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Hopf coactions on commutative algebras generated by a

quadratically independent comodule

Pavel Etingof Debashish Goswami Arnab Mandal Chelsea Walton

Abstract

Let A be a commutative unital algebra over an algebraically closed field k of characteris-
tic 6= 2, whose generators form a finite-dimensional subspace V , with no nontrivial homogeneous
quadratic relations. Let Q be a Hopf algebra that coacts on A inner-faithfully, while leaving V
invariant. We prove that Q must be commutative when either: (i) the coaction preserves a non-
degenerate bilinear form on V ; or (ii) Q is co-semisimple, finite-dimensional, and char(k) = 0.

1 Introduction

We work over an algebraically closed field k of characteristic not equal to 2, unless stated otherwise.
In this note, we study quantum group symmetries, i.e. actions or coactions of Hopf algebras on
function algebras of classical spaces. Co-actions of genuine (i.e. noncommutative) Hopf algebras
are of interest here, particularly coactions that are inner-faithful, that is, those that do not factor
through the coaction of a proper Hopf subalgebra. We say that an algebra A admits No Quantum

Symmetry when there does not exist an inner-faithful coaction of a genuine Hopf algebra Q on A.
Recently, the problem of establishing No Quantum Symmetry has been addressed in both the

algebraic and analytic frameworks. In the algebraic framework, the first and last author established
that there does not exist an inner-faithful coaction of a noncommutative, finite-dimensional, co-
semisimple Hopf algebra on a commutative domain, when k = k̄ and char(k) = 0 [2, Theorem 1.3].
In joint work with Joardar, the second author established a similar result in the analytic and
infinite-dimensional setting: there does not exist a genuine compact quantum group that coacts
inner-faithfully and isometrically (in the sense of [5]) on the Frechet-∗-algebra of smooth functions
on a compact, connected, smooth Riemannian manifold [3, Theorem 12.7]. On the other hand,
one obtains inner-faithful coactions of genuine Hopf algebras Q on function algebras A of classical
spaces X if the hypotheses on the theorems above are dropped; see [2, Remark 4.3], [1, Theorem 1.2]
and [7, Theorem 3.7] for counterexamples.

The purpose of this paper is to establish No Quantum Symmetry on some commutative k-
algebras as follows.

Theorem 1.1. Take A to be a unital commutative k-algebra with a finite-dimensional generating

subspace V that is quadratically independent [Definition 2.1]. Let Q be a Hopf algebra that coacts

on A inner-faithfully. Suppose that one of the following conditions holds:

(i) the coaction of Q on A preserves a non-degenerate bilinear form on V ; or

(ii) k is algebraically closed of characteristic 0 and Q is co-semisimple and finite-dimensional.

Then, Q is a commutative Hopf algebra.
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The result above is an algebraic generalization of [4, Theorem 3.2] and [3, Lemma 12.1] in the
analytic setting. With the exception of Remark 2.7 and Corollary 2.8, we work in the algebraic
framework so that there is no assumption on ∗-structures of the underlying algebras or on ∗-
preservation of the coactions.

2 Results

We begin by introducing quadratic independence, a condition on the comodule algebra A that we
will impose throughout this work.

Definition 2.1. Let A be a unital commutative algebra over k generated by a finite-dimensional
subspace V ⊆ A . We say that V is quadratically independent if the natural linear map from
S2V := (V ⊗ V )/(v ⊗ w − w ⊗ v)v,w∈V to A, sending v ⊗ w to vw = wv ∈ A, is one-to-one.

Let us give an example of quadratic independence.

Example 2.2. Suppose that a Hopf algebra Q coacts on the algebra A of regular functions on
a smooth affine algebraic, analytic, or C∞-manifold X, while preserving the ideal Ix of O(X)
consisting of functions vanishing on a point x ∈ X. Then, the cotangent space T ∗

xX = Ix/I
2
x is a

quadratically independent Q-comodule.

Now we verify that condition (i) of Theorem 1.1 implies that Q is commutative; see Proposi-
tion 2.6 below. First, we need a preliminary result.

