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SUMMARY

This note describes an interferometric reformulation of linear
wave-based inverse problems, such as inverse source and in-
verse Born scattering. Instead of fitting data directly, we pro-
pose to match cross-correlations and other quadratic data com-
binations that generalize cross-correlations. This modification
exhibits surprising robustness to modeling uncertainties of a
kinematic nature. Three optimization formulations are pro-
posed: (1) a simple nonconvex problem, (2) a convex relax-
ation via lifting and a semidefinite constraint, and (3) a fast,
relaxed scheme that empirically bypasses the lack of convex-
ity. We describe sufficient conditions for recovery from the
lifted scheme (2). We illustrate the robustness of interfero-
metric inversion on two numerical examples, with uncertainty
either in the model velocity or the sensor locations.

INTRODUCTION

Linear inverse problems appear in different areas of explo-
ration geophysics. For instance, inverse source problems arise
when locating microseismic events, and linear inverse scat-
tering in the Born regime yield model updates for subsurface
imaging. These linear problems all take the form

Fm=d, 1

where F is the forward or modeling operator, describing the
wave propagation and the acquisition, m is the reflectivity model,
and d are the observed data. The classic approach is to use the
data (seismograms) directly, to produce an image either

e by migrating the data (Reverse Time Migration),
Ixrv = F*d
where F is the simulation forward operator and * stands

for the adjoint ;

e or by finding a model that best fits the data, in a least-
squares sense (Least-Squares Migration),
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It is important to note that the physical forward operator F and
the one used in simulation F can be different due to model-
ing errors or uncertainty. Such errors can happen at different
levels:

1. background velocity,
2. sources and receivers positions,

3. sources time profiles.

This list is non-exhaustive and these modeling errors have a
very different effect from classic additive white noise, in the
sense that they induce a coherent perturbation in the data. As
a result, the classic approaches (RTM, LSM) may fail in the
presence of such uncertainties.

Robustifying migration

The idea of using interferometry (i.e. products of pairs of data)
to make migration robust to modeling uncertainties has already
been proposed in the literature (Borcea et al. (2005), Sava and
Poliannikov (2008), Schuster et al. (2004)), producing remark-
able results.

In their 2005 paper, Borcea et al. developed a comprehensive
framework for interferometric migration, in which they pro-
posed the Coherent INTerfermetic imaging functional (CINT),
which can be recast in our notation,

It = diag{F* (E o [dd*])F},

where dd* is the matrix of all data pairs products, E is a selec-
tor, that is, a sparse matrix with ones for the considered pairs
and zeros elsewhere, o is the entrywise (Hadamard) product,
and diag is the operation of extracting the diagonal of a ma-
trix.

The CINT functional involves F*, F and F, F* (implicitly
through dd*), so cancellation of model errors can still occur,
even when F and F are different. Through a careful analysis
of wave propagation in the particular case where the uncer-
tainty consists of random fluctuations of the background ve-
locity, Borcea et al. derive conditions on E under which CINT
will be robust.

The purpose of this note is to extend the power of interferom-
etry to inversion.

Inversion from quadratic combinations
We propose to perform inversion using selected data pair prod-
ucts,

find m s.t. E o (Fmm*F*) = E o[dd"], 3)

i.e., we look for a model m that explains the data pair products
did ; selected by (i, j) € E. Here, i and j are meta-indices in
data space. For example, in an inverse source problem in the
frequency domain, i = (r;, ®;) and j = (r, ®;), and for inverse
Born scattering, i = (r,s;, ;) and j = (r},s;, 0;).

A particular instance of the interferometric inversion problem
is inversion from cross-correlograms. In that case,

E,‘ﬁjZl < 0 = 0;.

In that case, E considers data pairs from different sources and
receivers at the same frequency,

did; = d(ri,s;, 0)d(r},sj, ),

where the overline stands for the complex conjugation. This
expression is the Fourier transform at frequency @ of the cross-
correlogram between trace (7;.s;) and trace (7;,s;).
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A straightforward approach is to fit the products in a least-
squares sense,

LS pairs = argmin | |E o (I::mm*f* — dd*)||% )
m

While the problem in (3) is quadratic, the least-squares cost in
(4) is quartic and non-convex. The introduction of local min-
ima is a highly undesired feature.

The choice of selector E is an important concern. Clearly,
there are conditions on E for inversion to be possible. In the
extreme case where E is the identity matrix, the problem be-
comes to estimate the model from intensity-only (phaseless)
measurements, which does not in general have a unique solu-
tion. On the other hand, it is undesirable to consider too many
pairs, both from a computational point of view and for robust-
ness. There is a trade-off between robustness to uncertainties
and quantity of information available to ensure invertibility.
In the next section, we provide a way to convexify the interfer-
ometric inversion problem. We then state sufficient a posteriori
conditions on E for invertibility of this convexified interfero-
metric formulation.

