Search for the Exotic Meson $X(5568)$ with the Collider Detector at Fermilab

T. Aaltonen, ${ }^{21}$ S. Amerio, ${ }^{39 a, 39 b}$ D. Amidei, ${ }^{31}$ A. Anastassov, ${ }^{15, w}$ A. Annovi, ${ }^{17}$ J. Antos, ${ }^{12}$ G. Apollinari, ${ }^{15}$ J. A. Appel, ${ }^{15}$ T. Arisawa, ${ }^{51}$ A. Artikov, ${ }^{13}$ J. Asaadi, ${ }^{47}$ W. Ashmanskas, ${ }^{15}$ B. Auerbach, ${ }^{2}$ A. Aurisano, ${ }^{47}$ F. Azfar, ${ }^{38}$ W. Badgett, ${ }^{15}$ T. Bae, ${ }^{25}$ A. Barbaro-Galtieri, ${ }^{26}$ V. E. Barnes, ${ }^{43}$ B. A. Barnett, ${ }^{23}$ P. Barria, ${ }^{41 \mathrm{a}, 41 \mathrm{c}}$ P. Bartos, ${ }^{12}$ M. Bauce, ${ }^{39 \mathrm{a}, 39 \mathrm{~b}}$ F. Bedeschi, ${ }^{41 \mathrm{a}}$ S. Behari, ${ }^{15}$ G. Bellettini, ${ }^{4 \mathrm{a}, 41 \mathrm{~b}}$ J. Bellinger, ${ }^{53}$ D. Benjamin, ${ }^{14}$ A. Beretvas, ${ }^{15}$ A. Bhatti, ${ }^{45}$ K. R. Bland, ${ }^{5}$ B. Blumenfeld, ${ }^{23}$ A. Bocci, ${ }^{14}$ A. Bodek, ${ }^{44}$ D. Bortoletto, ${ }^{43}$ J. Boudreau, ${ }^{42}$ A. Boveia, ${ }^{11}$ L. Brigliadori, ${ }^{6 a, 6 b}$ C. Bromberg, ${ }^{32}$ E. Brucken, ${ }^{21}$ J. Budagov, ${ }^{13}$ H. S. Budd, ${ }^{44}$ K. Burkett, ${ }^{15}$ G. Busetto, ${ }^{39 \mathrm{a}, 39 \mathrm{~b}}$ P. Bussey, ${ }^{19}$ P. Butti, ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$ A. Buzatu, ${ }^{19}$ A. Calamba, ${ }^{10}$ S. Camarda, ${ }^{4}$ M. Campanelli, ${ }^{28}$ F. Canelli, ${ }^{11, e e}$ B. Carls, ${ }^{22}$ D. Carlsmith, ${ }^{53}$ R. Carosi, ${ }^{41 a}$ S. Carrillo, ${ }^{16,1}$ B. Casal, ${ }^{9, j}$ M. Casarsa, ${ }^{48 \mathrm{a}}$ A. Castro, ${ }^{6 \mathrm{a}, 6 \mathrm{~b}}$ P. Catastini, ${ }^{20}$ D. Cauz, ${ }^{48 \mathrm{a}, 48 \mathrm{~b}, 48 \mathrm{c}}$ V. Cavaliere, ${ }^{22}$ A. Cerri, ${ }^{26, \mathrm{e}}$ L. Cerrito, ${ }^{28, \mathrm{r}}$ Y. C. Chen, ${ }^{1}$ M. Chertok, ${ }^{7}$ G. Chiarelli, ${ }^{41 \mathrm{a}}$ G. Chlachidze, ${ }^{15}$ K. Cho, ${ }^{25}$ D. Chokheli, ${ }^{13}$ A. Clark, ${ }^{18}$ C. Clarke, ${ }^{52}$ M. E. Convery, ${ }^{15}$ J. Conway, ${ }^{7}$ M. Corbo, ${ }^{15, z}$ M. Cordelli, ${ }^{17}$ C. A. Cox, ${ }^{7}$ D. J. Cox, ${ }^{7}$ M. Cremonesi, ${ }^{41 \mathrm{a}}$ D. Cruz, ${ }^{47}$ J. Cuevas, ${ }^{9, \mathrm{y}}$ R. Culbertson, ${ }^{15}$ N. d'Ascenzo, ${ }^{15, v}$ M. Datta, ${ }^{15, h h}$ P. de Barbaro, ${ }^{44}$ L. Demortier, ${ }^{45}$ M. Deninno, ${ }^{6 a}$ M. D'Errico, ${ }^{39 a, 39 b}$ F. Devoto, ${ }^{21}$ A. Di Canto, ${ }^{4 \mathrm{a}, 41 \mathrm{~b}}$ B. Di Ruzza, ${ }^{15, p}$ J. R. Dittmann, ${ }^{5}$ S. Donati, ${ }^{41 \mathrm{a}, 4 \mathrm{lb}}$ M. D'Onofrio, ${ }^{27}$ M. Dorigo, ${ }^{48 \mathrm{a}, 48 \mathrm{~d}}$ A. Driutti, ${ }^{48 \mathrm{a}, 48 \mathrm{~b}, 48 \mathrm{c}}$ K. Ebina, ${ }^{51}$ R. Edgar, ${ }^{31}$ A. Elagin, ${ }^{11}$ R. Erbacher, ${ }^{7}$ S. Errede, ${ }^{22}$ B. Esham, ${ }^{22}$ S. Farrington, ${ }^{38}$ J. P. Fernández Ramos, ${ }^{29}$ R. Field, ${ }^{16}$ G. Flanagan, ${ }^{15, t}$ R. Forrest, ${ }^{7}$ M. Franklin, ${ }^{20}$ J. C. Freeman, ${ }^{15}$ H. Frisch, ${ }^{11}$ Y. Funakoshi, ${ }^{51}$ C. Galloni, ${ }^{41 a, 41 b}$ A. F. Garfinkel, ${ }^{43}$ P. Garosi, ${ }^{41 \mathrm{a}, 41 \mathrm{c}}$ H. Gerberich, ${ }^{22}$ E. Gerchtein, ${ }^{15}$ S. Giagu, ${ }^{46 \mathrm{a}}$ V. Giakoumopoulou, ${ }^{3}$ K. Gibson, ${ }^{42}$ C. M. Ginsburg, ${ }^{15}$ N. Giokaris, ${ }^{3, *}$ P. Giromini, ${ }^{17}$ V. Glagolev, ${ }^{13}$ D. Glenzinski, ${ }^{15}$ M. Gold, ${ }^{34}$ D. Goldin, ${ }^{47}$ A. Golossanov, ${ }^{15}$ G. Gomez, ${ }^{9}$ G. Gomez-Ceballos, ${ }^{30}$ M. Goncharov, ${ }^{30}$ O. González López, ${ }^{29}$ I. Gorelov, ${ }^{34}$ A. T. Goshaw, ${ }^{14}$ K. Goulianos, ${ }^{45}$ E. Gramellini, ${ }^{6 a}$ C. Grosso-Pilcher, ${ }^{11}$ J. Guimaraes da Costa, ${ }^{20}$ S. R. Hahn, ${ }^{15}$ J. Y. Han, ${ }^{44}$ F. Happacher, ${ }^{17}$ K. Hara, ${ }^{49}$ M. Hare, ${ }^{50}$ R. F. Harr, ${ }^{52}$ T. Harrington-Taber, ${ }^{15, \mathrm{~m}}$ K. Hatakeyama, ${ }^{5}$ C. Hays, ${ }^{38}$ J. Heinrich, ${ }^{40}$ M. Herndon, ${ }^{53}$ A. Hocker, ${ }^{15}$ Z. Hong, ${ }^{47, w}$ W. Hopkins, ${ }^{15, f}$ S. Hou, ${ }^{1}$ R. E. Hughes, ${ }^{35}$ U. Husemann, ${ }^{54}$ M. Hussein, ${ }^{32, c c}$ J. Huston, ${ }^{32}$ G. Introzzi, ${ }^{41 \mathrm{a}, 41 \mathrm{e}}$ M. Iori, ${ }^{46 a, 46 b}$ A. Ivanov, ${ }^{7,0}$ E. James, ${ }^{15}$ D. Jang, ${ }^{10}$ B. Jayatilaka, ${ }^{15}$ E. J. Jeon, ${ }^{25}$ S. Jindariani, ${ }^{15}$ M. Jones, ${ }^{43}$ K. K. Joo, ${ }^{25}$ S. Y. Jun, ${ }^{10}$ T. R. Junk, ${ }^{15}$ M. Kambeitz, ${ }^{24}$ T. Kamon, ${ }^{25,47}$ P. E. Karchin, ${ }^{52}$ A. Kasmi, ${ }^{5}$ Y. Kato, ${ }^{37, n}$ W. Ketchum, ${ }^{11, i i}$ J. Keung, ${ }^{40}$ B. Kilminster, ${ }^{15, \text { ee }}$ D. H. Kim, ${ }^{25}$ H. S. Kim, ${ }^{15, b b}$ J. E. Kim, ${ }^{25}$ M. J. Kim, ${ }^{17}$ S. H. Kim, ${ }^{49}$ S. B. Kim, ${ }^{25}$ Y. J. Kim, ${ }^{25}$ Y. K. Kim,,${ }^{11}$ N. Kimura, ${ }^{51}$ M. Kirby, ${ }^{15}$ K. Kondo, ${ }^{51, *}$ D. J. Kong, ${ }^{25}$ J. Konigsberg, ${ }^{16}$ A. V. Kotwal, ${ }^{14}$ M. Kreps, ${ }^{24}$ J. Kroll, ${ }^{40}$ M. Kruse, ${ }^{14}$ T. Kuhr, ${ }^{24}$ M. Kurata, ${ }^{49}$ A. T. Laasanen, ${ }^{43}$ S. Lammel, ${ }^{15}$ M. Lancaster, ${ }^{28}$ K. Lannon, ${ }^{35, x}$ G. Latino, ${ }^{41 a, 41 \mathrm{c}}$ H. S. Lee, ${ }^{25}$ J. S. Lee, ${ }^{25}$ S. Leo, ${ }^{22}$ S. Leone, ${ }^{41 \mathrm{a}}$ J. D. Lewis, ${ }^{15}$ A. Limosani, ${ }^{14, s}$ E. Lipeles, ${ }^{40}$ A. Lister, ${ }^{18, \mathrm{a}}$ Q. Liu, ${ }^{43}$ T. Liu, ${ }^{15}$ S. Lockwitz, ${ }^{54}$ A. Loginov, ${ }^{54}$ D. Lucchesi, ${ }^{39 a, 39 b}$ A. Lucà, ${ }^{17,15}$ J. Lueck, ${ }^{24}$ P. Lujan, ${ }^{26}$ P. Lukens, ${ }^{15}$ G. Lungu, ${ }^{45}$ J. Lys,,${ }^{26, *}$
R. Lysak, ${ }^{12, \mathrm{~d}}$ R. Madrak, ${ }^{15}$ P. Maestro, ${ }^{41 \mathrm{a}, 41 \mathrm{c}}$ S. Malik, ${ }^{45}$ G. Manca, ${ }^{27, \mathrm{~b}}$ A. Manousakis-Katsikakis, ${ }^{3}$ L. Marchese, ${ }^{\text {aa,jj }}$ F. Margaroli, ${ }^{46 \mathrm{a}}$ P. Marino, ${ }^{41 \mathrm{a}, 41 \mathrm{~d}}$ K. Matera, ${ }^{22}$ M. E. Mattson, ${ }^{52}$ A. Mazzacane, ${ }^{15}$ P. Mazzanti, ${ }^{6 \mathrm{a}}$ R. McNulty, ${ }^{27, \mathrm{i}}$ A. Mehta, ${ }^{27}$ P. Mehtala, ${ }^{21}$ C. Mesropian, ${ }^{45}$ T. Miao, ${ }^{15}$ D. Mietlicki, ${ }^{31}$ A. Mitra, ${ }^{1}$ H. Miyake, ${ }^{49}$ S. Moed, ${ }^{15}$ N. Moggi, ${ }^{6 a}$ C. S. Moon, ${ }^{15}$ R. Moore, ${ }^{15, f f, g g}$ M. J. Morello, ${ }^{41 \mathrm{a}, 41 \mathrm{~d}}$ A. Mukherjee, ${ }^{15}$ Th. Muller, ${ }^{24}$ P. Murat, ${ }^{15}$ M. Mussini, ${ }^{6 \mathrm{a}, 6 \mathrm{~b}}$ J. Nachtman, ${ }^{15, \mathrm{~m}}$ Y. Nagai, ${ }^{49}$ J. Naganoma, ${ }^{51}$ I. Nakano,,${ }^{36}$ A. Napier, ${ }^{50}$ J. Nett, ${ }^{47}$ T. Nigmanov, ${ }^{42}$ L. Nodulman, ${ }^{2}$ S. Y. Noh, ${ }^{25}$ O. Norniella, ${ }^{22}$ L. Oakes, ${ }^{38}$ S. H. Oh,,14 Y. D. Oh,,${ }^{25}$ T. Okusawa, ${ }^{37}$ R. Orava, ${ }^{21}$ L. Ortolan, ${ }^{4}$ C. Pagliarone, ${ }^{48 \mathrm{a}}$ E. Palencia, ${ }^{9, \mathrm{e}}$ P. Palni, ${ }^{34}$ V. Papadimitriou, ${ }^{15}$ W. Parker, ${ }^{53}$ G. Pauletta, ${ }^{48 \mathrm{a}, 48 \mathrm{~b}, 48 \mathrm{c}}$ M. Paulini, ${ }^{10}$ C. Paus, ${ }^{30}$ T. J. Phillips, ${ }^{14}$ G. Piacentino, ${ }^{15, q}$ E. Pianori, ${ }^{40}$ J. Pilot, ${ }^{7}$ K. Pitts, ${ }^{22}$ C. Plager, ${ }^{8}$ L. Pondrom, ${ }^{53}$ S. Poprocki, ${ }^{15, f}$ K. Potamianos, ${ }^{26}$ A. Pranko, ${ }^{26}$ F. Prokoshin, ${ }^{13, a a}$ F. Ptohos, ${ }^{17, g}$ G. Punzi, ${ }^{41 a, 41 b}$ I. Redondo Fernández, ${ }^{29}$ P. Renton, ${ }^{38}$ M. Rescigno, ${ }^{46 a}$ F. Rimondi, ${ }^{6,{ }^{*}}$ L. Ristori, ${ }^{41 a, 15}$ A. Robson, ${ }^{19}$ T. Rodriguez, ${ }^{40}$ S. Rolli, ${ }^{50, h}$ M. Ronzani, ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$ R. Roser, ${ }^{15}$ J. L. Rosner, ${ }^{11}$ F. Ruffini, ${ }^{41 \mathrm{a}, 41 \mathrm{c}}$ A. Ruiz, ${ }^{9}$ J. Russ, ${ }^{10}$ V. Rusu, ${ }^{15}$ W. K. Sakumoto, ${ }^{44}$ Y. Sakurai, ${ }^{51}$ L. Santi, ${ }^{48,48 b, 48 c}$ K. Sato, ${ }^{49}$ V. Saveliev, ${ }^{15, v}$ A. Savoy-Navarro, ${ }^{15, z}$ P. Schlabach, ${ }^{15}$ E. E. Schmidt, ${ }^{15}$ T. Schwarz, ${ }^{31}$ L. Scodellaro, ${ }^{9}$ F. Scuri, ${ }^{41 \mathrm{a}}$ S. Seidel, ${ }^{34}$ Y. Seiya, ${ }^{37}$ A. Semenov, ${ }^{13}$ F. Sforza, ${ }^{41 \mathrm{a}, 41 \mathrm{~b}}$ S. Z. Shalhout, ${ }^{7}$ T. Shears, ${ }^{27}$ P. F. Shepard,,42 M. Shimojima, ${ }^{49, u}$ M. Shochet, ${ }^{11}$ I. Shreyber-Tecker, ${ }^{33}$ A. Simonenko, ${ }^{13}$ K. Sliwa, ${ }^{50}$ J. R. Smith, ${ }^{7}$ F. D. Snider, ${ }^{15}$ H. Song, ${ }^{42}$ V. Sorin, ${ }^{4}$ R. St. Denis, ${ }^{19, *}$ M. Stancari, ${ }^{15}$ D. Stentz, ${ }^{15, w}$ J. Strologas, ${ }^{34}$ Y. Sudo, ${ }^{49}$ A. Sukhanov, ${ }^{15}$ I. Suslov, ${ }^{13}$ K. Takemasa, ${ }^{49}$ Y. Takeuchi, ${ }^{49}$ J. Tang, ${ }^{11}$ M. Tecchio, ${ }^{31}$ P. K. Teng, ${ }^{1}$ J. Thom, ${ }^{15, f}$ E. Thomson, ${ }^{40}$ V. Thukral, ${ }^{47}$ D. Toback, ${ }^{47}$ S. Tokar, ${ }^{12}$ K. Tollefson, ${ }^{32}$ T. Tomura, ${ }^{49}$ D. Tonelli, ${ }^{15, \mathrm{e}}$ S. Torre, ${ }^{17}$ D. Torretta, ${ }^{15}$ P. Totaro, ${ }^{39 \mathrm{a}}$ M. Trovato, ${ }^{41 \mathrm{a}, 41 \mathrm{~d}}$ F. Ukegawa, ${ }^{49}$ S. Uozumi, ${ }^{25}$ F. Vázquez, ${ }^{16,1}$ G. Velev, ${ }^{15}$ C. Vellidis, ${ }^{15}$ C. Vernieri, ${ }^{41 a, 41 d}$ M. Vidal, ${ }^{43}$ R. Vilar, ${ }^{9}$ J. Vizán, ${ }^{9}$,dd M. Vogel, ${ }^{34}$ G. Volpi, ${ }^{17}$ P. Wagner, ${ }^{40}$ R. Wallny, ${ }^{15, j}$ S. M. Wang, ${ }^{1}$ D. Waters, ${ }^{28}$ W. C. Wester III, ${ }^{15}$ D. Whiteson, ${ }^{40, \mathrm{c}}$ A.
B. Wicklund, ${ }^{2}$ S. Wilbur, ${ }^{7}$ H. H. Williams, ${ }^{40}$ J. S. Wilson, ${ }^{31}$ P. Wilson, ${ }^{15}$ B. L. Winer, ${ }^{35}$ P. Wittich, ${ }^{15, f}$ S. Wolbers, ${ }^{15}$ H. Wolfmeister, ${ }^{35}$ T. Wright, ${ }^{31} \mathrm{X}$. Wu, ${ }^{18} \mathrm{Z}$. Wu, ${ }^{5}$ K. Yamamoto, ${ }^{37}$ D. Yamato, ${ }^{37}$ T. Yang, ${ }^{15}$ U. K. Yang, ${ }^{25}$ Y. C. Yang, ${ }^{25}$

