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Abstract. We consider challenging dynamic programming models where the associated Bellman
equation, and the value and policy iteration algorithms commonly exhibit complex and even patho-
logical behavior. Our analysis is based on the new notion of regular policies. These are policies that
are well-behaved with respect to value and policy iteration, and are patterned after proper policies,
which are central in the theory of stochastic shortest path problems. We show that the optimal cost
function over regular policies may have favorable value and policy iteration properties, which the
optimal cost function over all policies need not have. We accordingly develop a unifying methodology
to address long standing analytical and algorithmic issues in broad classes of undiscounted models,
including stochastic and minimax shortest path problems, as well as positive cost, negative cost,
risk-sensitive, and multiplicative cost problems.
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1. Introduction. The purpose of this paper is to address complicating issues
that relate to the solutions of Bellman’s equation, and the convergence of the value
and policy iteration algorithms in total cost infinite horizon dynamic programming
(DP for short). We do this in the context of abstract DP, which aims to unify the
analysis of DP models and to highlight their fundamental structures.

To describe broadly our analysis, let us note two types of models. The first is
the contractive models , introduced in [Den67], which involve an abstract DP mapping
that is a contraction over the space of bounded functions over the state space. These
models apply primarily in discounted infinite horizon problems of various types, with
bounded cost per stage. The second is the noncontractive models , developed in [Ber75]
and [Ber77] (see also [BeS78, Chap. 5]), for which the abstract DP mapping is not
a contraction of any kind but is instead monotone. Among others, these models
include shortest path problems of various types, as well as the classical nonpositive
and nonnegative cost DP problems, introduced in [Bla65] and [Str66], respectively.
It is well known that contractive models are analytically and computationally well-
behaved, while noncontractive models exhibit significant pathologies, which interfere
with their effective solution.

In this paper we focus on semicontractive models that were introduced in the re-
cent monograph [Ber13]. These models are characterized by an abstract DP mapping,
which for some policies has a contraction-like property, while for others it does not.
A central notion in this regard is S-regularity of a stationary policy, where S is a set
of cost functions. This property, defined formally in section 5, is related to classical
notions of asymptotic stability, and it roughly means that value iteration using that
policy converges to the same limit, the cost function of the policy, for every starting
function in the set S.
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REGULAR POLICIES 1695

A prominent case where regularity concepts are central is finite-state problems
of finding an optimal stochastic shortest path (SSP for short). These are Markovian
decision problems involving a termination state, where one aims to drive the state
of a Markov chain to a termination state at minimum expected cost. They have
been discussed in many sources, including the books [Pal67, Der70, Whi82, Ber87,
BeT89, BeT91, Put94, HeL99], and [Ber12], where they are sometimes referred to by
earlier names such as “first passage problems” and “transient programming problems.”
Here some stationary policies called proper are guaranteed to terminate starting from
every initial state, while others called improper are not. The proper policies involve
a (weighted sup-norm) contraction mapping and are S-regular (with S being the set
of real-valued functions over the state space), while the improper ones are not.

The notion of S-regularity of a stationary policy is patterned after the notion of
a proper policy, but applies more generally in abstract DP. It was used extensively in
[Ber13], and in the subsequent papers [Ber15a] and [Ber16] as a unifying analytical
vehicle for a variety of total cost stochastic and minimax problems. A key idea is that
the optimal cost function over S-regular policies only, call it J∗

S , is the one produced
by the standard algorithms, starting from functions J ∈ S with J ≥ J∗

S . These are the
value and policy iteration algorithms (abbreviated as VI and PI, respectively), as well
as algorithms based on linear programming and related methods. By contrast, the
optimal cost function over all policies J∗ may not be obtainable by these algorithms,
and indeed J∗ may not be a solution of Bellman’s equation; this can happen in
particular in SSP problems with zero length cycles (see an example due to [BeY16],
which also applies to multiplicative cost problems [Ber16]).

One purpose of this paper is to extend the notion of S-regularity to nonstationary
policies, and to demonstrate the use of this extension for establishing convergence of
VI and PI. We show that for important special cases of optimal control problems,
our approach yields substantial improvements over the current state of the art, and
highlights the fundamental convergence mechanism of VI and PI in semicontractive
models. A second purpose of the paper is to use the insights of the nonstationary
policies extension to refine the stationary regular policies analysis of [Ber13], based
on PI-related properties of the set S. The paper focuses on issues of existence and
uniqueness of the solution of Bellman’s equation, and the convergence properties of
the VI and PI algorithms, well beyond the analysis of [Ber13]. A more extensive
treatment of the subject of the paper (over 100 pages), which includes elaborations
of the analysis, examples, and applications, is given in unpublished internet-posted
updated versions of [Ber13, Chapters 3 and 4], which may be found in the author’s
web site (http://web.mit.edu/dimitrib/www/abstractdp MIT.html).

The paper is organized as follows. After formulating our abstract DP model in
section 2, we develop the main ideas of the regularity approach for nonstationary poli-
cies in section 3. In section 4 we illustrate our results by applying them to nonnegative
cost stochastic optimal control problems, and we discuss the convergence of VI, fol-
lowing the analysis of the paper [YuB15]. In sections 5–7, we specialize the notion of
S-regularity to stationary policies, and we refine and streamline the analysis given in
the monograph [Ber13, Chapter 3]. As an example, we establish the convergence of
VI and PI under new and easily verifiable conditions in undiscounted deterministic
optimal control problems with a terminal set of states. Other applications of the the-
ory of sections 5 and 6 are given in [Ber15a] for robust (i.e., minimax) shortest path
planning problems, and in [Ber16] for the class of affine monotonic models, which
includes multiplicative and risk-sensitive/exponential cost models.
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1696 DIMITRI P. BERTSEKAS

2. Abstract DP model. We review the abstract DP model that will be used
throughout this paper (see [Ber13, section 3.1]). Let X and U be two sets, which we
refer to as a set of “states” and a set of “controls,” respectively. For each x ∈ X , let
U(x) ⊂ U be a nonempty subset of controls that are feasible at state x. We denote
by M the set of all functions μ : X �→ U with μ(x) ∈ U(x) for all x ∈ X .

We consider policies, which are sequences π = {μ0, μ1, . . .} with μk ∈ M for all
k. We denote by Π the set of all policies. We refer to a sequence {μ, μ, . . .}, with
μ ∈ M, as a stationary policy. With slight abuse of terminology, we will also refer
to any μ ∈ M as a “policy” and use it in place of {μ, μ, . . .}, when confusion cannot
arise.

We denote by � the set of real numbers, by R(X) the set of real-valued functions
J : X �→ �, and by E(X) the subset of extended real-valued functions J : X �→
� ∪ {−∞, ∞}. We denote by E+(X) the set of all nonnegative extended real-valued
functions of x ∈ X . Throughout the paper, when we write lim, lim sup, or lim inf of
a sequence of functions we mean it to be pointwise. We also write Jk → J to mean
that Jk(x) → J(x) for each x ∈ X , and we write Jk ↓ J if {Jk} is monotonically
nonincreasing and Jk → J .

We introduce a mapping H : X × U × E(X) �→ � ∪ {−∞, ∞}, satisfying the
following condition.

Assumption 2.1 (monotonicity). If J, J ′ ∈ E(X) and J ≤ J ′, then

H(x, u, J) ≤ H(x, u, J ′) ∀ x ∈ X, u ∈ U(x).

We define the mapping T that maps a function J ∈ E(X) to the function TJ ∈
E(X), given by

(TJ)(x) = inf
u∈U(x)

H(x, u, J) ∀ x ∈ X, J ∈ E(X).

Also for each μ ∈ M, we define the mapping Tμ : E(X) �→ E(X) by

(TμJ)(x) = H
(
x, μ(x), J

)
∀ x ∈ X, J ∈ E(X).

The monotonicity assumption implies the following properties for all J, J ′ ∈ E(X),
and k = 0, 1, . . . ,

J ≤ J ′ =⇒ T kJ ≤ T kJ ′, T k
μJ ≤ T k

μJ ′, ∀ μ ∈ M,

J ≤ TJ =⇒ T kJ ≤ T k+1J, T k
μJ ≤ T k+1

μ J, ∀ μ ∈ M,

which will be used repeatedly in what follows. Here T k and T k
μ denotes the composi-

tion of T and Tμ, respectively, with itself k times. More generally, given μ0, . . . , μk ∈
M, we denote by Tμ0 · · ·Tμk

the composition of Tμ0 , . . . , Tμk
, so for all J ∈ E(X),

(Tμ0 · · · Tμk
J
)
(x) =

(
Tμ0

(
Tμ1 · · ·

(
Tμk−1(Tμk

J)
)
· · ·

))
(x) ∀ x ∈ X.

We next consider cost functions associated with Tμ and T . We introduce a func-
tion J̄ ∈ E(X), and we define the infinite horizon cost of a policy as the upper limit of
its finite horizon costs with J̄ being the cost function at the end of the horizon (limit
cannot be used since it may not exist).
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REGULAR POLICIES 1697

Definition 2.1. Given a function J̄ ∈ E(X) for a policy π ∈ Π with π =
{μ0, μ1, . . .}, we define the cost function of π by

(2.1) Jπ(x) = lim sup
k→∞

(Tμ0 · · · Tμk
J̄)(x) ∀ x ∈ X.

The optimal cost function J∗ is defined by

J∗(x) = inf
π∈Π

Jπ(x) ∀ x ∈ X.

A policy π∗ ∈ Π is said to be optimal if Jπ∗ = J∗.

The model just described is broadly applicable, and includes as special cases
nearly all the interesting types of total cost infinite horizon DP problems, including
stochastic and minimax, discounted and undiscounted, semi-Markov, multiplicative,
risk sensitive, etc. (see [Ber13]).1 The following is a stochastic optimal control prob-
lem, which we will use in this paper both to obtain new results and also as a vehicle
to illustrate our approach.

Example 2.1 (stochastic optimal control—Markovian decision problems). Con-
sider an infinite horizon stochastic optimal control problem involving a stationary
discrete-time dynamic system where the state is an element of a space X , and the
control is an element of a space U . The control uk is constrained to take values in a
given nonempty subset U(xk) of U , which depends on the current state xk [uk ∈ U(xk)
for all xk ∈ X ]. For a policy π = {μ0, μ1, . . .}, the state evolves according to a system
equation

(2.2) xk+1 = f
(
xk, μk(xk), wk

)
, k = 0, 1, . . . ,

where wk is a random disturbance that takes values from a space W . We assume
that wk, k = 0, 1, . . . , are characterized by probability distributions P (· | xk, uk) that
are identical for all k, where P (wk | xk, uk) is the probability of occurrence of wk,
when the current state and control are xk and uk, respectively. Thus the probability
of wk may depend explicitly on xk and uk, but not on values of prior disturbances
wk−1, . . . , w0. We allow infinite state and control spaces, as well as problems with
discrete (finite or countable) state space (in which case the underlying system is a
Markov chain). However, for technical reasons that relate to measure theoretic issues,
we assume that W is a countable set. A recent analysis that has some common
elements with the present paper and addresses measure theoretic issues is given in
[YuB15].

Given an initial state x0, we want to find a policy π = {μ0, μ1, . . .}, where μk :
X �→ U , μk(xk) ∈ U(xk), for all xk ∈ X , k = 0, 1, . . . , that minimizes

Jπ(x0) = lim sup
k→∞

E

{
k∑

t=0

αkg (xt, μt(xt), wt)

}
,

1However, our model cannot address those stochastic DP models where measurability issues are
an important mathematical concern. In the stochastic optimal control problem of Example 2.1,
we bypass these issues by assuming that the disturbance space is countable, which includes the
deterministic system case, and the case where the system is stochastic with a countable state space
(e.g., a countable state Markovian decision problem). Then, the expected value needed to express
the finite horizon cost of a policy [cf. (2.1)] can be written as a summation over a countable index
set, and is well-defined for all policies, measurable or not.
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1698 DIMITRI P. BERTSEKAS

subject to the system equation constraint (2.2), where g is the one-stage cost function,
and α ∈ (0, 1] is the discount factor. This is a classical problem, which is discussed
extensively in various sources, such as the books [BeS78, Whi82, Put94, Ber12]. Under
very mild conditions guaranteeing that Fubini’s theorem can be applied (see [BeS78,
section 2.3.2]), it coincides with the abstract DP problem that corresponds to the
mapping

(2.3) H(x, u, J) = E
{
g(x, u, w) + αJ

(
f(x, u, w)

)}
,

and J̄(x) ≡ 0. Here, (Tμ0 · · · Tμk
J̄)(x) is the expected cost of the first k + 1 periods

using π starting from x, and with terminal cost 0 (the value of J̄ at the terminal
state).

3. Regular policies, value iteration, and fixed points of T . Generally, in
an abstract DP model, one expects to establish that J∗ is a fixed point of T . This
is known to be true for most DP models under reasonable conditions, and in fact
it may be viewed as an indication of exceptional behavior when it does not hold.
The fixed point equation J = TJ , in the context of standard special cases, is the
classical Bellman equation, the centerpiece of infinite horizon DP. For some abstract
DP models, J∗ is the unique fixed point of T within a convenient subset of E(X);
for example, contractive models where Tμ is a contraction mapping for all μ ∈ M,
with respect to some norm and with a common modulus of contraction. However, in
general T may have multiple fixed points within E(X), including for some popular
DP problems, while in exceptional cases, J∗ may not be among the fixed points of T
(see [BeY16] for a relatively simple SSP example of this type).

