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Abstract
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Chapter One

Introduction

The purpose of this project is to design and implement an automatic news article

editor in an attempt to automate some of the more mechanical tasks performed by a

human news editor. The automatic system will receive news articles from a standard

news wire and process the articles as they are received, in much the same way a human

news editor does.

1.1 Problem Description

A human news editor performs a number of important tasks during the

preparation of news articles. One of these tasks is arranging the lay out of an article to

make it more readable. This is particularly necessary for articles obtained from a news

wire because some of the more widely used news wires do not send their news information

pre-formatted. There are a number of cryptic abbreviations and control codes imbedded

in the news wire articles which are meant to direct experienced editors as to how a story

is to be handled. A human editor may have to interpret these character sequences and act

on them as he sees fit, such as expanding an abbreviation into readable text or, based on

a cryptic category designation, direct the article to a different editor who handles that

particular category of news. Some of these special characters are also meant to direct

electronic devices which preprocess the information before the editor sees it.

Another task which a human news editor performs is to reassemble articles which

a news service may have transmitted as more than one piece. If an article is long enough,

a news service may divide it into several pieces which are transmitted separately. Also, if

an article is unfinished or if a fast breaking story should arise, then an article may not be

completed quickly enough and those pieces of the article which are ready for transmission
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may be sent over the news wire, with the remaining pieces being transmitted as they are

completed. Additionally, as stories develop, optional additions to the previously

transmitted story may also be transmitted. A human editor needs to manage the

fragments of articles transmitted in such a way, deciding whether or not to hold a story

pending the reception of additional text.

Since news stories are constantly changing as more is learned about a given

situation, it is common for a news service to send multiple versions of a story over its

news wire, with newer versions meant to replace older versions of the same story. So, an

additional function of a news editor is to manage versions of stories, being careful to

print the latest news available to him.

Lastly, a human editor must filter out various data items which are sent over a

news wire and are of little interest to his readers. His job is to print items of greatest

interest to his reading audience Some news wires transmit an immense amount of

information, far more than any one newspaper can print. A news editor needs to filter

through this large amount of data, gathering from it the articles he thinks will interest

his readers the most. Some types of information are obviously not intended for readers of

newspapers, such as advisories to editors about material being transmitted. A news editor

should also filter out this type of material.

It is the goal of this project to construct a system which can perform most, if not

all, of these functions. An automatic news editor should be able to properly transform

raw news data received from a news wire into a format which is easily readable and

aesthetically pleasing. Such a system should also be able to manage fragmented articles,

piecing them together as needed. It is also necessary for an automatic system to manage

story updates, notifying its readers of the changes as they occur. Lastly, it is also useful

for an automatic system to be able to filter a news wire so that various types of

information are sent to people best suited to receive them. For instance, advisories from

the news wire service should be sent to an editor or system administrator, while actual

stories should be sent to readers serviced by the automatic news editing system.
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1.2 News Wire Specification

The immediate goal of this project was to produce a program to edit two

particular news wire services: the New York Times news wire and the Associated Press

news wire. Both of these news wires follow standardized transmission guidelines

published by the American Newspaper Publishers Association Research Institute. The

transmission guidelines were first published on June 1, 1976 in the ANPA R.I. Bulletin

1228. The guidelines were revised and published again on February 1, 1979 in ANPA R.I.

Bulletin 1312: High-speed wire service transmission guidelines [1].

The guidelines specify that the articles should include, among other things, a

priority, a category, a' keyword and a date. In addition to these fields, the article text

also usually contains an author and a title. The articles that the automatic editing

system produces will have a separate field for each of these items, in addition to a field

specifying which news wire the article originated from.

1.3 System Integration

The editing system that resulted from this project is actually just one stage in a

much larger information system, known as the Community Information Systems. Figure

1-1 is a diagram of the various information system components which comprise the

Community Information Systems.

" One of the systems is known as the Boston CommInS project [4]. This system

is an experiment in distributing large amounts of information to a

metropolitan population in a cost effective way. Basically, the news articles

are transmitted over an FM sub-carrier and received by suitably equipped

IBM PC's which filter the incoming articles according to the user's interests.

" A second system is the Walter program. Walter allows its user to

interactively query the database of news articles for articles of interest to the

user. The Walter program can reside on any host with access to the Arpanet. 1

When Walter is run, it makes a network connection to the news article

database and sends user commands to the database where they are processed.

1Currently, Walter is only available for DEC VAXes, IBM PC-RT's and Sun Microsystems workstations.
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Figure 1-1:The Community Information System

Articles resulting from a query are returned to Walter via the network
connection.

* A third system is the Clipping Service. The Clipping Service stores user
interest profiles and uses electronic mail to send each user any incoming
articles which match his or her interest profile.

Figure 1-2 is a diagram of all the stages involved in producing and maintaining a

database of news articles within the Community Information System. The articles are

first received by a wire input program which monitors a news wire service line. Each time

an article arrives, the wire input program places it into a file in an input directory. The

automatic editing system takes articles from the input directory and processes them,
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Figure 1-2:A Community Information System Database

placing the finished articles in the queue directory. The indexer takes articles from the

queue directory and places them into the database. Depending on what type of news wire

the indexer is processing, it may also create a word index for that article, thereby

allowing efficient processing of database queries. The indexer also creates a scheduling

file and places it into a scheduler directory. The PC scheduler handles sending articles to

an IBM PC which then sends them, via a modem, to the radio station which broadcasts

them to the Boston CommInS users.

Because the editing system is an integral part of a much used system, its

reliability is of utmost importance. If the editing system breaks down, the entire

Community Information System will not receive new information. For this reason, I
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as secondary goals.

The article's received from the news wire are processed by performing a number

of different functions. The database is designed so that these functions are performed as

physically different processes within the same machine. This is an important feature with

respect to reliability. If one stage of the article processing should fail, the input to that

stage is buffered in a directory. This means that if the editing system should happen to

exit abnormally, its input is saved in the input directory and no data is lost. Also, the

editing system does not need to be concerned about whether the next stage in the process

is currently processing the artciles that the editing system is placing in its own output

directory. If the indexer, which uses the output articles of the editing sytem for its input,

is not running, the articles will remain in that directory until it is running again.

Therefore, we will not lose data if the editing system exits abnormally, but the data will

be delayed.

The remainder of this paper discusses the problems involved in building such an

editing system, some solutions for those problems and how those solutions were applied

to a real system. Chapter 2 outlines the editing functions the system needs to perform

and the algorithms proposed for doing them. Chapter 3 details the design and

implementation of the system. Chapter 4 discusses the operational experience with the

resulting system, including its reliability and performance in carrying out the previously

mentioned editing tasks. Chapter 5 presents a summary of the results of this project as

well as some suggestions for further work.

The automatic editor developed through this project has been in production for

24 hours per day, for 3 months. The system described in this document incorporates

much of the practical experienced gained during this time, as discussed in Chapter 4.
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Chapter Two

Editing Algorithms

This chapter discusses the algorithms used to perform the editing functions of

article reformatting, article reassembling, version updating and article filtering. In

deriving these algorithms, emphasis was placed first on robustness, second on efficiency of

space and third on efficiency of computation. Robustness is most important because the

editing system is intended to be an integral part of an existing information system where

reliability is very important.

