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Unsteady fragmentation of a fluid bulk into droplets is important for epidemiology as it governs the
transport of pathogens from sneezes and coughs, or from contaminated crops in agriculture. It is also
ubiquitous in industrial processes such as paint, coating, and combustion. Unsteady fragmentation is distinct
from steady fragmentation onwhichmost theoretical efforts have been focused thus far.We address this gap by
studying a canonical unsteady fragmentation process: the breakup froma drop impact on a finite surfacewhere
the drop fluid is transferred to a free expanding sheet of time-varying properties and bounded by a rim of time-
varying thickness. The continuous rim destabilization selects the final spray droplets, yet this process remains
poorly understood. We combine theory with advanced image analysis to study the unsteady rim
destabilization. We show that, at all times, the rim thickness is governed by a local instantaneous Bond
number equal to unity, definedwith the instantaneous, local, unsteady rim acceleration. This criterion is found
to be robust anduniversal for a family of unsteady inviscid fluid sheet fragmentationphenomena, from impacts
of drops on various surface geometries to impacts on films. We discuss under which viscous and viscoelastic
conditions the criterion continues to govern the unsteady rim thickness.
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Unsteady fluid fragmentation is ubiquitous and important
for a wide range of industrial processes [1,2], health
applications [3–6], or pathogen dispersal in agriculture
[7]. Fluid fragmentation generates numerous droplets that
can travel over large distances and disperse their biological
and chemical payloads. Prior work focused on characterizing
the droplet size distribution as a function of the breakup
geometry and fluid properties [2,8,9]. Theoretical insights
focused on steady fragmentation, such as Savart sheets
[9–11]. However, an important class of fragmentation
processes are in fact unsteady: they continuously shed
droplets with time-varying properties.
Unsteady sheet fragmentation occurs for crown splash

upon drop impact on a thin liquid film [12–15] or deep pool
[16,17], or crescent-moon splash upon drop-drop inter-
actions on surfaces [7,18,19]. These situations generate an
expanding sheet of time-varying velocity and thickness
profiles, bounded by a rim of time-varying thickness which
destabilizes into droplets. The rim is the critical link between
the sheet and droplets. While linear instabilities of rims were
extensively discussed [14,20,21], time-resolved observa-
tions and theoretical insights on unsteady rim destabilization
are lacking. Here, we present the first systematic demon-
strations on the role of unsteadiness in rim destabilization.
Prior work on the canonical unsteady fragmentation

process from drop impact on a surface of comparable size
[Fig. 2(a)] [21–27] assumed that most droplets are shed
after full radial sheet expansion. Our recent work, however,
shows that the droplet size and speed distributions are
determined during the sheet expansion [28], in which

the rim destabilization plays a key role. Unsteadiness
introduces a more subtle dynamics than the classic
debated dichotomy between Rayleigh-Plateau [29–31]
and Rayleigh-Taylor instabilities [21,32,33]. A prior study
[34] considered the interplay between the coupled
Rayleigh-Plateau and Rayleigh-Taylor instability using
linear stability analysis. Here we consider them jointly
acting on an inviscid cylindrical liquid jet subject to an
acceleration as shown in Fig. 1 (inset). The dispersion
relation of the coupled instability can be derived as (see
Supplemental Material [35])

ω2 ¼ 1

2
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−χðkÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðkÞ2 − 4ψðkÞ

q �
;

with χðkÞ ¼ kI1ðkÞ
I0ðkÞ

ðk2 − 1Þ þ kI2ðkÞ
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k2

and ψðkÞ ¼ k2I2ðkÞ
2I0ðkÞ

½2ðk2 − 1Þk2 − ðBo=4Þ2�; ð1Þ

where InðkÞ is the first kind of modified Bessel function of
order n, k is the wave number nondimensionalized by the
rim radius b=2, and ω is the growth rate nondimension-
alized by the rim capillary time scale τc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρb3=8σ

