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Abstract
We prove a Weyl upper bound on the number of scattering resonances in strips 
for manifolds with Euclidean infinite ends. In contrast with previous results, 
we do not make any strong structural assumptions on the geodesic flow on 
the trapped set (such as hyperbolicity) and instead use propagation statements 
up to the Ehrenfest time. By a similar method we prove a decay statement 
with high probability for linear waves with random initial data. The latter 
statement is related heuristically to the Weyl upper bound. For geodesic flows 
with positive escape rate, we obtain a power improvement over the trivial 
Weyl bound and exponential decay up to twice the Ehrenfest time.
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(Some figures may appear in colour only in the online journal)

1.  Introduction

In this paper, we study asymptotics of scattering resonances and linear waves on a d-dimen-
sional noncompact Riemannian manifold (M, g) with Euclidean infinite ends (see section 2.1). 
Resonances are the spectral data for the Laplacian on non-compact manifolds analogous to 
eigenvalues in the compact setting. They are defined as poles of the meromorphic continuation 
of the L2 resolvent (see section 3.1)

Rg(λ) = (−∆g − λ2)−1 :
{

L2(M) → L2(M), Imλ > 0,
L2

comp (M) → L2
loc(M), λ ∈ C \ (−∞, 0].

.

�

(1.1)
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Our results involve the structure of the homogeneous geodesic flow

ϕt = exp(tHp) : T∗M \ 0 → T∗M \ 0, p(x, ξ) = |ξ|g(x).� (1.2)

1.1.  Weyl bounds

Our first result is an upper bound on the number of resonances in strips,

N (R,β) := #{λ ∈ [R, R + 1] + i[−β, 0] : λ is a resonance}, β � 0, R → ∞.
� (1.3)

We first state the following simple corollary of the main result:

Theorem 1.  For all β > 0 we have

N (R,β) = O(Rd−1).� (1.4)

Moreover, if the trapped set K ⊂ T∗M \ 0 of ϕt has volume zero (see (2.6)), then

N (R,β) = o(Rd−1) as R → ∞.� (1.5)

The bound (1.4) has previously been established in various settings by Petkov and Zworski 
[PZ99, 1.6], Bony [Bon01], and Sjöstrand and Zworski [SZ07, theorem 2]. We remark that in 
general it is difficult to obtain lower bounds on the number of resonances in strips.

To state a more precise bound, we use Liouville volume of the set of trajectories trapped 
for time t

V(t) = µL(S∗M ∩ T (t)), T (t) = π−1(B) ∩ ϕ−t(π
−1(B)),� (1.6)

where π : T∗M \ 0 → M  is the projection map, S∗M = {|ξ|g = 1} is the cosphere bundle, and 
B is a large compact set with smooth boundary, see (2.12). We also use the Ehrenfest time at 
frequency R > 0,

te(R) =
logR

2Λmax
, Λmax := lim sup

|t|→∞

1
|t|

log sup
(x,ξ)∈T (t)

‖dϕt(x, ξ)‖.� (1.7)

Here Λmax ∈ [0,∞) is the maximal expansion rate and if Λmax = 0, we may replace Λmax 
by an arbitrarily small positive number and accordingly take te(R) = C logR for any fixed 
constant C.

The following is our main Weyl bound, which immediately implies theorem 1 since V(t) 
is always bounded and limt→∞ V(t) = 0 when K has volume zero. A connection between the 
function V(t) and resonance counting has previously been used heuristically in the literature, 
see [Zwo99b, 10]. See also Stefanov [Ste03] for volume-based bounds on the number of reso-
nances polynomially close to the real axis.

Theorem 2.  For each β � 0, ε > 0, there exists a constant C > 0 such that

N (R,β) � CRd−1 min
[
V
(
(1 − ε)te(R)

)
, exp

(
2βte(R)

)
· V

(
2(1 − ε)te(R)

)]
.

�
(1.8)

The proof of theorem 2 follows the strategy of [Dya15a]. We first construct an approximate 
inverse for the complex scaled version of the operator −∆g − λ2 which shows that if λ is a 
resonance, then I − A(λ) is not invertible, where A(λ) is a pseudodifferential operator whose 
symbol is supported in a small neighborhood of the trapped set. By Jensen’s inequality, the 
number of resonances can be estimated using bounds on the determinant of I − A(λ)2, which 
is controlled by the Hilbert–Schmidt norm ‖A(λ)‖HS. The latter norm can be bounded by the 
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right-hand side of (1.8). The operator A(λ) is defined using the dynamics of the flow for time 
te(R), and due to Egorov’s theorem up to Ehrenfest time it lies in a mildly exotic pseudodiffer
ential calculus.

The proof of theorem 2 only relies on propagation of singularities and the semiclassical 
outgoing property of the resolvent, see section 3.1. In particular it applies to a wide variety 
of situations including semiclassical Schrödinger operators and asymptotically hyperbolic 
manifolds (where [Vas13, Vas12] replaces complex scaling). It also applies to the setting 
of Pollicott–Ruelle resonances where upper bounds based on volume estimation have been 
proved by Faure and Sjöstrand [FS11], Datchev, Dyatlov, and Zworski [DDZ14], and Faure 
and Tsujii [FT17].

The expression (1.8) can be bounded in terms of the classical escape rate

γ := − lim sup
t→∞

1
t
logV(t) � 0.� (1.9)

Theorem 2 implies that (see figure 1(a))

N (R,β) = O(Rm(β,γ)+), m(β, γ) :=




d − 1 − γ−β
Λmax

, 0 � β � γ
2 ;

d − 1 − γ
2Λmax

, β � γ
2 .

� (1.10)

where O(Rm+) stands for a function which is O(Rm+ε) for each ε > 0. Note that the change 
in behavior for m(β, γ) happens when β is equal to half the classical escape rate, which is the 
depth at which accumulation of resonances has previously been observed mathematically, 
numerically, and experimentally—see section 1.3.

Under the assumption that the trapped set is hyperbolic, there exist several previous results 
giving bounds on N (R,β) which are stronger than (1.10), see section 1.3. For instance, in the 
case of d-dimensional convex co-compact hyperbolic quotients with limit set of dimension 
δ ∈ [0, d − 1) we have [Dya15a, theorem 1]

N (R,β) = O(Rm′(β,δ)+), m′(β, δ) = min(2δ + 2β + 1 − d, δ).� (1.11)

Since in this case γ = d − 1 − δ  and Λmax = 1, the bound (1.11) corresponds to (1.10) with 
Λmax replaced by 1

2Λmax, or equivalently te(R) replaced by 2te(R). The lack of optimality of 
(1.8) is thus due to the fact that without the hyperbolicity assumption we can only propagate 
quantum observables up to the Ehrenfest time (rather than twice the Ehrenfest time as in 

β

m

γ/2

d − 1

d − 1 − γ
2Λmax

d − 1 − γ
Λmax

m(β, γ)

m (β, δ)

t

ψU(t)ψuR

1

R−γ/(2Λmax)+ε

2te(R)

(a) (b)

Figure 1.  (a) A plot of the exponent m(β, γ) from (1.11) in the case of positive classical 
expansion rate γ, as compared to the standard Weyl law m = d − 1 and to the exponent 
m′(β, δ) from [Dya15a] in the case of hyperbolic manifolds. (b) A plot of the typical 
behavior of the norm ‖ψU(t)ψuR‖L2  from theorem 3.

S Dyatlov and J Galkowski﻿Nonlinearity 30 (2017) 4301
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[Dya15a]). Upper bounds on N (R,β) are also available in the case of normally hyperbolic 
trapping—see section 1.3.

On the other hand, little is known on resonance bounds in strips for smooth metrics when 
ϕt is not hyperbolic or normally hyperbolic on the trapped set, and theorem 2 appears to 
give the first general upper bound depending on the dynamics of ϕt. (For operators with real 
analytic coefficients, a bound depending on the volume of an R−1/2 sized neighborhood of 
the trapped set was proved by Sjöstrand [Sjö90, theorem 4.2].) In particular, if the escape rate 
is positive then theorem 2 gives a power improvement over O(Rd−1). The most promising 
potential example of such systems which are not hyperbolic/normally hyperbolic is given by 
uniformly partially hyperbolic systems, see [CP14, theorem 4] and [You90].

An example with zero escape rate is given by manifolds of revolution with cylindrical or 
degenerate hyperbolic trapping, where theorem 2 gives an improvement which is a power of 
logR—see section 7. See the work of Christianson [Chr13] for a related question of resolvent 
bounds on more general manifolds of revolution.

1.2.  Wave decay for random initial data

Our next theorem concerns high probability decay estimates for the half-wave group

U(t) := exp(−it
√
−∆g).

It is often not possible to show deterministic exponential decay for the cutoff propagator 
ψU(t)ψ, ψ ∈ C∞

c (M), when the trapping is sufficiently strong. However as theorem 3 below 
shows, if the classical escape rate is positive then such exponential decay holds for a certain 
time when the initial data is random. We apply U(t) to a function chosen at random using the 
following procedure. Let B be the large smooth compact subset of M given by (2.12), ∆B be 
the Dirichlet Laplacian on B with respect to the metric g, and {(ek,λk)}∞k=1 be an orthonormal 
basis of L2(B) with

(−∆B − λ2
k)ek = 0.

Fix small ε′ > 0. For R > 0 consider the subspace of L2(B)

ER :=
{∑

k∈IR

akek(x), ak ∈ C
}

, IR := {k : λk ∈ R[1 − ε′, 1 + ε′]}.� (1.12)

By the Weyl law [Hör09, theorem 29.3.3], ER has dimension cRd +O(Rd−1) for some c > 0. 
Let

uR ∈ SR := {u ∈ ER : ‖u‖L2 = 1}

be chosen at random with respect to the standard measure on the sphere. As before, denote by 
K ⊂ T∗M \ 0 the trapped set. Then our result is as follows:

Theorem 3.  Suppose that K �= ∅ and ψ ∈ C∞
c (B◦). Fix C0,α, ε > 0. Then there exists 

C > 0 such that for all m � C ,

P
[
‖ψU(t)ψuR‖L2 � m

√
V
(
(1 − ε)min(t, 2te(R))

)
for all t ∈ [α logR, C0R]

]
� 1 − Ce−m2/C.

� (1.13)
A related result in the setting of the damped wave equation  was proved by Burq–Lebeau 
[BL13, p 6]. To the authors’ knowledge, theorem 3 has not been previously known even in 
simple settings such as a single hyperbolic trapped orbit. We expect that a corresponding 
lower bound can be proved by a similar argument.

S Dyatlov and J Galkowski﻿Nonlinearity 30 (2017) 4301
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In terms of the escape rate γ from (1.9), theorem 3 gives the following bound with high 
probability for each ε > 0 (see figure 1(b)):

‖ψU(t)ψuR‖L2 =

{
O(e−γt/2+εt), α logR � t � 2te(R);
O(R−γ/(2Λmax)+ε), 2te(R) � t � C0R.

� (1.14)

The bounds (1.10) and (1.14) (and more generally theorems 2 and 3) are related by the follow-
ing heuristic. To simplify the formulas below assume that Λmax = 1. Take small β > 0, then 
by (1.10) the number of resonances in

Ω = {λ : R/2 � |Reλ| � R, Imλ � −β}

is O(Rd−γ+β+). Suppose that U(t) has a resonance expansion up to Imλ = −β  (similar to 
[DZ, theorem 3.9] but with infinitely many terms in the expansion; such resonance expan-
sions are quite rare which is one of the reasons why the argument below is heuristic). Then 
we expect for some N,

ψU(t)ψuR =
∑
λ∈Ω

λ resonance

e−itλ〈ψuR, vλ〉ψwλ +O(RNe−βt) +O(R−∞).
� (1.15)

Here resonances with Imλ � −β  and |Reλ| /∈ [R/2, 2R] would contribute O(R−∞) because 
the corresponding coresonant states live in a different band of frequencies than ψuR.

If we additionally knew that the resonant and coresonant states wλ, vλ are bounded in L2
loc 

and form approximately orthonormal systems on supp ψ, then with high probability we would 
have 〈ψuR, vλ〉 ∼ R−d/2. Estimating the norm of the sum on the right-hand side of (1.15) and 
using approximate orthogonality, we then expect that

‖ψU(t)ψuR‖L2 � O(R
β−γ

2 +) +O(RNe−βt).

For t � C1 logR and C1 large enough, the first term on the right-hand side dominates and we 
recover (1.13) (given that β can be chosen small). Note that (1.13) also holds for t � C1 logR, 
but this cannot be seen from the resonance expansion because the error term in this expansion 
dominates for short times.

We remark that while the above heuristic is useful to relate theorems 2 and 3, the proof of 
theorem 3 does not rely on it. Instead, by a concentration of measure argument we reduce to 
estimating the Hilbert–Schmidt norm of the cutoff propagator ψU(t)ψ restricted to a range of 
frequencies. The latter norm is next bounded in terms of the volume V(t). As in the proof of 
theorem 2, this strategy can only be used up to time 2te(R) so that the resulting symbols still 
lie in a mildly exotic calculus.

1.3.  Previous results

We now briefly review previous results on Weyl bounds for resonances in strips, referring 
the reader to the reviews of Nonnenmacher [Non11, sections 4,7] and Zworski [Zwo17, sec-
tion 3.4] for more information.

When the trapping is hyperbolic, upper bounds on N (R,β) have been proved in vari-
ous settings by Sjöstrand [Sjö90], Zworski [Zwo99a], Guillopé, Lin, and Zworski [GLZ04], 
Sjöstrand and Zworski [SZ07], Datchev and Dyatlov [DD13], and Nonnenmacher, Sjöstrand, 
and Zworski [NSZ14]. These bounds take the form

N (R,β) = O(Rδ+)� (1.16)

S Dyatlov and J Galkowski﻿Nonlinearity 30 (2017) 4301
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where 2δ + 1 is the upper Minkowski dimension of K ∩ S∗M , and Rδ+ can be replaced by Rδ 
if K ∩ S∗M  has pure Minkowski dimension. The bound (1.16) is stronger than the one in theo-
rem 2. Indeed, ϕ−t/2(T (t)) contains an e−(Λmax+ε)t/2 sized neighborhood of the trapped set 
K, which implies that (assuming that the upper and lower Minkowski dimensions of K agree)

V((1 − ε)t) � C−1e−Λmax(d−1−δ)t.