W.-M. Yao, ${ }^{26}$ G. P. Yeh, ${ }^{15}$ K. Yi, ${ }^{15, \mathrm{~m}}$ J. Yoh, ${ }^{15}$ K. Yorita, ${ }^{51}$ T. Yoshida, ${ }^{37, \mathrm{k}}$ G. B. Yu, ${ }^{14} \mathrm{I} . Y^{2},{ }^{25}$ A. M. Zanetti, ${ }^{48 \mathrm{a}}$ Y. Zeng, ${ }^{14}$ C. Zhou, ${ }^{14}$ and S. Zucchelli ${ }^{6 a, 6 b}$

(CDF Collaboration)

${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{3}$ University of Athens, 15771 Athens, Greece
${ }^{4}$ Institut de Fisica d'Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain ${ }^{5}$ Baylor University, Waco, Texas 76798, USA
${ }^{6 a}$ Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
${ }^{6 \mathrm{~b}}$ University of Bologna, I-40127 Bologna, Italy
${ }^{7}$ University of California, Davis, Davis, California 95616, USA
${ }^{8}$ University of California, Los Angeles, Los Angeles, California 90024, USA
${ }^{9}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
${ }^{10}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{11}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
${ }^{12}$ Comenius University, 84248 Bratislava, Slovakia; Institute of Experimental Physics, 04001 Kosice, Slovakia
${ }^{13}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
${ }^{14}$ Duke University, Durham, North Carolina 27708, USA
${ }^{15}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{16}$ University of Florida, Gainesville, Florida 32611, USA
${ }^{17}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
${ }^{18}$ University of Geneva, CH-1211 Geneva 4, Switzerland
${ }^{19}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
${ }^{20}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{21}$ Division of High Energy Physics, Department of Physics, University of Helsinki, FIN-00014, Helsinki, Finland;
Helsinki Institute of Physics, FIN-00014 Helsinki, Finland
${ }^{22}$ University of Illinois, Urbana, Illinois 61801, USA
${ }^{23}$ The Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{24}$ Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
${ }^{25}$ Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea;
Korea Institute of Science and Technology Information, Daejeon 305-806, Korea;
Chonnam National University, Gwangju 500-757, Korea;
Chonbuk National University, Jeonju 561-756, Korea; Ewha Womans University, Seoul, 120-750, Korea
${ }^{26}$ Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{27}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{28}$ University College London, London WC1E 6BT, United Kingdom
${ }^{29}$ Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
${ }^{30}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{31}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{32}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{33}$ Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
${ }^{34}$ University of New Mexico, Albuquerque, New Mexico 87131, USA
${ }^{35}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{36}$ Okayama University, Okayama 700-8530, Japan
${ }^{37}$ Osaka City University, Osaka 558-8585, Japan
${ }^{38}$ University of Oxford, Oxford OX1 3RH, United Kingdom
${ }^{39 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
${ }^{39 \mathrm{~b}}$ University of Padova, I-35131 Padova, Italy
${ }^{40}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{41 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
${ }^{41 \mathrm{~b}}$ University of Pisa, I-56127 Pisa, Italy
${ }^{41 \mathrm{c}}$ University of Siena, I-56127 Pisa, Italy
${ }^{41 \mathrm{~d}}$ Scuola Normale Superiore, I-56127 Pisa, Italy
${ }^{41 \mathrm{e}}$ INFN Pavia, I-27100 Pavia, Italy

${ }^{41 \mathrm{f}}$ University of Pavia, I-27100 Pavia, Italy
${ }^{42}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
${ }^{43}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{44}$ University of Rochester, Rochester, New York 14627, USA
${ }^{45}$ The Rockefeller University, New York, New York 10065, USA
${ }^{46 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy
${ }^{46 \mathrm{~b}}$ Sapienza Università di Roma, I-00185 Roma, Italy
${ }^{47}$ Mitchell Institute for Fundamental Physics and Astronomy, Texas A\&M University, College Station, Texas 77843, USA
${ }^{48 a}$ Istituto Nazionale di Fisica Nucleare Trieste, I-33100 Udine, Italy
${ }^{48 \mathrm{~b}}$ Gruppo Collegato di Udine, I-33100 Udine, Italy
${ }^{48 \mathrm{C}}$ University of Udine, I-33100 Udine, Italy
${ }^{48 \mathrm{~d}}$ University of Trieste, I-34127 Trieste, Italy
${ }^{49}$ University of Tsukuba, Tsukuba, Ibaraki 305, Japan
${ }^{50}$ Tufts University, Medford, Massachusetts 02155, USA
${ }^{51}$ Waseda University, Tokyo 169, Japan
${ }^{52}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{53}$ University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
${ }^{54}$ Yale University, New Haven, Connecticut 06520, USA

(Received 29 December 2017; revised manuscript received 5 March 2018; published 18 May 2018)
A search for the exotic meson $X(5568)$ decaying into the $B_{s}^{0} \pi^{ \pm}$final state is performed using data corresponding to $9.6 \mathrm{fb}^{-1}$ from $p \bar{p}$ collisions at $\sqrt{s}=1960 \mathrm{GeV}$ recorded by the Collider Detector at Fermilab. No evidence for this state is found and an upper limit of 6.7% at the 95% confidence level is set on the fraction of B_{s}^{0} produced through the $X(5568) \rightarrow B_{s}^{0} \pi^{ \pm}$process.