p
,

where ρ and σ are the density and surface tension of the
fluid, respectively. Bo ¼ ρð−R̈Þb2=σ is the instantaneous
and local rim Bond number based on the instantaneous
rim thickness b and acceleration R̈. When Bo ¼ 0, (1)
simplifies to ω2 ¼ ½kI1ðkÞ=I0ðkÞ�ðk2 − 1Þ, the inviscid
Rayleigh-Plateau instability dispersion relation. This
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remains true at first order for Bo ∼Oð1Þ (Fig. 1). Only for
Bo ≫ 1 does the dispersion relation deviate significantly
from that of Rayleigh-Plateau, yet remaining distinct from
that of the Rayleigh-Taylor instability of a planar sheet
ω2 ¼ kðBo − k2Þ.
The unsteadiness of the acceleration −R̈ aggravates

the complexity of the rim destabilization. To gain key
physical insights on its role, we developed advanced image-
processing algorithms that capture the contour of the rim-
ligament system, and separated the rim from the ligaments
[Fig. 2(a)] to measure precisely the time-varying rim
thickness b. Figure 2(b) shows that the rim thickness b
matches very well with the time-varying capillary
length lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ=ρð−R̈Þ

p
based on the instantaneous sheet

acceleration −R̈, i.e., b ¼ lc. This leads to an important
criterion: the instantaneous, local Bond number of the rim

Bo ¼ ρb2ð−R̈Þ=σ ¼ 1 holds at all times. Moreover, such
criterion is independent of the impact Weber number
We = ρu20d0=σ, where u0 is the impacting velocity of
the drop and d0 its diameter [Fig. 2(b) inset].
To rationalize the Bo ¼ 1 criterion we first examine

the force balance on a growing corrugation on the rim
[Fig. 2(a) lower inset]. Distinct from a free liquid jet, the
rim of an unsteady expanding sheet does not fragment into
droplets directly. Corrugations grow along the rim to form
ligaments while fluid continuously enters the rim from the
sheet at a time-varying rate. As a small corrugation grows
to form a bulge of size proportional to the rim thickness b,
in the noninertial reference frame of the rim, the deceler-
ation exerts a fictitious force on the bulge, pulling it away
from the rim. Simultaneously, surface tension pulls the
bulge toward the rim [Fig. 2(a) inset]. The resulting force
balance on the bulge is

mbð−R̈Þ ∼ σb ⇒ b ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ

ρð−R̈Þ
r

; ð2Þ

where mb ∼ ρb3 is the mass of the bulge. Thus, if the rim
thickness is much larger than the local instantaneous
capillary length, a bulge is pulled away from the rim.
We can compute the prefactor of the scaling law (2)

combining the linear instability analysis discussed earlier
with the local momentum conservation of the growing
bulge. When Bo∼Oð1Þ the modified dispersion relation (1)
is close to that of the inviscid Rayleigh-Plateau instability
(Fig. 1). The associated fastest growing wavelength is
λmax ¼ 2π=kmax ≃ 4.5b. Considering a spherical bulge of
volume equal to that contained within one wavelength of
the fluid column with diameter db ¼ ð27=4Þ1=3b ≃ 1.9b,

FIG. 1. Dimensionless dispersion relation of the coupled
Rayleigh-Plateau (RP) and Rayleigh-Taylor (RT) instabilities
for different Bond number Bo compared to that of the Rayleigh-
Plateau instability. Inset: fluid cylinder of diameter b subject to an
acceleration −R̈.

FIG. 2. (a) Unsteady sheet fragmentation upon drop impact on a target of comparable size which ensures a horizontal expanding sheet
[22]. Scale bar is 6 mm. Upper inset: rim-ligament separation by our image processing algorithm. Lower inset: schematic diagram of a
local corrugation. (b) Time evolution of the sheet rim thickness compared to the local instantaneous capillary length lc based on the rim
acceleration −R̈ for We ¼ 693. Time is nondimensionalized by the global capillary time τcap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρd30=8σ

