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SUMMARY

This note is a first attempt to perform waveform inversion by
utilizing recent developments in semidefinite relaxations for
polynomial equations to mitigate non-convexity. The approach
consists in reformulating the inverse problem as a set of con-
straints on a low-rank moment matrix in a higher-dimensional
space. While this idea has mostly been a theoretical curiosity
so far, the novelty of this note is the suggestion that a modi-
fied adjoint-state method enables algorithmic scalability of the
relaxed formulation to standard 2D community models in geo-
physical imaging. Numerical experiments show that the new
formulation leads to a modest increase in the basin of attraction
of least-squares waveform inversion.

INTRODUCTION

Imaging in the acoustic regime is traditionally posed as the
full-waveform inversion (FWI) problem (see, e.g., Tarantola
and Valette (1982) and Tarantola et al. (1984))

min
m

‖Su−d‖2,

s.t ∆u+ω
2m(x)u = f on Ω.

(1)

Here u is the wavefield, d is the data vector, S denotes the oper-
ator sampling the field at the receivers, and m = 1/c2(x) is the
model reflectivity (the density is assumed constant). Both the
frequency ω and the source term f range over a large number
of instances. We will further assume that the reflectivity can
be decomposed into a known contribution m and an unknown
perturbation m̃ such that m(x) = m(x)+Wm̃(x), where W is a
window zeroing out a neighbourhood around the receivers.

The problem is hard when the lack of low frequencies in the
data exacerbate the non-convexity of the objective as an im-
plicit function of m. For instance, Gauthier et al. (1986) doc-
uments the importance of a good starting model. To date,
the most successful ideas to determine a satisfactory starting
model involve model extension in a higher-dimensional space,
and data redundancy for further discrimination. Differential
semblance optimization is one such approach (Symes (1993);
Shen (2004); Symes and Carazzone (1991)), and wave equa-
tion migration velocity analysis is another one (Sava and Biondi
(2004a,b); Liu and Bleistein (1995)). The approach presented
in this note can be seen as an “algebraic” instance of extended
modeling. Other interesting approaches to extend the basin of
attraction of waveform inversion can be found in Haber et al.
(2000); van Leeuwen and Herrmann (2013); Wu et al. (2013).

CONVEX RELAXATION

Once discretized using an appropriate finite difference scheme,
problem (1) can be expressed as a set of polynomial equa-
tions in the variables m1, . . . ,mN , u1, . . .uL, where N = n2 de-
notes the size of the grid and L = N× sources× frequencies.
For notational clarity only, we write the derivation for a sin-
gle source and a single frequency. Let K denote the discrete
Laplacian with absorbing boundary layers. We introduce the
following convex relaxation of the set of polynomial equations
(see Lasserre (2001); Laurent (2009)):

min ‖SX31−d‖2

s.t X11 = 1

KX31 +ω
2(m◦X31 +Wdiag(X32)) = f ,

X � 0,

(2)

where the matrix X is defined blockwise as

X =

 X11 X12 X13
X21 X22 X23
X31 X32 X33

 , (3)

and X � 0 means that X is positive semi-definite. The intention
is for X to be a proxy for the rank-1 matrix

X0 = (1 m̃∗ u∗)∗ (1 m̃∗ u∗),

which we want to recover; here X∗ denotes the conjugate trans-
pose of a matrix X . For large-scale applications such as the
ones usually studied in geophysics, formulation (2) is clearly
intractable since it requires consideration of O(N2) variables.
Nonetheless, it is possible to get a computationally feasible
formulation by introducing a low-rank factorization RR∗ for
the matrix X , as proposed by Burer and Monteiro (2003):

min ‖S(R3R∗1)−d‖2

s.t (R1R∗1) = 1

K(R3R∗1)+ω
2(m◦ (R3R∗1)+Wdiag(R3R∗2)) = f ,

(4)