2.1 Reformatting of Raw Articles

There are three stages to reformatting the raw article. The first stage is the

parsing of the header. Most of the header is abbreviated, cryptic information that needs

to be parsed and expanded. The second stage is recognizing special fields in the text

header. The news wire specifications do not describe where items such as the author and

the title should be placed in an article. The New York Times and Associated Press news

wires choose to place these at the beginning of the article text. These special fields need

to be recognized and extracted. The third stage is the reformatting of the text. The

actual text of the article contains some typesetting characters which need to be

recognized and either discarded or used to enhance the appearance of the article.

2.1.1 Parsing the Article Header

The first stage of reformatting the raw data is to parse and format the header of

the article. The header contains descriptive information about the article, such as the

keyword, the priority, the date and the category. Some of this information is in a cryptic

or abbreviated form, so that during this stage of reformatting the information will be
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parsed and expan ded to make it more rea(lable. Vigiri 2-1 sihows a ty)al article

header.

A1016^ tab-z
r i^S^Q BC-ROMANIA 05-10 0460
^B^BC-ROMANIA<
ROMAINS WANT TO REMAIN 'MOST FAVORED'<
By IRVIN MOLOTSKY=
c.1987 N.Y. Times News Service=

WASHINGTON _ In recent days, the Romanian Embassy has brought
to Washington a chorus of 40 Jewish boys and girls who sang Yiddish
songs and a delegation of 12 religious leaders of various
denominations. These were not so much a part of a cultural exchange
or to discuss comparative religion as a question of trade policy.

Figure 2-1:Unformatted Article Header

As an example of abbreviations, the category and priority are encoded as single

characters and need to be expanded into full words or phrases. Figure 2-2 shows the

header after reformatting has been performed, with the category and the priority fully

expanded.

The keyword of the article usually needs to be modified before it can be used as a

subject field in the final article. According to the specifications, spaces are not allowed in

the transmitted keyword so dashes are used to separate words, as can be seen in figure

2-1. The transmitted keyword usually has some version information appended to it as

well. 2 So, some of the work needed for preparing keywords is to remove dashes, replacing

them with spaces, and to strip the keyword of any version information to make it more

readable.

2 This is actually not true. The specifications claim that the keyword and the version information are two
separate items within the header of the article. In practice, they are difficult to distinguish. I have chosen to
treat the entire portion of the header as a keyword during the header parsing and strip off the known
version words afterwards.
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type: NYT (Copyright 1987 The New York Times)

priority: Regular

date: 05-10-87 0912EDT

category: International News

subject: BC ROMANIA

title: ROMAINS WANT TO REMAIN 'MOST FAVORED'

author: IRVIN MOLOTSKY

text:

WASHINGTON -- In recent days, the Romanian Embassy has brought

to Washington a chorus of 40 Jewish boys and girls who sang Yiddish

songs and a delegation of 12 religious leaders of various

denominations. These were not so much a part of a cultural exchange

or to discuss comparative religion as a question of trade policy.

Figure 2-2:Formatted Article Header

2.1.2 Recognizing Special Fields

Once all of the header information is parsed, the second stage of reformatting is

to extract special fields from the beginning of the text of the article. The news wire

specification does not specify where the author, title, copyright and various other pieces

of information should be placed within the transmitted article or how these items should

appear. In fact, the specifications do not even require that these items exist at all. There

are no rules for placement of the these items within the article. This makes the job of

reformatting the text difficult since we have to be able to distinguish between a line of

article text and, say, the title of the story.

There are six pieces of information, or fields, which may be found in the text,

other than the text itself. They are:

" the copyright notice

" the author

" the title

" parenthesized notations
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. notes to editors

There are a few pieces of information we know that will help us properly recognize these

fields. The formal specification of the article text is all of the characters between the

special textbegin and textend characters, then we at least know that those fields, if

they exist at all, will be found between those two characters. We also know, by

observation, that all of these fields are found after the special text begin character and

before the actual text'begins. In figure 2-1, the '^B' at the beginning of the third line is

the text begin character. Notice that after this character, we find a copy of the

keyword, a title, an author and a copyright. Following this information is the actual text.

The first two fields listed above are the easiest to find. A copyright notice is a

line which begins with the characters 'c.' or the string 'copyright'. An author is a line

which begins with the string 'By'. It is possible that a line of text might begin with

either of the strings 'By' or 'copyright' but not be an author or a copyright notice.

However, for this to happen, that line would have to be the first line of actual text,

because once we recognize the first line of actual text, we no longer search for any of the

special fields listed above. The first line of actual text usually begins with a tab followed

by the geographic location where the article was written, such as 'WASHINGTON' on

the first line of text in figure 2-1. It is highly unlikely, then, that the first line of text

line will begin with either of those strings.

The title is probably the most difficult of these fields to recognize. There are no

characters at the beginning of the title which distinguish it from any other line of text

and, to compound the problem, a title looks very much like a normal line of text.

Additionally, not all articles have a title. If articles were required to have a title, then it

would be much easier to distinguish between the first line of text and a title. Suppose

this requirement did exist and there was a line which could be either a title or the first

line of text. If we have not yet found a title, then obviously the line is a title. If we have

found a title then the line is the first line of text. However, as already mentioned,

articles are not required to have a title. A title does have a trailing quad character, used
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such a trailing quad character. The criterion, then, that we will use for recognizing a title

is that a line of text is a title if it ends with a quad character and does not meet the

criterion for the other five fields listed above.

Parenthesized notations can often be found at the beginning of the text,

sometimes specifying which section of the newspaper the article should appear in or

possibly some other note meant for an editor. We can easily notice these lines since they

begin with an open parenthesis. Also, a parenthesized notation, like a title, usually ends

with a quad character. Sometimes a parenthesized notation extends past one line, into

two or three lines, so we need to be careful to capture all of it.

When an article is divided in pieces and transmitted as a lead with corresponding

adds, the transmitting news service will sometimes include in the header of the text of

the add some information which helps in reassembling the full article. I refer to this

information as 'article glue' since it helps to 'glue' fragmented articles back together.

This information is usually the first two and last two words of the article piece which

precedes the current piece in the total sequence of the article's pieces. This information

can be used to make sure that the end of one piece and the beginning of another piece are

properly 'glued' together. This information is easy to distinguish and can be purged from

the text.

Notes to editors can also be found at the beginning of the text. These notes

usually point out such things as corrections or scheduling information for articles. We

can recognize these lines because they start with either of the two strings 'Eds.' or

'Editors'.

2.1.3 Reformatting the Actual Text

Most of the actual article text is in an acceptable form when it is received, except

for a few typesetting characters that the originating news source inserts into the text to

direct editors or machines receiving the text. There are four types of typesetting

characters that are commonly found in the transmitted articles: quad characters, rail

17



characters, tabbing characters and em dashes. The last of these, an em dash, simply

translates into a pair of adjacent hyphens.

Quad characters indicate that portions of text should be centered, flushed right or

flushed left on a line. For purposes of this project, quad characters are ignored. Quad

characters are usually used within a particular line to position portions of text to enhance

their readability, such as centering the title. Most of the time, the portions of text which

are positioned by quad characters are portions of text that we would like to treat

specially. For instance, in figure 2-1, the title is followed by a quad character, but in

figure 2-2 the title is a separate field. Since we want to format these kinds of fields

ourselves, the quad characters serve no useful purpose. Sometimes quad characters appear

within the text of the article and can actually be used to perform some useful formatting.

