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Abstract

Motivation: As the volume of next-generation sequencing (NGS) data increases, faster algorithms

become necessary. Although speeding up individual components of a sequence analysis pipeline

(e.g. read mapping) can reduce the computational cost of analysis, such approaches do not take

full advantage of the particulars of a given problem. One problem of great interest, genotyping a

known set of variants (e.g. dbSNP or Affymetrix SNPs), is important for characterization of known

genetic traits and causative disease variants within an individual, as well as the initial stage of

many ancestral and population genomic pipelines (e.g. GWAS).

Results: We introduce lightweight assignment of variant alleles (LAVA), an NGS-based genotyping al-

gorithm for a given set of SNP loci, which takes advantage of the fact that approximate matching of

mid-size k-mers (with k¼ 32) can typically uniquely identify loci in the human genome without full read

alignment. LAVA accurately calls the vast majority of SNPs in dbSNP and Affymetrix’s Genome-Wide

Human SNP Array 6.0 up to about an order of magnitude faster than standard NGS genotyping pipe-

lines. For Affymetrix SNPs, LAVA has significantly higher SNP calling accuracy than existing pipelines

while using as low as �5 GB of RAM. As such, LAVA represents a scalable computational method for

population-level genotyping studies as well as a flexible NGS-based replacement for SNP arrays.

Availability and Implementation: LAVA software is available at http://lava.csail.mit.edu.

Contact: bab@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One central challenge in genomics is genotyping: given an individ-

ual, identifying the locations at which that individual’s genome dif-

fers from a reference (Luikart et al., 2003). In this paper, we will

primarily focus on single-nucleotide polymorphisms (SNPs)—the

most frequently used type of human genetic variation in population-

level studies (Lancia et al., 2001)—although other potentially ap-

plicable variants include insertions, deletions, short tandem repeats,

copy number variations (CNVs) and rearrangements. For simultan-

eous characterization of large numbers of known SNPs, such as in

genome-wide association studies (GWAS), researchers have trad-

itionally turned to allele-specific oligonucleotides (ASO) probes,

often adhered onto a DNA microarray to form SNP arrays (Pastinen

et al., 2000).

However, there are millions of known SNPs (Sherry et al.,

2001), and even the state-of-the-art Affymetrix genome-wide SNP

array 6.0 has only 906 000 SNP probes and 946 000 CNV probes.

We can instead turn to whole genome sequencing for genotyping.

Currently, NGS whole genome sequencing is still relatively more ex-

pensive than SNP arrays, but in recent years, sequencing prices have

been dropping drastically, going under even the celebrated $1000

mark (Hayden, 2014).

In most NGS-based genotyping pipelines, the first step after

sequencing a genome is to map each read to the reference (Li and

Durbin, 2009; Langmead and Salzberg, 2012; Yorukoglu et al.,

2016). Standard tools for genotyping (e.g. Samtools mpileup (Li

et al., 2009) and GATK HaplotypeCaller (McKenna et al., 2010))

require this mapping information for every read before being able to

call variants. Yet despite recent advances in speed (Marco-Sola

et al., 2012; Siragusa et al., 2013; Yorukoglu et al., 2016; Zaharia

et al., 2011), mapping still remains a computationally expensive

step. Furthermore, genotyping pipelines also include variant calling

steps, significantly increasing the total runtime.

As increases in modern genomic sequencing capabilities have

been outpacing even the exponential increases in computing power

and storage (Berger et al., 2013, 2016; Kahn, 2011), continuing to

extract meaningful knowledge from this data deluge requires not
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only faster computers but also algorithmic advances. One popular

approach has been to accelerate existing tools and algorithms using

more sophisticated data structures (e.g. the FM-index, Ferragina

et al., 2004; compressive acceleration, Loh et al., 2012; Daniels

et al., 2013; Yu et al., 2015a; etc.). However, read mapping is used

as a building block for many different downstream applications

(Langmead and Salzberg, 2012), so it must be designed to be as gen-

eral as possible. When the specific downstream application is known

beforehand, the read mapping information need not be fully com-

puted giving way to more efficient, ‘alignment-free’ approaches.