Therefore

Rd−1 min
[
V
(
(1 − ε)te(R)

)
, exp

(
2βte(R)

)
· V

(
2(1 − ε)te(R)

)]
� C−1 min

(
R

d−1+δ
2 , Rδ+β/Λmax

)
.

See also the discussion following (1.11).
In the setting of hyperbolic quotients, Naud [Nau14], Jakobson and Naud [JN16], and Dyatlov 

[Dya15a] have obtained bounds which improve over (1.16) when δ < γ/2; here γ > 0 is the 
escape rate defined in (1.9). See also the work of Dyatlov and Jin [DJ17] in the case of open 
quantum maps. Concentration of resonances near the line {Imλ = −γ/2} has been observed 
numerically (for the semiclassical zeta function in obstacle scattering) by Lu, Sridhar, and 
Zworski [LSZ03] and experimentally (for microwave scattering) by Barkhofen et al BWP+  13.

For r-normally hyperbolic trapped sets (such as those appearing in Kerr–de Sitter black 
holes), Dyatlov [Dya15b] obtained an upper bound of the form (1.16). In this setting K is 
smooth and δ is an integer. Under a pinching condition, it is shown in [Dya15b, Dya16] that 
resonances in strips have a band structure and the number of resonances in the first band with 
|λ| � R grows like Rδ+1.

1.4.  Structure of the paper

	 •	In section 2 we review geometry and dynamics of manifolds with Euclidean ends (section 
2.1) and semiclassical analysis (sections 2.2 and 2.3).

	 •	In section 3 we perform analysis of the scattering resolvent and the wave propagator near 
the infinite ends of M to reduce to a neighborhood of the trapped set.

	 •	In section 4 we construct dynamical cutoff functions used in the proofs.
	 •	In section 5, we prove theorem 2.
	 •	In section 6, we prove theorem 3.
	 •	In section 7, we estimate the quantity V(t) for two examples of manifolds of revolution.

2.  Preliminaries

2.1.  Manifolds with Euclidean ends

Thoughout the paper we assume that (M, g) is a noncompact complete d-dimensional 
Riemannian manifold which has Euclidean infinite ends in the following sense:

	 •	there exists a function r ∈ C∞(M;R) such that the sets {r � c} are compact for all c, and
	 •	there exists r0 > 0 such that {r � r0} is the disjoint union of finitely many components, 

each of which is isometric to Rd \ B(0, r0) with the Euclidean metric, and the pullback of 
r under the isometry is the Euclidean norm.

The connected components of {r � r0} are called the infinite ends of M. We para-

metrize each of them by a Euclidean coordinate y ∈ Rd \ B(0, r0) so that g =
∑d

j=1 dy2
j .  

S Dyatlov and J Galkowski﻿Nonlinearity 30 (2017) 4301
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We lift r to a function on T∗M  and parametrize the cotangent bundle of each infinite end by 
(y, η) ∈ T∗(Rd \ B(0, r0)).

As in (1.2), put p(x, ξ) := |ξ|g(x) and ϕt := exp(tHp). Then on each infinite end, we have

p(y, η) = |η|, Hp =
〈η, ∂y〉
|η|

.� (2.1)

Define the directly escaping sets in T∗Rd by

E±,R := {(y, η) ∈ T∗Rd : |y| � r0, ±〈y, η〉Rd � 0},

E◦
±,R := {(y, η) ∈ T∗Rd : |y| > r0, ±〈y, η〉Rd > 0},

� (2.2)

and pull these back by the Euclidean coordinates in the infinite ends of M to

E±, E◦
± ⊂ {r � r0} ⊂ T∗M.� (2.3)

It follows from (2.1) that for x ∈ T∗M \ 0,

x ∈ E± =⇒ ϕ±t(x) ∈ E±, r(ϕ±t(x)) �
√

r(x)2 + t2 for all t � 0,
� (2.4)

in particular r(ϕt(x)) → ∞ as t → ±∞. Arguing by contradiction, this implies that for all 
x ∈ T∗M \ 0

r(x) � r0, r(ϕ∓t0(x)) � r(x) for some t0 > 0 =⇒ ±〈y(x), η(x)〉Rd > 0.
� (2.5)

Therefore, if a trajectory of ϕt starting on {r < r0} enters some infinite end, it escapes to infin-
ity inside this end.

Define the incoming/outgoing tails Γ± and the trapped set K by

Γ± := {x ∈ T∗M \ 0 : r(ϕt(x)) �→ ∞ as t → ∓∞}, K := Γ+ ∩ Γ−.� (2.6)

The next lemma establishes basic properties of Γ± and K; see [DZ, section 6.1] for a more 
general setting.

Lemma 2.1. 

	 1.	The sets Γ±, K  are closed in T∗M \ 0 and

K ⊂ {r < r0},� (2.7)

		 in particular K ∩ S∗M  is compact.
	 2.	We have locally uniformly in x,

x ∈ Γ± =⇒ d(ϕt(x), K) → 0 as t → ∓∞.� (2.8)

	 3.	Let U be a neighborhood of K and V ⊂ T∗M \ 0 be compact. Then there exists T > 0 
such that

ϕ−t(V) ∩ ϕs(V) ⊂ U for all t, s � T .� (2.9)

	 4.	Assume that V ⊂ T∗M \ 0 is compact and V ∩ Γ± = ∅. Then there exists T > 0 such that

ϕ∓t(V) ⊂ E◦
∓ ∩

{
r �

√
r2

0 + (t − T)2
}

for all t � T .� (2.10)

		 Moreover, the set 
⋃

∓t�0 ϕt(V) is closed in T∗M .

S Dyatlov and J Galkowski﻿Nonlinearity 30 (2017) 4301
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Proof. 

	 1.	We first show that Γ− is closed in T∗M \ 0. Assume that x0 ∈ T∗M \ 0 and x0 /∈ Γ−. Then 
r(ϕt(x0)) → ∞ as t → ∞, thus by (2.5) there exists t0 > 0 such that ϕt0(x0) ∈ E◦

+. Since 
E◦
+ is open, we have ϕt0(x) ∈ E◦

+ for all x which are sufficiently close to x0. By (2.4), we 
have x /∈ Γ−, showing that x0 does not lie in the closure of Γ−. A similar argument shows 
that Γ+, and thus K, is closed.

		 It remains to show (2.7). Assume that x ∈ T∗M \ 0 and r(x) � r0. If 〈y(x), η(x)〉Rd � 0, 
then by (2.4) we have x /∈ Γ−. Similarly if 〈y(x), η(x)〉Rd � 0, then x /∈ Γ+.

	 2.	We consider the case of Γ−; the case of Γ+ is handled similarly. Assume (2.8) is false. Then 
there exists ε > 0 and sequences xk ∈ Γ−, tk → ∞ such that xk  lie in a compact subset 
of T∗M \ 0 and d(ϕtk(xk), K) > ε. By (2.4) and (2.5), xk ∈ Γ− implies that r(ϕtk(xk)) is 
bounded, specifically

r(ϕtk(xk)) � max(r(xk), r0) when tk � 0.

		 By passing to a subsequence, we may assume that

ϕtk(xk) → x∞ ∈ T∗M \ 0.

		 We have x∞ /∈ K; however, since Γ− is closed and invariant under the flow, x∞ ∈ Γ−. 
Therefore x∞ /∈ Γ+. By (2.5), there exists T > 0 such that ϕ−T(x∞) ∈ E◦

−. Then for large 
enough k, ϕtk−T(xk) ∈ E◦

−. It follows from (2.4) applied to ϕtk−T(xk) that as k → ∞,

r(xk) = r
(
ϕ−(tk−T)(ϕtk−T(xk))

)
�

√
r2

0 + (tk − T)2 → ∞,

		 contradicting the fact that xk  varies in a compact set.
	 3.	Assume (2.9) is false. Then there exist sequences

tk, sk → ∞, xk ∈ ϕ−tk(V) ∩ ϕsk(V), xk /∈ U.

		 By (2.4), assuming tk, sk � 0, we have

r(xk) � max(maxV r, r0).

		 Passing to a subsequence, we may assume

xk → x∞ ∈ T∗M \ 0.

		 We have x∞ /∈ K, thus x∞ /∈ Γ+ or x∞ /∈ Γ−. We assume x∞ /∈ Γ−, the other case being 
handled similarly. By (2.5), there exists T > 0 such that ϕT(x∞) ∈ E◦

+. Therefore, for 
k large enough we have ϕT(xk) ∈ E◦

+. It follows from (2.4) applied to ϕT(xk) that as 
k → ∞,

r(ϕtk(xk)) = r
(
ϕtk−T(ϕT(xk))

)
�

√
r2

0 + (tk − T)2 → ∞

		 contradicting the fact that ϕtk(xk) ∈ V .
	 4.	We assume V ∩ Γ− = ∅, the case V ∩ Γ+ = ∅ being handled similarly. Arguing as in 

part 1, we see that each x0 ∈ V  has an open neighborhood U(x0) such that for some 
T = T(x0) > 0 and all x ∈ U(x0), we have ϕT(x) ∈ E◦

+. By (2.4) applied to ϕT(x),
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ϕt(x) ∈ E◦
+ ∩

{
r �

√
r2

0 + (t − T(x0))2
}

for all x ∈ U(x0), t � T(x0).

		 To show (2.10), it remains to cover V by finitely many open sets of the form U(x0) and let 
T be the maximum of the corresponding times T(x0).

		 To show that 
⋃

t�0 ϕt(V) is closed, take sequences xj ∈ V , tj � 0, and assume that ϕtj(xj) 
converges to some y∞ ∈ T∗M . Then r(ϕtj(xj)) is bounded, so by (2.10) the sequence 
tj is bounded as well. Passing to subsequences, we may assume that tj → t∞ � 0, 
xj → x∞ ∈ V . Then y∞ = ϕt∞(x∞) ∈

⋃
t�0 ϕt(V), finishing the proof.� □

Following (1.6) we define for B ⊂ M

VB(t) := µL(S∗M ∩ TB(t)), TB(t) := π−1(B) ∩ ϕ−t(π
−1(B)).

By (2.9), if π−1(B) contains a neighborhood of K and B′ ⊂ M is compact, then there exists 
T > 0 such that

TB′(t + 2T) ⊂ ϕ−T(TB(t)), t � 0,

thus in particular

VB′(t + 2T) � VB(t), t � 0.� (2.11)

Since theorems 2 and 3 use quantities of the form V((1 − ε)t) where t � C−1 logR, by slightly 
changing ε and using (2.11) we see that these theorems do not depend on the choice of B, as 
long as π−1(B) contains a neighborhood of K. We henceforth fix r1 > r0 and put

B := {r � r1}.� (2.12)

By (2.4), the set B is geodesically convex, therefore

TB(t + t0) ⊂ ϕ−t0

(
TB(t)

)
for all t, t0 � 0,

implying that

VB(t + t0) � VB(t) for all t, t0 � 0.� (2.13)

Moreover, if K ∩ S∗M �= ∅, then we have for each Λ > Λmax,

VB(t) � C−1e−2(d−1)Λt, t � 0.� (2.14)

Indeed, if (x0, ξ0) ∈ K ∩ S∗M , then TB(t) ∩ S∗M  contains an e−Λt  sized neighborhood of 
ϕs(x0, ξ0) for all s ∈ [0, 1].

2.2.  Semiclassical analysis

We next briefly review the tools from semiclassical analysis used in this paper, referring the 
reader to [Zwo12, appendix E] and [DZ] for a comprehensive introduction to the subject.

For an h-dependent family of smooth functions a(x, ξ; h) on T∗M , we say that a lies in the 
symbol class Sm

h,ν(T
∗M) if it satisfies the following derivative bounds on T∗M , uniformly in h:

|∂α
y ∂

β
η a(y, η; h)| � Cαβh−ν(|α|+|β|)〈η〉m−|β|.

Here ν ∈ [0, 1/2) and m ∈ R are parameters; y is any coordinate system on M which coin-
cides with the Euclidean coordinate in each infinite end. Note that we require the bounds to 
be uniform as y → ∞.
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We fix a quantization procedure Oph, mapping each a ∈ Sm
h,ν(T

∗M) to an h-dependent fam-
ily of operators

Oph(a) : S (M) → S (M), S ′(M) → S ′(M).

Here S (M) denotes the space of Schwartz functions and S ′(M) the space of tempered dis-
tributions on M, defined using Euclidean coordinates in the infinite ends. In case M = Rd, 
Oph(a) is defined by the standard formula

Oph(a)u(x) = (2πh)−d
∫

R2d
e

i
h 〈x−y,ξ〉a(x, ξ)u(y) dydξ,� (2.15)

and for general M it is constructed from (2.15) using coordinate charts (taking the Euclidean 
coordinate in each infinite end of M) and a partition of unity, see for instance [DZ, proposition 
E.14]. We also arrange so that

Oph(1) = I.� (2.16)

This gives a class of operators (which is independent of the choice of coordinate charts; see 
below for the definition of h∞Ψ−∞(M))

Ψm
h,ν(M) = {Oph(a) +O(h∞)Ψ−∞(M) : a ∈ Sm

h,ν(T
∗M)}.

The principal symbol map

σh : Ψm
h,ν(M) → Sm

h,ν(T
∗M)/h1−2νSm−1

h,ν (T∗M), σh(Oph(a)) = a,

is independent of the choice of local coordinates and satisfies for A ∈ Ψm
h,ν(M), B ∈ Ψm′

h,ν(M)

σh(A∗) = σh(A) +O(h1−2ν)Sm−1
h,ν

,� (2.17)

σh(AB) = σh(A)σh(B) +O(h1−2ν)Sm+m′−1
h,ν

,� (2.18)

σh([A, B]) = −ih{σh(A),σh(B)}+O(h2(1−2ν))Sm+m′−2
h,ν

.� (2.19)

We have σh(A) = 0 if and only if A ∈ h1−2νΨm−1
h,ν (M). Every A ∈ Ψm

h,ν(M) is bounded uni-
formly in h as an operator

A : Hs
h(M) → Hs−m

h (M), s ∈ R,

where Hs
h(M) is the (global) semiclassical Sobolev space, defined using Euclidean coordi-

nates in the infinite ends (see [DZ, section E.1.6]). See for instance [Zwo12, theorems 4.14, 
9.5, 14.1, 14.2] for the proofs in the case ν = 0, which adapt directly to the case of general ν 
(see [Zwo12, theorems 4.17, 4.18]). We also have for all A ∈ Ψ0

h,ν(M),

‖A‖L2(M)→L2(M) � sup |σh(A)|+O(h1/2−ν).� (2.20)

See for instance [Zwo12, theorem 5.1] whose proof adapts to operators in Ψ0
h,ν . Using the 

explicit formula for the integral kernel of Oph(a), we also have the Hilbert–Schmidt bound

‖Oph(a)‖2
HS � C2h−dVol(supp a), a ∈ S0

h,ν .� (2.21)

where C is some S0
h,ν  seminorm of a.