However, I have chosen not to use the information provided by these characters, because

I don't believe enough would be added to the presentation of the text, which is usually

displayed on a standard computer screen, to justify the overhead involved in processing

these characters.

Rail characters indicate where a bar, or rail, is suggested to divide sections of

text. This is commonly used in newspapers to separate titles and subtitles from one

another. Figure 2-2 shows how rails appear in the input article. In the figure, ' is an

upper rail and '0' is a lower rail. Figure 2-3 shows how the rails appear in the output

article. Since the resulting text of this system will not be displayed on a bitmapped

computer screen, we do not have enough resolution to distinguish between an upper rail

and a lower rail (i.e. a rail meant to appear directly above a line of text and a rail meant

to appear directly below a line of text). Therefore, we can easily display either type of

rail as simply a line of dashes.

One difficulty encountered in processing rails is that they are sometimes used to

designate italicized or emphasized words within text. We will need to distinguish

between this use of rails and rails used to set off a portion of text. We can do this by

only using rails which are outside of a paragraph of text. Through much observation, the

most common and useful function of rails is to 'frame' a heading or title, which usually

18



The New York Times News Summary for Monday, May 11, 1987:

^The World<

PARIS _ The trial of Klaus Barbie in France is due to begin.

The trial, taking place more than 40 years after his alleged crimes

as a Gestapo lieutenant, has absorbed the French like few other

recent events .... BARBIE.

AThe Nation<

WASHINGTON _ Increasing voluntary AIDS testing has been

recommended by federal health officials, in a confidential new

report. But they opposed mandatory testing and called for laws to

protect the secrecy of test results ... AIDS.

Figure 2-3:Unformatted Text Containing Rail Characters

The New York Times News Summary for Monday, May 11, 1987:

The World

PARIS -- The trial of Klaus Barbie in France is due to begin.

The trial, taking place more than 40 years after his alleged crimes

as a Gestapo lieutenant, has absorbed the French like few other

recent events .... BARBIE.

The Nation

WASHINGTON -- Increasing voluntary AIDS testing has been

recommended by federal health officials, in a confidential new

report. But they opposed mandatory testing and called for laws to

protect the secrecy of test results ... AIDS.

Figure 2-4:Formatted Text Containing Rails

each appear on their own line in the input article, not within a paragraph of text.

Therefore, only using rails which appear outside of paragraphs will intentionally exclude

rails for italicized or emphasized words while retaining rails for framing headings.

19
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such as stock reports or sports box scores. When a news wire service intends for a line to

be typeset into a number of columns, it will send a special tab line indicator character at

the beginning of the line. This character indicates that other formatting characters will

appear within the line, directing how much spacing should appear between columns so

that columns will line up properly. However, the tabbing information that is sent is

intended for typesetting done by newspapers, where various spacing characters are used

to compensate for the fact that all characters in newsprint are not the same width. For a

computer display, where all characters are of equal width, this information is

unnecessary. Therefore, once we notice a tab line indicator, we will need to calculate the

tab spacing ourselves based on the size of the text comprising each column and the total

allowable length of a line of text. The one problem we need to be aware of is that the

size of a column may change within a table. For instance, the figures appearing in the

beginning entries of the column may all be less than one hundred, i.e. at most two digits

wide, while figures appearing later in the column may be greater than one hundred, i.e.

three or more digits wide. This causes a problem because, if we have calculated each

column to be two characters wide and adjusted the spacing accordingly, then the amount

of spacing we are using will not properly line up columns which are three characters wide.

We can usually overcome this problem by building a certain amount of tolerance into a

column width, say 3 characters, to account for a reasonable range of figures.

2.2 Reassembly of Articles

It is common for a news wire service to divide a long or unfinished article into

pieces and transmit the pieces separately. There are three types of article pieces, other

than whole articles, which are commonly transmitted:

1. A lead which is the very first piece of an article, usually containing enough
information to predict how many other pieces will be transmitted and what
type of pieces they will be.

2. An addition, or simply an add, which is a piece meant to be appended to
either an article lead or another article addition.

20



3. An append, otherwise knowii as aii add-at-ii(d, which is also mie(aniti to be

appended to an article lead or an article addition, but many times as an

'afterthought' or as an optional add.

An append itself can sometimes be transmitted as a number of separate pieces, divided

into a lead and a number of adds. However, it is useful to think of the entire append as

one type of article piece.

When an article is received, information which designates what type of an article

piece it is can usually be found in the header when it is parsed. However, the header

doesn't always contain the information it should about what type of article piece we are

dealing with. In some cases, we can determine from the text itself that more pieces of the

article are to be expected. Usually, either the string '(MORE)' or the string 'nn' can be

found at the end of the text if an add or an append is expected for this piece. So, we can

look for either of these strings at the end of the text, in addition to information gleaned

from the header, to help us determine if more article pieces will arrive when that

information is lacking.

We can act upon the article piece based on what type of piece we believe it to be.

If the article is a lead, we will store it in a temporary place, pending reception of all of its

additions and appends. If the article is an addition or an append, we will try to find its

lead and store the addition with the lead. If this addition or append completes the article,

we will output the entire article.

If we can find no information in the article to designate that it is a lead, an

addition or an append, then we will assume it is a whole article, ready to be output as

complete. However, a small percentage of the time, an append will arrive for an article

that was assumed to be whole. This is a problem because the article is no longer in

temporary storage and therefore cannot be used to reassemble the append with its lead,

which we assumed was a whole article. We can solve this problem by using the 'replaces'

field of an article. The replaces field is mainly used in version handling. It specifies that

the newly received article containing the replaces field should replace any articles whose

identification numbers are listed in the replaces field. We can still output an article we

suspect is complete, but we will save a copy of it in temporary storage in case an append
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does arrive for it. If the append should arrive, then we can assemble the fully received

article, adding a replaces field to indicate that this newly completed article should replace

the article which we falsely believed was the completed article.

The wire services are not always reliable, and therefore a lead may wait forever

for its additions which, because of unreliable wire transmission, never arrive. To mitigate

this problem, we will apply a timeout constraint on article pieces in temporary storage. If

an article has been waiting long enough, say thirty minutes, then we will assume that its

additions and appends are not going to arrive. We will then assemble the article to the

best of our ability, using whatever pieces we have, and ouput it as complete. The

justification for this decision is that a partial article is still worth outputting since article

pieces are large enough pieces of text that the article contains useful information.

Additionally, articles are often divided so that each piece contains a complete thought or

complete facet of the total story. So an article composed of only a few of its original

pieces still contains a number of complete ideas. The timeout value should be based on

observed behavior of the news service. A value on the order of thirty minutes seems

sufficient for the New York Times.

In some cases, an addition or an append may arrive before their corresponding

leads. Obviously, we will not be able to find the lead in temporary storage because it has

not yet arrived. We will need to store these 'orphaned' additions in a separate storage

place, referred to as the orphanage. If an article lead which is waiting for its additions

has timed out and we are attempting to reassemble the few pieces we have, we may

search the orphanage for one of its additions which may have arrived before the lead.