While alignment-free sequence comparison has been around for

more than two decades (Hide et al., 1994; Jeffrey, 1990; Vinga and

Almeida, 2003), their mainstream use in the context of fast process-

ing of large NGS datasets is relatively recent, including tools making

use of lightweight alignment (Patro et al., 2015) or pseudo-

alignment (Bray et al., 2016) for transcript quantification and meta-

genomic classification (Ounit et al., 2015; Wood and Salzberg,

2014) as well as fully reference-independent methods that identify

differences between wild-type and mutant individuals (Nordström

et al., 2013; Peterlongo et al., 2010). These methods differ from

traditional genomic pipelines by going from unaligned reads to

analysis-ready results without needing to compute nucleotide-level

alignments of reads onto a reference sequence. In this paper, we

show that a k-mer-based algorithm that employs similar alignment-

free sequence comparison principles, yet allows approximate k-mer

matches, can accurately genotype an individual for a given set of

SNPs.

Due to linkage disequilibrium (LD) between variants that are

close in terms of recombination distance, relatively few SNP loci in

the human genome are needed for tagging the variants present in an

individual (Frazer et al., 2007). As such, a fast algorithm that can

compute genotype information of a given set of SNPs, even if it es-

chews discovery of novel SNPs, is of great relevance in population

genomics, impacting ancestral and genome-wide association studies

(GWAS). Aptly, fast genotyping methods are most urgently needed

in population-level studies, where sequencing data from a large

number of individuals need to be processed for analyses.

2 Approach

Here we introduce lightweight assignment of variant alleles

(LAVA), which from raw sequencing reads performs something akin

to a computational SNP array, calling SNPs as either wild-type or

mutant. In particular, given a set of SNPs, LAVA constructs a com-

prehensive dictionary of mid-size k-mers (with k¼32) that uniquely

identify those SNPs (where possible). Coupled with a second dic-

tionary of all the k-mers in the human genome, LAVA is able to

quickly determine if a read belongs to a particular SNP as either a

wild-type or mutant through a bipartite matching of k-mers in the

reads to k-mers in the precomputed dictionaries up to Hamming dis-

tance 1. The k-mers used in LAVA can be seen as the computational

analogue of the ASOs used on SNP arrays, allowing us to choose

only relevant reads, without doing a full alignment of all reads to a

reference genome (Fig. 1). By aggregating those relevant reads,

LAVA can then call SNPs with a simple probabilistic model using

expected read-depth coverage as well as variant frequency priors

from dbSNP (Sherry et al., 2001).

LAVA accurately genotypes the vast majority of SNPs in our ex-

periments significantly faster than traditional genotyping through

mapping. For a SNP list consisting of a subset of common SNPs

from dbSNP, the speedup was 3.4–6.0x. Similarly, using the SNPs

from the Affymetrix Genome-Wide Human SNP Array 6.0 as a SNP

list, we saw a speedup of 2.2–9.2x. Furthermore, LAVA was able to

use as little as �40 GB of RAM for the dbSNP-common SNP list

and �5 GB of RAM for the Affymetrix SNP list. At the same time,

because LAVA is a computational method that relies on NGS, it

does not require the construction of physical SNP chips, and can ad-

dress many more SNPs than ASOs can feasibly be dotted onto a

chip. Moreover, when the set of SNPs is altered, LAVA’s diction-

aries can easily be modified in silico as opposed to expensively re-

designing the probes used in the SNP array.

Our broader point is that while full mapping and genotyping

will be useful for the discovery of novel SNPs and more in depth

computational analyses of genomes, it is more costly than necessary

for many population genomics studies. LAVA provides a computa-

tionally much cheaper solution for genotyping applications on a

given set of SNPs.

On our human test dataset (NA12878 from the 1000 Genomes

Project (Consortium et al., 2012) and the GATK best practices bun-

dle (DePristo et al., 2011)), LAVA correctly called 93.1% of a subset

of common SNPs from dbSNP, and 96.4% of SNPs from Affymetrix

Genome-Wide Human SNP Array 6.0. By comparison, the other

conventional genotyping pipelines that were tested correctly called

92.6–94.8% of the former and 93.4–95.5% of the latter.

3 Methods

LAVA takes as input a reference genome, a list of SNPs, and a set of

reads. As its output, it produces predicted genotypes for those SNPs

(wild-type, heterozygous, homozygous mutant). A high-level visual-

ization of the method is depicted in Figure 2.