The residual class for Sm
h,ν(M), denoted by h∞Ψ−∞(M) or O(h∞)Ψ−∞(M), is defined as 

follows:
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A ∈ h∞Ψ−∞(M) ⇐⇒ ‖A‖H−N
h (M)→HN

h (M) � CNhN for all N.

We also use the class of compactly microlocalized operators

Ψcomp
h,ν (M) = {A = Oph(a) +O(h∞)Ψ−∞ | a ∈ C∞

c (T∗M)}.

The standard classes of symbols and operators are given by the case ν = 0:

Sm
h (T

∗M) := Sm
h,0(T

∗M), Ψm
h (M) := Ψm

h,0(M), Ψcomp
h (M) := Ψcomp

h,0 (M).

We have the following improvement of (2.19) when M = Rd, the quantization (2.15) is used, 
and one of the symbols in question is in Sm

h :

a ∈ Sm
h (T

∗Rd), b ∈ Sm′

h,ν(T
∗Rd) =⇒ [Oph(a), Oph(b)] = −ihOph({a, b}) +O(h2−2ν)

Ψm+m′−2
h,ν (Rd)

.
�

(2.22)
This follows immediately from the asymptotic expansion for the full symbol of Oph(a)Oph(b), 
see [Zwo12, theorems 4.14, 4.17].

For A ∈ Ψm
h,ν(M), the wavefront set WFh(A) ⊂ T

∗
M is defined as follows: (x0, ξ0) ∈ T

∗
M  

does not lie in WFh(A) if and only if A = Oph(a) +O(h∞)Ψ−∞ for some a ∈ Sm
h,ν(M) such that 

a = O(h∞〈ξ〉−∞) in a neighborhood of (x0, ξ0) in T
∗
M . Here T

∗
M  is the fiber-radially com-

pactified cotangent bundle, see for instance [DZ, sections E.1.2, E.2.1]. For A, B ∈ Ψm
h,ν(M) 

and some h-independent open set U ⊂ T
∗
M , we say

A = B +O(h∞)Ψ−∞ microlocally in U,

if WFh(A − B) ∩ U = ∅. For A ∈ Ψm
h,ν(M), the elliptic set ellh(A) ⊂ T

∗
M is defined as fol-

lows: (x, ξ) ∈ ellh(A) if 〈ξ〉−mσh(A) is bounded away from zero in a neighborhood of (x, ξ).

2.3.  Functional calculus and the half-wave propagator

By the functional calculus of self-adjoint operators in Ψm
h (M) (see for instance [DS99, sec-

tion 8]), for each ψ ∈ C∞
c (R) the operator

ψ(−h2∆g) : L2(M) → L2(M)

lies in Ψ−N
h (M) for each N. Moreover,

σh(ψ(−h2∆g)) = ψ
(
|ξ|2g

)
, WFh(ψ(−h2∆g)) ⊂ {|ξ|2g ∈ supp ψ},

and for each open set U ⊂ R,

ψ = 1 on U =⇒ ψ(−h2∆g) = I +O(h∞)Ψ−∞ microlocally in {|ξ|2g ∈ U}.
� (2.23)

This makes it possible to describe the square root 
√
−∆g  microlocally in T∗M \ 0:

Lemma 2.2.  Assume that A ∈ Ψcomp
h (M), WFh(A) ⊂ T∗M \ 0. Then for each N, with 

p(x, ξ) = |ξ|g(x),

h
√
−∆gA, Ah

√
−∆g ∈ Ψ−N

h (M), σh(h
√

−∆gA) = σh(Ah
√
−∆g) = p · σh(A);

WFh(h
√

−∆gA), WFh(Ah
√

−∆g) ⊂ WFh(A).
� (2.24)
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Proof.  We consider the case of the operator h
√
−∆gA. Fix C > 0 such that 

WFh(A) ⊂ {C−1 � |ξ|2g � C}. Choose ψ ∈ C∞
c ((0,∞)) such that ψ = 1 near [C−1, C]. Then 

by (2.23)

A = ψ(−h2∆g)A +O(h∞)Ψ−∞ .

Put ϕ(λ) =
√
λψ(λ), then ϕ ∈ C∞

c (R) and

h
√
−∆gA = ϕ(−h2∆g)A +O(h∞)Ψ−∞

and (2.24) follows.� □ 

We next prove a Egorov theorem for the half-wave propagator

U(t) = exp(−it
√
−∆g) : L2(M) → L2(M).

Recall that ϕt = exp(tHp) is the homogeneous geodesic flow on T∗M \ 0.

Lemma 2.3.  Assume that a ∈ S0
h,ν(T

∗M) for some ν ∈ [0, 1/2) and supp a is contained in 
an h-independent compact subset of T∗M \ 0. Then there exists a smooth family of symbols 
compactly supported in T∗M \ 0

at ∈ S0
h,ν(T

∗M), t ∈ R; supp at ⊂ ϕ−t(supp a), at = a ◦ ϕt +O(h1−2ν)S0
h,ν

,

such that, with constants in the remainder uniform as long as t is in a bounded set

U(−t)Oph(a)U(t) = Oph(at) +O(h∞)Ψ−∞ .

Proof.  Since U(t) is bounded on all Sobolev spaces, it suffices to construct at such that

a0 = a, dt
(
U(t)Oph(at)U(−t)

)
= O(h∞)Ψ−∞ .� (2.25)

Using a partition of unity for a, it suffices to consider the case when supp a is contained in a 
coordinate chart on M. Moreover, by induction on time we see that it is enough to study the 
case when t is small and thus ϕ−s(a) lies in a fixed coordinate chart for all s between 0 and t. 
We thus reduce to the case when M = Rd and Oph is given by (2.15).

The differential equation in (2.25) can be rewritten as

Oph(∂tat) +
i
h
[Oph(at), h

√
−∆g] = O(h∞)Ψ−∞ .� (2.26)

We construct at as an asymptotic series

at ∼
∞∑

j=0

a( j)
t , a( j)

t ∈ h j(1−2ν)S0
h,ν(T

∗Rd), supp a( j)
t ⊂ ϕ−t(supp a).� (2.27)

To satisfy (2.26) it suffices take a( j)
t  such that for some symbols

b( j)
t ∈ h j(1−2ν)S0

h,ν(T
∗Rd), supp b( j)

t ⊂ ϕ−t(supp a), b(0)
t = 0,
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we have

Oph(∂ta
( j)
t ) +

i
h
[Oph(a

( j)
t ), h

√
−∆g] + Oph(b

( j)
t ) = Oph(b

( j+1)
t ) +O(h∞)Ψ−∞ .

�

(2.28)

We construct a( j)
t , b( j+1)

t  by induction, assuming b( j)
t  is already known. Since a( j)

t  is compactly 
supported in T∗M \ 0, by lemma 2.2 and (2.22) the left-hand side of (2.28) is

Oph

(
∂ta

( j)
t − Hpa( j)

t + b( j)
t

)
+O(h( j+1)(1−2ν))Ψ0

h,ν(Rd).

Then (2.28) holds for some b( j+1)
t ∈ h( j+1)(1−2ν)S0

h,ν(T
∗Rd) if a( j)

t  satisfies the transport 

equation

∂ta
( j)
t = Hpa( j)

t − b( j)
t .� (2.29)

We now put

a( j)
t := δj0(a ◦ ϕt)−

∫ t

0
b( j)

s ◦ ϕt−s ds.

Then (2.29) is satisfied and thus (2.28) holds for some choice of b( j+1)
t . The support condition 

on a( j)
t  follows from the support condition on b( j)

s . The support condition on b( j+1)
t  follows 

from this and the fact that the asymptotic expansion for the full symbol of the left-hand side of 

(2.28) at each point only depends on the values of all derivatives of a( j)
t , b( j)

t  at this point. With 
at given by (2.27) we also have a0 = a and at = a ◦ ϕt +O(h1−2ν), finishing the proof.� □ 

Lemma 2.3 gives us the following approximate inverse statement for the semiclassical 
Helmholtz operator −h2∆g − ω2, which is a version of propagation of singularities used in 
the proof of lemma 3.4.

Lemma 2.4.  Assume that a, b ∈ S0
h,ν(T

∗M) are supported in an h-independent compact 
subset of T∗M \ 0, B′ ∈ Ψ0

h(M) is compactly supported, and for some T � 0,

ϕ−T(supp a) ∩ supp (1 − b) = ∅, WFh(I − B′) ∩
T⋃

t=0

ϕ−t(supp a) = ∅.

�

(2.30)

Then for any constant C and ω ∈ [C−1, C] + ih[−C, C], we have

Oph(a) = Z(ω)B′(−h2∆g − ω2) + eiωT/hOph(a)U(T)Oph(b) +O(h∞)Ψ−∞

�
(2.31)

where Z(ω) is holomorphic in ω and satisfies the estimate for all N,

‖Z(ω)‖H−N
h (M)→HN

h (M) � CNh−1| sup a|.

Proof.  Observe that

hDt
(
e

iωt
h U(t)

)
= e

iωt
h U(t)(−h

√
−∆g + ω), U(0) = I.
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Therefore,

I = e
iωT

h U(T) +
i
h

∫ T

0
e

iωt
h U(t)(h

√
−∆g − ω)dt

= e
iωT

h U(T) +
i
h

∫ T

0
e

iωt
h U(t)(h

√
−∆g + ω)−1(−h2∆g − ω2)dt.

�

(2.32)

By (2.16), lemma 2.3, and (2.30), we have

Oph(a)U(T)(I − Oph(b)) = O(h∞)Ψ−∞ ,

Oph(a)U(t)(h
√

−∆g + ω)−1(I − B′) = O(h∞)Ψ−∞ for all t ∈ [0, T],

where U(−t)Oph(a)U(t)(h
√
−∆g + ω)−1 is a pseudodifferential operator similarly to (2.24). 

It remains to apply Oph(a) on the left to (2.32) and put

Z(ω) :=
i
h

∫ T

0
e

iωt
h Oph(a)U(t)(h

√
−∆g + ω)−1 dt.

� □

We finally establish properties of certain spectral cutoffs of width h for the operator h2∆g:

Lemma 2.5.  Assume that ψ ∈ C∞(R) is bounded and its Fourier transform ψ̂  satisfies for 
some T0, T1 ∈ R

supp ψ̂ ⊂ (T0, T1).� (2.33)

For ω ∈ C varying in an h-sized neighborhood of 1, define 

B(ω) := ψ
(−h2∆g−ω2

h

)
: L2(M) → L2(M), where ψ extends to an entire function by (2.33). 

Then:

	 1.	If A1, A2 ∈ Ψ0
h,ν(M) satisfy

etHp2
(
WFh(A2)

)
∩ WFh(A1) = ∅ for all t ∈ [T0, T1],� (2.34)

		 and at least one of A1, A2 is in Ψcomp
h,ν (M), then A2B(ω)A1 = O(h∞)Ψ−∞.

	 2.	If additionally ψ ∈ S (R) and a ∈ S0
h,ν(M) is supported in an h-independent compact 

subset of T∗M , then we have the Hilbert–Schmidt norm bound with the constants depend-
ing only on ψ, some S0

h,ν  seminorm of a, and a fixed compact set containing supp a,

∥∥Oph(a)B(ω)‖2
HS,

∥∥B(ω)Oph(a)‖2
HS � Ch1−dµL(S∗M ∩ supp a) +O(h∞).

� (2.35)

Proof.  We write B(ω) using the Fourier inversion formula:

B(ω) =
1

2π

∫ T1

T0

ψ̂(t)e−itω2/he−ith∆g dt.

Then (2.34) follows from the wavefront set properties of the Schrödinger propagator e−ith∆g 
(see for instance [DG14, proposition 3.8]). The estimate (2.35) follows from the proof of 
[DG14, lemma 3.11].� □ 
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3.  Reduction to the trapped set

In this section we review the global properties of the scattering resolvent and the half-wave 
propagator and prove several statements which reduce the analysis to a neighborhood of the 
trapped set K.

3.1.  Scattering resolvent

The L2 resolvent

Rg(λ) = (−∆g − λ2)−1 : L2(M) → L2(M), Imλ > 0

admits a meromorphic continuation

Rg(λ) : L2
comp (M) → L2

loc(M), λ ∈ C \ (−∞, 0].

In fact, when the dimension d is odd, Rg(λ) continues meromorphically to λ ∈ C, and when 
d is even, Rg(λ) continues meromorphically to the logarithmic cover of C. One way to prove 
meromorphic continuation is by constructing an approximate inverse to −∆g − λ2 modulo a 
compact remainder which uses the free resolvent in Rd—see for instance [DZ, section 4.2] 
or [SZ91, theorem 1.1]. (When M has several infinite ends, we need to include the free resol-
vent on each of these ends.) Another way is by using the method of complex scaling which is 
reviewed below.

To study resonances in the region (1.3), we put h := R−1 and use the semiclassically 
rescaled resolvent

Rg(ω) = h−2Rg(h−1ω), ω ∈ C \ (−∞, 0],

which is a right inverse to the operator −h2∆g − ω2. For λ = h−1ω, the region in (1.3) cor-
responds to

ω ∈ Ω := [1, 1 + h] + i[−βh, 0].� (3.1)

For resonance counting, it is convenient to prove estimates in a larger region,

Ω̃ := [1 − 2h, 1 + 2h] + i[−β̃h, 2h], β̃ > β.� (3.2)

We next review the method of complex scaling, following [Dya15b, section 4.3]. Fix small 
θ > 0 (the angle of scaling) and r1 > r0 (the place where scaling starts). Consider the follow-
ing totally real submanifold:

Γθ :=
{

y + ifθ
(
|y|
) y
|y|

: y ∈ Rd
}

⊂ Cd

where fθ ∈ C∞([0,∞)) is chosen so that

fθ(r) = 0, r � r1; fθ(r) = r tan θ, r � 2r1;
f ′θ(r) � 0, r � 0; { f ′θ(r) = 0} = { fθ(r) = 0}.