DOI: 10.1103/PhysRevLett.120.202006

The new and unexpected structure in the $B_{s}^{0} \pi^{ \pm}$final state recently reported by the D0 Collaboration [1,2] in $p \bar{p}$ collisions at $\sqrt{s}=1960 \mathrm{GeV}$ cannot be interpreted as a meson composed of a quark-antiquark pair. This reported signal, named $X(5568)$, is measured with a mass of $5567.8 \pm 2.9_{-1.9}^{+0.9} \mathrm{MeV} / c^{2}$ and a width of $21.9 \pm 6.4_{-2.5}^{+5.0} \mathrm{MeV} / c^{2}$. Several collaborations in both electron-positron and hadronic collision experiments have found evidence for other exotic hadron candidates formed with four or more quarks [3]. The $B_{s}^{0} \pi^{ \pm}$final state contains four quark flavors, which cannot result from the decay of any standard meson. An observation of this state, if confirmed, would represent the first tetraquark (four-quark) candidate containing four different quark flavors. However, efforts by the LHCb, CMS, and ATLAS Collaborations to confirm the $X(5568)$ provide no supporting evidence for its existence [4-6].

In this Letter we report the results of a search for the exotic meson $X(5568)$. This search is made in $p \bar{p}$ collisions at a center-of-mass energy of 1.96 TeV using the Collider Detector at Fermilab (CDF II) by reconstructing the decay

[^0]chain $X(5568) \rightarrow B_{s}^{0} \pi^{ \pm}, \quad B_{s}^{0} \rightarrow J / \psi \phi, \quad J / \psi \rightarrow \mu^{+} \mu^{-}, \quad$ and $\phi \rightarrow K^{+} K^{-}$. These studies use the full CDF II data sample corresponding to an integrated luminosity of $9.6 \mathrm{fb}^{-1}$ and constitute the first search for $X(5568)$ production in the same initial conditions as the D0 observation.

The CDF II detector is described in detail elsewhere [7]. This analysis uses the tracking and muon identification systems. The tracking system measured the trajectories of charged particles (tracks) and consisted of five layers of double-sided silicon detectors [8] and a 96 layer open-cell drift chamber (COT) [9] that operated inside a solenoid with a 1.4 T field oriented along the beam direction. Charged particles with transverse momentum $\left(p_{T}\right)$ greater than $250 \mathrm{MeV} / c$ that originated from the collision point were measured in the tracking system with a transversemomentum resolution of $\sigma\left(p_{T}\right) / p_{T}^{2} \approx 0.0008(\mathrm{GeV} / c)^{-1}$. Muon candidates from the decay $J / \psi \rightarrow \mu^{+} \mu^{-}$were identified by two sets of drift chambers located radially outside electromagnetic and hadronic calorimeters [10]. The central muon chambers covered the pseudorapidity region $|\eta|<0.6$ and were sensitive to muons with $p_{T}>1.4 \mathrm{GeV} / c$. A second muon system covered the region $0.6<|\eta|<1.0$ and detected muons having $p_{T}>2.0 \mathrm{GeV} / c$.

The mass resolution and acceptance for the $X(5568)$ and B_{s}^{0} decays are studied with a Monte Carlo simulation that generates $X(5568) \rightarrow B_{s}^{0} \pi^{ \pm}$decays consistent with CDF measurements of p_{T} and rapidity distributions for inclusive
B_{s}^{0} production. The simulated $X(5568)$ and B_{s}^{0} decay isotropically and other final-state decay processes are simulated with the EvtGen [11] program. The generated events are passed through the detector and trigger simulation based on a GEANT3 description [12] and processed through the same reconstruction and analysis algorithms used for the data.

This analysis is based on events recorded with a threelevel trigger that was dedicated to the collection of a $J / \psi \rightarrow \mu^{+} \mu^{-}$sample. The first level of the trigger system required two muon candidates with tracks in the COT and muon chamber systems that matched in the plane transverse to the beam direction. At this stage, the trigger system identified trigger tracks with $p_{T}>1.4 \mathrm{GeV} / c$ and segmented into 1.25° in the azimuthal angle. The second level imposed the requirement that the muon candidates have opposite charge and limited the accepted range of opening angle between them [13]. The third level of the trigger reconstructed the muon pair with the full resolution of the COT, and required that the invariant mass of the pair fall within the range $2.7-4.0 \mathrm{GeV} / c^{2}$.

The strategy for this analysis is to reconstruct the $B_{s}^{0} \pi^{ \pm}$ final state using similar methods to those used by previous CDF analyses [13,14]. The measured yields and acceptances are used to calculate the fraction of B_{s}^{0} produced through the process $X(5568) \rightarrow B_{s}^{0} \pi^{ \pm}$, given by

$$
\begin{align*}
& f_{B_{s}^{0} / X(5568)} \\
& \quad=\frac{\sigma(p \bar{p} \rightarrow X(5568)+\text { anything }) \times \mathcal{B}\left(X(5568) \rightarrow B_{s}^{0} \pi^{ \pm}\right)}{\sigma\left(p \bar{p} \rightarrow B_{s}^{0}+\text { anything }\right)} \\
& \quad=\frac{N_{X}}{N_{B_{s}^{0}}} \frac{1}{\alpha_{X, B_{s}^{0}}}, \tag{1}
\end{align*}
$$

where σ corresponds to the indicated inclusive cross section, \mathcal{B} the indicated branching fractions, N_{X} and $N_{B_{s}^{0}}$ are the numbers of $X(5568)$ and B_{s}^{0} reconstructed in the data, respectively, and $\alpha_{X, B_{s}^{0}}$ is the acceptance and reconstruction efficiency for the $X(5568)$ in events where the B_{s}^{0} is reconstructed. In the absence of an $X(5568)$ signal, this expression is used to calculate a limit on $f_{B_{s}^{0} / X(5568)}$.