2.3 Version Updating and Duplicate Detection

It is not uncommon for a news wire service to send a new version of a previously

transmitted story. Sometimes a story needs to be rewritten because the facts involved

have changed or it has been decided by the author (or his editor) that the story needs

restructuring. When a story is an intentional repeat or rewrite of a previously

transmitted story, it is usually indicated as such in the header of the transmitted article.
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We want our system to be able to recognize this iilornatioii and indicate in the latest

article that the former story should be replaced by the latest one.

In order to perform the task of version updating and replacing, we will need to

remember some amount of information about previously received articles. If an article is

received and it claims that it is a rewrite or correction of a previously received article,

then we can search a table of previously received articles to first determine if we have

received the original version. If we have, we can determine the original's unique

identification number and include a replaces field in the new version, stating that it

replaces the article whose unique identification number we looked up. If we have not

received a previous version, then we will treat the current one as the original version.

We can also use the information in this table to help trap duplicate articles. A

news service may send out an article that is identical to a previously transmitted article.

Sometimes this is done for the benefit of a customer who did not properly receive the

original, or sometimes the article is repeated if the news service suspected that it wasn't

sent properly.

What type of information do we want to store about previously received articles?

Clearly, we do not want to save complete articles since the work involved in searching

through all previously received articles for one particular article is substantial. We want

to be able to determine two facts for each incoming article: whether a previous version of

the article was transmitted and what the article identification number of that previous

version is. This information will be used to help eliminate duplicate articles and replace

old versions of articles with newer versions. We want to save enough information to

uniquely identify every article we have previously received while using a minimum

amount of space.

The wire services guarantee that the keyword of each article uniquely identifies it.

In actuality, two different articles may have the same keyword. For instance, one type of

item transmitted is a budget of articles, which is a list of articles that the news service

expects to transmit. Most budget articles have the same keyword, e.g. NYT-BUDGET,
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so that we necd miore intorimation than just thc kcy word to (Ii Terentiate betwcci variouls

budget articles.

Other candidates for stored information are the date, the priority, the title or the

author of the article, but none of these serve to uniquely identify an article. It is possible

for a revised article to be transmitted the day after the original or even at a different

priority, depending on how urgent the story has become. Not all articles arrive with a

title and an author so that neither of these items may be used to reliably identify

articles.

The category is an additional piece of information necessary for uniquely

identifying each article. Users of the Community Information Systems should be able to

retrieve articles by specifying that the articles should have a particular category

designation. Suppose an article is transmitted with the category 'Entertainment and

Culture' and the same article is later transmitted with category 'Sports'. Even though

the text of the article is the same, we would like to treat these two articles as different

articles, because we would like to provide this article to users who request articles with

the category 'Entertainment and Culture' and also to users who request articles with the

category 'Sports'. We don't want to eliminate the second article as a duplicate just

because the text is the same. Therefore, the category of the article will be part of the

information used to uniquely distinguish it.

In addition to the keyword and category, we might consider storing the text of

the article. This is clearly more information than we want to save, but we can use the

text to generate a string to uniquely identify each article. We can create an 'article

stamp' from the text by taking the first character from the first 5 lines of the text of the

article. A small amount of testing was performed to verify that in fact these article

stamps do uniquely identify each article.

We can safely assume that no two articles will arrive with the same keyword,

category and article stamp. For purposes of version updating, we actually do not need to

store the article stamp. It is actually a likely occurrence that two different versions of an

article will have different article stamps. Article stamps are used for duplicate detection.
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2.4 Article Filtering

We would like to be able to filter out articles of little or no interest from the

steady stream of articles we will make available to our users. A portion of the news wire

is meant to be read just by editors, such as budgets for the days articles or advisories

about what artwork or photographs are available for particular articles.

Because we want the system to be efficient in both space and time, we will avoid

trying to perform reasoning on the content of the text to determine whether an article

should be included in the final database. There are a number of much easier checks we

can make to determine which articles to save and which to discard.

One check, and probably the most useful, is to use the article's keyword.

Artwork advisories, for instance, have a keyword like ADVISORY-PICTURES. This

type of article, among others, is of little interest to general readers, especially since we do

not receive and distribute to our readers the artwork mentioned in these advisories. A

reasonable strategy would be to store a table of keywords we want to act on in a special

way. In this table, we can store all keywords for articles that we know ahead of time we

do not want to save. We would like this table to be dynamically configurable. In other

words, we would like to change which keywords are in the table without having to

recompile the program. This would probably mean storing the table in a file, so that we

can edit the file to change the table and cause the program to re-read the file while it is

executing.
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Chapter Three

System Design and Implementation

This chapter will discuss the design and implementation of the system. There are

five design goals which helped shape the design:

* functional modularity, i.e. modularization of portions of code which serve a

similar purpose

" data abstraction using data object modules with clearly defined interface

boundaries

" fault tolerance or robustness in the face of poorly formatted input or a

program/computer crash

" code generality so that portions of code can be re-used to implement parsers
of other data types

" dynamic configuration of system parameters so that the program can easily
adapt to subtle changes in the input articles

These concepts and their effects on the design of the system will be presented in the

following sections.

3.1 Modularity

This section discusses how the program is modularized, what functions each

module performs and how the modules interact. The primary motivation for

modularizing the program is to 'divide and conquer'. It proved useful during the

implementation phase of the project to implement and test modules separately.

Modularization also helped support some of the other design goals. For instance,

meeting the design goal of code generality was greatly aided by enforcing functional

modularity. General purpose source code is created so that it can be easily shared
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between programs which perform similar tasks. If this code is separated in functional

modules as well, i.e. each module performs a distinct, useful function, then a programmer

can simply 'plug' an existing module into his program. Likewise, modularization

supports data abstraction by helping to clearly separate and group those functions which

belong to a particular data abstraction.

Figure 3-1 is the module dependency diagram for the program, showing the major

and minor modules in the program and how they depend upon each other.

main

dir parse reconstruct

date fragment table

Figure 3-1:Module Dependency Diagram

The four major modules are the main module, the parse module, the reconstruct module

and the table module.
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3.1.1 The Main Module

The main module is the driver loop of the program. Its function is to open the

input directory and pass the files in the input directory to the other modules for

processing. After the article is processed, the main module will pass the next article in

the input directory to the appropriate modules for processing. The main module will

continue processing articles in the input directory in the same fashion until the directory

is empty. After it empties the directory, it sleeps for a period of time and begins the loop

over again, processing input articles if they exist.

3.1.2 The Parse Module

The parse module looks for pre-defined fields within the article, such as the

author, the title, the category, the date and, of course, the text. This particular module

was written to parse input articles which conform to the high-speed wire service

transmission guidelines published by the American Newspaper Publishers Association.

The parse module creates a parse object containing all the information it was able

to gain from the input article. If the parse module was unable to parse the article at all

(i.e. the input article was incorrectly formatted) then it returns a null-valued object and

the main module saves the unparseable article in a bad articles directory for perusal by a

system administrator. An article may be unintelligible because of line noise which caused

the article to be garbled or because the originating source did not properly follow the

guidelines for the wire service.