A related question is the convergence of VI. This is the algorithm that generates
T kJ , k = 0, 1, . . . , starting from a function J ∈ E(X). Generally, for abstract DP
models where J∗ is a fixed point of T , VI converges to J∗ starting from within some
subset of initial functions J , but not from every J ; this is certainly true when T has
multiple fixed points. One of the purposes of this paper is to characterize the set of
functions starting from which VI converges to J∗, and the related issue of multiplicity
of fixed points, through notions of regularity that we now introduce.

Definition 3.1. For a nonempty set of functions S ⊂ E(X), we say that a set C
of policy-state pairs (π, x), with π ∈ Π and x ∈ X, is S-regular if

Jπ(x) = lim sup
k→∞

(Tμ0 · · · Tμk
J)(x) ∀ (π, x) ∈ C, J ∈ S.

In what follows, when referring to a set C that is S-regular, we implicitly assume
that C and S are nonempty. A set C of policy-state pairs (π, x) may be S-regular for
many different sets S. The largest such set is

SC =
{

J ∈ E(X)
∣∣∣ Jπ(x) = lim sup

k→∞
(Tμ0 · · · Tμk

J)(x) ∀ (π, x) ∈ C
}

,

and for any nonempty S ⊂ SC , we have that C is S-regular. Moreover, the set SC is
nonempty, since it contains J̄ . For a given C, consider the function J∗

C ∈ E(X), given
by

J∗
C (x) = inf

{π | (π,x)∈C}
Jπ(x), x ∈ X.

Note that J∗
C (x) ≥ J∗(x) for all x ∈ X [for those x ∈ X for which the set of policies

{π | (π, x) ∈ C} is empty, we have J∗
C (x) = ∞]. We will try to characterize the sets

of fixed points of T and limit points of VI in terms of the function J∗
C for an S-regular

set C. The following is a key proposition.
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Proposition 3.1. Given a set S ⊂ E(X), let C be an S-regular set.
(a) For all J ∈ S, we have

lim inf
k→∞

T kJ ≤ lim sup
k→∞

T kJ ≤ J∗
C .

(b) For all J ′ ∈ E(X) with J ′ ≤ TJ ′, and all J ∈ E(X) such that J ′ ≤ J ≤ J̃ for
some J̃ ∈ S, we have

J ′ ≤ lim inf
k→∞

T kJ ≤ lim sup
k→∞

T kJ ≤ J∗
C .

Proof. (a) Using the generic relation TJ ≤ TμJ , μ ∈ M, and the monotonicity
of T and Tμ, we have for all k(

T kJ
)
(x) ≤ (Tμ0 · · ·Tμk−1J)(x) ∀ (π, x) ∈ C, J ∈ S.

By letting k → ∞ and by using the definition of S-regularity, it follows that

lim inf
k→∞

(
T kJ

)
(x) ≤ lim sup

k→∞

(
T kJ

)
(x)

≤ lim sup
k→∞

(Tμ0 · · ·Tμk−1J)(x) = Jπ(x) ∀ (π, x) ∈ C, J ∈ S,

and taking the infimum of the right side over {π | (π, x) ∈ C}, we obtain the result.
(b) Using the hypotheses J ′ ≤ TJ ′, and J ′ ≤ J ≤ J̃ for some J̃ ∈ S, and the

monotonicity of T , we have

J ′(x) ≤ (TJ ′)(x) ≤ · · · ≤
(
T kJ ′) (x) ≤

(
T kJ

)
(x) ≤

(
T kJ̃

)
(x).

Letting k → ∞ and using part (a), we obtain the result.

Part (b) of the proposition shows that given a set S ⊂ E(X), a set C ⊂ Π × X
that is S-regular, and a function J ′ ∈ E(X) with J ′ ≤ TJ ′ ≤ J∗

C , the convergence of
VI is characterized by the valid start region{

J ∈ E(X) | J ′ ≤ J ≤ J̃ for some J̃ ∈ S
}
,

and the limit region {
J ∈ E(X) | J ′ ≤ J ≤ J∗

C
}
.

The VI algorithm, starting from the former, ends up asymptotically within the latter;
cf. Figure 1. Note that both of these regions depend on C and J ′.

The significance of the preceding property depends of course on the choice of C and
S. With an appropriate choice, however, there are important implications regarding
the location of the fixed points of T and the convergence of VI from a broad range of
starting points. Some of these implications are the following:

(a) J∗
C is an upper bound to every fixed point J ′ of T that lies below some J̃ ∈ S

(i.e., J ′ ≤ J̃).
(b) If J∗

C is a fixed point of T (an important case for our subsequent development),
then VI converges to J∗

C starting from any J ∈ E(X) such that J∗
C ≤ J ≤ J̃

for some J̃ ∈ S. For future reference, we state this result as a proposition.

Proposition 3.2. Given a set S ⊂ E(X), let C be an S-regular set and assume
that J∗

C is a fixed point of T . Then J∗
C is the only possible fixed point of T within the

set of all J ∈ E(X) such that J∗
C ≤ J ≤ J̃ for some J̃ ∈ S. Moreover, T kJ → J∗

C for
all J ∈ E(X) such that J∗

C ≤ J ≤ J̃ for some J̃ ∈ S.
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J ′ J∗

C

Limit Region

Valid Start Region

J

Optimal Cost over CFixed Point of T

E(X)

VI: T kJ

J̃ ∈ S

Fig. 1. Illustration of Proposition 3.1. Neither J∗
C nor J∗ need to be fixed points of T , but if C

is S-regular, and there exists J̃ ∈ S with J∗
C ≤ J̃, then J∗

C demarcates from above the range of fixed
points of T that lie below J̃.

Proof. Let J ∈ E(x) and J̃ ∈ S be such that J∗
C ≤ J ≤ J̃ . Using the fixed point

property of J∗
C and the monotonicity of T , we have

J∗
C = T kJ∗

C ≤ T kJ ≤ T kJ̃ , k = 0, 1, . . . .

From Proposition 3.1(b), with J ′ = J∗
C , it follows that T kJ̃ → J∗

C , so taking the limit
in the above relation as k → ∞, we obtain T kJ → J∗

C .

The preceding proposition takes special significance when C is rich enough so that
J∗

C = J∗, as for example in the case where C is the set Π × X of all (π, x), or other
choices to be discussed later. It then follows that VI converges to J∗ starting from
any J ∈ E(X) such that J∗ ≤ J ≤ J̃ for some J̃ ∈ S.2 In the particular applications
to be discussed in section 4 we will use such a choice.

The following example illustrates the preceding propositions in the context of
a central problem in optimal control. For simplicity we consider a one-dimensional
special case, but the example can be generalized to any finite-dimensional linear-
quadratic (positive semidefinite) problem (see Example 6.1 in section 6).

Example 3.1 (linear-quadratic optimal control problem). Consider the mapping

H(x, u, J) = u2 + J(γx + u),

where x and u are scalars, γ > 1, and J : � �→ � is a scalar function. This corresponds
to the optimal control problem involving the scalar system xk+1 = γxk + uk and the
quadratic cost

∑∞
k=0 u2

k. A special feature of this example is that there is no penalty
on the state, so the standard observability assumption is not satisfied.

Let S be the set of nonnegative quadratic functions J(x) = Px2 with P ≥ 0.
Let C be the set of pairs (π, x), where x ∈ � and π is a linear stable policy, i.e., a
stationary policy π = {μ, μ, . . .} with μ linear, of the form μ(x) = rx, r ∈ �, such
that the closed-loop system xk+1 = (γ + r)xk is stable, i.e., |γ + r| < 1. For such
a policy, the generated sequence of states is xk = (γ + r)kx0, and we have for every
J ∈ C with J(x) = Px2,

(
T k

μJ
)
(x0) = P (xk)2 +

k−1∑
�=0

(rx�)2 = P (γ + r)2kx2
0 +

k−1∑
�=0

r2(γ + r)2�x2
0.

2For this statement to be meaningful, the set {J̃ ∈ E(X) | J∗ ≤ J̃} must be nonempty. Generally,
it is possible that this set is empty, even though S is assumed nonempty.
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Riccati Equation Iterates

γ2P
P+1

P0 PP1 P2
45◦

P ∗ = 0 P̂ = γ2 − 1

Fig. 2. Illustration of the Riccati equation for the one-dimensional linear-quadratic problem of
Example 3.1, where q = 0. The solutions are P ∗ = 0 (corresponds to the optimal cost function J∗)
and P̂ = γ2 − 1 (corresponds to the optimal cost function J∗

C that can be achieved with linear stable
control laws).

Since limk→∞ P (γ + r)2kx2
0 = 0, it follows that

(3.1) lim
k→∞

(
T k

μJ
)
(x0) = Jμ(x0) =

∞∑
�=0

r2(γ + r)2�x2
0 =

r2

1 − (γ + r)2
x2,

so limk→∞(T k
μ J)(x0) does not depend on J . Thus C is S-regular.

Let us consider the Bellman equation J = TJ restricted to quadratic functions
of the form J(x) = Px2, P ≥ 0. It takes the form Px2 = minu∈�[u2 + P (γx + u)2],
which after performing the minimization yields

P =
γ2P

P + 1
.

This is the well-known algebraic Riccati equation for the problem (see, e.g., [AnM79,
Ber17a]). This equation has two nonnegative solutions as shown in Figure 2: P ∗ = 0
and P̂ = γ2 − 1. The solution P ∗ = 0 corresponds to the optimal cost function,
which is J∗(x) ≡ 0 with optimal policy μ∗(x) ≡ 0. The other solution corresponds
to Ĵ(x) = P̂x2, which can be verified to be the restricted optimal cost function
J∗

C . To see this, note that for a linear stable policy μ(x) = rx, the corresponding cost
function is quadratic of the form (3.1). By setting to 0 the derivative of the expression

r2

1−(γ+r)2 [cf. (3.1)], we can verify that the optimal value of r is r̂ = 1−γ2

γ , and that

the corresponding cost function is (γ2 − 1)x2 = Ĵ(x). Thus the fixed point Ĵ is equal
to the optimal cost function J∗

C that can be achieved with linear stable policies.
Another interesting fact is that the VI method generates the sequence Jk(x) =

Pkx2, where Pk+1 = γ2Pk

Pk+1 , and converges to the second solution J∗
C when started with

any P0 > 0 (cf. Figure 2). This is consistent with Propositions 3.1 and 3.2: J∗
C is the

largest fixed point of T and is the limit of VI starting from any real-valued J0 with
J0 ≥ J∗

C . Note that in this example, J∗ is a fixed point of T , but VI does not converge
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1702 DIMITRI P. BERTSEKAS

to J∗, except when started at J∗. It can also be verified that the PI method, when
started with a linear stable policy also converges to J∗

C , and not to the optimal cost
function J∗.

Propostion 3.2 does not say anything about fixed points of T that lie below J∗
C .

In particular, it does not address the question of whether J∗ is a fixed point of T , or
whether VI converges to J∗ starting from J̄ or from below J∗; these are major ques-
tions in abstract DP models, which are typically handled by special analytical tech-
niques that are tailored to the particular model’s structure and assumptions. Signifi-
cantly, however, these questions have been already answered in the context of various
models, and when available, they can be used to supplement the preceding proposi-
tions. For example, the DP books [Pal67, Der70, Whi82, Put94, HeL99, Ber12, Ber13]
provide extensive analysis for the most common infinite horizon stochastic optimal
control problems: discounted, SSP, nonpositive cost, and nonnegative cost problems.

In particular, for discounted problems [the case of the mapping (2.3) with α ∈
(0, 1) and g being a bounded function], underlying sup-norm contraction properties
guarantee that J∗ is the unique fixed point of T within the class of bounded real-
valued functions over X , and that VI converges to J∗ starting from within that class.
This is also true for finite-state SSP problems, involving a cost-free termination state,
under some favorable conditions (there must exist a proper policy, i.e., a stationary
policy that leads to the termination state with probability 1, improper policies must
have infinite cost for some states, and some finiteness or compactness conditions on
the control space U must be satisfied; see [BeT91, Ber12]).

The paper [BeY16] also considers finite-state SSP problems, but under the weaker
assumptions that there exists at least one proper policy, that J∗ is real valued, and
U satisfies some finiteness or compactness conditions. Under these assumptions, J∗

need not be a fixed point of T , as shown in [BeY16] with an example. In the context
of the present paper, a useful choice is to take C = {(μ, x) | μ : proper}, in which case
J∗

C is the optimal cost function that can be achieved using proper policies only. It was
shown in [BeY16] that J∗

C is a fixed point of T , so by Proposition 3.2, VI converges
to J∗

C starting from any real valued J ≥ J∗
C .

For nonpositive and nonnegative cost problems (cf. Example 2.1 with g ≤ 0 or
g ≥ 0, respectively), J∗ is a fixed point of T , but not necessarily unique. However,
for nonnegative cost problems, some new results on the existence of fixed points of T
and convergence of VI were recently proved in [YuB15]. It turns out that one may
prove these results by using Proposition 3.2, with an appropriate choice of C. The
proof uses the arguments of [YuB15, Appendix E], and will be given in section 4.1.