The analysis of the data begins with a selection of wellmeasured $J / \psi \rightarrow \mu^{+} \mu^{-}$candidates. The trigger requirements are confirmed by selecting events that contain two oppositely charged muon candidates, each with matching COT and muon chamber tracks. Both muon tracks are required to have associated measurements in at least three layers of the silicon detector, and are fit with the constraint that they originate from a common decay point. Dimuon candidates are measured with an average mass resolution of $20 \mathrm{MeV} / c^{2}$ and candidates with a mass within $80 \mathrm{MeV} / c^{2}$ of the world-average J / ψ mass [15] are retained as J / ψ
candidates. Approximately $1.5 \times 10^{7} \mathrm{~J} / \psi$ candidates are obtained.

The reconstruction of ϕ candidates uses all additional tracks found in each event containing a J / ψ candidate. Pairs of oppositely charged tracks with three or more silicon layer measurements and $p_{T}>400 \mathrm{MeV} / c$ are assigned the $K^{ \pm}$mass and have their track parameters recalculated according to a fit that constrains them to intersect. Candidates whose fits converge have a mass measurement resolution that is insignificant compared to the ϕ natural width of $4.2 \mathrm{MeV} / c^{2}$ [15], and those with an invariant mass within $10 \mathrm{MeV} / c^{2}$ of the world-average ϕ mass [15] are retained as ϕ candidates.

The sample of B_{s}^{0} candidates is obtained by selecting all candidates where the four tracks satisfy a fit that constrains the tracks to originate from a common decay point and the dimuon to have the world-average J / ψ mass [15]. Further requirements placed on the B_{s}^{0} candidates include $p_{T}>$ $10 \mathrm{GeV} / c$ and $c t>100 \mu \mathrm{~m}$, where t is the proper decay time of the candidate. These requirements remove candidates for which the acceptance of the detector is low and reduce background due to prompt combinations. The $J / \psi \phi$ mass distribution obtained is shown in Fig. 1. The number of B_{s}^{0} candidates in the data is obtained by performing a binned likelihood fit on the distribution in Fig. 1 with a linear background model and two Gaussian functions with a common central value as a signal model. We measure a B_{s}^{0} yield of $N_{B_{s}^{0}}=3552 \pm 65$ candidates and a mass of $5366.5 \pm 0.2 \mathrm{MeV} / c^{2}$, consistent with the world average [15]. The weighted average of the two width terms from the fit is $11 \mathrm{MeV} / c^{2}$ and candidates with mass within $20 \mathrm{MeV} / c^{2}$ of the nominal B_{s}^{0} mass are used for the $X(5568)$ search. Mass sidebands are also indicated in Fig. 1 and are defined as two mass ranges of $20 \mathrm{MeV} / c^{2}$ full width centered $\pm 100 \mathrm{MeV} / c^{2}$ from the nominal B_{s}^{0} mass.

FIG. 1. Distribution of $J / \psi \phi$ mass for $p_{T}>10 \mathrm{GeV} / c$ with the fit overlaid on the histogram. The B_{s}^{0} signal region is highlighted in gray. Areas used to define backgrounds based on the mass sidebands are indicated in black.

The final $B_{s}^{0} \pi^{ \pm}$sample is obtained by combining the B_{s}^{0} candidate tracks with the remaining tracks, assumed to be pions, that have three or more silicon detector hits and $p_{T}>400 \mathrm{MeV} / c$. A constrained fit is performed and requires the B_{s}^{0} and $\pi^{ \pm}$candidates to originate from the same point. This final selection also requires the transverse displacement of the full final state with respect to the beam line to be less than $100 \mu \mathrm{~m}$. A mass resolution of $1.8 \mathrm{MeV} / c^{2}$ is obtained for the $B_{s}^{0} \pi^{ \pm}$final state by defining $M\left(B_{s}^{0} \pi^{ \pm}\right)=M\left(J / \psi \phi \pi^{ \pm}\right)-M(J / \psi \phi)+M_{B_{s}^{0}}$, where $M_{B_{s}^{0}}$ is the world-average value of the mass of the B_{s}^{0} [15]. No requirement is made on the opening between the B_{s}^{0} and $\pi^{ \pm}$ as is done in the first report of the $X(5568)$ [1] due to the distortion in the $M\left(B_{s}^{0} \pi^{ \pm}\right)$distribution created by such a selection.

Simulated events are used to estimate the acceptance of the B_{s}^{0} and the relative acceptance $\alpha_{X, B_{s}^{0}}$ for the $X(5568)$ for events containing a reconstructed B_{s}^{0}. A correction is made to the generated $X(5568)$ sample so that the simulated $p_{T}\left(B_{s}^{0}\right)$ distribution is identical to the acceptance-corrected $p_{T}\left(B_{s}^{0}\right)$ distribution observed in the data. Three simulated samples are generated using widths of the $X(5568)$, with values of $21.6,15.5$, and $28.7 \mathrm{MeV} / c^{2}$. These correspond to the central value and the range of the uncertainty for the width measured in the reported $X(5568)$ [1].

The shape of the $B_{s}^{0} \pi^{ \pm}$mass distributions obtained from simulated events is dependent on p_{T}, due to the acceptance and efficiency of the tracking system. The reconstructed signal shape expected for the $X(5568)$ is obtained by integrating the p_{T}-dependent mass distribution shapes found in simulation with a weighting determined by the observed $p_{T}\left(B_{s}^{0}\right)$ distribution. The expected mass-distribution shape is parametrized with an empirical function using two Gaussians and a tail term on the high-mass side from the peak. The yield of $X(5568)$ observed in the simulated events provides a value of $\alpha_{X, B_{s}^{0}}=0.445 \pm 0.027$ for $p_{T}\left(B_{s}^{0}\right)>10 \mathrm{GeV} / c$, where the uncertainty is statistical. A systematic variation on $\alpha_{X, B_{s}^{0}}$ of ± 0.018 is found due to the uncertainty on the reported width of the $X(5568)$.