p
of sheet expansion, where d0

is the diameter of the impacting drop. Inset: local, instantaneous Bond number of the rim Bo ¼ 1, robust for three different Weber
numbers. (c) Sheet fragmentation from (i) impact near a surface edge, causing the sheet’s left part to expand in the air, and (ii) drop
impact on a thin liquid film with a crown rising upward. (iii) Criterion of Bo ¼ 1 holds for the rim in the air in case (i) and for the crown
rim in case (ii).
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and mass mb ¼ ρπd3b=6, surface tension pulls on such
bulge with a force Fσ ¼ σπdb. The dimensionless growth
rate of the fastest growing mode of the inviscid Rayleigh-
Plateau instability is ωmax ¼ 0.343 (Fig. 1). Thus, the
characteristic growth timescale of a corrugation into a
bulge is τg ¼ τc=ωmax. Using the bulge radius db=2 as a
characteristic length scale, the resulting growth speed is
vb ¼ db=2τg. Momentum conservation on the bulge reads

mbð−R̈Þ þ ρAbv2b ¼ σπdb; ð3Þ

where Ab ¼ πd2b=4 is the bulge cross-section area, giving

b ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ

ρð−R̈Þ
r

⇒ Bo ¼ ρð−R̈Þb2
σ

≃ 1: ð4Þ

This result matches our data very well [Fig. 2(b)]. Besides
sheet fragmentation upon drop impact on a surface of size
comparable to the drop, we also show that the criterion
Bo ¼ 1 applies to other fragmentation processes including
asymmetric sheet expansion in the air from a drop impact
near the edge of a surface [Fig. 2(c-i)] and for drop impacts
on thin films leading to a crown [Fig. 2(c-ii)]. Despite
changes in geometry and two-to-three dimensional sheet
expansions, the unsteady local criterion Bo ¼ 1 regulating
the rim thickness holds. This means that the local unsteady
rim thickness retains the value of the local and instanta-
neous capillary length throughout the unsteady sheet
expansion. This remains true as long as sufficient fluid
enters the rim and viscous stresses are negligible as
discussed hereafter.
The criterion of instantaneous local Bo ¼ 1 governing

the unsteady rim thickness also applies to the fragmentation
of fluids with a range of viscous and elastic properties
summarized in Table 1 (see Supplemental Material [35]).
Figure 3(b) shows the time evolution of the local

instantaneous Bond number of the sheet rim for the same
Weber of impact but different viscosity ν and elastic
relaxation time τE. The Bo ¼ 1 criterion continues to
hold within critical regions of viscous and elastic effects
[Figs. 3(b) and 3(c)]. To better understand the effects of
viscosity and elasticity, we examine the local rim Reynolds
R̃e ¼ vbb=ν in the noninertial rim frame (competition
of inertial to viscous effects) and Deborah numbers
D̃e ¼ τE=τg (competition of elastic to capillary effects).

Using the characteristic velocity vb ≃
ffiffiffiffiffiffiffiffiffiffi
σ=ρb

p
and time

τg ≃
ffiffiffiffiffiffiffiffiffiffiffiffi
ρb3=σ

p
of rim destabilization, R̃e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σb=ρν2

p
and D̃e ¼ τE=

ffiffiffiffiffiffiffiffiffiffiffiffi
ρb3=σ

p
.

Prior studies of drop impacts gave a maximum radius of
the expanding sheet Rmax ∼

ffiffiffiffiffiffiffi
We

p
d0. Thus, the sheet

deceleration scales as ð−R̈Þ ∼ Rmax=τ2cap ∼ u0=τcap, where

τcap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρd30=8σ

q
is the global capillary timescale charac-

teristic of the sheet expansion. Experiments show that
the variation in sheet deceleration during sheet expansion
remains small compared to its mean value h−R̈i ≃ 2u0=τcap
(Fig. 2 in the Supplemental Material [35]). Substituting this
expression into (4) gives b ≃ 0.2We−1=4d0. Thus, the local
Reynolds and Deborah numbers become