A class of DP problems with more complicated structure is the general conver-
gence model discussed in the thesis [Van81] and the survey paper [Fei02]. This is the
case of Example 2.1 where the cost per stage g can take both positive and negative
values, under some restrictions that guarantee that Jπ is defined by (2.1) as a limit.
The paper [Yu15] describes the complex issues of convergence of VI for these models,
and in an infinite space setting that addresses measurability issues. We note that
there are examples of general convergence models where X and U are finite sets, but
VI does not converge to J∗ starting from J̄ (see [Van81, Example 3.2], [Fei02, Exam-
ple 6.10], and [Yu15, Example 4.1]). The analysis of [Yu15] may also be used to bring
to bear Proposition 3.1 on the problem, but this analysis is beyond our scope in this
paper.

The case where J∗
C ≤ J̄ . It is well known that the results for nonnegative

cost and nonpositive cost infinite horizon stochastic optimal control problems are
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markedly different. In particular, roughly speaking, PI behaves better when the cost
is nonnegative, while VI behaves better if the cost is nonpositive. These differences
extend to the so-called monotone increasing and monotone decreasing abstract DP
models, where a principal assumption is that TμJ̄ ≥ J̄ and TμJ̄ ≤ J̄ for all μ ∈ M,
respectively (see [Ber13, Chap. 4]). In the context of regularity, with C being S-
regular, it turns out that there are analogous significant differences between the cases
J∗

C ≥ J̄ and J∗
C ≤ J̄ . The following proposition establishes some favorable aspects of

the condition J∗
C ≤ J̄ in the context of VI. These can be attributed to the fact that

J̄ can always be added to S without affecting the S-regularity of C, so J̄ can serve
as the element J̃ of S with J∗

C ≤ J̃ in Propositions 3.1 and 3.2 (see the proof of the
following proposition).

Proposition 3.3. Given a set S ⊂ E(X), let C be an S-regular set and assume
that J∗

C ≤ J̄ . Then
(a) for all J ′ ∈ E(X) with J ′ ≤ TJ ′, we have

J ′ ≤ lim inf
k→∞

T kJ̄ ≤ lim sup
k→∞

T kJ̄ ≤ J∗
C ;

(b) if J∗
C is a fixed point of T , then J∗ = J∗

C and we have T kJ̄ → J∗ as well as
T kJ → J∗ for every J ∈ E(X) such that J∗ ≤ J ≤ J̃ for some J̃ ∈ S.

Proof. (a) If S does not contain J̄ , we can replace S with S̄ = S ∪{J̄}, and C will
still be S̄-regular. By applying Proposition 3.1(b) with S replaced by S̄ and J̃ = J̄ ,
the result follows.

(b) Assume without loss of generality that J̄ ∈ S [cf. the proof of part (a)]. By
using Proposition 3.2 with J̃ = J̄ , we have J∗

C = limk→∞ T kJ̄ . This relation yields
for any policy π = {μ0, μ1, . . .} ∈ Π,

J∗
C = lim

k→∞
T kJ̄ ≤ lim sup

k→∞
Tμ0 · · ·Tμk−1 J̄ = Jπ,

so by taking the infimum over π ∈ Π, we obtain J∗
C ≤ J∗. Since generically we have

J∗
C ≥ J∗, it follows that J∗

C = J∗. Finally, from Proposition 3.2, we obtain T kJ → J∗

for all J ∈ E(X) such that J∗ ≤ J ≤ J̃ for some J̃ ∈ S.

As a special case of the preceding proposition, we have that if J∗ ≤ J̄ and J∗

is a fixed point of T , then J∗ = limk→∞ T kJ̄ , and for every other fixed point J ′ of
T we have J ′ ≤ J∗ (apply the proposition with C = Π × X and S = {J̄}, in which
case J∗

C = J∗ ≤ J̄). This special case is relevant, among others, to the monotone
decreasing models (see [Ber13, section 4.3]), where TμJ̄ ≤ J̄ for all μ ∈ M, in which
case it is known that J∗ is a fixed point of T under mild conditions. We then obtain a
classical result on the convergence of VI for nonpositive cost models. The proposition
also applies to a classical type of search problem with both positive and negative costs
per stage. This is Example 2.1, where at each x ∈ X we have E{g(x, u, w)} ≥ 0 for
all u except one that leads to a termination state with probability 1 and nonpositive
cost. Note that without the assumption J∗

C ≤ J̄ in the preceding proposition, it is
possible that T kJ̄ does not converge to J∗, even if J∗

C = J∗ = TJ∗, as is well known
in the theory of nonnegative cost infinite horizon stochastic optimal control.

Generally, it is important to choose properly the set C in order to obtain mean-
ingful results. Note, however, that in a given problem the interesting choices of C are
usually limited, and that the propositions of this section can guide a favorable choice.
One useful approach is to try the set

C =
{
(π, x) | Jπ(x) < ∞

}
,
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1704 DIMITRI P. BERTSEKAS

so that J∗
C = J∗. By the definition of regularity, if S is any subset of the set

SC =
{

J ∈ E(X)
∣∣∣ Jπ(x) = lim sup

k→∞
(Tμ0 · · · Tμk

J)(x) ∀ (π, x) ∈ C
}

,

then C is S-regular. One may then try to derive a suitable subset of SC that admits
an interesting characterization. This is the approach followed in the applications of
the next section.

4. Applications in stochastic optimal control. In this section, we will con-
sider the stochastic optimal control problem of Example 2.1, where

(4.1) H(x, u, J) = E
{
g(x, u, w) + αJ

(
f(x, u, w)

)}
,

and J̄(x) ≡ 0. Here α ∈ (0, 1] is the discount factor and we assume that the expected
cost per stage is nonnegative:

(4.2) 0 ≤ E
{
g(x, u, w)

}
< ∞ ∀ x ∈ X, u ∈ U(x).

This is a classical problem, also known as the negative DP model [Str66].
We will use some known results for this problem, which we collect in the following

proposition (for proofs, see, e.g., [BeS78, Propositions 5.2, 5.4, and 5.10], or [Ber13,
Propositions 4.3.3, 4.3.9, and 4.3.14]).

Proposition 4.1. Consider the stochastic optimal control problem, where H is
given by (4.1), g satisfies the nonnegativity condition (4.2), and α ∈ (0, 1]. Then

(a) J∗ = TJ∗ and if J ∈ E+(X) satisfies J ≥ TJ , then J ≥ J∗;
(b) for all μ ∈ M we have Jμ = TμJμ;
(c) μ∗ ∈ M is optimal if and only if Tμ∗J∗ = TJ∗;
(d) if U is a metric space and the sets

(4.3) Uk(x, λ) =
{
u ∈ U(x) | H(x, u, T kJ̄) ≤ λ

}
are compact for all x ∈ X, λ ∈ �, and k, then there exists at least one optimal
stationary policy, and we have T kJ → J∗ for all J ∈ E+(X) with J ≤ J∗.

Note that there may exist fixed points J ′ of T with J ′ ≥ J∗, while VI or PI
may not converge to J∗ starting from above J∗. However, convergence of VI to J∗

from above, if it occurs, is often much faster than convergence from below, so starting
points J ≥ J∗ may be desirable. One well known such case is deterministic finite-state
shortest path problems where major algorithms, such as the Bellman–Ford method
or other label correcting methods, have polynomial complexity, when started from
J above J∗, but only pseudopolynomial complexity when started from other initial
conditions.

We will now establish conditions for the uniqueness of J∗ as a fixed point of T ,
and the convergence of VI and PI. We will consider separately the cases α = 1 and
α < 1. Our analysis will proceed as follows:

(a) Define a set C such that J∗
C = J∗.

(b) Define a set S ⊂ E+(X) such that J∗ ∈ S and C is S-regular.
(c) Use Proposition 3.2 in conjunction with the fixed point properties of J∗ [cf.

Proposition 4.1(a)] to show that J∗ is the unique fixed point of T within S,
and that the VI algorithm converges to J∗ starting from J within the set
{J ∈ S | J ≥ J∗}.

(d) Use the compactness condition of Proposition 4.1(d), to enlarge the set of
functions starting from which VI converges to J∗.
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4.1. Nonnegative undiscounted cost stochastic DP. Assume that the prob-
lem is undiscounted, i.e., α = 1. Consider the set

C =
{
(π, x) | Jπ(x) < ∞

}
for which we have J∗

C = J∗, and assume that C is nonempty.
Let us denote by Eπ

x0
{·} the expected value with respect to the probability mea-

sure induced by π ∈ Π under initial state x0, and let us consider the set

(4.4) S =
{
J ∈ E+(X) | Eπ

x0

{
J(xk)

}
→ 0 ∀ (π, x0) ∈ C

}
.

We will show that J∗ ∈ S and that C is S-regular. Once this is done, it will follow
from Proposition 3.2 and the fixed point property of J∗ [cf. Proposition 4.1(a)] that
T kJ → J∗ for all J ∈ S that satisfy J ≥ J∗. If the sets Uk(x, λ) of (4.3) are compact,
the convergence of VI starting from below J∗ will also be guaranteed. We have the
following proposition. The proof uses the line of argument of [YuB15, Appendix E].

Proposition 4.2 (convergence of VI). Consider the stochastic optimal control
problem of this section, assuming α = 1 and the cost nonnegativity condition (4.2).
Then J∗ is the unique fixed point of T within S, and we have T kJ → J∗ for all
J ≥ J∗ with J ∈ S. If in addition U is a metric space, and the sets Uk(x, λ) of (4.3)
are compact for all x ∈ X, λ ∈ �, and k, we have T kJ → J∗ for all J ∈ S, and an
optimal stationary policy is guaranteed to exist.

Proof. We have for all J ∈ E(X), (π, x0) ∈ C, and k,

(4.5) (Tμ0 · · ·Tμk−1J)(x0) = Eπ
x0

{
J(xk)

}
+ Eπ

x0

{
k−1∑
t=0

g
(
xt, μt(xt), wt

)}
,

where μt, t = 0, 1, . . . , denote generically the components of π. By the cost nonneg-
ativity condition (4.2), the rightmost term above converges to Jπ(x0) as k → ∞, so
by taking the upper limit, we obtain

lim sup
k→∞

(Tμ0 · · ·Tμk−1J)(x0) = lim sup
k→∞

Eπ
x0

{
J(xk)

}
+ Jπ(x0).

Thus in view of the definition (4.4) of S, we see that for all (π, x0) ∈ C and J ∈ S, we
have

lim sup
k→∞

(Tμ0 · · · Tμk−1J)(x0) = Jπ(x0),

so C is S-regular.
We next show that J∗ ∈ S. We have for all (π, x0) ∈ C

Jπ(x0) = Eπ
x0

{
g
(
x0, μ0(x0), w0

)}
+ Eπ

x0

{
Jπ(x1)

}
,

and more generally,

(4.6) Eπ
x0

{
Jπ(xt)

}
= Eπ

x0

{
g
(
xt, μt(xt), wt

)}
+ Eπ

x0

{
Jπ(xt+1)

}
∀ t = 0, 1, . . . ,

where {xt} is the sequence generated starting from x0 and using π. Using the defining
property Jπ(x0) < ∞ of C, it follows that all the terms in the above relations are finite,
and in particular

Eπ
x0

{
Jπ(xt)

}
< ∞ ∀ (π, x0) ∈ C, t = 0, 1, . . . .
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By adding (4.6) for t = 0, . . . , k − 1, and canceling the finite terms Eπ
x0

{Jπ(xt)} for
t = 1, . . . , k − 1,

Jπ(x0) = Eπ
x0

{
Jπ(xk)

}
+

k−1∑
t=0

Eπ
x0

{
g
(
xt, μt(xt), wt

)}
∀ (π, x0) ∈ C, k = 1, 2, . . . .

The rightmost term above tends to Jπ(x0) as k → ∞, so we obtain Eπ
x0

{Jπ(xk)} → 0
for all (π, x0) ∈ C. Since 0 ≤ J∗ ≤ Jπ for all π, it follows that

Eπ
x0

{
J∗(xk)

}
→ 0 ∀ x0 with J∗(x0) < ∞.

Thus J∗ ∈ S.
From Proposition 3.2 it follows that J∗ is the unique fixed point of T within

{J ∈ S | J ≥ J∗}. On the other hand, every fixed point J ∈ E+(X) of T satisfies
J ≥ J∗ by Proposition 4.1(a), so J∗ is the unique fixed point of T within S. Also from
Proposition 3.2 we have that the VI sequence {T kJ} converges to J∗ starting from
any J ∈ S with J ≥ J∗. Finally, for any J ∈ S, let us select J̃ ∈ S with J̃ ≥ J∗ and
J̃ ≥ J , and note that by the monotonicity of T , we have T kJ̄ ≤ T kJ ≤ T kJ̃ . If we
also assume compactness of the sets Uk(x, λ) of (4.3), then by Proposition 4.1(d), we
have T kJ̄ → J∗, which together with the convergence T kJ̃ → J∗ just proved, implies
that T kJ → J∗.

A consequence of the preceding proposition is an interesting condition for VI
convergence from above, which was first proved in [YuB15]. In particular, since J∗ ∈
S, any J satisfying J∗ ≤ J ≤ cJ∗ for some c > 0 belongs to S, so we have the
following.

Proposition 4.3 (see [YuB15]). We have T kJ → J∗ for all J ∈ E(X) satisfying
J∗ ≤ J ≤ cJ∗ for some c > 0.