The $B_{s}^{0} \pi^{ \pm}$mass distribution is analyzed with an unbinned likelihood fit with the likelihood calculated as

$$
\begin{equation*}
\mathcal{L}=\prod_{i}^{N}\left[f \mathcal{S}\left(m_{i}\right)+(1-f) \mathcal{B}\left(m_{i}\right)\right] \tag{2}
\end{equation*}
$$

where N is the number of entries in the distribution, m_{i} is the mass of entry i, f is the signal fraction obtained from the fit, $\mathcal{S}\left(m_{i}\right)$ is the signal model obtained from simulation and $\mathcal{B}\left(m_{i}\right)$ is the background model. The functional form of $\mathcal{B}\left(m_{i}\right)$ is obtained by fitting the mass distribution with all candidates within the central value of the reported width (21.6 MeV/c c^{2}) [1] of the $X(5568)$ mass value omitted, with f fixed at the value that results from the D 0 observation, and $\mathcal{B}\left(m_{i}\right)$ modeled with a polynomial. Variations in this fit are also made, corresponding to the

FIG. 2. Distribution of $B_{s}^{0} \pi^{ \pm}$mass where the candidates within $21.6 \mathrm{MeV} / c^{2}$ of the $X(5568)$ are omitted. The background model is overlaid in a solid line, where the line width indicates $\pm \sigma$ variations on the background model due to variations in the assumption for the $X(5568)$ signal amplitude. Dashed curves indicate the signal components used to obtain the background model and its variations.
uncertainty on the signal yield in the D0 measurement. The background model is shown overlaid on the data in Fig. 2.

The background model obtained in this process is fixed in the fit of the full set of candidates where f is allowed to float. This fit is overlaid on the data in Fig. 3 and estimates an $X(5568)$ yield of $N_{X}=36 \pm 30$ candidates. The signal and background models were varied by the uncertainties in the D 0 measurements on the mass, width, and production rate of the $X(5568)$ to provide a systematic uncertainty estimate of 14 candidates. This signal yield is used in Eq. (1) with the acceptance and B_{s}^{0} yield to calculate $f_{B_{s}^{0} / X(5568)}=$ $[2.3 \pm 1.9$ (stat) ± 0.9 (syst) $] \%$. This is compared to the value obtained by D0 of $[8.6 \pm 1.9($ stat $) \pm 1.4($ syst $)] \%$ by

FIG. 3. Distribution of $B_{s}^{0} \pi^{ \pm}$mass for $p_{T}\left(B_{s}^{0}\right)>10 \mathrm{GeV} / c$, for candidates in the B_{s}^{0} mass range and for the mass sidebands, as indicated. The fit to the data with a freely floating (null) signal is overlaid in a solid (dashed) line.
calculating $\chi^{2}=\left(f_{D 0}-f_{C D F}\right)^{2} / \Sigma_{i} \sigma_{i}^{2}=4.0$ where the f_{x} are the central values obtained for each experiment and the σ_{i} are the associated uncertainties. This result would be expected to occur with a 4.6% frequency. Figure 3 also shows the $M\left(B_{s}^{0} \pi^{ \pm}\right)$distribution obtained from the $J / \psi \phi$ candidates in the B_{s}^{0} mass sidebands indicated in Fig. 1 for comparison.

The $X(5568)$ yield obtained in the data is consistent with no signal. Therefore, the fit where the signal is allowed to float is compared to the null hypothesis by repeating the fit where the signal component is omitted. The value of twice the difference in the logarithm of the likelihood, $2 \delta \log \mathcal{L}$, between the fits is then used as a measure of the compatibility of the data with the background-only hypothesis. An upper limit on the presence of an $X(5568)$ signal is calculated by following a frequentist Neyman construction. The technique uses simulated mass distributions with a shape given by the probability distribution in Eq. (2). Various signal-strength hypotheses are generated by fixing $f_{B_{s}^{0} / X(5568)}$ for each simulation, producing a signal fraction given by $f=N_{X} / N$. Ten thousand trials are run for each signal-strength hypothesis and the mass distributions obtained in each trial are fit twice as in the data, once with a floating signal fraction and once with the null signal hypothesis. The $2 \delta \log \mathcal{L}$ is then evaluated for all simulated distributions.

The results of these simulations are used to set an upper limit on $f_{B_{s}^{0} / X(5568)}$. The cumulative probability distribution of $2 \delta \log \mathcal{L}$ for a given $f_{B_{s}^{0} / X(5568)}$ provides the test statistic. The 95% confidence level, C.L., upper limit is obtained by determining the value of $f_{B_{s}^{0} / X(5568)}$ where the value of the cumulative probability distribution, evaluated at the value of $2 \delta \log \mathcal{L}$ seen in the data, approximates 0.05 . A value of $f_{B_{s}^{0} / X(5568)}=0.055$ is obtained by this method. A crosscheck of this calculation was performed by using the profile likelihood technique on the fit function, and a comparable result is obtained.

Alternative background models that use a $B^{0} \rightarrow$ $J / \psi K^{*}(892)^{0}$ sample have also been used to obtain upper limits on $f_{B_{s}^{0} / X(5568)}$ through this technique. The alternative models are found by fitting the $B^{0} \pi^{-}$and $B^{0} \pi^{+}$mass distributions and omitting mass regions corresponding to the $B_{1}(5721)^{+}$or $B_{2}^{*}(5747)^{+}$(for $B^{0} \pi^{+}$). These background models are then used to repeat the simulations used in the calculations for the upper limit. These alternatives give upper limits on $f_{B_{s}^{0} / X(5568)}$ that are comparable to the result based on the $B_{s}^{0} \pi^{ \pm}$fit.