where R = (R∗1 R∗2 R∗3)
∗. We would then minimize the aug-

mented Lagrangian of problem (4) through gradient descent it-
erations. The drawback of such a descent is that the Helmholtz
equation would be solved implicitly through the iterations rather
than explicitly, which results in slow convergence. Further-
more, the relaxation in problem (2) may be too loose, and as
a result introduce spurious high-rank minimizers. In order to
write a truly tractable relaxed program, we propose to further
constrain (4) and solve it efficiently by the consideration of an
appropriate adjoint field. Note that if the rank of R is 1, then
problem (4) reduces to FWI.
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THE ADJOINT-STATE METHOD

Early instances of the adjoint-state formalism are found in Lax
et al. (1957), Lions and Magenes (1972), and Chavent and
Lemonnier (1974). Extensions and applications to geophysics
include Tarantola (1984, 2005). A review is in Plessix (2006).

The adjoint-state method is helpful in that it provides the ex-
pression of the gradient for FWI without having to compute
or store the Fréchet derivatives of the field δmu. Let H :=
∆ + ω2m(x). The equations of the adjoint-state method for
problem (1) follow from minimizing the Lagrangian

L (u, m̃,q) = Re
{
‖Su−d‖2−〈q,H(m̃)u− f 〉

}
,

by moving along the gradient direction in m̃, while setting the
partials with respect to q and u to 0. These zero-derivative
conditions respectively imply the Helmholtz equation Hu = f
for the (state) field u, and the adjoint equation H∗q = w for the
(adjoint state) field q, where w= S∗(Su−d) is the residual. An
imaging condition then links u and q to form the model update.
See the review by Symes (2009) for more details on the history
and the mathematics of the adjoint-state method.

Rank-r formulation
This section introduces a version of the adjoint-state method to
deal with problem (4), when the matrix R (hence X = RR∗) has
fixed rank r > 1. From now on, we assume that R ∈Ch×r, h =
1+N+L. Denote its blocks by R1 = [α1, . . . ,αr]∈R1×r, R2 =
[m1, . . . ,mr]∈RN×r,R3 = [u1, . . . ,ur]∈CL×r, which then leads
to a representation of X as a sum of rank-1 matrices,

X ≈ RR∗ =
r∑

`=1

 α2
` α`m̃∗` α`u∗`

α`m̃` m̃`m̃∗` m̃`u∗`
α`u` u`m̃∗` u`u∗`

 .

We then apply the constraints of formulation (2) to this last
expression. This leads to the following problem, revealing a
rank-r version of the Helmholtz equation,

min
1
2
‖

r∑
`=1

α`Su`−d‖2 s.t.
r∑

`=1

α
2
` = 1,

r∑
`=1

α`Ku`+ω
2
α`m◦u`+ω

2Wm̃` ◦u` = f .

(5)

Least-squares and gradient computations

The adjoint-state framework cannot directly be applied to for-
mulation (5) because the rank-r Helmholtz equation is under-
determined, and therefore does not possess a unique solution.

Let L`(α`, m̃`) :=α`K+ω2(α`m+Wm̃`), and L= [L1, . . . ,Lr],
so that the rank-r Helmholtz equation reads Lu= f . Explicitly,

Lu =

r∑
`=1

α`Ku`+ω
2(α`m◦u`+Wm̃` ◦u`).

A natural simplification is to consider the underdetermined
least-squares (LS) solution to Lu = f . This is accomplished
by requiring u` = L∗`v, and finding v by solving the normal

equation H̃v = f , where H̃ :=
∑r

`=1 L`L∗` . The corresponding
reformulation of problem (5) in terms of v reads

min J(α,v) = ‖
r∑

`=1

α`SL∗`v−d‖2

s.t H̃v = f ,
r∑

`=1

α
2
` = 1.