3.1 Choice of k-mer length
We choose k¼32 for a combination of theoretical and machine

architectural considerations. First and foremost, we want our k-

mers to, as much as possible, uniquely identify the loci of the gen-

ome where SNPs of interest are located. This is akin to the problem

of the choice of ASO probe sequence in SNP arrays. However,

although ASO probes are generally of length between 15 and 21,

this choice only works for a small subset of the human genome.

Additionally, in order to take into account machine error (which

ASO probes need not), we also want to make sure to choose a suffi-

ciently long k-mer so that k-mers also do not have Hamming neigh-

bors in the genome (loci that are within Hamming distance 1).

Figure 3 is an analysis of the human reference genome (version 19),

showing how many loci are uniquely identifiable by k-mers of

Fig. 1. LAVA pipeline (circled in blue) versus conventional genotyping pipe-

line (circled in red). In contrast to traditional reference indexing (violet), LAVA

preprocessing generates k-mer dictionaries from a given reference sequence

and list of SNPs (teal). Our main contribution is altering the pipeline to a k-

mer-based model, where the traditional read mapping and variant calling

stages are replaced by LAVA’s unified genotyping method
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different lengths, either with exact matches or when Hamming

neighbors are also considered. On one hand, only 21.8% of 16-mers

are unique in the human reference genome and only 0.000786% of

16-mers have no Hamming neighbors. On the other hand, by choos-

ing k¼32, we are able to uniquely locate 85.7% of the human gen-

ome with exact 32-mer matches and 79.3% of the human genome

have no Hamming neighbors. Of note, although the proportion of

uniquely identifiable loci continues to increase with k, 32 seems to

be past an inflection point and is well-suited for modern 64-bit ma-

chine architectures.

On the contrary, too large of a choice for k runs into a different

set of problems. The most obvious practical problem is that the mem-

ory requirements for k much larger are prohibitive. Additionally, there

is also a more subtle issue caused by sequencing error rates: as k

grows, the chances of sequencing error being present also grow. By

looking to Hamming neighbors of the k-mer, we can correct for a sin-

gle error present in a k-mer, but looking to higher Hamming distances

requires exponentially more time. Thus, we need to ensure that k-

mers rarely have more than one machine error. Assuming independ-

ence of error locations with an error rate of p, the binomial distribu-

tion gives that a k-mer will have l errors with probability

k

l

 !
ð1� pÞk�lpl:

With even a low 1% error rate, k¼32 gives � 2 errors at a rate

of only 4%, whereas k¼64 results in � 2 errors at a rate of 13%.

At just a 2% error rate, k¼32 gives � 2 errors at a rate of only

13%, whereas k¼64 results in � 2 errors at a rate of 36%.

As far as machine architecture is concerned, a 32-mer can be

simply encoded as a 64-bit number. Note that k¼16 and k¼64

also fit nicely in standard machine number sizes, but they do not

serve our purposes for the reasons listed above. Thus, we have

chosen k¼32, which fits all of the criteria above relatively well.

3.2 Preprocessing of reference sequence and SNP list
We begin by preprocessing the given reference sequence by consider-

ing every k-length substring (‘k-mer’) appearing within it. Our goal

is to create a dictionary Dref that maps each k-mer to the index in

the reference sequence at which the k-mer appears. If a given k-mer

appears more than once in the reference sequence, we can treat it

specially and store multiple positions for it, up to some limit.

Using a standard binary encoding of reads, let n be the bijection

mapping each 32-mer to its 64-bit unsigned integer encoding.

Simply treating Dref as a list of (k-mer, position) tuples does not

allow for efficient querying. To decrease cache misses, we use a

static hash table implementation as follows (Yu et al., 2015b): we

first sort Dref by the numerical values of the encoded k-mers, and

then we make use of a secondary hash table Jref that maps each 32-

bit unsigned integer u to the first location in Dref at which there is a

32-mer whose encoding’s upper 32 bits is u. Because Dref is sorted

by the numerical values of the encoded 32-mers, 32-mers whose

encodings have the same upper 32 bits will be grouped together in a

sorted bucket, decreasing cache misses when searching all Hamming

neighbors of a k-mer and allowing us to implicitly encode the upper

32 bits of k-mers by bucket, improving memory efficiency. To query

Dref with some 32-mer K, we simply binary search in Dref between

the indices Jref ½bnðKÞ=232c� (inclusive) and Jref½bnðKÞ=232c þ 1� (ex-

clusive) for K. A simplified visualization of the querying process is

given in the Supplementary Materials.