� (3.3)

Define the complex scaled differential operator Pθ on M as follows:

	 •	on {r < r1}, Pθ is equal to −h2∆g; 
	 •	on each infinite end of M with Euclidean coordinate y, Pθ is the restriction to Γθ (para-

metrized by y) of the extension, −h2 ∑
j ∂

2
zj
, to Cn of the semiclassical Euclidean Laplacian 

−h2∆. In polar coordinates y = rϕ,
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Pθ =

(
1

1 + if ′θ(r)
hDr

)2

− (d − 1)i
(r + ifθ(r))(1 + if ′θ(r))

h2Dr −
h2∆ϕ

(r + ifθ(r))2

		 with ∆ϕ denoting Laplacian on the round sphere Rd−1.

Then Pθ ∈ Ψ2
h(M) is a second order semiclassical differential operator on M with principal 

symbol

pθ := σh(Pθ)

given by pθ(x, ξ) = p(x, ξ)2 on {r < r1} and on each infinite end, in the polar coordinates y = rϕ,

pθ(r,ϕ, ηr, ηϕ) =
η2

r

(1 + if ′θ(r))2 +
|ηϕ|2

(r + ifθ(r))2 .� (3.4)

As shown for instance in [DZ, theorems 4.36 and 4.38] (whose proofs extend directly to the 
case of several Euclidean ends), for h small enough so that Ω̃ ⊂ {Im(eiθω) > 0} and all s ∈ R

Pθ − ω2is a Fredholm operator of index zero Hs+2(M) → Hs(M), ω ∈ Ω̃,

and the poles of (Pθ − ω2)−1 in Ω̃ coincide with the poles of Rg(ω), counted with multiplicities.
The next statement uses the structure of the complex scaled operator together with propa-

gation of singularities to show existence of a nontrapping parametrix (see figure 2):

Lemma 3.1.  Assume that Q ∈ Ψcomp
h (M) is supported inside {r < r0} and its principal 

symbol is independent of h and satisfies

σh(Q) � 0 everywhere;
σh(Q) > 0 on K ∩ S∗M.
� (3.5)

Then for h small enough and ω ∈ Ω̃, the operator Pθ − iQ − ω2 is invertible H2(M) → L2(M). 
The inverse

RQ(ω) := (Pθ − iQ − ω2)−1 : L2(M) → H2(M)� (3.6)

K Γ+

Γ−

Figure 2.  An illustration of lemma 3.1, showing trajectories of ϕt on S∗M . The shaded 
regions show places where Pθ − iQ − ω2 is elliptic: the darker shaded region is 
{σh(Q) > 0} and the lighter shaded region is { fθ(r) �= 0}.
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is holomorphic and satisfies for each s

‖RQ(ω)‖Hs
h(M)→Hs+2

h (M) � Ch−1.� (3.7)

Moreover, the operator RQ(ω) is semiclassically outgoing in the sense that 
A2RQ(ω)A1 = O(h∞)Ψ−∞(M) for all compactly supported A1, A2 ∈ Ψ0

h(M) such that

WFh(A1) ∩ WFh(A2) = etHp
(
WFh(A1)

)
∩ WFh(A2) ∩ S∗M = ∅ for all t � 0.

� (3.8)

Proof.  We follow [Dya15b, section 4.3], see also [DZ, section 6.2.1]. We use semiclassical 
elliptic and propagation estimates for solutions to the equation

Pu = f ∈ Hs(M), u ∈ Hs+2(M)

where

P := Pθ − iQ − ω2 ∈ Ψ2
h(M), σh(P) = pθ − iσh(Q)− 1.

The operator P is elliptic for r � 2r1, since

σh(P)(y, η) =
|η|2

(1 + i tan θ)2 − 1 for |y| � 2r1.

Moreover, P is elliptic near the fiber infinity of M, that is for large enough |ξ|. By the elliptic 
estimate in the class Ψ2

h(M) (see for instance [Zwo12, theorem 4.29, DZ16, proposition 2.4], 
or [DZ, section E.2.2]) there exists χ ∈ C∞

c (M) such that for all N,

‖(1 − χ)u‖Hs+2
h (M) � C‖ f‖Hs

h(M) +O(h∞)‖u‖H−N
h (M).� (3.9)

It remains to estimate u in a compact set. By (3.3) and (3.4) the operator P is elliptic outside 
the set S∗M ∩ { fθ(r) = 0} ∩ {σh(Q) = 0}. By the elliptic estimate, we have for all N

‖Bu‖Hs+2
h (M) � C‖B′f‖Hs

h(M) +O(h∞)‖u‖H−N
h (M)

for all compactly supported B, B′ ∈ Ψ0
h(M) such that

WFh(B) ∩ S∗M ∩ { fθ(r) = 0} ∩ {σh(Q) = 0} = ∅, WFh(B) ⊂ ellh(B′).
�

(3.10)

To estimate ‖Au‖ for general A, we use the following statement: for each (x, ξ) ∈ T∗M, there 
exists T(x,ξ) � 0 such that

exp(−T(x,ξ)HRe σh(P))(x, ξ) /∈ S∗M ∩ { fθ(r) = 0} ∩ {σh(Q) = 0}.� (3.11)

Indeed, assume the contrary, and put γ(t) = exp(tHRe σh(P))(x, ξ). Clearly (x, ξ) ∈ S∗M. For 
all t � 0, we have γ(t) ∈ { fθ(r) = 0} and thus (using that f ′θ(r) = f ′′θ (r) = 0 on { fθ(r) = 0})

γ(t) = exp(tHp2)(x, ξ) = ϕ2t(x, ξ).

Now, if (x, ξ) ∈ Γ+, then ϕ−T(x, ξ) ∈ {σh(Q) > 0} for some T > 0, by (2.8) and (3.5). If 
(x, ξ) /∈ Γ+, then ϕ−T(x, ξ) ∈ {r � 2r1} ⊂ { fθ(r) �= 0} for some T > 0. In either case we 
reach a contradiction, finishing the proof of (3.11).
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By (3.4) and (3.5),

Imσh(P) � 0 everywhere.� (3.12)

Using semiclassical propagation of singularities (see for instance [DZ, theorem E.49] or 
[DZ16, proposition 2.5]) and (3.10), we deduce that

‖Au‖Hs+2
h (M) � Ch−1‖A′f‖Hs

h(M) +O(h∞)‖u‖H−N
h (M)

for all compactly supported A, A′ ∈ Ψ0
h(M) such that WFh(A) ⊂ ellh(A′) and

ϕ−2t(x, ξ) ∈ ellh(A′) for all (x, ξ) ∈ S∗M ∩ WFh(A), t ∈ [0, T(x,ξ)].
�

(3.13)

Indeed, by a pseudodifferential partition of unity we may reduce to the case when WFh(A) is 
contained in a small neighborhood of some (x, ξ) ∈ T

∗
M. If (x, ξ) /∈ S∗M, then we use (3.10). 

Otherwise we use propagation of singularities and (3.11), (3.12), and bound the term on the 
right-hand side of the propagation estimate by (3.10).

Together (3.9) and (3.13) imply that

‖u‖Hs+2
h (M) � Ch−1‖Pu‖Hs

h(M) +O(h∞)‖u‖Hs+2
h (M) for all u ∈ Hs+2(M).

�
(3.14)

As a compact perturbation of Pθ − ω2, P is a Fredholm operator Hs+2(M) → Hs(M), there-
fore (3.14) implies that for h small enough, P : Hs+2(M) → Hs(M) is invertible and (3.7) 
holds. The restriction of the inverse to C∞

c (M) does not depend on s.

It remains to show that under the condition (3.8), we have A2RQ(ω)A1 = O(h∞)Ψ−∞(M). 
If WFh(A1) ∩ S∗M = ∅ or WFh(A2) ∩ S∗M = ∅, this follows from the elliptic estimate; thus 
we may assume that A1, A2 ∈ Ψcomp

h (M). Take f̃ ∈ H−N(M) and put

f := A1 f̃ , u := P−1f .

By (3.8), we may find A′ ∈ Ψ0
h(M) such that WFh(A1) ∩ WFh(A′) = ∅ and (3.13) holds for 

A := A2 and A′. Then

‖A2u‖Hs+2
h (M) � Ch−1‖A′A1 f̃‖Hs

h(M) +O(h∞)‖u‖H−N
h (M) = O(h∞)‖f̃‖H−N

h (M),

finishing the proof.� □ 

We now prove two corollaries of lemma 3.1, which in particular imply estimates on solu-
tions to

(Pθ − ω2)u = f , u, f ∈ L2(M), ω ∈ Ω̃.� (3.15)

The first statement implies that

‖A1u‖Hs+2
h (M) � Ch−1‖ f‖Hs

h(M) +O(h∞)‖u‖H−N
h (M) when WFh(A1) ∩ Γ+ ∩ S∗M = ∅.

Lemma 3.2.  Assume that A1 ∈ Ψ0
h,ν(M) is compactly supported and 

WFh(A1) ∩ Γ+ ∩ S∗M = ∅. Then there exists a neighborhood U of K ∩ S∗M  such that for all 
Q satisfying (3.5) and WFh(Q) ⊂ U, we have
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A1
(
I −RQ(ω)(Pθ − ω2)

)
= O(h∞)Ψ−∞ , ω ∈ Ω̃.� (3.16)

Proof.  Choose U such that

U ∩ WFh(A1) = U ∩
⋃
t�0

ϕ−t
(
WFh(A1) ∩ S∗M

)
= ∅.

This is possible by part 4 of lemma 2.1. Now

A1
(
I −RQ(ω)(Pθ − ω2)

)
= −iA1RQ(ω)Q = O(h∞)Ψ−∞

by the semiclassically outgoing property in lemma 3.1 (inserting an operator in Ψ0
h(M)  

between A1 and RQ(ω)).� □ 

The second corollary of lemma 3.1 implies the following bound for solutions of (3.15):

‖u‖Hs+2
h

� C‖Bu‖Hs
h
+ Ch−1‖ f‖Hs

h
+O(h∞)‖u‖H−N

h
when K ∩ S∗M ⊂ ellh(B).

Lemma 3.3.  Assume that B ∈ Ψ0
h(M) is compactly supported and elliptic on K ∩ S∗M . 

Then for all Q satisfying (3.5) and WFh(Q) ⊂ ellh(B), there exist B0, B1, B2 ∈ Ψcomp
h (M) such 

that

I = (B1 + hRQ(ω)B2)B +RQ(ω)(I − B0)(Pθ − ω2) +O(h∞)Ψ−∞ , ω ∈ Ω̃.
�

(3.17)

Proof.  Take B0 such that

WFh(Q) ∩ WFh(I − B0) = ∅, WFh(B0) ⊂ ellh(B).

Then

I − B0 = RQ(ω)(Pθ − ω2 − iQ)(I − B0)

implies that

I = B0 +RQ(ω)(I − B0)(Pθ − ω2)−RQ(ω)[Pθ, B0] +O(h∞)Ψ−∞ .

It remains to use the elliptic parametrix construction to find B1, B2 so that

B2B = −h−1[Pθ, B0] +O(h∞)Ψ−∞ , B1B = B0 +O(h∞)Ψ−∞

and (3.17) follows.� □ 

The next statement, which is an important technical tool in the construction of the approxi-
mate inverse in section 5.1, is obtained by iteration of lemmas 2.4 and 3.2. See figure 3.

Lemma 3.4.  Fix ν ∈ [0, 1/2) and assume that a sequence of symbols

aj ∈ S0
h,ν(T

∗M), j = 0, 1, . . . , L = L(h), 0 < L(h) � C log(1/h)

is supported in a fixed compact subset W ⊂ T∗M \ 0 and each S0
h,ν  seminorm of aj is bounded 

uniformly in j. Assume moreover that |aj| � 1 and there exists an h-independent open neigh-
borhood V of Γ+ ∩ S∗M  and there exists t1 > 0 bounded independently of h such that the 
following dynamical conditions hold for all j:
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ϕ−t1(supp aj) ∩ supp (1 − aj+1) ∩ V = ∅ for all j = 0, . . . , L − 1,� (3.18)

ϕ−t(W) ⊂ {r < r1} for all t ∈ [0, t1].� (3.19)

Then we have for all ω ∈ Ω̃, on H2(M)

Oph(a0) = Z(ω)(Pθ − ω2) + J(ω)Oph(aL) +O(h∞)Ψ−∞� (3.20)

where Z(ω) : L2(M) → H2(M), J(ω) : H−N(M) → HN(M) are holomorphic in ω ∈ Ω̃ and 
satisfy the bounds for each ε1 > 0

‖Z(ω)‖Hs
h→Hs+2

h
� Cs,ε1 h−1 exp

(
(β̃t1 + ε1)L

)
,� (3.21)

‖J(ω)‖H−N
h →HN

h
� CN,ε1 exp

((
− Imω

h
t1 + ε1

)
L
)

.� (3.22)

Finally, if a0 = 1 on some h-independent neighborhood of K ∩ S∗M , then a decomposition of 
the form (3.20) holds with Oph(a0) replaced by the identity operator.

Proof.  Fix h-independent ψ ∈ C∞
c (ϕt1(V); [0, 1]) such that

supp (1 − ψ) ∩ Γ+ ∩ S∗M ∩ W = ∅.

Then supp ((1 − ψ)aj) is contained in an h-independent compact subset of T∗M  not intersect-
ing Γ+ ∩ S∗M , thus by lemma 3.2 for an appropriate choice of Q we have for j = 0, . . . , L − 1

Oph

(
(1 − ψ)aj

)
= Oph

(
(1 − ψ)aj

)
RQ(ω)(Pθ − ω2) +O(h∞)Ψ−∞ .� (3.23)

Next, by (3.18) we have

ϕ−t1(supp (ψaj)) ∩ supp (1 − aj+1) = ∅.

Using (3.19), fix a multiplication operator B′ = B′(x) ∈ C∞
c (M; [0, 1]) such that

supp B′ ⊂ {r < r1}, supp (1 − B′) ∩
t1⋃

t=0

ϕ−t(W) = ∅.