The preceding proposition highlights a requirement for the reliable implemen-
tation of VI: it is important to know the sets Xs = {x ∈ X | J∗(x) = 0} and
X∞ = {x ∈ X | J∗(x) = ∞} in order to obtain a suitable initial condition J ∈ E(X)
satisfying J∗ ≤ J ≤ cJ∗ for some c > 0. For finite state and control problems, the set
Xs can be computed in polynomial time as shown in the paper [BeY16], which also
provides a method for dealing with cases where X∞ is nonempty, based on adding a
high cost artificial control at each state.

Regarding PI, we note that the analysis of section 5.2 will guarantee its conver-
gence for the stochastic problem of this section if somehow it can be shown that J∗

is the unique fixed point of T within a subset of {J | J ≥ J∗} that contains the limit
J∞ of PI. This result was given as [YuB15, Corollary 5.2]. Alternatively, there is
a mixed VI and PI algorithm proposed in [YuB15], which can be applied under the
condition of Proposition 4.3, and applies to a more general problem where w can take
an uncountable number of values and measurability issues are an important concern.

Finally, we note that in this section we do not consider any special structure,
other than the expected cost nonnegativity condition (4.2). In particular, we do not
discuss the implications of the possible existence of a termination state as in finite-
state or countable-state SSP problems. The approach of this paper is relevant to the
convergence analysis of VI and PI for such problems, and for a corresponding analysis
for finite-state problems, we refer to the paper [BeY16].
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4.2. Discounted nonnegative cost stochastic DP. We will now consider the
case where α < 1. The cost function of a policy π = {μ0, μ1, . . .} has the form

Jπ(x0) = lim
k→∞

Eπ
x0

{
k−1∑
t=0

αtg
(
xt, μt(xt), wt

)}
,

where as earlier Eπ
x0

{·} denotes expected value with respect to the probability measure
induced by π ∈ Π under initial state x0. We will assume that X is a normed space.

We introduce the set

Xf =
{
x ∈ X | J∗(x) < ∞

}
,

which we assume to be nonempty. Given a state x ∈ Xf , we say that a policy π is
stable from x if there exists a bounded subset of Xf [that depends on (π, x)] such
that the (random) sequence {xk} generated starting from x and using π lies with
probability 1 within that subset. We consider the set

C =
{
(π, x) | x ∈ Xf , π is stable from x

}
,

and we assume that C is nonempty.
Let us say that a function J ∈ E+(X) is bounded on bounded subsets of Xf if for

every bounded subset X̃ ⊂ Xf there is a scalar b such that J(x) ≤ b for all x ∈ X̃.
Let us also introduce the set

S =
{
J ∈ E+(X) | J is bounded on bounded subsets of Xf

}
.

We will assume that J∗ ∈ S. In practical settings we may be able to guarantee this
by finding a stationary policy μ such that the function Jμ is bounded on bounded
subsets of Xf . We also assume the following.

Assumption 4.1. In the discounted stochastic optimal control problem of this
section, C is nonempty, J∗ ∈ S, and for every x ∈ Xf and ε > 0, there exists a policy
π that is stable from x and satisfies Jπ(x) ≤ J∗(x) + ε.

Note that Assumption 4.1 is natural in control contexts where the objective is to
keep the state from becoming unbounded, under the influence of random disturbances
represented by wk. Clearly under this assumption, J∗

C = J∗. We have the following
proposition.

Proposition 4.4. Let Assumption 4.1 hold. Then J∗ is the unique fixed point of
T within S, and we have T kJ → J∗ for all J ∈ S with J∗ ≤ J . If in addition U is a
metric space, and the sets Uk(x, λ) of (4.3) are compact for all x ∈ X, λ ∈ �, and k,
we have T kJ → J∗ for all J ∈ S, and an optimal stationary policy is guaranteed to
exist.

Proof. Using the notation of section 4.1, we have for all J ∈ E(X), (π, x0) ∈ C,
and k,

(Tμ0 · · · Tμk−1J)(x0) = αkEπ
x0

{
J(xk)

}
+ Eπ

x0

{
k−1∑
t=0

αtg
(
xt, μt(xt), wt

)}

[cf. (4.5)]. The fact (π, x0) ∈ C implies that there is a bounded subset of Xf such
that {xk} belongs to that subset with probability 1, so if J ∈ S it follows that
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1708 DIMITRI P. BERTSEKAS

αkEπ
x0

{J(xk)} → 0. Thus for all (π, x0) ∈ C and J ∈ S, we have

lim
k→∞

(Tμ0 · · ·Tμk−1J)(x0) = lim
k→∞

Eπ
x0

{
k−1∑
t=0

αtg
(
xt, μt(xt), wt

)}
= Jπ(x0),

so C is S-regular. Since J∗
C is equal to J∗ which is a fixed point of T [by Propo-

sition 3.1(a)], it follows that T kJ → J∗ for all J ∈ S. Under the compactness
assumption on the sets Uk(x, λ), the result follows by using Proposition 4.1(d).

5. S-regular stationary policies. We will now specialize the notion of S-
regularity to stationary policies with the following definition from [Ber13].

Definition 5.1. For a nonempty set of functions S ⊂ E(X), we say that a sta-
tionary policy μ is S-regular if Jμ ∈ S, Jμ = TμJμ, and T k

μJ → Jμ for all J ∈ S. A
policy that is not S-regular is called S-irregular.

Comparing this definition with Definition 3.1, we see that μ is S-regular if the
set C = {(μ, x) | x ∈ X} is S-regular, and in addition Jμ ∈ S and Jμ = TμJμ. Thus a
policy μ is S-regular if the VI algorithm corresponding to μ, Jk+1 = TμJk, represents a
dynamic system that has Jμ as its unique equilibrium within S, and is asymptotically
stable in the sense that the iteration converges to Jμ, starting from any J ∈ S.

5.1. Restricted optimization over S-regular policies. Given a nonempty
set S ⊂ E(X), let MS be the set of policies that are S-regular, and consider opti-
mization over the S-regular policies only. The corresponding optimal cost function is
denoted J∗

S :

(5.1) J∗
S(x) = inf

μ∈MS

Jμ(x) ∀ x ∈ X.

We say that μ∗ is MS-optimal if

μ∗ ∈ MS and Jμ∗ = J∗
S .

A technical point here is that while S is assumed nonempty, it is possible that MS

is empty. In this case our results will not be useful, but J∗
S is still defined by (5.1) as

J∗
S(x) ≡ ∞. This is convenient in various proof arguments.

An important question is whether J∗
S is a fixed point of T and can be obtained

by the VI algorithm. The following proposition, essentially a specialization of Propo-
sition 3.2, shows that if J∗

S is a fixed point of T , then it can be obtained by VI, when
started within the set

(5.2) WS =
{

J ∈ E(X) | J∗
S ≤ J ≤ J̃ for some J̃ ∈ S

}
,

which we refer to as the well-behaved region. The proposition also provides a necessary
and sufficient condition for an S-regular policy μ∗ to be MS-optimal.

Proposition 5.1. Given a set S ⊂ E(X), assume that J∗
S is a fixed point of T .

Then
(a) (uniqueness of fixed point) J∗

S is the unique fixed point of T within WS;
(b) (VI convergence) we have T kJ → J∗

S for every J ∈ WS;
(c) (optimality condition) if μ∗ is S-regular, J∗

S ∈ S, and Tμ∗J∗
S = TJ∗

S, then μ∗

is MS-optimal. Conversely, if μ∗ is MS-optimal, then Tμ∗J∗
S = TJ∗

S.
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a

b
1 t

Destination

Cost

Cost

Fig. 3. A shortest path problem with a single node 1 and a termination node t.

Proof. (a), (b) Follows from Proposition 3.2 with C = {(μ, x) | μ ∈ MS , x ∈ X},
in which case J∗

C = J∗
S .

(c) Since Tμ∗J∗
S = TJ∗

S and TJ∗
S = J∗

S , we have Tμ∗J∗
S = J∗

S , and since J∗
S ∈ S

and μ∗ is S-regular, we have J∗
S = Jμ∗ . Thus μ∗ is MS-optimal. Conversely, if μ∗ is

MS-optimal, we have Jμ∗ = J∗
S , so the fixed point property of J∗

S and the S-regularity
of μ imply that TJ∗

S = J∗
S = Jμ∗ = Tμ∗Jμ∗ = Tμ∗J∗

S .

The following example illustrates the preceding proposition and demonstrates
some of the unusual behaviors that can arise in the context of our model.

Example 5.1. Consider the deterministic shortest path example shown in Fig-
ure 3. Here there is a single state 1 in addition to the termination state t. At state
1 there are two choices: a self-transition, which costs a, and a transition to t, which
costs b. The mapping H , abbreviating J(1) with just the scalar J , is

H(1, u, J) =

{
a + J if u : self transition,

b if u : transition to t,
J ∈ �,

and the initial function J̄ is taken to be 0.
There are two policies: the policy μ that transitions from 1 to t, which is proper,

and the policy μ′ that self-transitions at state 1, which is improper. We have

TμJ = b, Tμ′J = a + J, TJ = min{b, a + J} ∀ J ∈ �.

For the proper policy μ, the mapping Tμ : � �→ � is a contraction. For the improper
policy μ′, the mapping Tμ′ : � �→ � is not a contraction, and it has a fixed point
within � only if a = 0, in which case every J ∈ � is a fixed point. Let S be equal to
the real line � [the set R(X)]. Then a policy is S-regular if and only if it is proper
(this is generally true for SSP problems, for S = �n). Thus μ is S–regular, while μ′

is not.
Let us consider the optimal cost J∗, the fixed points of T within �, and the

behavior of VI and PI for different combinations of values of a and b.
(a) If a > 0, the optimal cost, J∗ = b, is the unique fixed point of T , and the

proper policy is optimal.
(b) If a = 0, the set of fixed points of T (within �) is the interval (−∞, b]. Here

the improper policy is optimal if b ≥ 0, and the proper policy is optimal if
b ≤ 0.

(c) If a = 0 and b > 0, the proper policy is strictly suboptimal, yet its cost at
state 1 (which is b) is a fixed point of T . The optimal cost, J∗ = 0, lies in the
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t 1

Destination

u′, Cost 0
Stationary policy costs

Jμ(1) = b, Jμ′(1) = 0

Optimal cost J∗(1) = min{b, 0} t

Well-Behaved Region

Well-Behaved Region

J* = Jμ′ = 0

Jμ′ = 0

Set of Fixed Points of T

Set of Fixed Points of T

J*
S = Jμ = b > 0

J* = J*
S = Jμ = b < 0

u, Cost b

Fig. 4. The well-behaved region of (5.2) for the deterministic shortest path Example 5.1 when
where there is a zero length cycle (a = 0). For S = �, the policy μ is S-regular, while the policy μ′
is not. The figure illustrates the two cases, where b > 0 and b < 0.

interior of the set of fixed points of T , which is (−∞, b]. Thus the VI method
that generates {T kJ} starting with J �= J∗ cannot find J∗. In particular if J
is a fixed point of T , VI stops at J , while if J is not a fixed point of T (i.e.,
J > b), VI terminates in two iterations at b �= J∗. Moreover, the standard PI
method is unreliable in the sense that starting with the suboptimal proper
policy μ, it may stop with that policy because TμJμ = b = min{b, Jμ} = TJμ

(the improper/optimal policy μ′ also satisfies Tμ′Jμ = TJμ, so a rule for
breaking the tie in favor of μ is needed but such a rule may not be obvious
in general).

(d) If a = 0 and b < 0, the improper policy is strictly suboptimal, and we have
J∗ = b. Here it can be seen that the VI sequence {T kJ} converges to J∗ for
all J ≥ b, but stops at J for all J < b, since the set of fixed points of T is
(−∞, b]. Moreover, starting with either the proper or the improper policy, PI
may oscillate, since TμJμ′ = TJμ′ and Tμ′Jμ = TJμ, as can be easily verified
[the optimal policy μ also satisfies TμJμ = TJμ but it is not clear how to
break the tie; compare also with case (c) above].

(e) If a < 0, the improper policy is optimal and we have J∗ = −∞. There are no
fixed points of T within �, but J∗ is the unique fixed point of T within the
set [−∞, ∞]. Then VI will converge to J∗ starting from any J ∈ [−∞, ∞],
while PI will also converge to the optimal policy starting from either policy.

Let us focus on the case where there is a zero length cycle (a = 0). The cost functions
Jμ, Jμ′ , and J∗ are fixed points of the corresponding mappings, but the sets of fixed
points of Tμ′ and T within S are � and (−∞, b], respectively. Figure 4 shows the
well-behaved regions WS of (5.2) for the two cases b > 0 and b < 0, and is consistent
with the results of Proposition 5.1. In particular, the VI algorithm fails when started
outside the well-behaved region, while starting from within the region, it is attracted
to J∗

S rather than to J∗.

Note that Proposition 5.1(b) asserts convergence of the VI algorithm to J∗
S only

for initial conditions J ≤ J̃ for some J̃ ∈ S. For an example where there is a single
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policy μ, which is S-regular, but {T k
μJ} does not converge to Jμ starting from some

J ≥ Jμ that lies outside S, consider a mapping Tμ : � �→ � that has two fixed points:
Jμ and another fixed point J ′ > Jμ. Let J̃ = (Jμ + J ′)/2 and S = (−∞, J̃ ], and
assume that Tμ is a contraction mapping within S (a one-dimensional example of this
type, where S = �, can be easily constructed graphically). Then, J̃ ∈ S, and starting
from any J ∈ S, we have T kJ → Jμ, so that μ is S-regular. However, since J ′ is a
fixed point of T , the sequence {T kJ ′} stays at J ′ and does not converge to Jμ. The
difficulty here is that WS = [Jμ, J̃ ] and J ′ /∈ WS .