The known SNP list is preprocessed analogously: instead of con-

sidering all k-mers in the reference, we take only those that overlap

some SNP with the reference allele replaced by the alternate. Each

element of the SNP list consists of a position in the reference at

which the SNP is located, a reference allele, an alternate allele and

population frequency priors for the reference and alternate alleles.

The SNP dictionary DSNP (as well as a secondary hash table JSNP)

thus contains k-mers (k¼32 again) with the mutant allele. In add-

ition to positions, we store SNP information in DSNP for each k-mer.

Although these structures are constructed during preprocessing,

they still must be loaded into RAM. We give exact total numbers in

Table 1, but space complexity of the static data structures is at most

Fig. 2. High-level view of LAVA method. We first produce dictionaries of all

reference k-mers and k-mers containing mutant SNP alleles in the prepro-

cessing stage from the given reference sequence and SNP list. These diction-

aries associate a position in the reference with each k-mer. The SNP

dictionary also contains reference and alternate alleles. The subsequent on-

line processing of the reads entails querying each read’s constituent k-mers,

in addition to their Hamming neighbors, in these two dictionaries. For each

read, the results of these queries are combined in order to predict which

SNPs the read overlaps, and we increment either the reference or alternate al-

lele counter in our pile-up table for all such SNPs, depending on which allele

the read contains for that SNP. Once all reads have been processed in this

way, the final, completed pile-up table is used to call variants

Fig. 3. The number of identifiable loci in the human reference from k-mers of

different lengths. Total number of loci is �3� 109 (red circles). Naturally, both

the number of unambiguous loci given exact k-mer matches (blue squares)

and taking into account Hamming neighbors (green stars) increase with k.

Clearly, in the latter case, we need much longer k-mer lengths to correct for

the presence of errors injecting ambiguity into the loci corresponding to any

particular k-mer
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linear in size of the genome (because each locus in the genome and

each SNP contributes one k-mer and each k-mer stores no more than

constant information for numbers of coinciding loci). Alternately, if

only relevant k-mers are stored, one can bring the space complexity

down to linear in the number of SNPs of interest (see LAVA Lite in

Table 1). Additionally, the constant overhead of the hash table buck-

ets can be tuned to be on the order of the number of k-mers.

3.3 Online processing of reads
To obtain variant calls from reads, we first create a ‘pileup table’ P,

where we store for each SNP, reference and alternate allele counts (re-

spectively, a and b), which are updated incrementally as we process

the reads. P can be thought of as a dictionary mapping indices to

SNPs and these two counts. This pileup table can be implemented to

use space linear in either, trivially, the genome length, or using a hash

table, the number of SNPs, so the space-complexity of LAVA is deter-

mined by the static structures given in the previous section.

Each individual read Q can be thought of as a length-m sequence

of A, C, G, T (N’s are handled separately as we discuss below). The

processing of a read begins with splitting it into non-overlapping,

contiguous k-mers. If there is a segment at the end of the read that is

not covered by one of these k-mers, we can optionally either omit

that segment or choose a final overlapping k-mer that covers it.

When the sequencer cannot call a base and emits an N, there are

several possible courses of action. The simplest one, and the one we

use in the results presented in this paper, is to discard any read that

contains an N. Alternately, as the LAVA framework is flexible with

respect to read length, another practical solution is to trim a read if

N’s are clustered near the end of the read. Lastly, for sporadic N’s in

the middle of the read, another option is to expand our alphabet to

include N for use in Hamming distance computations, but not allow

it to play a role in SNP calling.

Now, let NðKÞ be the ‘Hamming neighborhood’ of some k-mer

K for Hamming distance 1. Notice that K 2 NðKÞ and that

jN ðKÞj ¼ 3kþ 1. Our immediate goal in processing each read is to

determine which SNP(s), if any, the read corresponds to. We can

then update the reference and alternate allele counts in P for such

SNPs appropriately. We identify these SNPs by querying Dref and

DSNP with all k-mers in NðKÞ for each k-mer sampled from the

read. For each read, we identify the locus to which the most k-mers

in that read can be concordantly matched. If there are multiple such

loci, or if there is no locus supported by two or more k-mers, we do

not update P. We apply this entire procedure to each read and to its

reverse complement, resulting in a completed pile-up table P�.

