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Predictive materials design has rapidly accelerated in recent years with the advent of large-scale resources,
such as materials structure and property databases generated by ab initio computations. In the absence of
analogous ab initio frameworks for materials synthesis, high-throughput and machine learning techniques
have recently been harnessed to generate synthesis strategies for select materials of interest. Still, a
community-accessible, autonomously-compiled synthesis planning resource which spans across materials
systems has not yet been developed. In this work, we present a collection of aggregated synthesis
parameters computed using the text contained within over 640,000 journal articles using state-of-the-art
natural language processing and machine learning techniques. We provide a dataset of synthesis
parameters, compiled autonomously across 30 different oxide systems, in a format optimized for planning
novel syntheses of materials.
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Background & Summary
Materials Genome Initiative efforts have led to the proliferation of open-access materials properties
databases, resulting in the rapid acceleration of materials discovery and design1–6. Given these advances
in screening for novel compounds, the realization of comprehensive frameworks for predicting novel
synthesis routes is now a primary bottleneck in materials design7. Recent high-throughput and data-
driven explorations of materials syntheses have focused on optimizing a particular material system of
interest8,9. Yet, the general landscape of synthesizable materials10,11 spanning across material systems
remains largely unexplored. To further encourage rapid and open synthesis discovery in the materials
science community, we present here a dataset which collates key synthesis parameters aggregated by
chemical composition (e.g., BiFeO3) across 30 commonly-reported oxide systems.

Many of the largest-volume databases consist primarily of data which are computed ab initio (e.g.,
using density functional theory)1,12. There are, however, ongoing efforts which make use of human-
collected information extending beyond what can be computed from first principles: Ghadbeigi et al.4

provide human-retrieved performance indicators for Li-ion battery electrode materials, extracted from
~200 articles, and Raccuglia et al.9 apply a similar human-data-retrieval technique to lab notebooks to
compile ~4,000 reaction conditions for training machine-learned syntheses of vanadium selenite crystals.
Additionally, high-throughput experimental syntheses are capable of producing vast combinatorial
materials ‘libraries’ for the purposes of materials screening8,13,14. These approaches lay the groundwork
towards a broader approach using automated data collection techniques.

To accelerate the materials science community towards the goal of rapidly hypothesizing viable
synthesis routes, a method for programmatically querying the body of existing syntheses is necessary.
Such a resource may serve as a starting point for literature review, or an initial survey of ‘common’ and
‘outlier’ synthesis parameters, or as supplementary input data for other large-scale text mining studies on
materials science literature. Indeed, approaches to high-throughput synthesis screening have seen recent
success in organic chemistry15–22, since organic reaction data is well-tabulated in machine readable
formats23.

In this work, we provide a set of tabulated and collated synthesis parameters across 30 oxide systems
commonly reported in the literature. This data is retrieved by first training machine learning (ML) and
natural language processing (NLP) algorithms using a broad collection of over 640,000 materials
synthesis journal articles. These trained algorithms are then used to parse a subset of 76,000 articles
discussing the syntheses of our selected oxide materials. Figure 1 provides a schematic overview of the
methods used for transforming human-readable articles into machine-readable synthesis parameters and
synthesis planning resources. No direct human intervention is necessary in this methodology: Our
automated text processing approach downloads articles, extracts key synthesis information, codifies this
information into a database, and then aggregates the data by material system.

Figure 1. Schematic overview of text extraction and database construction. Each colored object represents a

high-level step in the automated workflow for retrieving journal articles and processing text into codified

synthesis parameters. Materials synthesis articles are fed into a NLP pipeline, which computes a machine-

readable database of synthesis parameters across numerous materials systems. These parameters can then be

queried to produce synthesis planning resources, including, empirical distributions of real-valued parameters

and ranked lists of keywords.
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Methods
Article retrieval
Using the CrossRef search Application Programming Interface (API)24, journal articles are program-
matically queried and downloaded using additional API routes, approved individually by each publisher
we access. These articles are downloaded in HTML and PDF formats, and we convert these articles to
plain text for further text extraction and processing. PDF articles are converted using the open source
watr-works Scala program.