In many contexts where Proposition 5.1 applies, there exists an MS-optimal
policy μ∗ such that Tμ∗ is a contraction with respect to a weighted sup-norm. This
is true for example in several types of shortest path problems. In such cases, VI
converges to J∗

S linearly, as shown in the following proposition first given in [BeY16]
for SSP problems.

Proposition 5.2 (convergence rate of VI). Let S be equal to B(X), the space
of all functions over X that are bounded with respect to a weighted sup-norm ‖ · ‖v

corresponding to a positive function v : X �→ �. Assume that J∗
S is a fixed point of

T , and that there exists an MS-optimal policy μ∗ such that Tμ∗ is a contraction with
respect to ‖ · ‖v, with corresponding modulus of contraction β. Then

(5.3)
∥∥TJ − J∗

S‖v ≤ β‖J − J∗
S‖v ∀ J ≥ J∗

S ,

and we have

(5.4) ‖J − J∗
S‖v ≤ 1

1 − β
sup
x∈X

J(x) − (TJ)(x)
v(x)

∀ J ≥ J∗
S .

Proof. By using the MS-optimality of μ∗ and Proposition 5.1(c), we have J∗
S =

Tμ∗J∗
S = TJ∗

S, so that

(TJ)(x) − J∗
S(x)

v(x)
≤ (Tμ∗J)(x) − (Tμ∗J∗

S)(x)
v(x)

≤ β max
x∈X

J(x) − J∗
S(x)

v(x)

for all x ∈ X and J ≥ J∗
S . By taking the supremum of the left-hand side over x ∈ X ,

and by using the fact that the inequality J ≥ J∗
S implies that TJ ≥ TJ∗

S = J∗
S , we

obtain (5.3).
By using again the relation Tμ∗J∗

S = TJ∗
S, we have for all x ∈ X and all J ≥ J∗

S ,

J(x) − J∗
S(x)

v(x)
=

J(x) − (TJ)(x)
v(x)

+
(TJ)(x) − J∗

S(x)
v(x)

≤ J(x) − (TJ)(x)
v(x)

+
(Tμ∗J)(x) − (Tμ∗J∗

S)(x)
v(x)

≤ J(x) − (TJ)(x)
v(x)

+ β‖J − J∗
S‖v.

By taking the supremum of both sides over x, we obtain (5.4).

A critical assumption of Propositions 5.1 and 5.2 is that J∗
S is a fixed point of T .

For a specific application, this must be proved with a separate analysis after a suitable
set S is chosen. There are several approaches that guide the choice of S and facilitate
the analysis. One approach applies to problems where J∗ is a fixed point of T ; this
is true generically in wide classes of problems, including deterministic and minimax

D
ow

nl
oa

de
d 

05
/1

1/
18

 to
 1

8.
51

.0
.2

40
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1712 DIMITRI P. BERTSEKAS

models (we give a proof for the deterministic case later, in section 6). Then for every
set S such that J∗

S = J∗, Proposition 5.1 applies and shows that J∗ can be obtained
by VI starting from any J ∈ WS . Other important models where J∗ is guaranteed to
be a fixed point of T are the monotone increasing and monotone decreasing models
of [Ber13, section 4.3], a fact known since [Ber77]. In what follows we will use the PI
algorithm as the basis for a new and different line of analysis to show that J∗

S is a
fixed point of T .

5.2. Policy iteration-based analysis of Bellman’s equation. The approach
of this section is applicable under assumptions that guarantee that there is a sequence
{μk} of S-regular policies that can be generated by the PI algorithm, which generates
a sequence of policies {μk} according to

(5.5) Tμk+1Jμk = TJμk , k = 0, 1, . . . ,

starting from an initial policy μ0. To be able to carry out the policy improvement
step, which computes μk+1(x) as a minimum over u ∈ U(x) of H(x, u, Jμk) for each
x ∈ X [cf. (5.5)], there should be enough assumptions to guarantee that this minimum
is attained for every x. One such assumption is that U(x) is a finite set for each x ∈ X .
A more general assumption, involving a form of compactness of the constraint set, is
given in the next section (see Lemma 6.1).

The significance of all μk being S-regular lies in that the corresponding cost func-
tion sequence {Jμk} lies within the well-behaved region of equation (5.2), and is mono-
tonically nonincreasing. We have the following proposition.

Proposition 5.3 (policy improvement under S-regularity). Given a set S ⊂
E(X), assume that {μk} is a sequence generated by the PI algorithm (5.5) that consists
of S-regular policies. Then Jμk ≥ Jμk+1 for all k.

Proof. Using the S-regularity of μk, we have

(5.6) Jμk = TμkJμk ≥ TJμk = Tμk+1Jμk .

By repeatedly applying Tμk+1 to both sides, we obtain

Jμk ≥ lim
m→∞

T m
μk+1Jμk = Jμk+1 ,

where the equation on the right holds since μk+1 is S-regular and Jμk ∈ S (since μk

is S-regular).

The preceding proposition shows that for a sequence of S-regular policies {μk}
that is generated by PI, the cost function sequence {Jμk} converges pointwise to a
limit J∞. Under mild conditions, we will show that J∞ is a fixed point of T and is
equal to J∗

S , thus bringing to bear Proposition 5.1. Let us first formalize the property
that the PI algorithm can generate a sequence of S-regular policies.

Definition 5.2 (weak PI property). A set S ⊂ E(X) has the weak PI property
if there exists a sequence {μk} that satisfies (5.5) and consists of S-regular policies.

The following proposition shows that J∗
S is a fixed point of T , assuming the weak

PI property and a mild continuity-type condition.

Proposition 5.4 (weak PI property theorem). Given a set S ⊂ E(X), assume
that

(1) S has the weak PI property;
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(2) for each sequence {Jm} ⊂ S with Jm ↓ J for some J ∈ E(X), we have

(5.7) H (x, u, J) = lim
m→∞

H(x, u, Jm) ∀ x ∈ X, u ∈ U(x).

Then
(a) J∗

S is a fixed point of T and the conclusions of Proposition 5.1 hold;
(b) (PI convergence) a sequence of S-regular policies {μk} that can be generated

by PI satisfies Jμk ↓ J∗
S. If in addition the set of S-regular policies is finite,

there exists k̄ ≥ 0 such that μk̄ is MS-optimal.

Proof. (a) Let {μk} be a sequence of S-regular policies generated by the PI al-
gorithm (there exists such a sequence by the weak PI property). Then by Propo-
sition 5.3, the sequence {Jμk} is monotonically nonincreasing and must converge to
some J∞ ≥ J∗

S . We will show that J∞ is a fixed point of T and then invoke Proposi-
tion 3.2.

Indeed, we have
Jμk ≥ TJμk ≥ TJ∞

[cf. (5.6)], so by letting k → ∞, we obtain J∞ ≥ TJ∞. To prove the reverse inequality,
we first note that from the definition of the PI iteration and the nonincreasing property
Jμk ≥ Jμk+1 , we have

TJμk = Tμk+1Jμk ≥ Tμk+1Jμk+1 = Jμk+1 .

By using (5.7) together with the preceding relation, we obtain for all x ∈ X and
u ∈ U(x),

H(x, u, J∞) = lim
k→∞

H(x, u, Jμk) ≥ lim
k→∞

(TJμk)(x) ≥ lim
k→∞

Jμk+1 = J∞(x).

By taking the infimum of the left-hand side over u ∈ U(x), it follows that TJ∞ ≥ J∞.
Thus J∞ = TJ∞. Finally, by applying Proposition 3.2 with

C = {(μ, x) | μ ∈ MS , x ∈ X},

we have J∞ = J∗
C = J∗

S .
(b) The limit of {Jμk} was shown to be equal to J∗

S in the preceding proof. More-
over, the finiteness of MS and the policy improvement property of Proposition 5.3
imply that some μk̄ is MS-optimal.

Note that the preceding proposition shows that under the weak PI property, PI
converges to J∗

S . However, this does not imply convergence to J∗. We next introduce
a stronger type of PI property, which we will use to obtain stronger results.

Definition 5.3 (strong PI property). A set S ⊂ E(X) has the strong PI prop-
erty if

(a) there exists at least one S-regular policy;
(b) for every S-regular policy μ, any policy μ̄ such that Tμ̄Jμ = TJμ is S-regular,

and there exists at least one such μ̄.

The strong PI property clearly implies the weak PI property. On the other hand,
the strong PI property may be harder to verify in a given setting. The following
proposition provides conditions guaranteeing the strong PI property. The key impli-
cation of these conditions is that they preclude optimality of an S-irregular policy
[see condition (4) of the proposition]. Condition (3) of the proposition is implied by
finiteness of the constraint set or by a more general compactness assumption that will
be given in the next section.
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Proposition 5.5 (verifying the strong PI property). Given a set S ⊂ E(X),
assume that

(1) J(x) < ∞ for all J ∈ S and x ∈ X;
(2) there exists at least one S-regular policy;
(3) for every J ∈ S there exists a policy μ such that TμJ = TJ ;
(4) for every J ∈ S and S-irregular policy μ, there exists a state x ∈ X such that

(5.8) lim sup
k→∞

(T k
μJ)(x) = ∞.

Then
(a) if a policy μ satisfies TμJ ≤ J for some function J ∈ S, then μ is S-regular;
(b) S has the strong PI property.

Proof. (a) By the monotonicity of Tμ, we have lim supk→∞ T k
μJ ≤ J , and since

by condition (1), J(x) < ∞ for all x, it follows from (5.8) that μ is S-regular.
(b) In view of condition (3), it will suffice to show that for every S-regular μ, any

μ̄ such that Tμ̄Jμ = TJμ is also S-regular. Indeed we have

Tμ̄Jμ = TJμ ≤ TμJμ = Jμ,

so μ̄ is S-regular by part (a).

By using the strong PI property and assuming also that J∗
S ∈ S, we will now

show that J∗
S is the unique fixed point of T within S. This result will be the starting

point for the analysis of section 6.

Proposition 5.6 (strong PI property theorem). Let S satisfy the conditions of
Proposition 5.5.

(a) (uniqueness of fixed point) If T has a fixed point within S, then this fixed
point is equal to J∗

S.
(b) (fixed point property and optimality condition) If J∗

S ∈ S, then J∗
S is the

unique fixed point of T within S. Moreover, every policy μ that satisfies
TμJ∗

S = TJ∗
S is MS-optimal and there exists at least one such policy.

(c) (PI convergence) If for each sequence {Jm} ⊂ S with Jm ↓ J for some J ∈
E(X), we have

(5.9) H (x, u, J) = lim
m→∞

H(x, u, Jm) ∀ x ∈ X, u ∈ U(x),

then J∗
S is a fixed point of T , and a sequence {μk} generated by the PI al-

gorithm starting from an S-regular policy μ0 satisfies Jμk ↓ J∗
S. Moreover,

if the set of S-regular policies is finite, there exists k̄ ≥ 0 such that μk̄ is
MS-optimal.

Proof. (a) Let J ′ ∈ S be a fixed point of T . By applying Proposition 3.2 with
C = {(μ, x) | μ ∈ MS , x ∈ X}, we have J ′ ≤ J∗

C = J∗
S . For the reverse inequality,

let μ′ be such that J ′ = TJ ′ = Tμ′J ′ [cf. condition (3) of Proposition 5.5]. Then by
Proposition 5.5(a), it follows that μ′ is S-regular, and since J ′ ∈ S, by the definition
of S-regularity, we have J ′ = Jμ′ ≥ J∗

S , showing that J ′ = J∗
S .

(b) For every μ ∈ MS we have Jμ ≥ J∗
S , so that Jμ = TμJμ ≥ TμJ∗

S ≥ TJ∗
S.

Taking the infimum over all μ ∈ MS , we obtain J∗
S ≥ TJ∗

S. Let μ be a policy such that
TJ∗

S = TμJ∗
S [there exists one by condition (3) of Proposition 5.5, since we assume

that J∗
S ∈ S]. The preceding two relations yield J∗

S ≥ TμJ∗
S , so by Proposition 5.5(a),

μ is S-regular. Therefore, we have

J∗
S ≥ TJ∗

S = TμJ∗
S ≥ lim

k→∞
T k

μJ∗
S = Jμ ≥ J∗

S ,
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where the second equality holds by S-regularity of μ and J∗
S ∈ S by assumption.

Hence equality holds throughout in the above relation, proving that J∗
S is a fixed

point of T and that μ is MS-optimal.
(c) Since the strong PI property [which holds by Proposition 5.5(b)] implies the

weak PI property, the result follows from Proposition 5.4.

The preceding proposition does not address the question of whether J∗ is a fixed
point of T , and does not guarantee that VI converges to J∗

S or J∗ starting from every
J ∈ S. We will consider both of these issues in the next section. Note a simple
consequence of part (a): if J∗ is known to be a fixed point of T and to belong to S,
then J∗ = J∗

S .
Note that for PI to be valid, as per Proposition 5.6(c), an initial S-regular policy

must be available. Chapter 3 of [Ber13] describes a combined VI and PI algorithm,
which does not require an initial S-regular policy, and can tolerate the generation of
S-irregular policies. Let us also consider two additional algorithmic approaches for
computing J∗

S , not given in [Ber13], which can be justified based on the preceding
analysis.