(6)

Introducing the adjoint field q = qR + iqI , i =
√
−1, the La-

grangian and its partials are given by

L (α,v, m̃;q) = J(α,v)−Re
{
〈q, H̃(α, m̃)v− f 〉

}
,

∂L

∂α
=

∂J
∂α
−Re〈q, ∂ H̃v

∂α
〉, (L1)

∂L

∂ m̃
=

∂J
∂ m̃
−Re〈q, ∂

∂ m̃
H̃v〉, (L2)

∂L

∂Re{v}
=

∂J
∂Re{v}

−Re{(H̃∗q)}, (L3)

∂L

∂ Im{v}
=

∂J
∂ Im{v}

− Im{(H̃∗q)}. (L4)

Following the traditional approach, we set (L3) and (L4) to
zero. Let α̃ and S̃ denote the operators α̃ = [α1IN , . . .αrIN ]
and S̃ = Ir⊗S, respectively. We can derive the solution of the
adjoint equation as

q =(H̃∗)−1(α̃ S̃L∗)∗(α̃ S̃L∗v−d).

The partials of H̃ with respect to m̃` and α`, 1 ≤ ` ≤ r can be
expressed as

〈q,∂α` H̃〉=2α`〈q,K(K∗v)〉+ 〈q,2ω
4Wm̃` ◦m◦ v〉

+α`〈q,2ω
4m2 ◦ v〉

+ 〈q,K(ω2Wm̃` ◦ v)〉+2α`〈q,K(ω2m◦ v)〉

+ 〈q,ω2Wm̃` ◦K∗v〉+2α`〈q,ω2m◦K∗v〉.

〈q,∂m̃` H̃〉=qω
42α` ◦m◦Wv+2qω

4 ◦W 2m̃` ◦ v+

α`(K∗(q))ω
2 ◦Wv+qω

2 ◦Wα`∆
∗v.

The partials of the objective ∂α`J, ∂m̃`J are given by ∂α`J =
2Re{〈SL∗`v,

∑
` α`SL∗`v−d〉}; and ∂m̃`J = 0.

ALGORITHM

The rank-2 adjoint-state method (henceforth R2AS) is summa-
rized in Algorithm 1. We restrict to rank r = 2 since no sub-
stantial improvement was observed at higher ranks. We use
coordinate descent, first minimizing over all m̃`, followed by
minimizing over all α`. These minimizations are performed
using LBFGS (see Liu and Nocedal (1989)) from the knowl-
edge of the gradients (L1) and (L2). We then normalize the α`

to ensure that they reside on the unit sphere. Finally, the ap-
proximation for m is extracted by computing the leading eigen-
vector of RR∗, appropriately scaled.
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Algorithm 1 Rank-2 Adjoint State (R2AS)

Input: Initial iterates α(0) ∈ R2, m̃(0) ∈ RN×2

Output: Approximate reflectivity m̃?

1: while ‖
2∑

`=1

α`SL∗`u`−d‖/‖d‖> ε do

2: Compute the LS field : v = H̃−1 f
(Forward Step)

3: LBFGS step in m̃
4: LBFGS step in α

(Backward step)
5: Projection of α onto the unit sphere:

α ← α/‖α‖.
6: Compute u as u = L∗v.
7: end while
8: Obtain m̃? as

RR∗ = λ1ν1ν∗1 +λ2ν2ν∗2 m̃? = (
√

λ1ν1)2

Numerical Experiments

All numerical experiments are conducted by adding 0.1% ad-
ditive Gaussian white noise to the data. The rank-2 method is
initialized by taking as first column an initial guess m̃(0) for
which the adjoint-state method may fail, and as second col-
umn an uninformative perturbation (arbitrarily chosen as an
oscillatory bump g, times a scalar β ) of the same vector, i.e.,

R(0) = 1√
2

(
1 1

m̃(0) m̃(0)

)
+

(
0 0
0 βg

)
.