CONVEXIFICATION VIA LIFTING

Lifting was proposed in Chai et al. (2011) to convexify prob-
lems such as (3). This idea is natural in the context of recent
work on matrix completion of Recht et al. (2010), and Candes
and Recht (2009). The concept of lifting was also successfully
used for phase retrieval (Candes et al., 2013). The idea is to
replace the optimization variable m by the symmetric matrix
M = mm*, for which the problem becomes linear (and highly
underdetermined). Incorporating the knowledge we have on
the solution, the problem becomes

find M s.t
Eo[FMF*] = Eodd*],
M =0,
rank(M) = 1.

The first two constraints (data fit and positive semi-definiteness)
are convex, but the rank constraint is not and would lead to a
NP hard problem. As we argue below, the rank constraint is
surprisingly unnecessary and can often be dropped. We also
relax the data pairs fit — an exact fit is ill-advised because of
noise and modeling errors — to obtain the following feasibility
problem

find M st
HFMF*fdd*H[](E)SG, o)
M > 0.

The approximate fit is expressed in an entry-wise ¢| sense.

This feasibility problem is a convex program, for which there
exist simple converging iterative methods. Once M is solved
for, a model estimate can be obtained by extracting the leading

eigenvector of M as
m=/Mvi,

where 7n; is the largest eigenvalue of M, and v, is the corre-
sponding eigenvector.

In Demanet and Jugnon (2013), we proved a recovery theorem
for this estimate. The following definition is needed to explain

this result. The set of selected data pairs £ can be viewed
as the edges of a graph whose nodes are the data points. If
the edges are weighted by the data moduli, the data-weighted
graph Laplacian takes the following form

D k(i k)eE di* ifi=j;
(L|d|) i

—|dif|dj| if (i, j) € E;

0 otherwise.
Its first eigenvalue is zero, and its second eigenvalue A, (a.k.a.
spectral gap, or algebraic connectivity of the graph), gives a
quantitative indication of the connectedness of the graph.
Theorem 1. Assume ||€||; + 0 < Ay/2, where € is the noise
over the products of data pairs and 2, is the second eigenvalue
of the data-weighted graph Laplacian Ly formed from E. Any
estimate m obtained from (5) obeys

(|77 £ m| 2 [leh+o
T <15 k(p)? ) 5L
([l )

where k(F) is the condition number of F.

Up to a sign, the relative error estimate obtained from (5) will
be bounded by the norm of the error on the data pairs product
¢, the threshold imposed on the approximate fit o, and \/1;
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The theorem gives sufficient conditions for invertibility:

e for A, to be non-zero (and the bound to be finite), the
graph has to be connected,

e the better connected the graph is, the larger A;, and the
more stable the recovery.

It is important to stress that this estimate gives sufficient con-
ditions on E for recovery to be possible and stable to additive
noise €&, but not to modeling error (in the theorem, F = F ). It
does not provide an explanation of the robust behavior of our
correlations-based approach.

NUMERICAL ILLUSTRATION

A practical algorithm

The convexified formulation in (5) is too costly to solve at the
scale of even toy problems. Let N be the total number of de-
grees of freedom of your unknown model m ; then the variable
M of (5) is a N x N matrix, on which we want to impose pos-
itive semi-definiteness and approximate fit. As of 2013 and to
our knowledge, there is no time-efficient and memory-efficient
algorithm to solve this type of semi-definite program when N
ranges from 10* to 109,

We consider instead a non-convex relaxation of the feasibil-
ity problem (5), in which we limit the rank of M to K, as in
(Burer and Monteiro (2003)). We may then write M = RR*
where R is N x K and K < N. We replace the approximate ¢
fit by Frobenius minimization. Regularization is also added to
handle noise and uncertainty, yielding

R= argmin| [E o (FRR*F % —dd")||% + A|[R||%.  (6)
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An estimate of m is obtained from R extracting the leading
eigenvector of RR*. Note that the Frobenius regularization on
R is equivalent to a trace regularization on M = RR*, which
is known to promote low-rank character of the matrix (Candes
et al., 2013).

The rank-K relaxation (6) can be seen as a generalization of
the straightforward least-squares formulation (4). The two for-
mulations coincide in the limit case K = 1. The strength of (6)
is that the optimization variable is in a slightly bigger space
than formulation (4).