Two systematic effects are considered that modify the upper limit obtained for $f_{B_{s}^{0} / X(5568)}$. The first takes into account uncertainties on the quantities in Eq. (1). The uncertainties on the quantities are combined in quadrature to obtain an overall relative uncertainty of 6.6%, where the uncertainty on the acceptance $\left(\alpha_{X, B_{s}^{0}}\right)$ provides the largest contribution (6.0\%). The second systematic uncertainty is
due to the background model. An alternative model, where the input value of $f_{B_{s}^{0} / X(5568)}$ is increased by one standard deviation with respect to the D0 central value tests this sensitivity. An upper limit of $f_{B_{s}^{0} / X(5568)}=0.060$ is found for this background model, so a relative uncertainty of 9% is assigned to this effect. Combining these in quadrature gives a total systematic uncertainty of 11% on this measurement of $f_{B_{s}^{0} / X(5568)}$. We treat the systematic uncertainty as a normal distribution width, and consider twice its value to correspond to a 95% fluctuation. Consequently, inclusion of the systematic uncertainty provides a 95% C.L. upper limit on $f_{B_{s}^{0} / X(5568)}$ of 0.067 .

In conclusion, a search for the exotic meson $X(5568)$ is performed with the full CDF II data set, which was obtained with the same collision conditions and similar kinematic range as in the original observation of this state by D0 [1]. No statistically significant evidence for the process $X(5568) \rightarrow B_{s}^{0} \pi^{ \pm}$is found. A comparison between this result and the report by D0 finds that the probability of consistency between the two experiments is 4.6%. A 95% C.L. upper limit of 6.7% is found for fraction of B_{s}^{0} produced through this process. Consequently, this analysis does not confirm the existence of the $X(5568)$.

This document was prepared by the CDF Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R\&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.
*Deceased.
${ }^{\text {a }}$ Visitor from University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
${ }^{b}$ Visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
${ }^{\text {c }}$ Visitor from University of California Irvine, Irvine, CA 92697, USA.
${ }^{\mathrm{d}}$ Visitor from Institute of Physics, Academy of Sciences of the Czech Republic, 182 21, Czech Republic.
${ }^{\mathrm{e}}$ Visitor from CERN, CH-1211 Geneva, Switzerland.
${ }^{\mathrm{f}}$ Visitor from Cornell University, Ithaca, NY 14853, USA.
${ }^{\mathrm{g}}$ Visitor from University of Cyprus, Nicosia CY-1678, Cyprus.
${ }^{\text {h }}$ Visitor from Office of Science, U.S. Department of Energy, Washington, DC 20585, USA.
${ }^{i}$ Visitor from University College Dublin, Dublin 4, Ireland. ${ }^{\mathrm{j}}$ Visitors from ETH, 8092 Zürich, Switzerland.
${ }^{\text {k }}$ Visitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.
${ }^{1}$ Visitor from Universidad Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal.
${ }^{\mathrm{m}}$ Visitor from University of Iowa, Iowa City, IA 52242, USA.
${ }^{\text {n }}$ Visitor from Kinki University, Higashi-Osaka City, Japan 577-8502.
${ }^{\circ}$ Visitor from Kansas State University, Manhattan, KS 66506, USA.
${ }^{\mathrm{p}}$ Visitor from Brookhaven National Laboratory, Upton, NY 11973, USA.
${ }^{q}$ Visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, Via Arnesano, I-73100 Lecce, Italy.
${ }^{\mathrm{r}}$ Visitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.
${ }^{\text {s }}$ Visitor from University of Melbourne, Victoria 3010, Australia.
${ }^{t}$ Visitor from Muons, Inc., Batavia, IL 60510, USA.
${ }^{\text {u }}$ Visitor from Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan.
${ }^{\mathrm{v}}$ Visitor from National Research Nuclear University, Moscow 115409, Russia.
${ }^{w}$ Visitor from Northwestern University, Evanston, IL 60208, USA.
${ }^{\text {x }}$ Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.
${ }^{\mathrm{y}}$ Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.
${ }^{\text {z }}$ Visitor from CNRS-IN2P3, Paris, F-75205 France.
${ }^{\text {aa }}$ Visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.
${ }^{\text {bb }}$ Visitor from Sejong University, Seoul 143-747, Korea.
${ }^{\text {cc }}$ Visitor from The University of Jordan, Amman 11942, Jordan.
${ }^{\text {dd }}$ Visitor from Universite catholique de Louvain, 1348 Louvain-La-Neuve, Belgium.
${ }^{\text {ee }}$ Visitor from University of Zürich, 8006 Zürich, Switzerland.
${ }^{\mathrm{ff}}$ Visitor from Massachusetts General Hospital, Boston, MA 02114 USA.
${ }^{\text {gg }}$ Visitor from Harvard Medical School, Boston, MA 02114 USA.
${ }^{\text {hh }}$ Visitor from Hampton University, Hampton, VA 23668, USA.
${ }^{\text {ii }}$ Visitor from Los Alamos National Laboratory, Los Alamos, NM 87544, USA.
${ }^{\mathrm{jj}}$ Visitor from Università degli Studi di Napoli Federico II, I-80138 Napoli, Italy.
[1] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 117, 022003 (2016).
[2] V. M. Abazov et al. (D0 Collaboration), arXiv:1712.10176.
[3] S. L. Olsen, T. Skwarnicki, and D. Zieminska, Rev. Mod. Phys. 90, 015003 (2018).
[4] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 117, 152003 (2016).
[5] A. M. Sirunyan et al. (CMS Collaboration), preceding Letter, Phys. Rev. Lett. 120, 202005 (2018).
[6] M. Aaboud et al. (ATLAS Collaboration), following Letter, Phys. Rev. Lett. 120, 202007 (2018).
[7] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005); T. Affolder et al., Nucl. Instrum. Methods, Sect. A 526, 249 (2004).
[8] T. Aaltonen et al., Nucl. Instrum. Methods, Sect. A 729, 153 (2013).
[9] T. Affolder et al., Nucl. Instrum. Methods, Sect. A 526, 249 (2004).
[10] G. Ascoli et al., Nucl. Instrum. Methods, Sect. A 268, 33 (1988).
[11] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[12] R. Brun, R. Hagelberg, M. Hansroul, and J. C. Lassalle, CERN Reports No. CERN-DD-78-2-REV and No. CERN-DD-78-2.
[13] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 75, 012010 (2007).
[14] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 89, 072014 (2014).
[15] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

[^0]: Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP ${ }^{3}$.