ψa0ψa1

aL

(1 − ψ)a0(1 − ψ)a1

ϕt1(V )

· · ·

Figure 3.  An illustration of lemma 3.4, showing the supports of ψaj, (1 − ψ)aj, and 
(ψaj) ◦ ϕt1 (dashed), as well as ϕt1(V) (shaded). The arrows correspond to ϕt1. At each 
step of the iteration, (1 − ψ)aj is expressed using lemma 3.2 and ψaj is reduced to aj+1 
using lemma 2.4.
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Since Pθ = −h2∆g on {r < r1}, we have B′(Pθ − ω2) = B′(−h2∆g − ω2). Therefore by 
lemma 2.4,

Oph(ψaj) = Zj(ω)B′(Pθ − ω2) + eiωt1/hOph(ψaj)U(t1)Oph(aj+1) +O(h∞)Ψ−∞

� (3.24)

for all ω ∈ Ω̃, where Zj(ω) is holomorphic in ω ∈ Ω̃ and satisfies

‖Zj(ω)‖H−N
h →HN

h
� CNh−1

and the constant CN, as well as the constants in O(h∞)Ψ−∞, is independent of h and j.

Adding (3.23) and (3.24) and iterating in j, we obtain (3.20) with

Z(ω) =
L−1∑
j=0

eiωjt1/h
( j−1∏

�=0

Oph(ψa�)U(t1)
)(

Oph

(
(1 − ψ)aj

)
RQ(ω) + Zj(ω)B′),

J(ω) = eiωLt1/h
L−1∏
j=0

Oph(ψaj)U(t1).

The bounds (3.21) and (3.22) follow from here and estimate on the operator norm following 
from (2.20):

max
j

‖Oph(ψaj)‖L2→L2 � 1 + o(1) as h → 0.

In particular, for any fixed ε1 > 0 we have

max
0�j�L

∥∥∥
j−1∏
�=0

Oph(ψa�)U(t1)
∥∥∥

H−N
h →HN

h

� CNeε1L.

To show the last statement of the lemma, assume that a0 = 1 on an h-independent neighbor-
hood U of K ∩ S∗M . Take B ∈ Ψcomp

h (M) elliptic on K ∩ S∗M  and satisfying WFh(B) ⊂ U. 
Then by lemma 3.3, we have for an appropriate choice of Q, B0, B1, B2 ∈ Ψcomp

h (M),

I = RQ(ω)(I − B0)(Pθ − ω2) + (B1 + hRQ(ω)B2)BOph(a0) +O(h∞)Ψ−∞ .

Combining this with the representation (3.20) of Oph(a0), we obtain (3.20) with the identity 
operator on the left-hand side.� □ 

3.2.  Wave propagator

We next study the long time behavior of the half-wave propagator U(t) = exp(−it
√
−∆g). 

We first prove a microlocal estimate on the free half-wave propagator on Rd,

U0(t) = exp(−it
√
−∆0) : L2(Rd) → L2(Rd),

where ∆0 is the flat Laplacian.

Lemma 3.5.  Let A1, A2 ∈ Ψk
h(Rd) such that there exists R > 0 with

WFh(A1) ∪ WFh(A2) ⊂ {|y| < R},
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at least one of WFh(A1), WFh(A2) is a compact subset of T∗Rd \ 0, and

(y′, η) ∈ WFh(A1), η �= 0, t � 0 =⇒
(

y′ + t
η

|η|
, η
)
/∈ WFh(A2).� (3.25)

Then we have the following version of propagation of singularities which is uniform in t � 0:

A2U0(t)A1 = O(h∞)Ψ−∞(Rd).� (3.26)

Proof.  Write A1 = Oph(a1)
∗ +O(h∞)Ψ−∞, A2 = Oph(a2) +O(h∞)Ψ−∞ for some a1, a2 

whose supports satisfy the conditions imposed on WFh(A1), WFh(A2), including (3.25). The 
Schwartz kernel of Oph(a2)U0(t)Oph(a1)

∗ is compactly supported and given by

K(y, y′) = (2πh)−2d
∫

Rd
e

i
h (〈y−y′,η〉−t|η|)a2(y, η)a1(y′, η) dη.� (3.27)

Put Φ = 〈y − y′, η〉 − t|η|. Then there exists c > 0 such that on the support of a2(y, η)a1(y′, η) ,

|∂ηΦ| =
∣∣∣y − y′ − t

η

|η|

∣∣∣ � c〈t〉 > 0.� (3.28)

Indeed, since y, y′ vary in a compact set and η is bounded away from zero, it is enough to 
consider the case of bounded t. Then (3.28) follows from (3.25).

Now, repeated integration by parts in η gives that for each N,

‖K‖CN(R2d) � CNhN〈t〉−N .

This completes the proof.� □ 

We next use U0(t) to write a parametrix for the propagator U(t). For ψ0 ∈ C∞
c (M) with 

supp (1 − ψ0) ⊂ {r > r0} and u ∈ L2(M), we define

(1 − ψ0)U0(t)(1 − ψ0)u ∈ L2(M)

as follows: we pull back the restriction of (1 − ψ0)u to each infinite end to Rd using the 
Euclidean coordinate, apply (1 − ψ0)U0(t), and take the sum of the resulting functions pulled 
back to M. This gives an operator

(1 − ψ0)U0(t)(1 − ψ0) : L2(M) → L2(M).� (3.29)

Recall the sets E±, E◦
± defined in (2.3).

Lemma 3.6.  Suppose that A± ∈ Ψcomp
h (M), ψ0 ∈ C∞

c (M) satisfy for some r2 > r0  
(see figure 4)

WFh(A±) ⊂ E◦
± ∩ {r > r2}, supp ψ0 ⊂ {r < r2}, supp (1 − ψ0) ⊂ {r > r0}.

Then we have uniformly in 0 � t � Ch−1

U(t)A+ = (1 − ψ0)U0(t)(1 − ψ0)A+ +O(h∞)Ψ−∞� (3.30)

U(−t)A− = (1 − ψ0)U0(−t)(1 − ψ0)A− +O(h∞)Ψ−∞ .� (3.31)
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Proof.  We prove (3.30), with (3.31) established similarly. For simplicity of notation, we 
present the argument in the case when M is diffeomorphic to Rd. The general case is proved 
in the same way, reducing to the case when A+ is supported on one infinite end and treating 
1 − ψ0 on this infinite end as an operator L2(M) → L2(Rd) and L2(Rd) → L2(M). We identify 
M with Rd and use the quantization (2.15).

Since U0(t), U(t) are bounded uniformly in t on all Sobolev spaces and 
WFh(A+) ∩ supp ψ0 = ∅,

U(t)A+ = U(t)(1 − ψ0)
2A+ +O(h∞)Ψ−∞ .

Therefore it remains to show that uniformly in 0 � t � Ch−1,

W(t) = O(h∞)Ψ−∞ ,� (3.32)

where the operator W(t) on L2(M) is defined by

W(t) :=
(
(1 − ψ0)U0(t)− U(t)(1 − ψ0)

)
(1 − ψ0)A+.

Using the wave operator �g = ∂2
t −∆g, we write

W(t) = cos(t
√
−∆g)W(0) +

sin(t
√

−∆g)√
−∆g

W ′(0) +
∫ t

0

sin
(
(t − t′)

√
−∆g

)
√

−∆g
�gW(t′) dt′.

� (3.33)

We compute

W(0) = 0.� (3.34)

ψ = 1

0 < ψ < 1

r = r0

r = r2

A+

Figure 4.  An illustration of lemma 3.6 when 0 � ψ0 � 1, showing the regions ψ0 = 1 
and 0 < ψ0 < 1 (shaded) and the projection of WFh(A+) onto M. The points (x, ξ) in 
WFh(A), pictured by arrows, give rise to trajectories escaping to infinity in the future 
and never entering supp ψ0.
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Next,

ihW ′(0) =
(
(1 − ψ0)h

√
−∆0 − h

√
−∆g(1 − ψ0)

)
(1 − ψ0)A+ = O(h∞)Ψ−∞ .

� (3.35)

Indeed, by (2.24) both (1 − ψ0)h
√
−∆0(1 − ψ0)A+ and h

√
−∆g(1 − ψ0)

2A+ are in Ψ0
h(M). 

As explained in the discussion following [DS99, theorem 8.7], the asymptotic expansion for 
the full symbol of each of these operators at some point can be computed using only the de-
rivatives of ψ0 and the full symbols of A+,∆0,∆g at this point. Since ∆0 = ∆g and ψ0 = 0 
on {r > r2} ⊃ WFh(A+), we obtain (3.35).

Finally, since ∆0 = ∆g on {r > r0} ⊃ supp (1 − ψ0), we have

h2�gW(t) = [h2∆g,ψ0]U0(t)(1 − ψ0)A+.

Now, with A2 := [h2∆g,ψ0]

WFh(A2) ⊂ supp dψ0 ⊂ {r0 < r < r2}.

Then A2 and A1 := A+ satisfy (3.25), thus by lemma 3.5

h2�gW(t) = O(h∞)Ψ−∞ .� (3.36)

Now (3.32) follows from (3.33)–(3.36), the bound t � Ch−1, and the fact that for each s, the 
operators

cos(t
√
−∆g),

sin(t
√
−∆g)√

−∆g
: Hs

h(M) → Hs
h(M)

are bounded in norm by C〈t〉.� □ 

The next lemma shows that for times t = O(log(1/h)), the cutoff wave propagator 
A2U(t)A1, where Aj ∈ Ψcomp

h,ν (T∗M) and WFh(Aj) lies near S∗M , can be expressed in terms 
of cutoff wave propagators for bounded time. It relies on lemmas 3.5 and 3.6 and is a key 
component of the proof of lemma 6.1 below.

Lemma 3.7.  Let A1 ∈ Ψcomp
h,ν (M), A2 ∈ Ψ0

h,ν(M), and χ ∈ S0
h(T

∗M; [0, 1]) satisfy for some 
εE > 0 and r2 > r0

WFh(A1) ∪ WFh(A2) ∪ supp χ ⊂ {r < r2}, WFh(A1) ⊂ {|ξ|2g ∈ (1 − εE, 1 + εE)},
� (3.37)

supp (1 − χ) ∩ {|ξ|2g ∈ [1 − εE, 1 + εE]} ∩ {r � r0} = ∅.� (3.38)

Put T :=
√

r2
2 − r2

0  and let C be an h-independent constant. Then for each sequence of times

t1, . . . , tL � T , L � Ch−1, tj � C,

we have

A2U(t1 + · · ·+ tL)A1 = A2U(t1)Oph(χ)U(t2) · · ·Oph(χ)U(tL)A1 +O(h∞)Ψ−∞ .
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Proof.  We may assume that A1 ∈ Ψcomp
h (M), A2 ∈ Ψ0

h(M). Indeed, otherwise we may 
take A′

1 ∈ Ψcomp
h (M), A′

2 ∈ Ψ0
h(M) such that (I − A′

1)A1 = O(h∞)Ψ−∞, A2(I − A′
2) = 

A2(I − A′
2) = O(h∞)Ψ−∞, and WFh(A′

1), WFh(A′
2) satisfy (3.37), and apply the argument 

below with A1, A2 replaced by A′
1, A′

2.

We have

A2U(t1 + · · ·+ tL)A1 − A2U(t1)Oph(χ)U(t2) · · ·Oph(χ)U(tL)A1 =

L−1∑
�=1

B�,

B� := A2U(t1)Oph(χ) · · ·U(t�−1)Oph(χ)U(t�)Oph(1 − χ)U(t�+1 + · · ·+ tL)A1.

Therefore it suffices to show that B� = O(h∞)L2→L2 uniformly in �. Since U(t) is unitary and 
Oph(χ) satisfies the norm bound [Zwo12, theorem 13.13]

‖Oph(χ)‖Hs
h→Hs

h
� 1 +O(h),� (3.39)

it is enough to show the following bounds uniform in � (in fact (3.40) is used only for 
� = 2, . . . , L − 1 and (3.41) is used only for � = 1)

Oph(χ)U(t�)Oph(1 − χ)U(t�+1 + · · ·+ tL)A1 = O(h∞)Ψ−∞ ,� (3.40)

A2U(t�)Oph(1 − χ)U(t�+1 + · · ·+ tL)A1 = O(h∞)Ψ−∞ .� (3.41)

We show (3.40) with the same proof giving (3.41) as well. Take ψ1 ∈ C∞
c (R) such that

supp ψ1 ⊂ (1 − εE, 1 + εE), WFh(A1) ∩ supp
(
1 − ψ1(|ξ|2g)

)
= ∅.

We can replace A1 by ψ1(−h2∆g)A1 in (3.40) since

(I − ψ1(−h2∆g))A1 = O(h∞)Ψ−∞ .

Since U(t�+2 + · · ·+ tL) commutes with ψ1(−h2∆g), it suffices to show that

AU(t�+2 + · · ·+ tL)A1 = O(h∞)Ψ−∞ ,� (3.42)

where

A := U(−t� − t�+1)Oph(χ)U(t�)Oph(1 − χ)U(t�+1)ψ1(−h2∆g).

By lemma 2.3, we have A ∈ Ψcomp
h (M) and

WFh(A) ⊂ ϕ−t�−t�+1(supp χ) ∩ ϕ−t�+1(supp (1 − χ)) ∩ {|ξ|2g ∈ (1 − εE, 1 + εE)}.

Take x ∈ ϕt�+1(WFh(A)). By (3.38) we have x ∈ {r > r0} and by (3.37) we have 
ϕt�(x) ∈ {r < r2}. By (2.4) and since t� � T  we see that x ∈ E◦

−
. Applying (2.4) again and 

using that t�+1 � T  we see that ϕ−t�+1−s(x) ∈ E◦
− ∩ {r > r2} for all s � 0. Therefore

WFh(A) ⊂ E◦
− ∩ {r > r2},� (3.43)

ϕ−s(WFh(A)) ∩ WFh(A1) = ∅ for all s � 0.� (3.44)
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Denote t̃� := t�+2 + · · ·+ tL ∈ [0, Ch−1]. By (3.43) we may apply lemma 3.6 to get for some 
ψ0 ∈ C∞

c (M;R), supp (1 − ψ0) ⊂ {r > r0}

U(−t̃�)A∗ = (1 − ψ0)U0(−t̃�)(1 − ψ0)A∗ +O(h∞)Ψ−∞ .