R̃e ≃ 0.2Oh−5=4 Re−1=4 and D̃e ≃ 4 DeWe3=8; ð5Þ

where the Reynolds Re ¼ u0d0=ν, Ohnesorge Oh ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρν2=ðσd0Þ

p
, and Deborah numbers De ¼ τE=τcap are

based on impact conditions. A regime map in terms of
R̃e and D̃e defined in (5) is shown in Fig. 3(c): circles show
experiments for which Bo ¼ 1 holds and squares those for
which it fails. The region within which Bo ¼ 1 holds is
bounded by R̃e ≳ 8 and D̃e≲ 16.
The dispersion relation ω ¼ ωðkÞ of the Rayleigh-

Plateau instability used for the derivation of Bo ¼ 1 only

FIG. 3. (a) Sheet expansion upon drop impact on pole for fluids of different viscosity and elasticity. Scale bars are 6 mm. (b) Time
evolution of the local instantaneous rim Bond number for the fluids shown in (a). (c) Regime diagram in terms of the local Reynolds
number R̃e and Deborah number D̃e defined in (5). Circles represent the experimental conditions for which Bo ¼ 1 holds, and squares
the conditions for which it fails, for the rim of unsteady expanding sheet upon drop impact on a small surface. The criterion to determine
if Bo ¼ 1 holds is that 0.8 < hBoi < 1.2.
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applies for inviscid fluids. The full relation accounting for
both inertia and viscosity is implicit [36] but can be
simplified asymptotically for small viscosity to yield the
fastest-growing wave number k2max ¼ 1=ð2þ 6

ffiffiffi
2

p
=R̃eÞ

[37]. This shows that the inviscid dispersion relation no
longer applies for R̃e < 6

ffiffiffi
2

p
. Thus, the Bo ¼ 1 criterion

should also fail when R̃e < 6
ffiffiffi
2

p
≈ 8.5, which matches our

experimental data very well [Fig. 3(c)].
Prior studies on the Rayleigh-Plateau instability [38–42]

showed that the breakup of a column of fluid with high
elasticity is slower than that of a Newtonian fluid. This is
consistent with our experimental data, which show Bo > 1
for highly elastic fluids, indicating that more fluid is
accumulated in the rim due to less destabilization.
However, the quantification of the nonlinear effect of fluid
elasticity on rim destabilization and its modeling remain
unclear. The experimental critical value of D̃e above which
Bo ¼ 1 breaks down is D̃e ≈ 16 [Fig. 3(c)]. The theoretical
explanation for this value is the subject of future research.
We showed that the rim destabilization during unsteady

sheet fragmentation induces a self-adjustment of the
instantaneous rim thickness b: it remains equal to the local
instantaneous unsteady capillary length. Namely, the rim
thickness is governed by a local and instantaneous Bond
number Bo ¼ ρb2ð−R̈Þ=σ ¼ 1. Such criterion is robust to a
range of fragmentation geometries and to changes in fluid
properties, including viscosity and elasticity. However,
prerequisites need to be met to ensure that the Bo ¼ 1
criterion shapes the rim thickness. First, the criterion only
holds if sufficient fluid is contained in the rim. Second,
initial perturbations need to be sufficient to trigger the
unsteady instability ensuring growth of corrugations. This
is illustrated in Fig. 4(a), showing the time evolution of the
local rim Bo for drop impacts on smooth and rough
surfaces. The former incurs less initial perturbations than

the later, resulting in a longer time required for initial
corrugations to grow into ligaments and, therefore, to reach
Bo ¼ 1. Third, the Bo ¼ 1 criterion requires a sufficiently
large acceleration and fluid influx into the rim. For
instance, in the stationary case of a Savart sheet [43–45]
the acceleration is null. Based on (4), the rim thickness
would be infinite, clearly unrealistic. In this particular case
the rim still destabilizes but its thickness is determined by
the local geometry of cusps that develop around the
rim [46].
For another unsteady sheet fragmentation process, drop