Lemma 2.3. Suppose that V is an inner-faithful finite-dimensional comodule over a Hopf algebra

Q, and assume that the decomposition V ⊗ V = S2V ⊕ ∧2V is preserved by this coaction. Here,

∧2V := (V ⊗ V )/(v ⊗ w + w ⊗ v)v,w∈V . Then, Q is commutative.

Proof. Let the coaction α of Q on V be given by the Faddeev-Reshetikhin-Takhtajan matrix T ∈
End(V ) ⊗Q; namely, α(v) = T (v ⊗ 1). Consider the natural Q-coaction on V ⊗ V defined by the
matrix T 13T 23 ∈ End(V ⊗ V )⊗Q. Here, T 13 =

∑
i,j Eij ⊗ Id⊗ tij, and T 23 =

∑
i,j Id⊗Eij ⊗ tij ,

for the elementary matrices Eij. The hypotheses imply that T 13T 23 lies in (End(S2V ) ⊗ Q) ⊕
(End(∧2V )⊗Q), that is, it commutes with the permutation that flips the two copies of V . Thus,
T 13T 23 = T 23T 13, so matrix elements of T commute with each other. Since matrix elements of T
generate Q (by the inner-faithfulness of V ), we obtain that Q is commutative. ✷

Let us fix the hypothesis below for the rest of the note, unless stated otherwise.

Hypothesis 2.4. Let A be a unital commutative k-algebra with a finite-dimensional, quadratically

independent generating subspace V . Take Q be a Hopf algebra that coacts on A inner-faithfully,

leaving V invariant, that is, for the coaction α of Q on A we get that α(V ) ⊆ V ⊗Q.

Lemma 2.5. Recall Hypothesis 2.4. Then, the Q-coaction preserves ∧2V ⊂ V ⊗ V .

Proof. We have a Q-comodule algebra morphism TV → A, which in degree 2 maps V ⊗ V onto
S2V ⊂ A, due to the commutativity of A and quadratic independence of V . The kernel is then
∧2V , and it is thus preserved by the coaction. ✷

Proposition 2.6. Recall Hypothesis 2.4 and suppose that Q preserves a nondegenerate bilinear

form B on V . Then, Q is commutative.
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Proof. The form B defines an invariant nondegenerate form B2 on V ⊗V given by B2(a⊗b, c⊗d) =
B(a, d)B(b, c). By Lemma 2.5, ∧2V is invariant under the coaction of Q on V ⊗V . The orthogonal
complement to ∧2V in V ⊗ V under the form B2 is S2V . Hence, S2V ⊂ V ⊗ V is also invariant
under the coaction of Q on V ⊗ V . Now the result follows from Lemma 2.3. ✷

Remark 2.7. Suppose that k = C and Q is a Hopf-∗ algebra such that the coaction α preserves
a nondegenerate Hermitian form on V , that is, 〈a0, b0〉a

∗
1
b1 = 〈a, b〉1Q, where we have written

α(a) = a0 ⊗ a1 in Sweedler notation. Then, we can adapt the proof of Proposition 2.6 to get that
Q is commutative.

Corollary 2.8. If Q is the Hopf-∗ algebra associated to a compact quantum group satisfying Hy-

pothesis 2.4, then Q must be commutative.

Proof. By applying [6, Proposition 6.4] to the finite-dimensional Q-comodule V , we get a non-
degenerate Hermitian form on V which is preserved by the coaction. Now Q is commutative by
Remark 2.7. ✷

Finally, we establish that condition (ii) of Theorem 1.1 implies that Q is commutative.

Theorem 2.9. Recall Hypothesis 2.4 and assume that k is algebraically closed of characteristic 0.
If, further, Q is finite-dimensional and co-semisimple, then Q must be commutative.

Proof. Since we have quadratic independence, we get that the action of Q∗ preserves the subspace
∧2V in V ⊗ V by Lemma 2.5. Hence, Q∗ acts on TV/(∧2V ) = SV inner-faithfully. Thus, Q∗ is
cocommutative by [2, Theorem 1.3]. ✷
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