3.4 SNP calling
The final stage of LAVA is to utilize the pile-up table P� to call the

donor’s genotype for each SNP locus. Specifically, we assign a label

of either ‘homozygous reference’ (G0), ‘heterozygous’ (G1) or

‘homozygous alternate’ (G2) to each position in P� that is covered

by at least one read (i.e. aþ b > 0). Since we have the reference and

alternate allele frequencies (p and q, respectively) in P�, we can esti-

mate the posterior probability of each genotype by Bayes’ rule as

PrðGnjCÞ ¼
PrðGnÞPrðCjGnÞ

PrðCÞ ;

where C is the event that we observe reference and alternate allele

counts of a and b, respectively. Furthermore, by the law of total

probability, we have

PrðGnjCÞ ¼
PrðGnÞPrðCjGnÞXi¼2

i¼0

PrðCjGiÞPrðGiÞ
:

By Hardy–Weinberg, we know that

PrðG0Þ ¼ p2; PrðG1Þ ¼ 1� p2 � q2; PrðG2Þ ¼ q2:

We take each PrðCjGnÞ to be binomially distributed. For G0 and

G2, on one hand, we assume that we observe an incorrect allele (i.e.

alternate allele given G0 or reference allele given G2) with some

probability �. For G1, on the other hand, we assume that we have an

equal chance of seeing both the reference and alternate alleles.

Hence, we have

PrðCjG0Þ ¼
aþ b

a

 !
1� �ð Þa �ð Þb;

PrðCjG1Þ ¼
aþ b

a

 !
1

2

� �a 1

2

� �b

¼
aþ b

a

 !
1

2aþb
;

PrðCjG2Þ ¼
aþ b

b

 !
�ð Þa 1� �ð Þb:

With this observation, we are able to compute each PrðGnjCÞ.
We take whichever Gn produces the largest PrðGnjCÞ to be our pre-

dicted genotype for the given SNP. As our confidence metric for this

assessment, we take the PrðGnjCÞ value scaled by a quantity that de-

pends on the total coverage, aþ b. In this way, we penalize SNPs

that have abnormally high coverages as well as those that have

lower coverages than expected. This scaling term is simply the prob-

ability mass function of a Poisson distribution with mean equal to

the average coverage k of the reads:

Table 1. Table of overall running times, peak memory usages, and

accuracies for LAVA and for several other genotyping pipelines

Method Runtime

(min)

RAM

(GB)

Correct

calls (%)

LAVA (dbSNP) 294.4 60.0 93.1

LAVA Lite (dbSNP) 367.7 40.0 92.7

Bowtie 2 þ mpileup (dbSNP) 1296.0 3.7 94.5

BWA þ mpileup (dbSNP) 1700.0 3.2 94.8

Bowtie 2 þ GATK HC (dbSNP) 1237.4 11.3 92.6

BWA þ GATK HC (dbSNP) 1779.6 11.9 93.3

SNAP þ GATK HC (dbSNP) 989.1 71.1 93.3

LAVA (Affy.) 184.8 60.0 96.4

LAVA Lite (Affy.) 247.0 5.2 96.4

Bowtie 2 þ mpileup (Affy.) 1296.0 3.7 93.4

BWA þ mpileup (Affy.) 1700.0 3.2 93.6

Bowtie 2 þ GATK HC (Affy.) 993.1 10.9 95.2

BWA þ GATK HC (Affy.) 1417.8 11.3 95.5

SNAP þ GATK HC (Affy.) 400.1 71.1 95.4

Results are shown for two SNP lists: a subset of common SNPs from

dbSNP and the SNPs from the Affymetrix Human SNP Array 6.0 (indicated

in parentheses in the Method column). Each tool was allocated a single thread

on an Intel Xeon E5-2650 x86_64 CPU @ 2.30GHz. Note that LAVA Lite at-

tains a lower peak memory usage by removing k-mers from the reference dic-

tionary that are not within a read length of any SNP, condensing the pile-up

table, and (for the Affymetrix SNP list) using 24-bit keys in the reference dic-

tionary as opposed to 32-bit keys.
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Sðaþ bÞ ¼ kaþb

ðaþ bÞ! e�k:

For greater accuracy, we computed the average aþ b from P� to

measure the actual observed depth coverage, and took k to be this

value. We report the product of these two probabilities as our geno-

typing confidence values.