Article section relevance
In order to determine which paragraphs contain materials synthesis information, we have manually
applied binary labels to thousands of paragraphs from approximately 100 different journal articles, with
positive samples representing materials synthesis paragraphs and negative samples representing all other
paragraphs. We use this data to train a binary logistic regression classifier, implemented in scikit-learn25.

Each paragraph in an article is represented by binary counts of frequently occurring words (commonly
referred to as a ‘bag of words’ vector), and this is concatenated with a vector of simple binary heuristics
(e.g., if the section title is ‘Experimental’ or ‘Methods’). A logistic regression classifier then applies
categorical labels to the paragraphs, with a label of 1 indicating a synthesis paragraph and 0 representing
a paragraph unrelated to synthesis. We find an overall F1 score of 96% using this method, where the F1
score is computed from binary precision (true positives/all positive guesses) and recall (true positives/all
positive samples). This score, which emphasizes the ability of a classifier to identify true positive samples,
is used since most paragraphs in an article do not describe the synthesis of a material (and so synthesis
paragraphs are the rarer category).

F1 ¼ 2 ´
precision ´ recall
precisionþ recall

Figure 2. Neural-network and parse-based synthesis parameter extraction. (a) A hierarchical neural

network assigns labels (e.g., ‘MATERIAL’) to words one-at-a-time by converting words to embedding and

heuristic vector representations, and outputting to a classifier. The embeddings of a five-word window are

considered for each prediction. Each layer is densely connected, with the hidden layer concatenating each of the

two input layers. The final layer is a softmax (classifier) computed over each possible word category.

(b) A grammatical parse of a sentence is used to resolve word-level labels (below colored bars) into sequential

word-chunk-level labels (above colored bars), followed by resolution into word-chunk relations (curved arcs).
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Text extraction
A schematic overview of the text extraction procedure is provided in Fig. 2. In Fig. 2a, word-level labels
are applied using a neural network which predicts the category of each word (e.g., material, amount,
number, irrelevant word), using a mixture of word embedding vectors from nearby words and domain-
knowledge-driven heuristics. These heuristics include known word matches (e.g., ‘calcine’) and outputs of
existing databases and models18,26,27 which we have incorporated into our framework. A full description
of the word labels is provided in Table 1.

In order to predict word-level labels, a transfer learning setup is used28, in which we first learn, in an
unsupervised manner, a feature mapping function for words using unlabeled data. Then, we use these
learned features to create context-sensitive word inputs during supervised training on a smaller set of data
with high-accuracy labels applied by humans.

First, the Word2Vec algorithm is pre-trained on 640,000 unlabeled full-text materials synthesis articles in
order to learn accurate vector representations for domain-specific words (e.g., anneal), which do not appear
frequently in English-language documents29. This process yields a transformation function which accepts a
plain-text word and outputs a dense, real-valued, fixed-length vector. These word vectors are used alongside the
binary heuristic vectors to produce the fully-realized inputs for the neural network.

Following this pre-training, a baseline neural network is trained. A set of word labels is computed on
this same set of 640,000 articles using only the binary heuristic rules (without the neural network, using
simple ‘if…then’ logic). The baseline neural network is then trained to mimic the output of these heuristic
rules using the embedding vectors as additional supporting data features. The neural network achieves a
categorical accuracy of >99% and an F1 score of >99% on the task of replicating the heuristic rule word
labels. This baseline version of the neural network achieves a categorical accuracy of 78% and an F1 score
of 66% on a test set constructed from 10 human-labelled articles (~1,700 words). The baseline neural
network thus serves as a lower-bound accuracy benchmark which represents the effectiveness of a
database lookup strategy for categorizing words, using deterministic rules including matches to known
chemical formulas (e.g., ‘Fe2O3’) or known verbs (e.g., ‘sinter’).

Separately, a human-trained neural network learns from annotated data labels which have been
applied by materials scientists: A training set of 20 articles (~5,200 words) with human-applied word
labels is used to learn the weights of the neural network. These human-applied word labels are marked
while reading through the synthesis sections of journal articles, and thus emphasize scientific and
linguistic context rather than a strict adherence to deterministic rules and database lookups. This human-
trained network indeed achieves higher accuracies compared to the baseline: the categorical accuracy of
this neural network classifier, as measured against the same test set, is 86% and its F1 score is 81%. This is
comparable to the performance achieved by the recent ChemDataExtractor model on a similar task18,
which is trained to extract relevant text from chemistry articles.