impact on a deep pool leading to a crown splash, we find
that the local Bond number of the rim remains smaller than
1 [Fig. 4(b)]. This is due to the important dissipation of
impact kinetic energy via cavity formation below the
surface, which decreases the fluid influx into the rim below
what would be required to satisfy Bo ¼ 1. The physical
implication of Bo < 1 is that, contrary to impacts on thin
films or surfaces, corrugations cannot grow. When
observed, however, they appear to form at the very early
stage of impact and are believed to originate from a
different mechanism [31,47–50]. The complexity of the
early stage of impact makes their origin difficult to
elucidate. However, with the instantaneous local Bo < 1,
no new ligaments emerge from the rim during its expan-
sion. This is in contrast to the continuous emergence of new
ligaments from unsteady rims from drop impacts on
surfaces and thin films with Bo ¼ 1 (Fig. 2). For drop
impact on large solid surfaces, viscous stresses stabilize the
rim: it accumulates fluid that cannot be shed; thus, the local
Bo is systematically larger than 1 (Fig. 4b).
Beside unsteady expanding sheet fragmentation, frag-

mentation processes resulting from sheet rupture are also of
interest. They arise, for example, from bursting bubbles [3]
[Fig. 4(c)]. The sheet retraction on a bubble cap is governed
by the constant Taylor-Culick retraction speed [51,52], yet

FIG. 4. (a) Time evolution of the local Bond number of the rim upon drop impact on a small smooth surface, compared with that
upon impact on a rough surface for We ¼ 693. The insets show the sheet at time t ¼ 0.06τcap, when the fragmentation is occurring on
the rough surface while it has not yet started on the smooth one. (b) Time evolution of the local Bond number of the rim from drop
impact on a deep pool for We ¼ 824 (circles) and from impact on a solid surface for We ¼ 543 (squares), showing that Bo ¼ 1 fails in
these two cases. (c) Time evolution of the local Bond number of the rim from bubble bursting. The capillary time in this case is
τ0cap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrhÞ3=2=σ

p
with r ¼ 5.6 mm and h ¼ 7.4 μm the bubble cap radius and thickness, respectively. The Bond number is

computed based on the centripetal acceleration measured at the early stage of the hole retraction on the bubble cap.
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the curvature of the bubble cap induces a centripetal
acceleration normal to the rim direction of motion. The
rim thickness is first primarily driven by the scavenging of
fluid throughout the hole opening, independent of the
acceleration, leading to Bo < 1. Here, Bo is defined based
on the constant initial centripetal acceleration. As fluid
accumulates into the rim, eventually, the local instanta-
neous Bo reaches 1, coinciding with the growth of
corrugations in the direction of the centripetal acceleration.
Beyond that point, caution in interpretation of the later
stage is required as the bubble cap sheet curves with a kink
forming in the direction of the centripetal acceleration, in
addition to no longer being a stretched film as the rest of the
bubble collapses.
In the context of fluid fragmentation, our study repre-

sents a significant advance. Unsteady sheet fragmentation
is ubiquitous in industrial and natural fluid processes, used
for drug delivery [53], and important for transfer of
biological and chemical compounds and pathogen spread.
Prior studies neglected the role of unsteadiness on rim
destabilization, in large part due to the lack of measure-
ments enabling one to discriminate between hypotheses on
the dominant instabilities taking place, but also due to the
lack of a theoretical framework as tractable as that of steady
classical hydrodynamic instabilities. We showed that a
robust criterion of instantaneous local Bo ¼ 1 governs the
unsteady rim thickness. This criterion enables tremendous
simplification of the modeling, and therefore the mecha-
nistic understanding, of a large class of unsteady inviscid
fragmentation processes. Moreover, we also showed for
which fluid viscous and viscoelastic conditions the cri-
terion continues to hold, thus allowing its application to a
broader class of contaminated and non-Newtonian fluids
important in biological processes such as violent exhala-
tions or crop pathogen transport involved in disease trans-
mission [4–7].
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[44] F. Savart, Mémoire sur le choc d’une veine liquide lancée
sur un plan circulaire, Ann. Chim. 54, 5687 (1833).
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