Taking adjoints, we get

AU(̃t�) = A(1 − ψ0)U0(̃t�)(1 − ψ0) +O(h∞)Ψ−∞ .� (3.45)

By lemma 3.5 and (3.44) we have

A(1 − ψ0)U0(̃t�)(1 − ψ0)A1 = O(h∞)Ψ−∞ .� (3.46)

Combining (3.45) and (3.46), we obtain (3.42), finishing the proof.� □ 

Using lemma 3.7, we also obtain the following estimate used in section 6.3:

Lemma 3.8.  Assume that A1 ∈ Ψcomp
h (M), A2 ∈ Ψ0

h(M) satisfy for some r1 > r0 and 
εE > 0

WFh(A1) ⊂ {r < r1} ∩ {|ξ|2g ∈ (1 − εE, 1 + εE)}, WFh(A2) ⊂ {r < r1}.
�

(3.47)

Put T0 :=
√

r2
1 − r2

0  and assume that χ′ ∈ C∞
c (M) satisfies

supp (1 − χ′) ∩ {r � r1 + T0} = ∅.� (3.48)

Fix C0 > 0. Then for all t ∈ [T0, C0h−1], s ∈ [0, C0h−1], and u ∈ L2(M) we have

‖A2U(s + t)A1u‖L2 � ‖A2‖L2→L2 · ‖χ′U(t)A1u‖L2 +O(h∞)‖u‖L2 .

Proof.  We first consider the case s � T0 . Fix χ ∈ C∞
c (M; [0, 1]) such that

supp χ ⊂ {r < r1}, supp (1 − χ) ∩ {r � r0} = ∅.

We write

t = t1 + · · ·+ tL, s = s1 + · · ·+ sL′ , tj, sj ∈ [T0, 2T0], L, L′ � C0h−1.

By lemma 3.7 (with (r1, T0) taking the place of (r2, T)) we have

A2U(s + t)A1 = A2U(s1)χ · · ·U(sL′)χU(t1) · · ·χU(tL)A1 +O(h∞)Ψ−∞ .

Therefore

‖A2U(s + t)A1u‖L2 � ‖A2‖L2→L2 · ‖χU(t1) · · ·χU(tL)A1u‖L2 +O(h∞)‖u‖L2 .

Another application of lemma 3.7 gives

‖χU(t1) · · ·χU(tL)A1u − χU(t)A1u‖L2 = O(h∞)‖u‖L2 ,

finishing the proof since χ = χχ′.
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We now consider the case 0 � s � T0. Fix ψ1 ∈ C∞
c (R; [0, 1]) such that supp ψ1 ⊂ (0,∞) 

and supp (1 − ψ1) ∩ [1 − εE, 1 + εE] = ∅. Since U(t) commutes with ψ1(−h2∆g), we have

A2U(s + t)A1 = A2U(s + t)ψ1(−h2∆g)A1 +O(h∞)Ψ−∞

= A2U(s)ψ1(−h2∆g)U(t)A1 +O(h∞)Ψ−∞ .

Therefore

‖A2U(s + t)A1u‖L2 � ‖U(−s)A2U(s)ψ1(−h2∆g)U(t)A1u‖L2 +O(h∞)‖u‖L2 .

By (3.47) and (3.48) we have (T∗M \ 0) ∩ ϕ−s(WFh(A2)) ∩ supp (1 − χ′) = ∅. Therefore 
by lemma 2.3

U(−s)A2U(s)ψ1(−h2∆g)(1 − χ′) = O(h∞)Ψ−∞ .

Therefore

‖U(−s)A2U(s)ψ1(−h2∆g)U(t)A1u‖L2 � ‖A2‖L2→L2 · ‖χ′U(t)A1u‖L2 +O(h∞)‖u‖L2

finishing the proof.� □ 

4.  Dynamical cutoff functions

In this section, we construct families of auxiliary cutoff functions which localize to smaller 
and smaller neighborhoods of Γ± and are the key component of the proofs of theorems 2 and 
3. These functions are defined by propagating a fixed cutoff function for a large time.

Fix constants

0 � ρ < 2ν < 1.

We propagate up to time ρte where te is the Ehrenfest time from (1.7) in the semiclassical 
scaling:

te =
log(1/h)
2Λmax

.� (4.1)

Fix a cutoff function

χ ∈ C∞
c (T∗M \ 0; [0, 1]), supp (1 − χ) ∩ K ∩ S∗M = ∅.� (4.2)

Define the following functions living near Γ±:

χ+
t = χ(χ ◦ ϕ−t), χ−

t = χ(χ ◦ ϕt), t � 0.� (4.3)

By the derivative estimates for the flow ϕt (see for instance [DG16, lemma C.1]) we have 
uniformly in t,

χ±
t ∈ Scomp

h,ν (T∗M), 0 � t � ρte.� (4.4)

By (2.9), there exists T > 0 such that

ϕt1(supp χ) ∩ ϕ−t2(supp χ) ∩ supp (1 − χ) ∩ S∗M = ∅ for all t1, t2 � T .
�

(4.5)

This implies the following
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Lemma 4.1.  Let χ, T  satisfy (4.2), (4.5). Then for all t0 � T , t � 0,

ϕt0+T(supp χ+
t ) ∩ supp (χ− χ+

t+t0) ∩ S∗M = ∅,� (4.6)

ϕ−t0−T(supp χ−
t ) ∩ supp (χ− χ−

t+t0) ∩ S∗M = ∅,� (4.7)

ϕ−t0(supp χ) ∩ supp (1 − χ) ∩ Γ+ ∩ S∗M = ∅,� (4.8)

ϕt0(supp χ) ∩ supp (1 − χ) ∩ Γ− ∩ S∗M = ∅.� (4.9)

Proof.  For (4.6) it is enough to show that

ϕt+t0+T(supp χ) ∩ supp χ ∩ ϕt+t0(supp (1 − χ)) ∩ S∗M = ∅

which follows immediately by applying ϕt+t0  to (4.5) with t1 = T , t2 = t + t0.
For (4.7) it is enough to show that

ϕ−t−t0−T(supp χ) ∩ supp χ ∩ ϕ−t−t0(supp (1 − χ)) ∩ S∗M = ∅

which follows immediately by applying ϕ−t−t0 to (4.5) with t1 = t + t0, t2 = T .
To show (4.8), choose (x, ξ) in the left-hand side of this equation. Since (x, ξ) ∈ Γ+, by 

(2.8) we have (x, ξ) ∈ ϕt1(supp χ) for all t1 � 0 large enough depending on (x, ξ). Then

(x, ξ) ∈ ϕ−t0(supp χ) ∩ ϕt1(supp χ) ∩ supp (1 − χ) ∩ S∗M

which is impossible by (4.5) with t2 = t0, as soon as t1 � T .
Finally, to show (4.9), choose (x, ξ) in the left-hand side of this equation. Since 

(x, ξ) ∈ Γ−, by (2.8) we have (x, ξ) ∈ ϕ−t2(supp χ) for all t2 � 0 large enough depending 
on (x, ξ). Then

(x, ξ) ∈ ϕt0(supp χ) ∩ ϕ−t2(supp χ) ∩ supp (1 − χ) ∩ S∗M

which is impossible by (4.5) with t1 = t0 as soon as t2 � T .� □ 

5.  Proof of the Weyl upper bound

In this section, we prove theorem 2, following the method of [Dya15a]. We use the function χ 
and the constant T satisfying (4.2), (4.5). We also assume that χ is chosen to be homogeneous 
of degree 0 near S∗M  and supp χ ⊂ {r < r0} ∩ {|ξ|g � 2}. We fix h-dependent

ρ, ρ′ ∈ [0, 1),
1
2
max(ρ, ρ′) < ν <

1
2

, ρte, ρ′te � C0,� (5.1)

with C0 a large constant, ρ, ρ′ chosen at the end of the proof, and ν independent of h, and 
define the following functions using (4.1) and (4.3):

χ+ := χ+
ρte , χ− := χ−

ρ′te ,

which both lie in Scomp
h,ν (T∗M) by (4.4). We also use a function

χE ∈ S (R), χE(0) = 1, supp χ̂E ⊂ (−1, 1).� (5.2)
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5.1.  Approximate inverse

We first construct an approximate inverse for the complex scaled operator Pθ − ω2 (see sec-
tion 3.1), arguing similarly to the proof of [Dya15a, proposition 2.1] and using the results of 
section 4. See (3.2) for the definitions of Ω̃, β̃ .

Lemma 5.1.  Fix ε0 > 0. Then there exist h-dependent families of operators holomorphic 
in ω ∈ Ω̃

Z(ω) : L2(M) → H2(M), ‖Z(ω)‖L2(M)→H2
h(M) � Ch−1e(β̃+ε0)(ρ+ρ′)te ,

�

(5.3)

J (ω) : H2(M) → H2(M), ‖J (ω)‖H2
h(M)→H2

h(M) � Ce(−h−1 Im ω+ε0)ρ
′te ,

�

(5.4)

such that for all ω ∈ Ω̃ and the constant C0 in (5.1) chosen large enough, we have on H2(M)

I = Z(ω)(Pθ − ω2) + J (ω)Oph(χ−)Oph(χ+)χE

(−h2∆g − ω2

h

)
+R(ω),

�

(5.5)

and the remainder R(ω) is O(h∞)Ψ−∞.

Proof.  Throughout the proof we will assume that ω ∈ Ω̃; the operators we construct are 
holomorphic in ω. Fix ε1 > 0 to be chosen at the end of the proof. We first show that

I = Z−(ω)(Pθ − ω2) + J−(ω)Oph(χ−) +O(h∞)Ψ−∞ ,� (5.6)

‖Z−(ω)‖Hs
h→Hs+2

h
� Cs,ε1 h−1 exp

(
(1 + ε1)β̃ρ

′te
)
,� (5.7)

‖J−(ω)‖H−N
h →HN

h
� CN,ε1 exp

((
− Imω

h
+ ε1β̃

)
ρ′te

)
.� (5.8)

For that, fix t0 bounded independently of h and such that

t0 >
2T
ε1

, L :=
ρ′te
t0

∈ N.

We apply lemma 3.4 to

aj = χ−
t0j, t1 := t0 + T .

Indeed, we have a0 = χ2 = 1 in an h-independent neighborhood of K ∩ S∗M  and aL = χ−. To 
verify (3.18), we first write by (4.7) with t = t0j,

ϕ−t1(supp aj) ∩ supp (χ− aj+1) ∩ S∗M = ∅.� (5.9)

On the other hand, by (4.8)

supp aj ⊂ supp χ, ϕ−t1(supp χ) ∩ supp (1 − χ) ∩ Γ+ ∩ S∗M = ∅.� (5.10)

Since χ is independent of h, aj,χ are homogeneous of order 0 near S∗M , and

supp (1 − aj+1) ⊂ supp (1 − χ) ∪ supp (χ− aj+1),
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we see that ϕ−t1(supp aj) ∩ supp (1 − aj+1) is contained in an h-independent compact set not 
intersecting Γ+ ∩ S∗M  and (3.18) follows by making V the complement of this compact set. 
Finally, to satisfy (3.19), we take r1 large enough depending on t0. Now lemma 3.4 applies and 
gives (5.6)–(5.8).

We next show that

Oph(χ) = Z+(ω)(Pθ − ω2) + Oph(χ+) +O(h∞)Ψ−∞ ,� (5.11)

‖Z+(ω)‖Hs
h→Hs+2

h
� Cs,ε1 h−1 exp

(
(1 + ε1)β̃ρte

)
.� (5.12)

For that, we fix t0 bounded independently of h and such that

t0 >
2T
ε1

, L :=
ρte
t0

− 1 ∈ N.

We apply lemma 3.4 to

aj = χ− χ+
t0(L+1−j), t1 := t0 + T .

Then a0 = χ− χ+ and aL = χ− χ+
t0 . By (4.8), we have supp aL ∩ Γ+ ∩ S∗M = ∅; since aL is 

independent of h, by lemma 3.2 we have for an appropriate choice of Q

Oph(aL) = Oph(aL)RQ(ω)(Pθ − ω2) +O(h∞)Ψ−∞ .� (5.13)

To verify (3.18), (3.19) we argue as in the proof of (5.6)–(5.8) above, using (5.9) (which fol-
lows from (4.6) with t = t0(L − j)) and (5.10). Now lemma 3.4 applies and, combined with 
(5.13), gives (5.11), (5.12).

We also have

Oph(χ−) = Zχ(ω)(Pθ − ω2) + Oph(χ−)Oph(χ) +O(h∞)Ψ−∞ , ‖Zχ(ω)‖Hs
h→Hs+2

h
� Csh−1.

� (5.14)

Indeed, choose C0 in (5.1) large enough so that C0 � 2T . Similarly to (4.5) we have for some 
ε′ > 0

supp (χ−) ∩ supp (1 − χ) ∩ {1 − ε′ � |ξ|g � 1 + ε′} ⊂ ϕ−T(supp χ) ∩ supp (1 − χ).

The right-hand side is a compact set which by (4.8) does not intersect Γ+ ∩ S∗M . Now (5.14) 
follows by lemma 3.2 applied to the operator Oph(χ−)Oph(1 − χ).

Finally, put

ZE(ω) := h−1ψE

(−h2∆g − ω2

h

)
, ψE(λ) =

1 − χE(λ)

λ
.

It follows from (5.2) that supp ψ̂E ⊂ (−1, 1), in particular ψE is entire and ZE can be de-
fined. Then

I = ZE(ω)(−h2∆g − ω2) + χE

(−h2∆g − ω2

h

)
, ‖ZE(ω)‖Hs

h→Hs
h
� Csh−1.

�

(5.15)
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By (2.34) and the fact that Pθ = −h2∆g on {r < r1}, we see that as long as r1 > r0 + 10,  
we have

Oph(χ+) = Oph(χ+)ZE(ω)(Pθ − ω2) + Oph(χ+)χE

(−h2∆g − ω2

h

)
+O(h∞)Ψ−∞ .