The parse module was implemented with one main function as its external

interface. This function is parse-article which takes a character buffer containing the

raw article as input and returns a parse object containing the parsed article. Parsing is

done in a top down manner. There are a handful of other functions which are part of the

interface to the parse module. They are mainly used for creating and writing to a file a

readable, text representation of the parse object. These routines are used to create the

output article file from the parse object.

The internal representation of a parse object is a large structure with a separate
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field for each piece of iiiforimat ion we would like to find in the 1111)[ut article. Nost of

these fields are just strings that will be filled in as we parse the article. A few of the

fields are pointers to other structures, such as a data object or a fragment object. The

parse object also has a pointer to the character buffer containing the input article text.

Therefore, we don't need to explicitly make the input article buffer available to

procedures. Passing the parse object is sufficient.

3.1.3 The Reconstruct Module

If parsing succeeds, then the main module passes the resulting parse object to the

reconstruct module. It is the job of the reconstruct module to reassemble articles which

arrive in pieces.

It is common for a news service to send articles in pieces if the article is long or

incomplete. Most of the time it is possible to anticipate how many total pieces are

expected to comprise a total article after having received just the lead piece. This

information is usually contained within the header of the lead article. The reconstruct

module takes this information from the parse object it was passed and decides one of

three things: if the article should be held pending future additions, if the article is an

addition to a previously received add or if the article should be output as complete. If it

decides that the article is complete, it places it in the output directory.

The reconstruct module has a simple external interface: the procedure

decidereconstruct. This procedure takes as arguments a parse object and a

reconstruct object. It decides, based on information found within the parse object, how to

handle the current input article. One field within the reconstruct object is a table object

where all the information about what articles have arrived is stored. The

decidereconstruct routine interacts with the table module. It provides information

about the current article and responds to results from the table module, such as

outputting the articles that the table claims are complete.
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3.1.4 The Table Module

If the reconstruct module decides that the article is not complete, it passes the

article fragment to the table module. The table module stores article fragments along

with how many pieces are expected and how many pieces have arrived for each article.

Since all article fragments are guaranteed to have the same keyword as the keyword of

the lead article fragment to which they belong, articles are stored in the table by the

keyword of the lead article fragment. As additions to articles are inserted into the table,

the table module will notify the reconstruct module whether or not the entire article has

arrived. If it has arrived, the table module provides a reassemble routine that the

reconstruct module can call. The reassemble routine puts all of the article pieces into one

file and returns the resulting filename, which the reconstruct module can then place in

the output directory.

If an article addition is given to the table module but an article lead cannot be

found for it, then the addition is saved in an orphans directory. If the table module tries

to reassemble an article but can't find one of the pieces, it can search for that piece in

the orphans directory, referred to as the 'orphanage'. The names of the orphans are

stored in a hash table to allow the table module to quickly determine whether or not an

orphan exists for a given lead.

The article fragment table is implemented as a circular array of entries. The

index pointer into the table points to the head of the table, which always houses the most

recently inserted entry. Entries are always inserted at the head of the table, and the head

pointer is incremented with each insert. To find a particular entry in the table, we start

at the head and compare the keyword of the article at that entry with the keyword of the

article we are looking for. We continue in this manner, searching linearly through the

table, until we match the keyword or reach the end of the table or an empty entry.

Figure 3-1 shows the basic structure of the table object, how entries are inserted and how

entries are searched for. The table is optimized to find the most recently inserted entries

fastest, since we are simply performing a linear search starting at the head of the table.

This turns out to be a good strategy since additions to article leads usually arrive soon

after the article lead. We can safely assume that most of the time an article lead for a

newly received addition is close to the top of the table.
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Head Pointer

searching backward for a specific entry

head pointer advancing forward

Figure 3-2:The Internal Structure of a Table Object

As discussed in Chapter 2, we do not want the table to retain partially received

articles indefinitely, pending the reception of all of its pieces. This would mean that if a

piece of an article did not arrive for some reason, then the article would never be placed

in the output directory. Therefore, the table stores a time stamp with each entry

inserted, designating when the entry was inserted. We can use this time stamp to

determine if an entry has been waiting too long and should be reconstructed and placed

in the output directory, even though some of the expected pieces are missing.

To insert a new entry into the table, we advance the head pointer forward one

location and place the new entry at that location. Since the table is a circular array, the

entry we find after advancing the head pointer should be empty if the table is not full. If

we advance the head pointer and find an occupied location, then the table is full and we

need to create some free space. We can safely assume that all of the articles in the table

are not yet complete since articles are flushed from the table and placed in the output

directory as soon as they are complete. Since there are not completed entries in the table,
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we can't simply clear out a completed entry to make room for a new entry.

The first strategy we will try for creating free space is to look for entries in the

table which have been waiting longer than a timeout threshold for all of their pieces to

arrive. These entries are referred to as 'oldtimers'. An oldtimer needs to be forceably

reassembled and placed in the output directory, even though all the pieces for it have not

yet arrived. If there are still no empty entries in the table after we have checked for

oldtimers, then we will force out the oldest entry and use the resulting empty space for

the new entry. Each time we remove an entry from the table, we need to compact the

table so that no holes exist. However, we are inserting entries in order of their arrival.

Therefore we do not need to compact the table when either clearing out oldtimers or

forcing out the oldest entry since both of those types of entries are guaranteed to be the

last entries in the table.

There are a number of functions which form the external interface to the table

module. The first of these is createtable which allocates space for and returns a new

table object. There is also a freetable function for freeing memory allocated for a

table object. There are three insert functions, insertlead, insertadd and

insert-append, one for each type of article fragment which can be inserted. There is

also a reassembleentry routine which can be called if one of the three insert

functions returns a value indicating that the article piece just inserted has completed the

article it belongs to. If the table is full when we try to insert, then there is a function

called search__foroldtimers which searches in the table for oldtimers. If it finds one,

it forceably reassembles it and returns the resulting filename. If none are found it returns

a null value, so that all oldtimers can be removed from a table by iteratively calling

search-for oldtimers until it returns null value. If there were no oldtimers in the

table, then forceout-entry can be called which will force the oldest entry to be

reassembled, making room for a new entry. There is one last function in the external

interface called crashrecovery. This function can be used to recover the state of the

3Articles are also removed from the table when they time out and are forceably reassembled. However,
the argument still holds.
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table if the program should unexpectedly crash. It takes as an argument the root

directory of the table module and returns a table object containing whatever information

it could find in that directory.

3.2 Data Abstraction

This section discusses how the ideas of data abstraction affected the design of the

program. Various data abstractions which arose from the design are described, as well as

what rules were used to enforce data abstraction within the program.

The motivations for using data abstraction are similar to those for using

functional modularity when dividing up the program. Both concepts help to cleanly

separate out important portions of the program so as to reduce the complexity inherent

in implementing and debugging a large program. Once the complexity within a module or

data abstraction has been dealt with and resolved it can be forgotten as the rest of the

programming task deals only with the clearly defined interface that results.

The effects of data abstraction are closely related to the effects of modularization

on the system design, because most of the major modules were implemented as data

abstractions. In creating the data abstractions, I tried to follow the rules enforced by the

programming language CLU [3]:

" A data abstraction is a separate module.