Word Label Interpretation Examples

TARGET Final synthesized material TiO2, BiFeO3

UNSPECIFIED Generic references to materials Solution, powder

MATERIAL Non-target named materials TiCl4, NaOH

OPERATION Action on a material Dissolve, sinter

AMOUNT MISC Unspecified amount Several, dropwise

AMOUNT UNIT Amount-type unit ml, mmol

CONDITION MISC Unspecified parameter of an action Slowly, ambient

CONDITION UNIT Unit for parameter of an action hours, °C

SYNTHESIS APPARATUS Experimental equipment Autoclave, furnace

CHARACTIZATION APPARATUS Experimental equipment s.e.m., diffractometer

DESCRIPTOR Qualitative material morphology Layered, nanorods

PROPERTY MISC Qualitative aspect of a material Denser, brittle

PROPERTY UNIT Quantitative aspect of a material MPa, cm2

PROPERTY TYPE Type of aspect of a material Strength, area

NUMBER Numerical words 120, five

META Synthesis route type Solvothermal, sol-gel

BRAND Commercial brand Sigma, Fisher

REF Citation or reference [14], 2007

NULL All other words The, before

Table 1. In-domain word categories and examples. Word-level labels and examples of words belonging to
each label. Each word in an article is assigned to exactly one of these labels.
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Figure 2b shows the process of interpreting higher-level relations in the text, including resolving
multiple sequential words into a single ‘chunked’ entity and relating these chunks to each other. This
process is done by applying heuristic rules to the outputs of a grammatical parser27, where relations
between chunks are computed from parse tree dependencies, with word-order proximity used as a
fallback measure30. To illustrate via the example in Fig. 2b, ‘500 C’ is grammatically dependent on
‘heated,’ and so a relation is assigned between them.

The extracted synthesis parameters from these articles are then filtered by material systems of interest,
and aggregated for each material. Histograms and ranked lists of keywords are computed by counting
occurrences within documents, and all histograms are normalized to integrate to unity. In this paper, we

Data Description Data Key Label Data Type

Name of material system Name String

Number of papers used to compute synthesis parameters Num_papers Integer

Top occurring synthesizing actions used for a material system Associated_operations Array of strings

Top co-occurring materials in synthesis sections for a material system Associated_materials Array of strings

Topic distribution for a material system Topics Object (dictionary) of topic strings and frequency floats

All temperatures reported in syntheses for a material system, aggregated as a
kernel density estimate

Temperature_kde Object (dictionary) of x and y floats

Hydrothermal temperatures and times reported in syntheses for a material
system, aggregated as a kernel density estimate

Hydrothermal_kde Object (dictionary) of x and y floats

Calcination temperatures and times reported in syntheses for a material system,
aggregated as a kernel density estimate

Calcine_kde Object (dictionary) of x and y floats

Table 2. Schema of data records. Overview of formatting for each data record, with each row representing a
data record key. For each key, the key label name is provided, along with the data type.

Figure 3. Topic and synthesis target distributions within the database. Heatmap showing a sample of topic

distributions plotted against material systems of interest. Topics are computed from training a Latent Dirichlet

Allocation model on 640,000 journal articles, and are labelled by their top-ranked keywords32. Values of the

heatmap represent column-normalized counts across all articles within a material system.
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Figure 4. Top occurring material mentions per target material system. Heatmap showing a sample of co-

occurring mentions of materials within synthesis routes for material systems of interest. Values of the heatmap

represent column-normalized counts across all articles within a material system. Counts of self-mentioning co-

occurrences (e.g., ZnO mentioned in papers synthesizing ZnO) are fixed to zero prior to column normalization

and plotted in grey.

Figure 5. Temperature and time distributions for titania. (a) Calcination and hydrothermal temperature

kernel density estimate for titania, normalized to unit area. (b) Calcination and hydrothermal time kernel

density estimate for titania, normalized to unit area. All density estimates are computed using Gaussian kernels

computed from counts of temperatures and times extracted from synthesis sections of journal articles.
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present a dataset extracted from a sample of 76,000 articles which discuss the syntheses of 30 oxide
systems of interest. Beyond this, we also provide a more extensive and continuously-updated dataset at
[www.synthesisproject.org].