� (5.16)

Combining (5.6), (5.14), (5.11), (5.16), we obtain (5.5) with

Z(ω) = Z−(ω) + J−(ω)
(

Zχ(ω) + Oph(χ−)
(
Z+(ω) + Oph(χ+)ZE(ω)

))
,

J (ω) = J−(ω),

and (5.3), (5.4) follow from (5.7), (5.8), (5.12), (5.14), (5.15) as long as we choose  
ε1 < ε0/β .� □ 

5.2.  Proof of theorem 2

Fix ε0 > 0 and let

A(ω) := J (ω)Oph(χ−)Oph(χ+)χE

(−h2∆g − ω2

h

)
+R(ω)

be the operator featured in lemma 5.1. Then A(ω) is a Hilbert–Schmidt operator on H2
h(M) 

and its Hilbert–Schmidt norm is estimated by (2.35) and (5.4):

‖A(ω)‖2
HS � ‖J (ω)‖2

H2
h→H2

h
·
∥∥∥Oph(χ−)Oph(χ+)χE

(−h2∆g − ω2

h

)∥∥∥
2

HS
+O(h∞)

� Ch1−de2(−h−1 Im ω+ε0)ρ
′te · µL(S∗M ∩ supp χ+ ∩ supp χ−) +O(h∞)

� Ch1−de2(−h−1 Im ω+ε0)ρ
′te · V

(
(ρ+ ρ′)te

)
+O(h∞) =: Vρ,ρ′,ε0,h(−h−1 Imω)

� (5.17)
where we use (1.6) and the fact that

supp χ+ ∩ supp χ− ⊂ ϕρte

(
T ((ρ+ ρ′)te)

)
.

Consider the Fredholm determinant

F(ω) = det(I −A(ω)2), ω ∈ Ω̃.

We have by (5.17)

|F(ω)| � exp
(
‖A(ω)2‖tr

)
� exp

(
‖A(ω)‖2

HS

)
� exp

(
Vρ,ρ′,ε0,h(β̃)

)
for all ω ∈ Ω̃.

� (5.18)

On the other hand, if we put ω0 := 1 + ih ∈ Ω̃, then by (5.4) the norm ‖A(ω0)‖H2
h→H2

h
 is 

bounded above by 1
2 as long as the constant C0 in (5.1) is large enough. Therefore, we have 

‖(I −A(ω0))
−1‖H2

h→H2
h
� 2 and thus

|F(ω0)|−1 = | det(I −A(ω0)
2)−1| =

∣∣ det (I +A(ω0)
2(I −A(ω0)

2)−1)∣∣
� exp

(
‖A(ω0)

2(I −A(ω0)
2)−1‖tr

)
� exp

(
2‖A(ω0)‖2

HS

)
� exp

(
2Vρ,ρ′,ε0,h(β̃)

)
.

� (5.19)
By (5.5) we have
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(Pθ − ω2)−1 =
(
I −A(ω)2)−1(

I +A(ω)
)
Z(ω).

Therefore, the poles of (Pθ − ω2)−1 in Ω̃ are contained in the set of poles of (I −A(ω)2)−1, 
that is in the set of zeroes of F(ω), counting with multiplicity. (The multiplicities are handled 
using Gohberg–Sigal theory, see for example [DZ, section C.4].) By (5.18), (5.19), Jensen’s 
bound on the number of zeroes of F(ω) (see for instance [DJ17, lemma 4.4]; we dilate the 
regions (3.1), (3.2) by h−1), and the relation of the poles of (Pθ − ω2)−1 with resonances of 
∆g, we see that the bound

N (R,β) � CRd−1 exp
(
2(β̃ + ε0)ρ

′te(R)
)
· V

(
(ρ+ ρ′)te(R)

)
+O(R−∞)

� (5.20)
holds for all ρ, ρ′ ∈ [0, 1) satisfying (5.1), ε0 > 0, and β̃ > β , with te(R) defined in (1.7); here 
the constant C depends on β̃. We assume that K ∩ S∗M �= ∅, since otherwise there is a reso-
nance free strip of arbitrarily large size (see for instance [DZ, theorem 6.9]). Then by (2.14), 
we may remove the O(R−∞) remainder in (5.20).

Now, put ρ′ := C0/te(R), where C0 is the constant in (5.1), and ρ := 1 − ε0, β̃ := β + ε0. 
Then (5.20) implies (using (2.13))

N (R,β) � CRd−1 · V
(
(1 − ε0)te(R)

)
.� (5.21)

If we instead put ρ := ρ′ := 1 − 2β−1ε0, β̃ := β + ε0, then (5.20) implies

N (R,β) � CRd−1 exp
(
2βte(R)

)
· V

(
2(1 − 2β−1ε0)te(R)

)
.� (5.22)

Choosing ε0 small enough, we see that (5.21) and (5.22) imply the bound (1.8), finishing the 
proof of theorem 2.

6.  Proof of wave decay on average

6.1.  Hilbert–Schmidt bound

We first use the results of section 3.2 to obtain a Hilbert–Schmidt bound for the wave propaga-
tor. Assume that χ ∈ S0

h(T
∗M; [0, 1]) satisfies for some r2 > r0 and εE > 0,

supp χ ⊂ {r < r2}, supp (1 − χ) ∩ {|ξ|2g ∈ [1 − εE, 1 + εE]} ∩ {r � r0} = ∅.

Put T :=
√

r2
2 − r2

0 . By (2.4) the following stronger version of (4.5) holds:

ϕt1(supp χ) ∩ ϕ−t2(supp χ) ∩ supp (1 − χ) ∩ {|ξ|2g ∈ [1 − εE, 1 + εE]} = ∅ for all t1, t2 � T .
� (6.1)

Take an energy cutoff function ψ2 ∈ C∞
c (R) such that

supp ψ2 ⊂ (1 − εE, 1 + εE).� (6.2)

Fix constants 0 � ρ < 2ν < 1 and denote by te the Ehrenfest time, see (4.1).

Lemma 6.1.  Fix ε0 ∈ (0, 1). Then for each t ∈ [5ε−1
0 T , ρte],

‖Oph(χ
2)U(2t)ψ2(−h2∆g)Oph(χ

2)‖2
HS � Ch−dV

(
2(1 − ε0)t

)
+O(h∞).

�
(6.3)

Proof.  Fix t1 bounded independently of h and such that

t1 �
T
ε0

, L :=
t
t1

∈ N, L � 5.
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Put t0 := t1 − T � 0. Fix ψ3 ∈ C∞
c (R; [0, 1]) such that for some ε̃E < εE

supp ψ3 ⊂ (1 − εE, 1 + εE), supp (1 − ψ3) ∩ [1 − ε̃E, 1 + ε̃E] = ∅, supp ψ2 ⊂ (1 − ε̃E, 1 + ε̃E).

Put

χ̃ := ψ3(|ξ|2g)χ, χ̃±
s := χ̃(χ ◦ ϕ∓s).

Similarly to (4.4), χ̃±
s ∈ Scomp

h,ν (M) for |s| � ρte. Using (6.1), the proof of (4.6), (4.7) gives for 
all s � 0

ϕt1(supp χ̃+
s ) ∩ supp (χ̃− χ̃+

s+t0) = ∅,� (6.4)

ϕ−t1(supp χ̃−
s ) ∩ supp (χ̃− χ̃−

s+t0) = ∅.� (6.5)

We have ψ2(−h2∆g)Oph(χ
2 − χ̃+

0 ) = O(h∞)Ψ−∞. Moreover, since ψ2(−h2∆g) commutes 
with U(2t)

Oph(χ
2 − χ̃−

0 )U(2t)ψ2(−h2∆g)Oph(χ̃
+
0 ) = O(h∞)Ψ−∞ .

It follows that

Oph(χ
2)U(2t)ψ2(−h2∆g)Oph(χ

2) = Oph(χ̃
−
0 )U(2t)ψ2(−h2∆g)Oph(χ̃

+
0 ) +O(h∞)Ψ−∞ .

� (6.6)

From (6.6) and lemma 3.7 (taking ε̃E  in place of εE ) we get

Oph(χ
2)U(2t)ψ2(−h2∆g)Oph(χ

2)

= Oph(χ̃
−
0 )U(t1)

(
Oph(χ̃)U(t1)

)2L−1
ψ2(−h2∆g)Oph(χ̃

+
0 ) +O(h∞)Ψ−∞ .

� (6.7)

We next transform the right-hand side of (6.7) into an expression involving the cutoffs χ̃±
t . 

First of all, we claim that
((

Oph(χ̃)U(t1)
)L − Oph(χ̃

+
Lt0)U(t1) · · ·Oph(χ̃

+
t0 )U(t1)

)
ψ2(−h2∆g)Oph(χ̃

+
0 ) = O(h∞)Ψ−∞ .

� (6.8)

Indeed, the left-hand side of (6.8) is equal to 
∑L

�=1 B+
�  where

B+
� :=

(
Oph(χ̃)U(t1)

)L−�
Oph(χ̃− χ̃+

�t0)U(t1)Oph(χ̃
+
(�−1)t0

)U(t1) · · ·Oph(χ̃
+
t0 )U(t1)ψ2(−h2∆g)Oph(χ̃

+
0 ),

in particular B+
1 =

(
Oph(χ̃)U(t1)

)
L−1Oph(χ̃− χ̃+

t0 )U(t1)ψ2(−h2∆g)Oph(χ̃
+
0 ). By lemma 

2.3 and (6.4) with s := (�− 1)t0 we have

Oph(χ̃− χ̃+
�t0)U(t1)Oph(χ̃

+
(�−1)t0

)U(−t1) = O(h∞)Ψ−∞

for � = 2, . . . , L and a similar argument with s := 0 gives

Oph(χ̃− χ̃+
t0 )U(t1)ψ2(−h2∆g)Oph(χ̃

+
0 )U(−t1) = O(h∞)Ψ−∞ .

Therefore B+
� = O(h∞)Ψ−∞ and (6.8) follows.
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We next claim that

Oph(χ̃
−
0 )U(t1)

(
Oph(χ̃)U(t1)

)L−1
Oph(χ̃

+
Lt0)

−Oph(χ̃
−
0 )U(t1) · · ·Oph(χ̃

−
(L−1)t0

)U(t1)Oph

(
χ̃−

Lt0(χ ◦ ϕ−Lt0)
)
= O(h∞)Ψ−∞ .

�
(6.9)

Indeed, the left-hand side of (6.9) has the form 
∑L

�=1 B−
�  where

B−
� := Oph(χ̃

−
0 )U(t1) · · ·Oph(χ̃

−
(�−1)t0

)U(t1)Oph(χ̃− χ̃−
�t0)U(t1)

(
Oph(χ̃)U(t1)

)L−�−1
Oph(χ̃

+
Lt0)

for � = 1, . . . , L − 1 and

B−
L := Oph(χ̃

−
0 )U(t1) · · ·Oph(χ̃

−
(L−1)t0

)U(t1)Oph

(
(χ̃− χ̃−

Lt0)(χ ◦ ϕ−Lt0)
)
.

By lemma 2.3 and (6.5) with s := (�− 1)t0, � = 1, . . . , L − 1, we have

U(−t1)Oph(χ̃
−
(�−1)t0

)U(t1)Oph(χ̃− χ̃−
�t0) = O(h∞)Ψ−∞

and a similar argument with s := (L − 1)t0 gives

U(−t1)Oph(χ̃
−
(L−1)t0

)U(t1)Oph

(
(χ̃− χ̃−

Lt0)(χ ◦ ϕ−Lt0)) = O(h∞)Ψ−∞ .

Therefore B−
� = O(h∞)Ψ−∞ and (6.9) follows.

Combining (6.7)–(6.9), we obtain

Oph(χ
2)U(2t)ψ2(−h2∆g)Oph(χ

2) = A−AA+ +O(h∞)Ψ−∞ ,

A− := Oph(χ̃
−
0 )U(t1) · · ·Oph(χ̃

−
(L−1)t0

)U(t1),

A := Oph

(
χ̃−

Lt0(χ ◦ ϕ−Lt0)
)
,

A+ := U(t1)Oph(χ̃
+
(L−1)t0

)U(t1) · · ·Oph(χ̃
+
t0 )U(t1)ψ2(−h2∆g)Oph(χ̃

+
0 ).

In fact the remainder is O(h∞)HS since its range consists of functions supported in {r < r2}. 
By (2.20) and since 0 � χ̃±

s � 1, we have as h → 0

‖A±‖L2→L2 = O(1).

Therefore

‖Oph(χ
2)U(2t)ψ2(−h2∆g)Oph(χ

2)‖HS � C‖A‖HS +O(h∞).� (6.10)

Finally, we have by (2.21)

‖A‖2
HS � Ch−dVol

(
supp χ̃ ∩ ϕLt0(supp χ) ∩ ϕ−Lt0(supp χ)

)
� Ch−dV(2Lt0) � Ch−dV

(
2(1 − ε0)t

)

where in the last inequality we use (2.13). Combined with (6.10) this gives (6.3).� □ 
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6.2.  Concentration of measures

Let ER ⊂ L2(B) be as in the introduction, in particular for some constant c > 0

NR := dim ER = cRd + o(Rd).

Denote by SR the unit sphere in ER. Let uR ∈ SR  be chosen randomly with respect to the stan-
dard measure on the sphere.

Lemma 6.2.  Let A : ER → L2(M) be a bounded linear operator and take R large enough so 
that NR � 10. Then for all m � 10,

P
(
‖AuR‖L2(M) > mN−1/2

R ‖A‖HS
)
� 2e−m2/16.� (6.11)

Proof.  Denote by μ the standard probability measure on SR and let e1, . . . , eNR  be an ortho-
normal basis of ER. Consider the function f (u) = ‖Au‖L2(M), u ∈ SR. We have

E( f (uR)
2) =

∫

SR

〈
AuR(a), AuR(a)

〉
L2 dµ(a)

=

∫

SR

NR∑
k,j=1

〈
akAek, ajAej

〉
L2 dµ(a)

=
1

NR

NR∑
k=1

‖Aek‖2 =
1

NR
‖A‖2

HS.

The function f is Lipschitz continuous; indeed, for u, v ∈ SR∣∣‖Au‖L2 − ‖Av‖L2

∣∣ � ‖A(u − v)‖L2 � ‖A‖ER→L2 · ‖u − v‖ER � ‖A‖HS · ‖u − v‖ER .