3.5 Parallelization
Parallelizing LAVA is straightforward, as different reads can be pro-

cessed independently by different threads. For comparison, a paral-

lelized version of LAVA (using a subset of common SNPs from

dbSNP as the SNP list) running with four threads (using shared

memory) achieved a 3.3x speedup while a pipeline consisting of

Bowtie2 for read mapping and GATK’s HaplotypeCaller for geno-

typing had a 2.9x speedup.

4 Results

4.1 Datasets
As our reference sequence, we used GRCh37/hg19. We used

NA12878 reads from Phase 1 of the 1000 Genomes Project

(Consortium et al., 2012) and a high-quality trio-validated genotype

annotation as our gold standard (DePristo et al., 2011). Then we

performed the experiment for two different SNP lists: all common

SNPs from dbSNP (Sherry et al., 2001) and SNPs from the

Affymetrix Genome-Wide Human SNP Array 6.0. We compared

our accuracy with the most popular genotyping pipelines, consisting

of various combinations of Bowtie 2, BWA or SNAP for read map-

ping and Samtools mpileup or GATK’s HaplotypeCaller (henceforth

also referred to as ‘GATK HC’) for variant calling. Additionally, as

the HaplotypeCaller allows the user to specify a set of alleles at

which to genotype, GATK HC was also run specifically for the

Affymetrix SNP list with this setting enabled. Note that each SNP

list is filtered so that it contains only bi-allelic, single-nucleotide

SNPs with consistent alleles and allele frequency data.

4.2 Parameters
For the Poisson distribution in our model, we set k ¼ 7:1, which was

the average coverage in our final pile-up table. Our assumed error

rate was � ¼ 0:01, which is in line with known NGS base call error

rates. For k-mers with multiple mappings in the two dictionaries, we

stored up to nine additional entries. Any reads containing an N base

(�0.5% of all reads) were discarded. Also, segments at the end of a

read not evenly covered by a k-mer were also discarded; for our read

length of 101 bp, this corresponded to discarding the last five bases

in each read, which were also the lowest quality regions of the read.

4.3 Benchmarking experiments
Depending on mode, LAVA used from as little as 5.2 GB to up to

60 GB of peak memory while running on our dataset. By contrast,

BWAþmpileup used about 3.2 GB at its peak, Bowtie 2þGATK

HC used 11.3 GB, and SNAPþGATK HC used 71.1 GB. In Table

1, we present the runtimes and peak memory usages for all of our

experiments, both for LAVA and for the other genotyping pipelines.

LAVA allows for trading off memory usage for runtime. Of note,

even the lowest memory mode achieves impressive speed gains

(Table 1 and Fig. 4).

4.4 Dictionary generation
Generating the reference and SNP dictionaries took a combined

time of about 28 min on our machine (described in the caption of

Table 1), and used about 74 gigabytes of memory at its peak (these

benchmarks are essentially independent of the SNP list since gener-

ating the reference dictionary is predominantly the time- and

memory-consuming step). Note that this is a preprocessing stage

and that the same reference and SNP dictionaries can be used repeat-

edly for the same reference genome and SNP list, respectively.

Overall, compared with the other genotyping pipelines, LAVA

proved to be anywhere from 3.4 to 6 times faster for the dbSNP-

common SNP list and anywhere from 2.2 to 9.2 times faster for the

Affymetrix SNP list. Figure 5 shows the accuracy of LAVA and that

of the other pipelines for the two different SNP lists.

Because a small subset of SNPs cannot be uniquely identified by

any of their overlapping 32-mers, LAVA only attempted to call

94.5% of dbSNP-common and 98.5% of the Affymetrix SNPs.

LAVA correctly called 93.1% (98.5% of attempted calls) of the

dbSNP-common list and 96.4% (97.9% of attempted calls) of the

Affymetrix SNP Array 6.0 list. The Bowtie 2þmpileup pipeline, by

Fig. 4. Visualization of LAVA runtimes as compared with other genotyping pipelines. Note that ‘Indexing/Sorting’ refers to intermediate operations performed on

the output of the mapping stage prior to genotyping. The actual numerical values of the various times are given in the Supplementary Materials
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comparison, correctly called 94.5% and 93.4%. Furthermore,

BWAþmpileup called 94.8% and 93.6% while Bowtie 2þGATK

HC called 92.6% and 95.2%. Hence, despite its speed, LAVA main-

tained a high accuracy for the dbSNP-common SNP list and actually

attained the highest accuracy for the Affymetrix SNP list.