" The representation used for the new data type is internal to the abstraction
and not visible to users of the abstraction.

" Interactions with the module and operations to be performed on data objects
created by the module are the external interface to the module. This external
interface is well-defined.

Because I used C to implement the system, there was no way to use the programming

language to strictly enforce this discipline. Instead, I defined a methodology for using

data abstractions within the framework of C and adhered to it while programming [2].
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3.2.1 Implementing Data Abstractions Using C

Ultimately, we would like a programmer to be able to use a data abstraction we

create by using only the specifications of the abstraction and the compiled data

abstraction module. Using C, we can easily give the programmer an object code file

containing the routines contained in the data abstraction module, but we also need to

provide some specifications of the data abstraction. In CLU, this is accomplished by

using spec files generated by the compiler. The spec files specify the interface to a module

by listing the procedures which constitute the external interface. The compiler can

perform any type checking, argument count checking and return value checking by using

just the spec file of a module. C allows the programmer to provide module specifications

by using header files. In my discipline the header file for each module contains external

definitions for all functions which the programmer of the module intended to be part of

the external interface. Each external function definition also contains comments about

what arguments the function is expecting. By using the header file and the object files of

the module, a programmer can be separated from the internal details of the module.

In C, new data types can be formed from existing data types by using a typedef

statement. A typedef allows you to take an internal representation and give it an

external name in much the same way that CLU takes an internal representation and

creates a new kind of object. In CLU, the internal representation of the data abstraction

is kept completely hidden from users of the module. However, in C, the actual

representation cannot be kept completely hidden from the programmer. The typedef

statement must be known at compile time by any module using objects of that type. This

implies that it must appear in the module's header file, which the programmer must look

at in order to use the abstraction.

A flaw, then, in the discipline is that the representation of the object is exposed

and the abstraction can therefore be broken by the programmer. As stated earlier, this

discipline cannot be enforced by the programming language. The programmer using the

data abstraction must decide whether to adhere to the abstraction as given or to risk

manipulating the data object directly.
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3.2.2 Other Data Abstractions

As mentioned above, each major module, with the exception of the main module,

was implemented as a data abstraction. In addition to having parse, reconstruct and

table objects, there were other data types which proved useful. The article fragment

information contained within an article, such as whether the article is a lead, an addition

or a complete article, is information used by both the parse module and the reconstruct

module. It was convenient to define a new data type, called a fragment object, that could

be passed between the.two modules thereby efficiently getting the necessary information

from one place to the other. Other data types which proved useful were a date data type

for storing information about an article's arrival date (i.e. day, month, year, hour and

minutes) and a directory data type for opening, closing and reading directories.

3.3 Fault Tolerance and Robustness

This section discusses how the program was designed to behave well in the face of

unexpected input or unexpected operating system performance. I expended a good deal of

effort in minimizing the amount of data that can actually be lost. I regard minimal loss

of data as a primary requirement of the editing system. Loss of data can occur in two

ways: an unexpected system crash or a poorly formatted input article.

3.3.1 Recovery After A System Crash

The first way data can be lost is for the entire computer system or the article

editor program to crash without notice. The danger is that any article currently being

processed or any article stored in an internal table might be lost. The first problem is

easily solved by leaving an article in the input directory until it is completely processed,

which means it has either been successfully placed in the output directory or it has been

moved to another safe directory. The second problem is solved by not storing the entries

of the internal tables in main memory. Instead, articles stored in an internal table are

actually stored in files residing in a directory known to the table. It is the filename of the

article file which constitutes an entry in the table stored in in the program's run time

memory.
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A related problem is that once the pirogrIii (rashes, th tlable, m aning the

collection of filenames in main memory, is lost and must somehow be reconstructed from

the files it has saved in the known directory. The technique used to solve this is to use a

filenaming discipline which puts enough information in the name of the file so that a

crash recovering routine can determine which entry that file was in the table and all of

the state which it had that table entry had.

For example, a typical filename generated by the table might be

L_BC-ARMS-TALKS_5. The leading L indicates this particular file is a lead article piece.

If this piece were an addition or an append, then the leading character would be a P and

an X respectively. The string BC-ARMS-TALKS is the keyword which the originating news

service gave the article. The trailing digit 5 indicates that this article is composed of a

total of five pieces, including this one. If this piece were an addition or an append, the

trailing number would indicate which add number it is within the sequence of adds or

which append number it is in the sequence of article appends.

Using these naming conventions, the table can be recovered during start up by

scanning the directory, parsing the filenames as they are encountered and inserting them

into the table based on the information found within the filename. The alphabetizing

ensures that all the leads will be recovered before the adds which will all be recovered

before the appends. Also, the trailing numbers ensure that lower numbered adds will be

recovered before higher numbered adds, which is the order in which they appear in the

completed article.

3.3.2 Recovery From Poorly Formatted Input

For the most part, the articles which are transmitted over the news wire are

constructed and formatted by human beings and not by computer. Even though the

editing system was designed to parse and process articles which are expected to conform

to some published specifications, the system needs to be able to properly process articles

which deviate in minor ways from the standard. The system also needs to be able to

gracefully recover from articles which deviate in major ways from the specifications.
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For portions ol tlie specifica t iol, it, is easy to a1low a tolerance 'or sall

deviations. For instance, according to the specifications, the keyword should be a

maximum of 24 characters long and contain no spaces. The New York Times often does

not follow this standard. However, we know from the specification that format identifier

characters precede the keyword and that a filing date follows it. So we define the

keyword to be all the text text between these two fields. If the filing date should is

missing from an article, then we can use the end of the line as an ending delimiter

instead. These types of errors are considered minor deviations from the specification

since, for the most part, the necessary information can still be extracted from the article.

A major deviation occurs when an important item is left out of the article. For

instance, sometimes an entire line of header information is lost because of electrical noise

on the news wire. This usually results in an article with half a header field which

abruptly ends, with the article resuming in the middle of the article text. Such an article

cannot be processed to any useful degree and must be discarded. It is important that the

editing system be able to recognize when an article is severely garbled. If it cannot find a

required field that it is looking for within the header, then it assumes that the article is

garbled and stores it in a directory of unparseable articles.

3.4 Generality of Code

A very important criterion for the design of this program was generality of source

code so that certain modules could be easily re-used to construct automatic editors for

other news wires. In particular, both the New York Times and the Associated Press news

wires follow the same transmission guidelines, each with their own idiosynchrasies. We

would like to be able to easily construct an Associated Press editing system by simply

modifying small portions of the existing New York Times editing system.

In practice, the real differences between news wire services are in the way the

transmitted data is arranged. The parse module is the only module which needs to know

details about these arrangements. Once the articles are parsed and a standard parse

object is produced, the rest of the code should be able to properly handle the parse object
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without much iodilication. II otheri words, the news wire specilie details are only

contained in the parse module. The reconstruct and table modules are designed to handle

any type of articles which arrive either complete or in any number of pieces. The table is

able to store any type of articles, provided that a unique identifier can be supplied with

it. The same holds true for the duplicate detection mechanism. The version updating is

also general purpose in that it allows an article to be specified as either an original, an

addendum or a replacement. An editor created for any news service should be able to use

these modules effectively.