A mathematical programming solution method. We will show that J∗
S is an upper

bound to all functions J ∈ S that satisfy J ≤ TJ , and we will exploit this fact to
obtain an algorithm to compute J∗

S . We have the following proposition.

Proposition 5.7. Given a set S ⊂ E(X) for all functions J ∈ S satisfying J ≤
TJ , we have J ≤ J∗

S.

Proof. If J ∈ S and J ≤ TJ , by repeatedly applying T to both sides and using
the monotonicity of T , we obtain J ≤ T kJ ≤ T k

μJ for all k and S-regular policies
μ. Taking the limit as k → ∞, we obtain J ≤ Jμ, so by taking the infimum over
μ ∈ MS , we obtain J ≤ J∗

S .

Assuming that J∗
S is a fixed point of T , we can use the preceding proposition

to compute J∗
S by maximizing an appropriate monotonically increasing function of J

subject to the constraints J ∈ S and J ≤ TJ .3 This approach is well known in finite-
state finite-control Markovian decision problems, where it is usually referred to as the
linear programming solution method , because in this case the resulting optimization
problem is a linear program (see, e.g., the books [Kal83, Put94, Ber12]).

For a more general finite-state case, suppose that X = {1, . . . , n} and S = �n.
Then Proposition 5.7 shows that J∗

S = (J∗
S(1), . . . , J∗

S(n)) is the unique solution of
the following optimization problem:

maximize
n∑

i=1

βiJ(i)

subject to J(i) ≤ H(i, u, J), i = 1, . . . , n, u ∈ U(i),

where β1, . . . , βn are any positive scalars. If H is linear in J and each U(i) is a finite
set, this is a linear program, which can be solved with standard methods.

An optimistic form of PI. Let us finally consider an optimistic variant of PI,
where policies are evaluated inexactly, with a finite number of VIs. In particular, this
algorithm starts with some J0 ∈ E(X) such that J0 ≥ TJ0, and generates a sequence

3For the mathematical programming approach to apply, it is sufficient that J∗
S ≤ TJ∗

S . However,
we generally have J∗

S ≥ TJ∗
S (this follows by writing for all μ ∈ MS , Jμ = TμJμ ≥ TJμ ≥ TJ∗

S , and
taking the infimum over all μ ∈ MS), so the condition J∗

S ≤ TJ∗
S is equivalent to J∗

S being a fixed
point of T .
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1716 DIMITRI P. BERTSEKAS

{Jk, μk} according to

(5.10) TμkJk = TJk, Jk+1 = T mk

μk Jk, k = 0, 1, . . . ,

where mk is a positive integer for each k.
The following proposition shows that optimistic PI converges under mild assump-

tions to a fixed point of T , independently of any S-regularity framework. However,
when such a framework is introduced, and the sequence generated by optimistic PI
generates a sequence of S-regular policies, then the algorithm converges to J∗

S , which
is in turn a fixed point of T , similar to the PI convergence result under the weak
PI property; cf. Proposition 5.4(b). Thus the proposition serves both an analytical
purpose (as a tool for establishing that J∗

S is a fixed point of T ), and a computational
purpose [establishing the validity of the optimistic PI algorithm (5.10) as a means for
computing J∗

S ].

Proposition 5.8 (convergence of optimistic PI). Let J0 ∈ E(X) be a function
such that J0 ≥ TJ0, and assume that

(1) for all μ ∈ M, we have Jμ = TμJμ, and for all J ∈ E(X) with J ≤ J0, there
exists μ̄ ∈ M such that Tμ̄J = TJ ;

(2) for each sequence {Jm} ⊂ E(X) with Jm ↓ J for some J ∈ E(X), we have

H (x, u, J) = lim
m→∞

H(x, u, Jm) ∀ x ∈ X, u ∈ U(x).

Then the optimistic PI algorithm (5.10) is well-defined and the following hold:
(a) The sequence {Jk} generated by the algorithm satisfies Jk ↓ J∞, where J∞ is

a fixed point of T .
(b) If for a set S ⊂ E(X), the sequence {μk} generated by the algorithm consists

of S-regular policies and we have Jk ∈ S for all k, then Jk ↓ J∗
S and J∗

S is a
fixed point of T .

Proof. (a) Condition (1) guarantees that the sequence {Jk, μk} is well-defined in
the following argument. We also have
(5.11)

J0 ≥ TJ0 = Tμ0J0 ≥ T m0
μ0 J0 = J1 ≥ T m0+1

μ0 J0 = Tμ0J1 ≥ TJ1 = Tμ1J1 ≥ · · · ≥ J2,

and continuing similarly, we obtain Jk ≥ TJk ≥ Jk+1 for all k = 0, 1, . . . . Thus
Jk ↓ J∞ for some J∞. The proof that J∞ is a fixed point of T is the same as in the
case of the PI algorithm (5.5) in Proposition 5.4.

(b) In the case where all the policies μk are S-regular and {Jk} ⊂ S, from (5.11),
we have Jk+1 ≥ Jμk for all k, so it follows that

J∞ = lim
k→∞

Jk ≥ lim inf
k→∞

Jμk ≥ J∗
S .

We will also show that the reverse inequality holds, so that J∞ = J∗
S . Indeed, for

every S-regular policy μ and all k ≥ 0, we have

J∞ = T kJ∞ ≤ T k
μJ∞ ≤ T k

μJ0

from which by taking the limit as k → ∞ and using the assumption J0 ∈ S, we obtain

J∞ ≤ lim
k→∞

T k
μJ0 = Jμ ∀ μ ∈ MS .

Taking the infimum over μ ∈ MS , it follows that J∞ ≤ J∗
S . Thus, J∞ = J∗

S , and by
using the properties of J∞ proved in part (a), the result follows.
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Note that the fixed point J∞ in Proposition 5.8(a) need not be equal to J∗
S or J∗.

As an illustration, consider the shortest path Example 5.1 with S = �, and a = 0,
b > 0. Then if 0 < J0 < b, it can be seen that Jk = J0 for all k, so J∗ = 0 < J∞ and
J∞ < J∗

S = b.

6. Infinite and finite cost cases for irregular policies. The results of the
preceding section do not assert that J∗ is a fixed point of T or that J∗ = J∗

S . In this
section we address this issue with some additional assumptions. A critical part of the
analysis is based on the strong PI property theorem of Proposition 5.6.

6.1. The case where all irregular policies have infinite cost. We will first
assume that all S-irregular policies have infinite cost for some initial state [cf. (5.8)].
The following assumption and proposition were given in [Ber13, section 3.2], but the
line of proof given here is considerably streamlined thanks to the use of the strong
PI property analysis of the preceding section, which was developed after [Ber13] was
published.

Assumption 6.1. We have a subset S ⊂ R(X) satisfying the following:
(a) S contains J̄ , and has the property that if J1, J2 are two functions in S, then

S contains all functions J with J1 ≤ J ≤ J2.
(b) The function J∗

S = infμ∈MS Jμ belongs to S.
(c) For each S-irregular policy μ and each J ∈ S, there is at least one state x ∈ X

such that

(6.1) lim sup
k→∞

(T k
μJ)(x) = ∞.

(d) The control set U is a metric space, and the set{
u ∈ U(x) | H(x, u, J) ≤ λ

}
is compact for every J ∈ S, x ∈ X , and λ ∈ �.

(e) For each sequence {Jm} ⊂ S with Jm ↑ J for some J ∈ S,

lim
m→∞

H(x, u, Jm) = H (x, u, J) ∀ x ∈ X, u ∈ U(x).

(f) For each function J ∈ S, there exists a function J ′ ∈ S such that J ′ ≤ J and
J ′ ≤ TJ ′.

The conditions (b) and (c) of the preceding assumption were introduced in Propo-
sitions 5.5 and 5.6. New conditions are (a), (d), (e), and (f). In the case where S is
the set of real-valued functions R(X) and J̄ ∈ R(X), condition (a) is automatically
satisfied, while condition (e) is typically verified easily. The verification of condition
(f) may be nontrivial in some cases. We postpone the discussion of this issue for later
(see Proposition 6.2).

The main result of this section is the following proposition.

Proposition 6.1. Let Assumption 6.1 hold. Then
(a) the optimal cost function J∗ is the unique fixed point of T within the set S;
(b) we have T kJ → J∗ for all J ∈ S;
(c) a policy μ is optimal if and only if TμJ∗ = TJ∗. Moreover, there exists an

optimal S-regular policy;
(d) for any J ∈ S, if J ≤ TJ we have J ≤ J∗, and if J ≥ TJ we have J ≥ J∗;
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1718 DIMITRI P. BERTSEKAS

(e) if in addition for each sequence {Jm} ⊂ S with Jm ↓ J for some J ∈ S, we
have

(6.2) H (x, u, J) = lim
m→∞

H(x, u, Jm) ∀ x ∈ X, u ∈ U(x),

then a sequence {μk} generated by the PI algorithm starting from an S-regular
policy μ0 satisfies Jμk ↓ J∗. Moreover, if the set of S-regular policies is finite,
there exists k̄ ≥ 0 such that μk̄ is optimal.

The proof of Proposition 6.1 will be developed through a sequence of lemmas. We
first state without proof a result given in [Ber13, Lemma 3.2.1]. It guarantees that
starting from an S-regular policy, the PI algorithm is well-defined. Similar results are
well known in DP theory.

Lemma 6.1. Let Assumption 6.1(d) hold. For every J ∈ S, there exists a policy
μ such that TμJ = TJ .

Next we restate, for easy reference, some of the results of the preceding section
in the next two lemmas.

Lemma 6.2. Let Assumption 6.1(c) hold. A policy μ that satisfies TμJ ≤ J for
some J ∈ S is S-regular.

Proof. This is Proposition 5.5(b).

Lemma 6.3. Let Assumptions 6.1(b), (c), (d) hold. Then
(a) the function J∗

S of Assumption 6.1(b) is the unique fixed point of T within S;
(b) every policy μ satisfying TμJ∗

S = TJ∗
S is optimal within the set of S-regular

policies, i.e., μ is S-regular and Jμ = J∗
S . Moreover, there exists at least one

such policy.

Proof. This is Proposition 5.6, parts (a) and (b) [Assumption 6.1(d) guarantees
that for every J ∈ S, there exists a policy μ such that TμJ = TJ (cf. Lemma 6.1)].

Let us also prove the following technical lemma that relies on the continuity
Assumption 6.1(e).

Lemma 6.4. Let Assumptions 6.1(d), (e) hold. Then if J ∈ S, {T kJ} ⊂ S, and
T kJ ↑ J∞ for some J∞ ∈ S, we have J∞ = J∗

S.

Proof. We fix x ∈ X , and consider the sets

(6.3) Uk(x) =
{
u ∈ U(x) | H

(
x, u, T kJ

)
≤ J∞(x)

}
, k = 0, 1, . . . ,

which are compact by assumption. Let uk ∈ U(x) be such that

H
(
x, uk, T kJ

)
= inf

u∈U(x)
H

(
x, u, T kJ

)
=

(
T k+1J

)
(x) ≤ J(x)

(such a point exists by Lemma 6.1). Then uk ∈ Uk(x).
For every k, consider the sequence {ui}∞

i=k. Since T kJ ↑ J∞, it follows that for
all i ≥ k,

H
(
x, ui, T

kJ
)

≤ H
(
x, ui, T

iJ
)

≤ J∞(x).

Therefore from the definition (6.3), we have {ui}∞
i=k ⊂ Uk(x). Since Uk(x) is compact,

all the limit points of {ui}∞
i=k belong to Uk(x) and at least one limit point exists. Hence
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the same is true for the limit points of the whole sequence {ui}. Thus if ũ is a limit
point of {ui}, we have

ũ ∈ ∩∞
k=0Uk(x).

By (6.3), this implies that

H
(
x, ũ, T kJ

)
≤ J∞(x), k = 0, 1, . . . .

Taking the limit as k → ∞ and using Assumption 6.1(e), we obtain

(TJ∞)(x) ≤ H(x, ũ, J∞) ≤ J∞(x).

Thus, since x was chosen arbitrarily within X , we have TJ∞ ≤ J∞. To show the
reverse inequality, we write T kJ ≤ J∞, apply T to this inequality, and take the limit
as k → ∞, so that J∞ = limk→∞ T k+1J ≤ TJ∞. It follows that J∞ = TJ∞. Since
J∞ ∈ S, by part (a) we have J∞ = J∗

S .

We are now ready to show Proposition 6.1 by using the additional parts (a) and
(f) of Assumption 6.1.

Proof of Proposition 6.1. (a), (b) We will first prove that T kJ → J∗
S for all J ∈ S,

and we will use this to prove that J∗
S = J∗ and that there exists an optimal S-regular

policy. Thus parts (a) and (b), together with the existence of an optimal S-regular
policy, will be shown simultaneously.

We fix J ∈ S, and choose J ′ ∈ S such that J ′ ≤ J and J ′ ≤ TJ ′ [cf. Assump-
tion 6.1(f)]. By the monotonicity of T , we have T kJ ′ ↑ J∞ for some J∞ ∈ E(X). Let
μ be an S-regular policy such that Jμ = J∗

S [cf. Lemma 6.3(b)]. Then we have, using
again the monotonicity of T ,

(6.4) J∞ = lim
k→∞

T kJ ′ ≤ lim sup
k→∞

T kJ ≤ lim
k→∞

T k
μJ = Jμ = J∗

S .