The rank-K relaxation (6) is still non-convex, but in practice,
no local minimum has been observed even for K = 2, whereas
the issue often arises for the least-squares approach (4).

In the following two subsections we compare reconstructions
from classic Least-Squares Migration (2) and from interfero-
metric inversion using (6).

Example 1: an inverse source problem with background

velocity uncertainty
Here we consider a constant density acoustics inverse source

problem, which reads in the Fourier domain
—(A+ @2y (3))is (x, @) = W(@)m(x)
Fm=d(x;,®) = ts(xr, ®)

1
m()(x) = C()()C)z .

Waves are propagating from a source term with known time
signature w. The problem is to reconstruct the spatial distribu-
tion m.

The source distribution is the Shepp-Logan phantom. The
waves are measured on receivers surrounding the domain (Fig.1
(top)). Equispaced frequencies are considered on the band-
width of w.

A significant modeling error is assumed to have been made on
the background velocity. In the experiment, the waves prop-
agated with unit speed co(x) = 1, but in the simulation, the
waves propagate more slowly, ¢p(x) = 0.95.

As shown in Fig.1 (middle), Least-Squares Migration of the
data cannot handle this type of uncertainty and produces a
strongly defocused image.

In contrast, interferometric inversion, shown in Fig.1 (bottom),
enjoys a better resolution. In this case, the price to pay for fo-
cusing is positioning: the interferometric reconstruction is a
shrunk version of the true source distribution.

For choosing E, we have followed an idea from Borcea et al.
(2005): if the modeling error has a smooth effect on the data,
then we should consider data pairs that are close to one another
both in receiver position and in frequency.

Example 2: a inverse scattering problem with receivers po-

sition uncertainty
We now turn to an active setting. Constant density acoustic

wave are generated by sources surrounding the domain. The
incident wavefields are scattered by the reflectivity m (which
is again the Shepp-Logan phantom). Receivers all around the
domain measure the Born (linear) scattered wavefield

— (A + @Pmo(x))io (v, @) = F(@)5(x— 1)
—(A+ @*mo(x))il) 5 (x, ©) = Oy 5(x, @)m(x)

Fm = d(xr, x5, 0) = U1 4(xr, ).

The isolation of the Born scattered wavefield (primary reflec-
tions) from the full scattered field, although a very difficult task
in practice, is assumed to be performed perfectly in this paper.
In this example, the modeling error is assumed to be on the
receiver positions. In the experiment, they have a smooth ran-
dom deviation from the circle as shown in Fig.1 (top).

Once again, Least-Squares Migration produces a poor result
(Fig.2 (middle)), where the features of the phantom do not ap-
pear, and the strong outer layer is reconstructed with a signifi-
cant oscillatory error.

Interferometric inversion produces a better reconstruction (Fig.2
(bottom)), where some features of the phantom are recovered
and the outer layer is well-resolved. The same selector as in
the previous case has been used.

CONCLUSION

We have developed an new approach to classic linear inverse
problems based on wave-propagation. By shifting the focus
from the data itself to products between data pairs (a general-
ization of correlations), we have derived a formulation robust
to modeling errors.

The interferometric inversion becomes convex upon semidef-
inite relaxation. Developing an algorithm to solve this lifted
problem at interesting scales is a difficult problem that we cir-
cumvent via an ad-hoc rank-2 relaxation scheme.

The choice of the selector E, crucial for robustness, needs to
be investigated more thoroughly. It is possible to derive heuris-
tics based on the type of considered uncertainty, but a more
detailed study of what an optimal selector would be in terms
of robustness and algebraic connectivity is desired.

Even though briefly mentioned, approximate fit of the data
pairs (or Frobenius regularization of misfit minimization) is
central to the method we present here. Parameters of this regu-
larization and their effect on the behavior of the algorithm need
to be better understood.

Finally, we are interested in applying interferometric inversion
to non-linear problems like full waveform inversion. In this
case, the lift idea does not apply anymore (the problem is non-
linear to begin with), but the naive least-squares fit of data pairs
products (4) can still be implemented. The introduction of non-
convexity is not as important an issue because the FWI cost
is strongly non-convex in the first place. Preliminary results
show that inversion from data pairs is possible in this case.
Whether interferometric inversion will retain its robustness in
the non-linear setting is a matter of current investigation.
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Figure 1: (top) Setting of the inverse source experiment (mid- Figure 2: (top) Setting of the inverse scattering experiment
dle) Least-Squares Migration reconstruction, and (bottom) in- (middle) Least-Squares Migration reconstruction, and (bot-
terferometric reconstruction. tom) interferometric reconstruction.
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