Example 1: Camembert

We first benchmark our method on a version of the Camembert
example (see Gauthier et al. (1986) and Fig.1). The domain is
80×80 (grid points) with a background reflectivity of 1, con-
trast κ = max(1/c2)−min(1/c2) ranging from .5 to .6, and a
narrow frequency band between 1.5/(2π) and 1/π . Receivers
and sources are placed all around the domain.

Example 2: Shepp-Logan phantom

Full-waveform inversion is initialized with background m =
(1−W )m0, m̃(0) = 1. The domain is of size 120× 120 (grid
points) and the reflectivity constrast varies between .8 and 1.
The frequencies are taken equispaced between 1.5/(2π) and
1/π . The receivers and sources are placed all around the do-
main as shown in Fig. 4.

Example 3: Marmousi 1

We finally apply our method to the Marmousi model (see Ver-
steeg (1994)) at frequencies ranging from about 3.3 to about
6.4 Hz. This is in accordance with usual simulations (see for
example Sirgue and Pratt (2004)). Receivers and sources are
positioned at the surface (see Fig. 2, top). The initial guess
is obtained by smoothing the original image with a Gaussian
kernel of varying widths. Traditional full-waveform inversion
starts failing for smoothing above 35 grid points. Our method
recovers the right map for a smoothing of up to 40 grid points.
For the best results, α1 and α2 should be chosen to be very
different.

20 40 60 80

20

40

60

80
1

1.2

1.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.525
0.55

0.575
0.6

Magnitude of perturbation

C
on

tra
st

Figure 1: Top: Setup and recovery of R2AS for the Camembert
example (reflectivity map with contrast κ = .51). Bottom: Per-
formance of R2AS on the Camembert map for varying magni-
tudes of perturbation to the second column β and contrasts κ .
A red dot indicates convergence for the corresponding pair of
parameters, while a blue dot indicates failure.

Results

The R2AS approach leads to an increase of 5% to 10% in the
basin of attraction of FWI for each model considered here.
This improvement is measured with respect to the contrast for
the Camembert and Shepp-Logan models, and with respect to
the amount of smoothing of the Marmousi model.

The bottom portion of Fig. 1 plots the magnitude of the per-
turbation to the second column β against the contrast of the
Camembert model. Higher contrasts are more difficult to han-
dle, and FWI gets trapped in spurious local minima when κ ≥
.51. A higher β intuitively represents a stronger push of the
matrix X away from the rank-1 manifold. Success at rank 2 and
higher may be attributed to the ability of escaping the rank-1
local minima by operating in a higher-dimensional space.

CONCLUSION

We have presented a variant of the adjoint-state method to ef-
ficiently solve the rank-2 moment relaxation of FWI. The im-
provement in local convexity around the global minimizer is
intuitively explained by the ability to find better paths around
local minima when performing the descent in a higher-dimensional
space. The proposed approach yields a 5-10% enlargement of
the basin of attraction for standard 2D community models.
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Figure 2: Marmousi. From top to bottom: Original configu-
ration (sources and receivers are placed at the surface, and de-
picted by red crosses and white triangles, respectively); image
recovered from rank-2 relaxation; image recovered through
traditional least-squares inversion; initial u component of the
first column of R (as well as initial guess for FWI); and initial
u component of the second column of R.
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Figure 3: Top: Relative error for the Marmousi map (L) and
the Shepp-Logan map (R). The error curve corresponding to
R2AS is shown in red, the curve corresponding to imaging
through full-waveform inversion is shown in blue. Bottom:
Misfit for the Marmousi map (L) and Shepp-Logan map (R).
Again the curves corresponding to R2AS are shown in red, the
ones corresponding to full-waveform inversion in blue.
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Figure 4: Shepp-Logan (reflectivity map). Recovered im-
age for R2AS (top) and FWI (bottom) when starting from
m = (1−W (x))m0 background and m̃0 = 1 initial perturba-
tion. Receivers and sources are shown as white triangles and
red crosses, respectively.
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