Although LAVA performs genotyping from raw reads in a single

unified algorithm, rather than separating out mapping and variant

calling, its fast speed compares favorably against the individual com-

ponents of existing pipelines. As such, even when compared with

variant calling from a precomputed BAM file with no cost spent on

mapping, LAVA can provide significant speed improvements.

5 Discussion

LAVA applies the idea of mid-size k-mer-based lightweight algo-

rithms to the problem of genotyping and in doing so achieves great

improvements in speed. By replacing full read mapping and variant

calling from the sequence analysis pipeline with LAVA, we improve

the speed of the process and also unify it considerably in a frame-

work that performs an approximate bipartite matching between k-

mers in the reference and the read datasets.

While in this study, we have focused LAVA on SNPs, DNA

microarrays are applicable to other variants such as insertions, de-

letions and CNVs. Because physical ASOs (with 15 � k � 21) can

assay for these variants, we expect that even accounting for

sequencing error, the 32-mers LAVA uses can also address these

variants. For small indels, the reference and alternate k-mers are

exactly analogous to the ones used for SNPs, requiring only that

we find nearly unique k-mers for each variant. With a length-n in-

sertion, for instance, we would take the k ðk� nÞ-mers surrounding

the start of the insertion and place the insertion sequence into each

of them at the correct position to produce k k-mers representing

the insertion. Similarly, for a length-n deletion, we would take the

k ðkþ nÞ-mers surrounding the start of the deletion and remove the

deleted sequence from each to produce k k-mers representing the

deletion. CNV information is already present to some extent in the

pile-up table, and we need only update the Bayesian model to in-

clude more possible classifications; it is likely that CNVs will re-

quire higher average coverage to accurately call. Or, alternately,

known structural duplications may be accessible through k-mers

covering the boundary between a duplicated region and its neigh-

boring regions.

(a) (b)

(c) (d)

Fig. 5. Accuracy plots for the dbSNP-common SNP list as well as for the Affymetrix SNP Array 6.0 list, showing true positives (a and c) and false positives (b and

d) as a function of total positive calls, both for LAVA and for several other genotyping pipelines. P denotes the total number of positives present in the dataset.

Note that the positive set contains the heterozygous and homozygous mutant SNPs (G1 and G2) and the negative set contains the homozygous wild-type SNPs (G0)
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Additionally, in the interest of speed, LAVA uses a more stream-

lined probabilistic base calling algorithm. However, once LAVA

performs its k-mer matching step, any number of different probabil-

istic models could be applied for base calling. Further augmentations

to the LAVA framework could include more complicated models—

such as those used in tools like GATK HaplotypeCaller and

Samtools mpileup—and better priors for the Bayesian model, such

as LD information. While these other models have some advantages

in accuracy, we deliberately chose to make the trade-off of gaining

additional speed through our streamlined probabilistic model, while

still retaining reasonably high accuracy.

Notably, LAVA demonstrates the highest accuracy amongst all

pipelines we tested for the Affymetrix dataset. This is because

LAVA’s dictionaries effectively simulate the behavior of ASO

probes, so SNPs for which SNP arrays are effective are also particu-

larly amenable to LAVA’s variant calling.

6 Conclusion and future work

While we demonstrate LAVA’s capabilities for efficiently processing

DNA sequencing datasets for known SNP loci, if common splice

junction coordinates in the population are known, which is available

from studies such as GENCODE (Derrien et al., 2012) and REFSEQ

(Pruitt et al., 2007), LAVA can also be augmented to perform bi-

partite matching of k-mers in the RNA-seq reads and the transcrip-

tome for identifying SNP/indel variants as well as estimate

differential allelic expression of heterozygous loci.

Furthermore, although paired-end reads were used in our bench-

marking experiments, LAVA does not actually distinguish between

paired- and single-end, unlike the read mappers we compared

against. Future work on LAVA entails incorporating a paired-end

mode to further improve accuracy.

To conclude, as NGS read databases grow, the lightweight na-

ture of LAVA will enable much faster targeted analyses than can be

performed with standard NGS genotyping pipelines. These methods

will prove invaluable as sequencing becomes the assay of choice for

population genomics studies.
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