By the Levy concentration of measure theorem [Led01, 2.6]

P
(
| f (uR)−M( f )| > ‖A‖HS · η

)
� 2e−(NR−2)η2/2 � 2e−NRη

2/4 for all η > 0
�

(6.12)

where M( f ) is the median of f (uR), namely the unique number with the properties

P
(

f (uR) � M( f )
)
�

1
2

, P
(

f (uR) � M( f )
)
�

1
2

.

We next estimate the difference between M( f ) and E( f (uR)). By (6.12)

|E( f (uR))−M( f )| � E| f (uR)−M( f )| =
∫ ∞

0
P
(
| f (uR)−M( f )| > r

)
dr

� 2
∫ ∞

0
exp

(
− NRr2

4‖A‖2
HS

)
dr

� 4‖A‖HSN−1/2
R .

Since |E( f (uR))| �
√
E( f (uR)2) by Jensen’s inequality, we have

M( f ) � 5‖A‖HSN−1/2
R .
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Using (6.12) with η := (m − 5)N−1/2
R � 1

2 mN−1/2
R , we obtain for m � 10

P
(

f (uR) > mN−1/2
R ‖A‖HS

)
� P

(
| f (uR)−M( f )| > η‖A‖HS

)
� 2e−m2/16

finishing the proof.� □ 

6.3.  Proof of theorem 3

Recall from (2.12) that B = {r � r1} for some r1 > r0. With ε′ > 0 the parameter from 
(1.12), fix εE > 0 such that

[(1 − ε′)2, (1 + ε′)2] ⊂ (1 − εE, 1 + εE)� (6.13)

and fix ψ2 ∈ C∞
c (R) such that

supp ψ2 ⊂ (1 − εE, 1 + εE), supp (1 − ψ2) ∩ [(1 − ε′)2, (1 + ε′)2] = ∅.
�

(6.14)

Let ψ ∈ C∞
c (B◦) be chosen in theorem 3. Without loss of generality we assume that |ψ| � 1. 

We assume that R is large and put

h := R−1.
We use the definition (1.12) of the space ER to show the following microlocalization statement:

Lemma 6.3.  We have for all u ∈ ER

‖(I − ψ2(−h2∆g))ψu‖L2 = O(h∞)‖u‖L2 .� (6.15)

Proof.  Let {ek} be an orthonormal basis of L2(B) with (−∆B − λ2
k)ek = 0. Then it suffices 

to show that for each k such that hλk ∈ [1 − ε′, 1 + ε′], we have

‖(I − ψ2(−h2∆g))ψek‖L2 = O(h∞).

Let ψ′ ∈ C∞
c (B◦) satisfy supp ψ ∩ supp (1 − ψ′) = ∅. Then (1 − ψ′)(I − ψ2(−h2∆g))ψ = 

O(h∞)Ψ−∞, therefore it suffices to show that

‖Bek‖L2 = O(h∞), B := ψ′(I − ψ2(−h2∆g))ψ ∈ Ψ0
h(M).� (6.16)

The Schwartz kernel of B is compactly supported in B◦. The function ek solves the equation

(−h2∆g − (hλk)
2)ek = 0 in B◦

and the operator −h2∆g − (hλk)
2 ∈ Ψ2

h(B◦) is elliptic on WFh(B) due to (6.14). Then (6.16) 
follows from the semiclassical elliptic estimate, see for instance [DZ, theorem E.32].� □ 

Let χ′ ∈ C∞
c (M) satisfy (3.48) and fix r2 > r1 such that supp χ′ ⊂ {r < r2}. By lemma 3.8 

combined with (6.15) we have for all u ∈ SR

‖ψU(s + t)ψu‖L2 � ‖ψU(s + t)ψ2(−h2∆g)ψu‖L2 +O(h∞)

� ‖χ′U(t)ψ2(−h2∆g)ψu‖L2 +O(h∞)
� (6.17)

for all t ∈ [T0, C0h−1], s ∈ [0, C0h−1], where T0 :=
√

r2
1 − r2

0 .
Using (6.17) and lemmas 6.1 and 6.2, we now give
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Proof of theorem 3.  With ε,α > 0 the parameters in the statement of theorem 3, take 
ε0, ρ, ν  such that

0 < ε0 < min
(ε

4
,α,

1
10Λmax

,
1

10

)
,

1
1 + ε0

< ρ < 2ν < 1.

Let te(R) be defined in (1.7). Fix a sequence of times

ε0 logR = t0 < t1 < · · · < tL = 2ρte(R), ti � (1 + ε0)ti−1, i � 1

with the following bound on L (seen by rewriting the inequality above as 
log ti � log(1 + ε0) + log ti−1)

1 � L � 1 − log(ε0Λmax)

log(1 + ε0)
.

Fix χ = χ(x) ∈ C∞
c (M; [0, 1]) such that

supp χ ⊂ {r < r2}, supp (1 − χ) ∩ {r � r1} = ∅, supp (1 − χ) ∩ supp χ′ = ∅.
� (6.18)

We view χ as a function of (x, ξ) ∈ T∗M and note that χ,ψ2 satisfy the assumptions of  
section 6.1. Then lemma 6.1 (with t := ti/2) gives for all i = 1, . . . , L

‖χ2U(ti)ψ2(−h2∆g)χ
2‖2

HS � Ch−dV
(
(1 − ε0)ti

)

where we remove the O(h∞) remainder by (2.14) using the assumption K �= ∅. Furthermore, 
χ2χ′ = χ′ and χ2ψ = ψ, so

‖χ′U(ti)ψ2(−h2∆g)ψ‖HS � Ch−d/2
√

V((1 − ε0)ti).� (6.19)

Write tL+1 := C0R. Suppose that t ∈ [ε0 logR, C0R]. Then there exists i � 0 so that t ∈ [ti, ti+1]. 
By (6.17) with (ti, t − ti) taking the role of (t, s)

P
[
‖ψU(t)ψuR‖L2 � m

√
V
(
(1 − 2ε0)min(t, 2te(R))

)
for all t ∈ [ti, ti+1]

]

� P
[
‖χ′U(ti)ψ2(−h2∆g)ψuR‖L2 �

m
2

√
V
(
(1 − 2ε0)min(ti+1, 2te(R))

) ]

�

(6.20)

where we again use (2.14) and the monotonicity (2.13) of V(t) to remove the O(h∞) error. 
Now, since ti+1 � (1 + ε0)ti for i = 0, . . . , L − 1 and 2te(R) � (1 + ε0)tL,

(1 − 2ε0)min(ti+1, 2te(R)) � (1 − 2ε0)(1 + ε0)ti � (1 − ε0)ti.

Using (6.19) and the monotonicity of V(t), we have

N−1/2
R ‖χ′U(ti)ψ2(−h2∆g)ψ‖HS � C

√
V((1 − ε0)ti) � C

√
V
(
(1 − 2ε0)min(ti+1, 2te(R))

)
.

Lemma 6.2 applied to A := χ′U(ti)ψ2(−h2∆g)ψ then implies that there exists C > 0 such 
that for all m � C

P
[
‖χ′U(ti)ψ2(−h2∆)ψuR‖L2 >

m
2

√
V
(
(1 − 2ε0)min(ti+1, 2te(R))

)]
� 2e−m2/C.
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Therefore, by (6.20)

P
[
‖ψU(t)ψuR‖L2 � m

√
V
(
(1 − 2ε0)min(t, 2te(R))

)
for all t ∈ [ti, ti+1]

]
� 1 − 2e−m2/C.

Taking an intersection of these events for i = 0, . . . , L  then gives

P
[
‖ψU(t)ψuR‖L2 � m

√
V
(
(1 − 2ε0)min(t, 2te(R))

)
for all t ∈ [ε0 logR, C0R]

]
� 1 − 4Le−m2/C,

finishing the proof.� □ 

7.  Examples

7.1.  Manifolds of revolution

Consider the warped product M = Rr × Sd−1
θ  with metric

g = dr2 + α(r)2g0(θ, dθ)

where g0 is the round metric on the sphere, α ∈ C∞(R;R+), and there exists C > 0 so that

α(r) = |r|, |r| > C.

Then M is a manifold with two Euclidean ends so theorems 2 and 3 apply. The symbol of the 
Laplacian is given

p2 = ρ2 + α−2(r) p0, p0 := |η|2g0(θ)

where ρ, η denote the momenta dual to r, θ. We compute

2pHp = Hp2 = 2ρ∂r + 2α−3(r)α′(r) p0∂ρ + α−2(r)Hp0 .

Therefore, for a geodesic (r(t), θ(t), ρ(t), η(t)),



ṙ = p−1ρ

ρ̇ = p−1α−3(r)α′(r) p0

ṗ0 = 0.

Throughout this section, we assume that

±α′(r) � 0 for ±r � 0.� (7.1)

Notice that

r̈ = p−2α−3(r)α′(r) p0.� (7.2)

To understand trapping on M, we use

Lemma 7.1.  For any geodesic (r(t), θ(t), ρ(t), η(t)) ∈ { p = 1}, we have for all t � 0

ρ(0)r(0) � 0 =⇒ |r(t)| � |r(0)|+ |ρ(0)t|,� (7.3)

ρ(0)r(0) � 0 =⇒ |r(−t)| � |r(0)|+ |ρ(0)t|.� (7.4)

Proof.  We prove (7.3) under the assumption r(0) � 0, ρ(0) � 0, with the other cases han-
dled similarly. By (7.1) and (7.2), we have r(t)r̈(t) � 0 for all t. Moreover, ṙ(0) � 0. This 
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implies that r(t) � 0 for all t � 0 and thus ṙ(t) � ṙ(0) = ρ(0) for t � 0. This immediately 
gives (7.3).� □ 

Denote by K ⊂ T∗M \ 0 the trapped set, see (2.6). Lemma 7.1 implies that

K ⊂ {α′(r) = 0, ρ = 0}.

On the other hand, if ρ(0) = 0 and α′(r(0)) = 0, then r ≡ r(0) and hence

K = {α′(r) = 0, ρ = 0}.� (7.5)

7.2.  Example with cylindrical trapping

We now consider two special examples of manifolds of revolution. First, let M be given as 
above with (see figure 5)

α(r) =
{

1, |r| � 2;
|r|, |r| � 4.

such that rα′(r) > 0 when |r| > 2. Then by (7.5),

K = {|r| � 2, ρ = 0}.

We estimate V(t) when t � 1. Fix

B := {|r| � 3}.

Since ρ̇ = 0 for |r| � 2, we have

{|r| � 1, |ρ| � p/t} ⊂ TB(t).

On the other hand, suppose that |ρ(0)| � 4p/t. Then by lemma 7.1,

max(|r(t)|, |r(−t)|) � 4.

Therefore,

ϕ−t(TB(2t)) ⊂ {|r| � 3, |ρ| � 4p/t}.

In particular, this shows that there exists C > 0 so that

C−1t−1 � V(t) � Ct−1.

7.3.  Example with degenerate hyperbolic trapping

Next, we study a less degenerate situation. Fix an integer n � 2 and let M be given as above 
with (see figure 5)

α(r) =

{
1 + r2n

2 +O(r2n+1), |r| � 1;
|r|, |r| � 4.

such that rα′(r) > 0 for r �= 0. Then by (7.5)

K = {r = 0, ρ = 0}.

Fix small τ > 0 to be chosen later and let

B = {|r| � τ}.
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We consider the flow on { p = 1} = S∗M , so that

ρ2 = 1 − α(r)−2p0 � 1 − p0.

Recall that p0 is constant on each geodesic.
We henceforth assume that t � 1. Observe that if p0 < 1 − τ , then |ρ(0)| > τ 1/2 and hence 

by lemma 7.1 max(|r(t)|, |r(−t)|) >
√
τ � τ . Therefore

ϕ−t(TB(2t)) ∩ S∗M ⊂ {|r| � τ , p0 � 1 − τ}.

By symmetry considerations, to understand the set ϕ−t(TB(2t)) ∩ S∗M  it suffices to consider 
the set of trajectories which satisfy

p = 1, p0 � 1 − τ , r(0) � 0, ρ(0) � 0, r(t) � τ .� (7.6)

Lemma 7.2.  Under the assumption (7.6), for τ > 0 fixed small enough and large t we have

r(0) � Ct−
1

n−1 ,� (7.7)

ρ(0) � Ct−
n

n−1 .� (7.8)

Proof.  Note that 0 � r(0) � r(t) � τ . Moreover, we have α(r(0)) �
√

p0 . Since 
ṙ = ρ =

√
1 − α(r)−2p0 , we have

t =
∫ r(t)

r(0)

dr√
1 − α(r)−2p0

�
∫ τ

r(0)

dr√
1 − α(r)−2p0

.

Using the inequality α(r)− α(s) � C−1(r − s)r2n−1, 0 � s � r � τ , we have

t �
∫ τ

r(0)

(
1 − α(r(0))2

α(r)2

)−1/2
dr � C

∫ τ

r(0)

(
α(r)− α(r(0))

)−1/2
dr

� C
∫ τ

r(0)
(r − r(0))−1/2r1/2−n dr � Cr(0)1−n

∫ ∞

1
(u − 1)−1/2u1/2−n du � Cr(0)1−n.

This implies (7.7).

Next if p0 � 1 then

ρ(0)2 � 1 − α(r(0))−2 � Cr(0)2n

and in this case (7.7) implies (7.8).

Figure 5.  Examples of surfaces of revolution studied in section 7.2 (left) and section 7.3 
(right).
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Finally, consider the case p0 < 1. Since for 0 � r � τ , 1 − α(r)−2p0 � 1 − p0 +
1
4 r2n, we 

have

t �
∫ τ

0

dr√
1 − α(r)−2p0

�
∫ ∞

0

dr√
1 − p0 + r2n/4

.

Making the change of variables r = (4(1 − p0))
1
2n u, we get

t � C(1 − p0)
1−n

2n

∫ ∞

0

du√
1 + u2n

� C(1 − p0)
1−n

2n

which implies

1 − p0 � Ct−
2n

n−1 .

We now have by (7.7)

ρ(0)2 = 1 − α(r(0))−2p0 � 1 − p0 + Cr(0)2n � Ct−
2n

n−1

which gives (7.8).� □ 

Applying lemma 7.2, we obtain the volume bound µL(ϕ−t(S∗M ∩ TB(2t))) � Ct−
n+1
n−1 and 

thus

V(t) � Ct−
n+1
n−1 .
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