of the calculations reported here, like the choice of
exchange-correlation functional for the electronic structure,
can affect the electronic spectrum and can shift the plasmon
energies to slightly different values than what we reported;
such shifts could change the precise values of the damped
plasmon frequencies, but we do not expect them to alter the
overall picture. Damping due to the presence of defects and
substrate phonons, features that were not included in the model
of the physical system considered here, can also influence the
existence of undamped 2D plasmons in the visible frequency
range. A detailed analysis of these parameters will constitute
the future scope of this work. Our work can be easily extended
to explore other multilayers of other 2D materials (such as
black phosphorus and transition-metal dichalcogenides) with
different dopants and/or intercalants (K, Mg, Na etc.), opening
up new pathways for fine-tuning the plasmon dispersion either
by varying the number and type of layers and/or by varying
the concentration and type of intercalant atoms.
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