Since J ′ and J∗
S belong to S, and J ′ ≤ T kJ ′ ≤ J∞ ≤ J∗

S , Assumption 6.1(a) implies
that {T kJ ′} ⊂ S, and J∞ ∈ S. From Lemma 6.4, it then follows that J∞ = J∗

S . Thus
equality holds throughout in (6.4), proving that limk→∞ T kJ = J∗

S .
There remains to show that J∗

S = J∗ and that there exists an optimal S-regular
policy. To this end, we note that by the monotonicity Assumption 2.1, for any policy
π = {μ0, μ1, . . .}, we have

Tμ0 · · · Tμk−1 J̄ ≥ T kJ̄ .

Taking the limit of both sides as k → ∞, we obtain

Jπ ≥ lim
k→∞

T kJ̄ = J∗
S ,

where the equality follows since T kJ → J∗
S for all J ∈ S (as shown earlier), and J̄ ∈ S

[cf. Assumption 6.1(a)]. Thus for all π ∈ Π, Jπ ≥ J∗
S = Jμ, implying that the policy

μ that is optimal within the class of S-regular policies is optimal over all policies, and
that J∗

S = J∗.
(c) If μ is optimal, then Jμ = J∗ ∈ S, so by Assumption 6.1(c), μ is S-regular

and therefore TμJμ = Jμ. Hence, TμJ∗ = TμJμ = Jμ = J∗ = TJ∗. Conversely, if
J∗ = TJ∗ = TμJ∗, μ is S-regular (cf. Lemma 6.2), so J∗ = limk→∞ T k

μJ∗ = Jμ.
Therefore, μ is optimal.

(d) If J ∈ S and J ≤ TJ , by repeatedly applying T to both sides and using the
monotonicity of T , we obtain J ≤ T kJ for all k. Taking the limit as k → ∞ and
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using the fact T kJ → J∗ [cf. part (b)], we obtain J ≤ J∗. The proof that J ≥ TJ
implies J ≥ J∗ is similar.

(e) As in the proof of Proposition 5.4(b), the sequence {Jμk} converges monoton-
ically to a fixed point of T , call it J∞. Since J∞ lies between Jμ0 ∈ S and J∗

S ∈ S, it
must belong to S, by Assumption 6.1(a). Since the only fixed point of T within S is
J∗ [cf. part (a)], it follows that J∞ = J∗.

Finally let us give a proposition, which provides an approach to verify part (f)
of Assumption 6.1. The proposition will be used later in this section (cf. the proof of
Proposition 6.4).

Proposition 6.2. Let S be equal to Rb(X), the subset of R(X) that consists of
functions J that are bounded below, i.e., for some b ∈ �, satisfy J(x) ≥ b for all
x ∈ X. Let parts (b), (c), and (d) of Assumption 6.1 hold, and assume further that
for all scalars r > 0, we have

(6.5) TJ∗
S − re ≤ T (J∗

S − re),

where e is the unit function, e(x) ≡ 1. Then part (f) of Assumption 6.1 also holds.

Proof. Let J ∈ S, and let r > 0 be a scalar such that J∗
S − re ≤ J [such a scalar

exists since J∗
S ∈ Rb(x) by Assumption 6.1(b)]. Define J ′ = J∗

S − re, and note that
by Lemma 6.3, J∗

S is a fixed point of T . By using (6.5), we have

J ′ = J∗
S − re = TJ∗

S − re ≤ T (J∗
S − re) = TJ ′,

thus proving part (f) of Assumption 6.1.

Several examples of applications of Proposition 6.1 are given in recent papers of
the author, such as [Ber15a] that considers the minimax-type of shortest problems, and
[Ber16] that considers SSP problems with multiplicative or exponential cost functions
(see also [DeR79, Pat01, Ber13, CaR14]). The paper [Ber15b] considers an infinite-
space optimal control problem with nonnegative cost per stage, where the objective
is to steer a deterministic system towards a set of termination states. We consider a
similar but more general version of this problem, where we remove the assumption
of nonnegativity for the cost per stage (the paper [Ber15b] considers also a related
minimax problem, as well as PI-related methodology that we do not address here).

6.2. Application to deterministic continuous-state problems. Let us con-
sider a deterministic optimal control problem with the system equation

(6.6) xk+1 = f(xk, uk), k = 0, 1, . . . ,

where xk and uk are the state and control at stage k, lying in sets X and U , respec-
tively, and f is a function mapping X × U to X . The control uk must be chosen
from a constraint set U(xk). The cost per stage is denoted g(x, u) (note that g can
take both positive and negative values). No restrictions are placed on X and U : for
example, they may be finite sets as in deterministic shortest path problems, or they
may be continuous spaces as in classical problems of control to the origin or some
other terminal set.

The cost function of a policy π = {μ0, μ1, . . .} starting at an initial state x0 is

(6.7) Jπ(x0) = lim sup
N→∞

N−1∑
k=0

g (xk, μk(xk)) , x0 ∈ X,
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where (xk, μk(xk)), k = 0, 1, . . . , are the state-control pairs using π. We assume that
there is a nonempty stopping set X0 ⊂ X , consisting of cost-free and absorbing states
in the sense that

(6.8) g(x, u) = 0, x = f(x, u) ∀ x ∈ X0, u ∈ U(x).

Clearly, for x ∈ X0, we have J∗(x) = 0, as well as Jπ(x) = 0 for all policies π ∈ Π.
Besides X0, another interesting subset of X is

Xf =
{
x ∈ X | J∗(x) < ∞

}
.

Ordinarily, in practical applications, the states in Xf are those from which one can
reach the stopping set X0, at least asymptotically.

To formulate a corresponding abstract DP problem, we introduce the mapping
Tμ : R(X) �→ R(X) by

(6.9) (TμJ)(x) = g
(
x, μ(x)

)
+ J

(
f(x, μ(x))

)
, x ∈ X,

and the mapping T : E(X) �→ E(X) given by

(TJ)(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)}
, x ∈ X.

The initial function J̄ is the zero function [J̄(x) ≡ 0]. An important fact is that
because the problem is deterministic, J∗ is a fixed point of T .4

We say that a policy μ is terminating if the state sequence {xk} generated starting
from any x ∈ Xf and using μ reaches X0 in finite time, i.e., satisfies xk̄ ∈ X0 for some
index k̄. The set of terminating policies is denoted by T . Our key assumption is that
for x ∈ Xf , the optimal cost J∗(x) can be approximated arbitrarily closely by using
terminating policies. In particular, we assume the following.

Assumption 6.2 (near-optimal termination). For every pair (x, ε) with x ∈ Xf

and ε > 0, there exists a terminating policy μ that satisfies Jμ(x) ≤ J∗(x) + ε.

This assumption implies in particular that the optimal cost function over termi-
nating policies,

Ĵ(x) = inf
μ∈T

Jμ(x), x ∈ X,

is equal to J∗. Moreover since J∗ is a fixed point of T (because we are dealing with
a deterministic problem), it follows that Ĵ is a fixed point of T , which brings to bear
Proposition 5.1.

There are easily verifiable conditions that imply Assumption 6.2, some of which
are discussed in [Ber15b], where it is assumed in addition that g ≥ 0. A prominent
case is when X and U are finite, so the problem becomes a deterministic shortest
path problem. If all cycles of the state transition graph have positive length, all
policies π that do not terminate from a state x ∈ Xf must satisfy Jπ(x) = ∞,
implying that there exists an optimal policy that terminates from all x ∈ Xf . Thus,
in this case Assumption 6.2 is naturally satisfied. Another interesting case arises
when g(x, u) = 0 for all (x, u) except if x /∈ X0 and f(x, u) ∈ X0, in which case we
have g(x, u) < 0, i.e., there is no cost incurred except for a negative cost (positive

4For any policy π = {μ0, μ1, . . .}, using the definition of Jπ, we have for all x, Jπ(x) =
g
(
x, μ0(x)

)
+ Jπ1

(
f(x, μ0(x))

)
, where π1 = {μ1, μ2, . . .}. By taking the infimum of the left-hand

side over π and the infimum of the right-hand side over π1 and then μ0, we obtain J∗ = TJ∗.
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reward) upon termination. Then, assuming that X0 can be reached from all states,
Assumption 6.2 is satisfied. This is also an example of a deterministic problem where
zero length cycles are common.

When X is the n-dimensional Euclidean space �n, a primary case of interest in
control system design contexts, it may easily happen that the optimal policies are not
terminating from some x ∈ Xf . Instead the optimal state trajectories may approach
X0 asymptotically. This is true for example in the classical linear-quadratic optimal
control problem, where under some natural controllability and observability condi-
tions, the optimal closed-loop system is linear and stable, so the state will typically
never reach the termination set X0 = {0} in finite time, although it will approach
it asymptotically (see, e.g., [Ber17a, section 3.1]). However, the Assumption 6.2 is
satisfied (see [Ber15b]).

Let us denote by S the set of functions
(6.10)

S =
{
J ∈ E(X) | J(x) = 0 ∀ x ∈ X0, J(x) ∈ � ∀ x ∈ Xf , J(x) > −∞ ∀ x ∈ X

}
.

Since X0 consists of cost-free and absorbing states [cf. (6.8)], and J∗(x) > −∞ for
all x ∈ X (by Assumption 6.2), the set S contains the cost function Jμ of all policies
μ, as well as J∗. Moreover it can be seen that every terminating policy is S-regular,
i.e., T ⊂ MS , which implies that J∗

S = Ĵ = J∗. The reason is that the terminal
cost is zero after termination for any terminal cost function J ∈ S, i.e., (T k

μ J)(x) =
(T k

μ J̄)(x) = Jμ(x) for μ ∈ T , x ∈ Xf , and k sufficiently large.
The following proposition is a consequence of Proposition 5.1, the determinis-

tic character of the problem (which guarantees that J∗ is a fixed point of T ), and
Assumption 6.2 (which guarantees that J∗

S = Ĵ = J∗).

Proposition 6.3. Let Assumption 6.2 hold. Then
(a) J∗ is the only fixed point of T within the set of all J ∈ S such that J ≥ J∗;
(b) we have T kJ → J∗ for every J ∈ S such that J ≥ J∗;
(c) if μ∗ is terminating and Tμ∗J∗ = TJ∗, then μ∗ is optimal. Conversely, if μ∗

is terminating and is optimal, then Tμ∗J∗ = TJ∗.

For an example of what may happen in the absence of Assumption 6.2, consider
the deterministic shortest path Example 5.1 with a = 0, b > 0, and S = �. Here we
have 0 = J∗ < Ĵ = b, while the set of fixed points of T is the interval (−∞, b].

We will now consider additional assumptions, which guarantee the stronger con-
clusions of Proposition 6.1. We first replace the set S of (6.10) with the following
subset of functions that are bounded below:

Ŝ =
{
J ∈ E(X) | J(x) = 0 ∀ x ∈ X0, J(x) ∈ � ∀ x ∈ Xf ,

J is uniformly bounded below by a scalar
}
.

We have the following proposition.

Proposition 6.4. Let Assumption 6.2 hold, and assume further that
(1) J∗

Ŝ
∈ Ŝ;

(2) for each Ŝ-irregular policy μ and each J ∈ Ŝ, there is at least one state x ∈ X
such that lim supk→∞ (T k

μJ)(x) = ∞;
(3) the control set U is a metric space, and the set

{u ∈ U(x) | g(x, u) + J(f(x, u)) ≤ λ}

is compact for every J ∈ Ŝ, x ∈ X, and λ ∈ �.
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Then
(a) the optimal cost function J∗ is the unique fixed point of T within the set Ŝ;
(b) we have T kJ → J∗ for all J ∈ Ŝ;
(c) a policy μ is optimal if and only if TμJ∗ = TJ∗. Moreover, there exists an

optimal Ŝ-regular policy;
(d) for any J ∈ Ŝ, if J ≤ TJ we have J ≤ J∗, and if J ≥ TJ we have Ĵ ≥ J∗;
(e) a sequence {μk} generated by the PI algorithm starting from an Ŝ-regular

policy μ0 satisfies Jμk ↓ J∗.

Proof. The proof consists of showing that all parts of Assumption 6.1 are satisfied
with Ŝ used in place of S, so Proposition 6.1 applies. Indeed, parts (a) and (e) of
this assumption are trivially satisfied, while parts (b)–(d) are the conditions (1)–(3)
of the proposition. Then Lemma 6.3 is used to assert that J∗

Ŝ
is a fixed point of T .

Moreover, Assumption 6.1(f) is shown using the line of proof of Proposition 6.2. In
particular, for any J ∈ S, we let r > 0 be a scalar such that J∗

S − re ≤ J [such a
scalar exists since J∗

S ∈ Ŝ by condition (1)]. Defining J ′ = J∗ − re, where r > 0 is
sufficiently large so that J ′ ≤ J , we have

J ′ = J∗
S − re = TJ∗

S − re ≤ T (J∗
S − re) = TJ ′,

so Assumption 6.1(f) holds. Finally the additional assumption needed to apply Propo-
sition 6.1(e) is clearly satisfied in this deterministic problem.