An added advantage of not having to rewrite a lot of source code is that

debugging becomes less time consuming. Once the first editing system is written, a

second editing system can be constructed using much of the source code from the first.

Naturally, some of the procedures from the first editor might need to be rewritten for the

second. These procedures should be placed in service specific files. This results in two

editing systems which share large amounts of code. This means that there is much less

code to be tested. We will only have to debug the few service specific files. 4

An example of how generality is useful is the creation of an Associated Press

editing system using the existing New York Times system as a base. The type of header

information contained in both New York Times and Associated Press input articles is,

for the most part, the same. However, the arrangement of that information in the article

varies in ways between the two services, even though they both claim to follow a

published standard. As work towards converting the New York Times editor into an

Associated Press editor begins, it seems that the reconstruct and the table modules will

be useable as is. Because both of these news services use the same transmission

specification, much of the parse module is useable as well. Parsing procedures which need

to be different are stored in separate files. The editor for each service will use its own

version of the procedures.

4 In practice, it may be the case that certain idiosynchrasies of the new news wire could cause other
portions of code to misbehave. Such effects should be very limited and are probably bugs which previous
news wires did not aggravate. In other words, this misbehaving is actually beneficial in that it points out
bugs that we were not yet aware of.
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3.5 Dynamic Configuration

As we observe the data transmitted by the news wire services, we learn more

about how to better process it. As we learn more, We would like to be able to modify

various parameters of the program in order to further optimize its performance. An

example of this type of parameter is how long an article should be retained, pending the

arrival of its adds. If after this timeout period, all of its adds have not arrived, then we

will assume that they are not going to arrive and force the article to be output. Another

example is logging level variables for enabling and disabling various log messages. The

program has the ability to log messages describing all of its actions to allow a system

maintainer to monitor its run-time behavior. The logging has been arranged in a series of

levels, such as common information, uncommon information, common errors and

uncommon errors. This allows us to log lots of information during the debugging phase

by enabling all of the logging while just logging important errors when the program is

running in production by enabling just uncommon error messages.

We would like to be able to vary parameters and configuration variables without

recompiling and reinstalling the program. For instance, if we notice the program

behaving unexpectedly, we may want to turn on all of the logging for a short period of

time to better understand what the program is doing. Or, suppose that we notice articles

are not waiting long enough for their additions to arrive. We would like to be able to

increase the timeout parameter without having to stop the program, edit the source code,

recompile the source code and reinstall the program.

The editing system is designed to dynamically read commands out of a

configuration file. At any point during the execution of the program, a signal can be sent

to it that will make it re-read the configuration file, setting its parameters as specified in

the file and then continue processing where it left off. Now, to change a system

parameter, we simply edit the file and send the proper interrupt to the program. This

feature is implemented in a very general way so that we can easily add parameters to the

list of dynamically changeable parameters. The program does need to be re-compiled to

do this. The implementer simply needs to supply the name of the parameter and the

handler for changing the parameter.
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Chapter Four

Operational Experience

The work for this thesis has resulted in an automatic editing system for the New

York Times news wire service. This system has been in production operation for

approximately three months. This section will discuss the measured performance and the

observed reliability of the system.

4.1 System Performance

I performed a series of tests to determine how much CPU time the editing system

requires to process each article. I performed these tests on a DEC MicroVAX II/GPX

running the Ultrix 1.1 operating system. The MicroVAX has 11 Mbytes of main memory

and is not used much by other users or daemons.

Normally, the editing system has to process only about 140 articles each day.

These articles arrive sporadically throughout the day so that the editing system processes

an article every few minutes. Also, the editing system is continually looping. Either it is

processing articles in the input directory or it is waiting for articles to arrive. For my

timing tests, I configured the editing system to start up, process all the articles in the

input directory and then exit. I then arranged for the shell to keep track of how much

CPU time the editing system spent processing the entire directory of input articles. I

divided this number by the total number of articles processed, which gave me an average

time spent processing each article. The times which resulted from the tests were divided

between time spent processing system software and time spent processing user software.

The results presented in the tables below give both of these times as well as the total

times.
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Initially, I suspected that the innmer of articles ii the ip ut directory miii gh t Ihave

an effect on the average time spent processing each article, so I ran timing tests for a

wide range of input article quantities. My hypothesis was that there was probably an

optimal number of articles which the editor could process fastest per article.

Table 4-1 shows the time spent processing user software for a wide range of

article quantities. For each quantity, I performed three trials. The average of these three

trials is given, as well as the average time divided by the number of articles to give the

processing time per article. Table 4-2 shows the same statistics for the system software

processing time; table 4-3 shows the total of the two. All times are given in seconds.

Articles Trial 1 Trial 2 Trial 3 Average Per Article

5 1.6 1.4 1.5 1.5 0.30

10 3.1 3.1 2.9 3.03 0.30

25 8.1 7.6 8.2 7.97 0.32

50 15.1 16.2 15.4 15.6 0.31

100 31.7 33.1 31.7 32.2 0.32

150 48.0 48.3 48.0 48.1 0.32

200 63.7 66.0 63.9 64.5 0.32

250 80.8 81.6 80.7 81.0 0.32

300 97.4 98.0 96.5 97.3 0.32

350 113.8 113.7 113.5 113.7 0.33

400 130.4 130.4 128.6 129.8 0.33

450 148.7 148.3 145.5 147.5 0.33
500 165.4 163.5 165.6 164.8 0.33

1000 322.2 322.2 321.7 322.0 0.32

Table 4-1: User Processing Times

As can be seen from the tables, the differences in user software processing times

are small. The differences in system software processing times are more noticeable. My

initial expectation was that the processing time for each article would be larger with a

smaller number of articles than with a larger number of articles. Based on table 4-3, this
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Articles Trial 1 Trial 2 Trial 3 Average Per Article

5 0.6 0.7 0.7 0.67 0.134

10 0.9 0.9 1.1 0.97 0.097

25 2.1 2.3 1.9 2.1 0.084

50 4.0 4.5 3.8 4.1 0.082

100 10.9 10.2 8.4 9.8 0.098

150 14.5 14.5 14.3 14.4 0.096

200 19.6 20.1 19.4 19.7 0.099

250 25.8 26.2 26.8 26.3 0.105

300 35.5 33.5 34.7 34.6 0.115

350 44.7 41.5 44.4 43.5 0.124

400 51.1 52.8 53.3 52.4 0.131

450 62.5 60.6 60.8 61.3 0.136

500 67.6 68.9 66.8 67.8 0.136

1000 184.2 212.6 182.8 193.2 0.193

Table 4-2: System Processing Times

turns out to be true, to a point. The figures between 5 and 50 articles decrease as the

number of articles increase. I attribute this to the fact that there is a constant amount of

initialization that occurs, which naturally has less of an impact on the total processing

time as the number of articles increases.

Interestingly, the processing times for article quantities greater than 50 increases

as the number of articles increases. By comparing table 4-3 with tables 4-1 and 4-2, we

see that the growth in processing time occurs in the system software processing time. The

user software processing time remains, for the most part, constant. I suspect that

processing more articles requires the editing system to make memory allocation calls.