Code availability
The code used to compute and analyze the data is available at [www.github.com/olivettigroup/sdata-data-
plots/]. Additionally, the compiled Word2Vec embedding vector model is available at [www.github.com/
olivettigroup/materials-word-embeddings/]. The underlying machine learning libraries used in this
project are all open-source: Tensorflow31, SpaCy27, and scikit-learn25.

Data Records
The data are provided as a single JSON file, available at [www.synthesisproject.org] and through figshare
(Data Citation 1). Each record, corresponding to data for a single material system, is represented as a
JSON object in a top-level list. The details of the data format are given in Table 2.

Metadata for each material system is provided in the JSON dataset, including topic distributions
computed with Latent Dirichlet Allocation32. These topic distributions are visualized as a heatmap in
Fig. 3, and demonstrate correlations between material chemistries and device applications, experimental
apparatuses, and product morphologies.

Numerical synthesis parameters (e.g., calcination temperatures) for each material system are provided
as kernel density estimates, computed across all journal articles discussing the synthesis of a given
material. Such a format allows for rapid visualizations to aid high-level synthesis planning: for example,
Fig. 4 shows co-occurrences between materials systems and mentions of other materials extracted from
synthesis sections of articles.

Technical Validation
For scientific validation, we briefly compare the aggregated data in our provided dataset to known results.
As an example, Fig. 5a displays frequent usages of temperatures near the anatase-rutile phase boundary
for titania33. This data thus agrees with the intuitive reasoning that such temperatures are used to either
crystallize an anatase-phase product, or convert to a rutile-phase product34. We also observe additional
patterns which agree with intuitive expectations: Fig. 5a shows that hydrothermal reactions are confined
to a narrow temperature range, peaking between 100–200 C, and Fig. 5b confirms that hydrothermal
reactions more typically occur for long periods of time compared to calcination.

Besides validating the accuracy of the text extraction and word-labelling methods (as discussed in the
Methods), we reiterate here the accuracy of the parsing algorithm used, which is reported as 91.85%
(ref. 27). We use this parsing algorithm as a dependency to resolve higher-level relations in our extracted
text data (e.g., relating ‘500 C’ to ‘heated’ in Fig. 2b). We also report a training curve in Fig. 6, to
demonstrate that several thousand labelled words is indeed a sufficient volume of data for training a
neural network word classifier in the materials science domain.

Usage Notes
As this data is provided in the language-agnostic JSON format, no specific technical setup is required as a
dependency. The authors have found it useful to load the data into the Python programming language,

Figure 6. Learning curve for neural-network word classifier. The baseline accuracy and F1 score are plotted

as horizontal lines, computed from the baseline neural network on the maximum number of training words.

The solid curves are computed from the human-trained neural network, showing accuracy and F1 score as a

function of training data volume.
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especially for downstream integration with data from the Materials Project provided via their pymatgen
library35.

A detailed, web-accessible Python tutorial for loading and analyzing the dataset is available at [https://
github.com/olivettigroup/sdata-data-plots/blob/master/SDATA-data-plots.ipynb]. This web tutorial pro-
vides the exact Python code used to generate the figures in this article, along with commentary which
explains the technical setup.

Empirical histograms provided in this dataset, along with ranked lists of frequent synthesis
parameters, serve as useful starting points for literature review and synthesis planning: for example,
selecting the most frequent synthesis parameters (e.g., most common reaction temperatures and
precursors) would yield a starting point for a viable synthesis route.

Additionally, the topic labels provided in this dataset may prove useful in studies related to
metadata and text mining in the materials science literature. As a motivating example, authorship and
citation links have been analyzed in biomedical papers to reveal insights related to the impact of
papers over time36; such analyses could potentially be extended to topic models in materials
science.

While this paper details a static ‘snapshot’ of collated synthesis data, a continuously updated and
rapidly-expanding dataset is also available via an API at [www.synthesisproject.org].
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