6.3. The case of irregular policies with finite cost. In this section, we
consider problems where some S-irregular policies may have finite cost for all states,
so Proposition 6.1 cannot be used. We address this issue by introducing a perturbation
that allows us to use Proposition 6.1 for the perturbed cost problem, and take the
limit as the perturbation vanishes. The idea is that with a perturbation, the cost
functions of S-irregular policies may increase disproportionately relative to the cost
functions of the S-regular policies, thereby making the problem more amenable to
analysis.

In particular, given p : X �→ [0, ∞), a nonnegative “perturbation function” of x,
for each δ ≥ 0 and policy μ, we consider the mappings Tμ,δ and Tδ given by

(6.11) (Tμ,δJ)(x) = H
(
x, μ(x), J

)
+ δp(x), x ∈ X, TδJ = inf

μ∈M
Tμ,δJ.

The cost functions of policies π = {μ0, μ1, . . .} ∈ Π and μ ∈ M, and optimal cost
function J∗

δ are

Jπ,δ(x) = lim sup
k→∞

Tμ0,δ · · · Tμk,δJ̄ , Jμ,δ(x) = lim sup
k→∞

T k
μ,δJ̄ , J∗

δ = inf
π∈Π

Jπ,δ.

We refer to the problem associated with the mappings Tμ,δ as the δ-perturbed problem.
The following proposition shows that if the δ-perturbed problem is “well-behaved”

with respect to a subset of S-regular policies, then its cost function J∗
δ can be used to

approximate the optimal cost function over this subset of policies only, and moreover
J∗

S is a fixed point of T .

Proposition 6.5. Given a set S ⊂ E(X) and a subset M̂ of S-regular policies,
assume that for every δ > 0,

(1) the Bellman equation J∗
δ = TδJ

∗
δ holds for the δ-perturbed problem;

(2) for every ε > 0, there exists a policy με ∈ M̂ that is ε-optimal for the δ-
perturbed problem, i.e., Jμε,δ ≤ J∗

δ +ε e, where e is the unit function e(x) ≡ 1;
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(3) for every μ ∈ M̂, we have

Jμ,δ ≤ Jμ + wμ,δ,

where wμ,δ is a function such that limδ↓0 wμ,δ = 0.
Consider Ĵ , the optimal cost function over the policies in M̂ only: Ĵ = inf

μ∈ ̂M Jμ.

(a) We have limδ↓0 J∗
δ = Ĵ .

(b) Assume in addition that H has the property that for every sequence {Jm} ⊂ S
with Jm ↓ J , we have

(6.12) lim
m→∞

H(x, u, Jm) = H(x, u, J) ∀ x ∈ X, u ∈ U(x).

Then J∗
S is a fixed point of T , we have J∗

S = Ĵ , and the conclusions of
Proposition 5.1 hold.

Proof. (a) By using conditions (2) and (3), we have

Ĵ − ε e ≤ Jμε − ε e ≤ Jμε,δ − ε e ≤ J∗
δ ≤ Jμ,δ ≤ Jμ + wμ,δ ∀ δ > 0, μ ∈ M̂.

By taking the limit as ε ↓ 0, we obtain

Ĵ ≤ J∗
δ ≤ Jμ + wμ,δ ∀ δ > 0, μ ∈ M̂.

By taking the limit as δ ↓ 0 and then the infimum over all μ ∈ M̂, it follows that

Ĵ ≤ lim
δ↓0

J∗
δ ≤ inf

μ∈ ̂M
Jμ = Ĵ .

(b) From condition (1) and the fact J∗
δ ≥ Ĵ shown in part (a), we have for all

δ > 0,
J∗

δ = TδJ
∗
δ ≥ TJ∗

δ ≥ T Ĵ,

and by taking the limit as δ ↓ 0 and using part (a), we obtain Ĵ ≥ T Ĵ. For the reverse
inequality, let {δm} be a sequence with δm ↓ 0. Using condition (1) we have for all m,

H(x, u, J∗
δm

) + δmp(x) ≥ (TδmJ∗
δm

)(x) = J∗
δm

(x) ∀ x ∈ X, u ∈ U(x).

Taking the limit as m → ∞, and using (6.12) and the fact J∗
δm

↓ Ĵ [cf. part (a)], we
have

H(x, u, Ĵ) ≥ Ĵ(x) ∀ x ∈ X, u ∈ U(x),

so that T Ĵ ≥ Ĵ . Thus Ĵ is a fixed point of T , and also satisfies Ĵ ≤ J∗
δ0

≤ Jμδ0
∈

S. By Proposition 3.2, we have that J∗
S = Ĵ . It follows that the assumptions of

Proposition 5.1 are satisfied.

The preceding proposition applies even if limδ↓0 J∗
δ (x) > J∗(x) for some x ∈ X .

This is illustrated by the deterministic shortest path Example 5.1, for the zero-cycle
case where a = 0 and b > 0. Then for S = �, we have J∗

S = b > 0 = J∗, while the
proposition applies because its assumptions are satisfied with p(x) ≡ 1. Consistently
with the conclusions of the proposition, we have J∗

δ = b+ δ, so J∗
S = limδ↓0 J∗

δ and J∗
S

is a fixed point of T . We refer to [Ber13] and [BeY16] for a more detailed discussion
of the approach of this section, applications, examples, and counterexamples, and
also for a PI algorithm to find J∗

S , which is based on perturbations. The paper
[Ber17b] explores the connections of the perturbation approach of this section with
classical notions of feedback control stability. The following example shows how the
perturbation approach provides an analysis of linear-quadratic problems, which is
consistent with the behavior illustrated in Example 3.1.
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Example 6.1 (linear-quadratic optimal control problem). Consider the classical
linear-quadratic problem, which involves the deterministic linear system

xk+1 = Axk + Buk, k = 0, 1, . . . ,

where xk ∈ �n, uk ∈ �m for all k, and A and B are given matrices. The cost function
of a policy π = {μ0, μ1, . . .} has the form

Jπ(x0) = lim
N→∞

N−1∑
k=0

(x′
kQxk + μk(xk)′Rμk(xk)) ,

where x′ denotes the transpose of a column vector x, Q is a positive semidefinite
symmetric n × n matrix, and R is a positive definite symmetric m × m matrix.

The theory of this problem is well known and is discussed in various forms in many
sources, including the textbooks [AnM79] and [Ber17a, section 3.1]. The solution
revolves around stationary policies μ that are linear , in the sense that μ(x) = Lx,
where L is some n × m matrix, and stable, in the sense that the matrix A + BL has
eigenvalues that are strictly within the unit circle. Thus for a linear stable policy, the
closed loop system xk+1 = (A+BL)xk is stable. We assume that there exists at least
one linear stable policy.

The solution also revolves around the algebraic matrix Riccati equation

P = A′ (P − PB(B′PB + R)−1B′P
)
A + Q,

where the unknown is P , a symmetric n × n matrix. It is well known that if Q is
positive definite, then the Riccati equation has a unique solution P ∗ within the class
of positive semidefinite symmetric matrices, and that the optimal cost function has
the form J∗(x) = x′P ∗x. Moreover, there is a unique optimal policy, and this policy
is linear stable (the existence of an optimal linear stable policy can be extended to the
case where Q is instead positive semidefinite, but satisfies a certain “detectability”
condition; see the textbooks cited earlier).

However, in the general case where Q is positive semidefinite without further
assumptions (e.g., Q = 0), Example 3.1 shows that the optimal policy need not be
stable, and that the optimal cost function over just the linear stable policies may be
different than J∗. We address this situation with the aid of the perturbation-based
analysis of this section.

The problem can be converted to our abstract format with the identifications
X = �n, U(x) ≡ �m, J̄(x) ≡ 0, and

H(x, u, J) = x′Qx + u′Ru + J(Ax + Bu).

Let S be the set of functions of the form J(x) = x′Px, where P is a positive semidef-
inite symmetric matrix, let M̂ be the set of linear stable policies, and note that sim-
ilarly to Example 3.1, every linear stable policy is S-regular. This is due to the fact
that for every function J(x) = x′Px and linear stable policy μ(x) = Lx, (T k

μJ)(x0)
and (T k

μ J̄)(x0) differ by the term x′
0(A + BL)k′

P (A + BL)kx0, which vanishes in the
limit.

Consider the perturbation function p(x) = ‖x‖2. Then for δ > 0, the mapping
Tμ,δ of (6.11) has the form

(Tμ,δJ)(x) = x′(Q + δI)x + μ(x)′Rμ(x) + J (Ax + Bμ(x)) ,
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where I is the identity, and corresponds to the linear-quadratic problem where Q is
replaced by the positive definite matrix Q + δI. This problem admits a quadratic
positive definite optimal cost J∗

δ (x) = x′P ∗
δ x, and an optimal linear stable policy.

Moreover, the conditions of Proposition 6.5 are satisfied. It follows that J∗
S is equal to

the optimal cost over just the linear stable policies J∗
̂M, and is obtained as limδ→0 J∗

δ ,

which also implies that J∗
̂M = x′P̂ x where P̂ = limδ→0 P ∗

δ .

7. Concluding remarks. We have provided an analysis of challenging abstract
DP models based on the notion of regularity. In particular, we have extended this
notion to nonstationary policies, and we have highlighted its connection to an earlier
development for stationary policies. We have also streamlined and strengthened the
corresponding analysis based on PI-related ideas. The main approach is to start
from an interesting set of policy-state pairs satisfying a regularity property, and then
characterize the region of convergence of VI. We have shown that this approach can
lead to new results in the context of a variety of optimal control problems. In addition
to the applications described in this paper, our approach has been applied to minimax
and exponential cost shortest path problems [Ber15a, Ber16]. Our approach may also
be applied to other types of problems that involve a termination state and fit the
abstract DP framework of this paper, including SSP game problems [PaB99, Yu11].
These and other related applications are interesting subjects for further research.

Our analysis in this paper focuses on exact forms of DP. However, there are
approximation frameworks (such as aggregation and others) that preserve the essential
monotonicity property of the DP mapping. For such an approximation setting our
analysis applies, but this direction has not been investigated so far, except for the
data-perturbed context of section 6.3, which has been analyzed in detail in the paper
[BeY16] for the case of an SSP problem.

Acknowledgment. Many helpful discussions with Huizhen (Janey) Yu on the
subject of this paper are gratefully acknowledged.
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[CaR14] O. Çavuş and A. Ruszczyński, Risk-averse control of undiscounted transient Markov
models, SIAM J. Control Optim., 52 (2014), pp. 3935–3966.

[DeR79] E.V. Denardo and U.G. Rothblum, Optimal stopping, exponential utility, and linear
programming, Math. Program., 16 (1979), pp. 228–244.

[Den67] E.V. Denardo, Contraction mappings in the theory underlying dynamic programming,
SIAM Rev., 9 (1967), pp. 165–177.

[Der70] C. Derman, Finite State Markovian Decision Processes, Academic Press, N.Y, 1970.
[Fei02] E.A. Feinberg, Total reward criteria, in Handbook of Markov Decision Processes, E.A.

Feinberg and A. Shwartz, eds., Springer, NY, 2002.
[HeL99] O. Hernandez-Lerma and J.B. Lasserre, Further Topics on Discrete-Time Markov

Control Processes, Springer, NY, 1999.
[Kal83] L.C.M. Kallenberg, Linear Programming and Finite Markov Control Problems, Math-

ematical Centre Tracks 148, Amsterdam, 1983.
[PaB99] S.D. Patek and D.P. Bertsekas, Stochastic shortest path games, SIAM J. Control

Optim., 37 (1999), pp. 804–824.
[Pal67] R. Pallu de la Barriere, Optimal Control Theory, Saunders, Philadelphia, 1967.
[Pat01] S.D. Patek, On terminating Markov decision processes with a risk averse objective func-

tion, Automatica J. IFAC, 37 (2001), pp. 1379–1386.
[Put94] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming, Wiley, New York, 1994.
[Str66] R. Strauch, Negative dynamic programming, Ann. Math. Statist., 37 (1966), pp. 871–

890.
[Van81] J. Van der Wal, Stochastic Dynamic Programming, Thesis, Mathematisch Centrum,

Amsterdam, 1981.
[Whi82] P. Whittle, Optimization Over Time, Vol. 1, Wiley, New York, 1982.
[YuB15] H. Yu and D.P. Bertsekas, A mixed value and policy iteration method for stochastic

control with universally measurable policies, Math. Oper. Res., 40 (2015), pp. 926–
968.

[Yu11] H. Yu, Stochastic Shortest Path Games and Q-Learning, Technical report, Laboratory
for Information and Decision Systems Report LIDS-P-2875, MIT, Cambridge, MA,
2011.

[Yu15] H. Yu, On convergence of value iteration for a class of total cost Markov decision pro-
cesses, SIAM J. Control Optim., 53 (2015), pp. 1982–2016.

D
ow

nl
oa

de
d 

05
/1

1/
18

 to
 1

8.
51

.0
.2

40
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Introduction
	Abstract DP model
	Regular policies, value iteration, and fixed points of T
	Applications in stochastic optimal control
	Nonnegative undiscounted cost stochastic DP
	Discounted nonnegative cost stochastic DP

	S-regular stationary policies
	Restricted optimization over S-regular policies
	Policy iteration-based analysis of Bellman's equation

	Infinite and finite cost cases for irregular policies
	The case where all irregular policies have infinite cost
	Application to deterministic continuous-state problems
	The case of irregular policies with finite cost

	Concluding remarks
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