Additionally, processing a greater number of articles also means that more main memory

is being used, which can lead to a greater number of page faults. Both of these factors

would increase the amount of time spent processing system software.
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Articles Trial 1 Trial 2 Trial 3 Average Per Article

5 2.2 2.1 2.2 2.2 0.43

10 4.0 4.0 4.0 4.0 0.40

25 10.2 9.9 10.1 10.1 0.40

50 19.1 20.7 19.2 19.7 0.39

100 42.6 43.3 40.1 42.0 0.42

150 62.5 62.8 62.3 62.5 0.42

200 83.3 86.1 83.3 84.2 0.42

250 106.6 107.8 107.5 107.3 0.43

300 132.9 131.5 131.2 131.9 0.44

350 158.5 155.2 157.9 157.2 0.45

400 181.5 183.2 181.9 182.2 0.46

450 211.2 208.9 206.3 208.8 0.46

500 233.0 232.4 232.4 232.6 0.47

1000 506.4 534.8 504.5 515.2 .52

Table 4-3: Total Processing Times

4.2 System Reliability

The editing system correctly processes, on average, about 95 % percent of the

total articles processed. Most articles which are incorrectly processed can still be output

as readable articles. The number of articles which are completely lost because of

processing errors is less than 5 total articles over the two month test period. I have

divided article processing errors into three classes:

* program error

* fixable service errors

* unfixable service errors

A program error, or simply a bug, is an error made by the program when it incorrectly

performs a task that it is expected to correctly perform. For instance, if an article arrives

that meets the transmission specifications, within acceptable bounds, and the program
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does not properly process it, we classily ti is type ol error a:s a1 p rogramiii error. A fi(ablc

service error is an error made by the news service which the program can be modified to

correctly process. For example, a valid version field for an article is '2takes', meaning

that this article is really the first piece of two pieces which comprise the whole article.

On the other hand, the string '2tks' is not a string the editor was written to understand,

because the string '2takes' is the proper way to indicate such information. If an article

arrives with a version field of '2tks' instead, then we will not expect the editor to

properly handle it.5 However, we can easily modify the system to properly handle such

cases and, therefore, this is a fixable error. An unfixable service error occurs when the

news service transmits an article that deviates from the specification in major ways, such

that the program cannot be modified to properly process such deviations. For instance, if

an add to an article is not transmitted with a keyword identical to the correspoding lead,

then the program cannot be expected to properly reassemble the article.

Below are three tables of statistics about the number of processing errors made by

the program during a two week period. These figures are for the version of the editing

system that is running as of the writing of this paper. Table 4-4 shows how many

articles were processed each day and how many of those articles were incorrectly

processed. For the total number of processing errors a breakdown is given showing how

many errors of each type occured. Table 4-5 is similar to table 4-4 but instead shows for

each type of error what percentage of the total number of articles processed were

processed with that error. Table 4-6 shows for each type of error what percentage of the

total number of processing errors were of that type.

From the data we see that approximately 97% of the articles are properly

processed. Of the 2.73% of articles which are incorrectly processed, about 1.19% of the

errors are program bugs. We can also see from the table that if we eliminate known

program bugs and modify the program to properly handle the fixable service errors, we

can reduce the number of improperly processed articles to about 1%.

5Since the transmitted articles are human generated and, for the most part, human read, an editor might
use a fragment description of '2tks', even though it violates the standard, because he knows that any other
editor seeing that string will know what it means.
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Date Articles Bugs Fixable Unfixable Total

4/24 140 0 0 1 1
4/25 107 0 1 1 2
4/26 116 2 0 1 3
4/27 157 1 2 2 5
4/28 178 1 1 0 2
4/29 153 1 1 1 3
4/30 140 2 0 2 4
5/1 143 3 0 0 3
5/2 115 4 2 2 8
5/3 124 3 1 1 5
5/4 184 2 1 4 7
5/5 184 3 0 4 7
5/6 147 1 3 0 4
5/7 128 1 0 0 1

Total: 2016 24 12 19 55
Average: 144 1.64 1.14 1.14 3.93

Table 4-4: Number of Processing Errors
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Date Articles Bugs Fixable Unfixable Total

4/24 140 0 0 0.7 0.7

4/25 107 0 0.9 0.9 1.9

4/26 116 1.7 0 0.9 2.6

4/27 157 6.4 1.3 1.3 3.2

4/28 178 0.6 0.6 0 1.1

4/29 153 0.7 0.7 0.7 2

4/30 140 1.4 0 1.4 2.9

5/1 143 2.1 0 0 2.1

5/2 115 3.5 1.7 1.7 7.0

5/3 124 2.4 0.8 0.8 4.0

5/4 184 1.1 0.5 2.2 3.8
5/5 184 1.6 0 2.2 3.8
5/6 147 0.7 2.0 0 2.7
5/7 128 0.8 0 0 0.8

Average: 144 1.19 0.6 0.94 2.73

Table 4-5: Percentage of Errors Types for Total Articles
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Date Articles Bugs Fixable Unfixable

4/24 140 0 0 100
4/25 107 0 50 50
4/26 116 66.7 0 33.3
4/27 157 20 40 40
4/28 178 50 50 0
4/29 153 33.3 33.3 33.3
4/30 140 50 0 50
5/1 143 100 0 0
5/2 115 50 25 25
5/3 124 60 20 20
5/4 184 28.6 14.3 57.1
5/5 184 42.9 0 57.1
5/6 147 25 75 0
5/7 128 100 0 0

Average: 144 43.6 21.8 34.5

Table 4-6: Percentage of Error Types for Total Errors
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Chapter Five

Summary of Results

5.1 Unsolved Problems and Further Work

There are a few major tasks which the existing editing system does not perform.

The New York Times news wire very rarely sends a duplicate article or a revision of a

previous article. Since the current system was built with the New York Times in mind, it

does not perform version updating or duplicate detection. The design did incorporate

these functions, but they are not yet implemented.

Currently, work is being done to create an automatic editor for the Associated

Press news wire. This will be done using the existing editing system, modifying the parse

module as necessary. The Associated Press news wire tends to send articles which are

not as 'polished' as the New York Times articles. The Associated Press editor will need

to perform version updating and duplicate detection. Much of the supporting code for

these functions has been written, such as data structures and modifications to existing

code, but the new code has not yet been integrated into the editing system.

The existing editing system also does not perform any filtering of the incoming

news articles. All articles which arrive are passed through to the final database. It is not

clear whether filtering at this level is desired. It would be easy to have the editing system

perform some filtering, but the usefulness of filtering has not been determined.

5.2 Conclusions

The current system reliably performs the tasks of data formatting and article

reassembly on an average of 145 articles each day, with an 2.7 % error rate. It requires

on average 0.40 seconds of CPU time to process each article. Approximately 250 users are

serviced by the news articles processed by this system.
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It vas my ilnteCHt to designi an(d buil1d a sy.Sten1 vieib adicied to good desig r ]u-les,

performed reliably and provided for easy adaptation to other news wire services. The

system which resulted from this project is well designed with respect to modularity and

data abstraction. It is also robust in the face of a system crash, able to recover all of its

state. Additionally, it is easy to 'fine tune' certain parameters that may need changing to

adapt to changes within the news wire service. Lastly, all of the details about the New

York Times news wire have been restricted to the parse module. Any future news wire

editing systems can be built by just modifying the parse module as necessary.
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