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Abstract 26 

 27 

The current lack of an accurate, cost-effective and non-invasive test that would allow for 28 

screening and diagnosis of gynaecological carcinomas, such as endometrial and ovarian cancer, 29 

signals the necessity for alternative approaches. The potential of spectroscopic techniques in 30 

disease investigation and diagnosis has been previously demonstrated. Here, we used 31 

attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to analyse 32 

urine samples from women with endometrial (n=10) and ovarian cancer (n=10), as well as from 33 

healthy individuals (n=10). After applying multivariate analysis and classification algorithms, 34 

biomarkers of disease were pointed out and high levels of accuracy were achieved for both 35 

endometrial (95% sensitivity, 100% specificity; accuracy: 95%) and ovarian cancer (100% 36 

sensitivity, 96.3% specificity; accuracy 100%). The efficacy of this approach, in combination 37 

with the non-invasive method for urine collection, suggest a potential diagnostic tool for 38 

endometrial and ovarian cancers.  39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

Keywords: infrared spectroscopy; chemometrics; non-invasive; ovarian cancer; endometrial 47 

cancer; diagnosis  48 



3 
 

1. Introduction 49 

 50 

Endometrial and ovarian cancers are the commonest cancers in post-menopausal 51 

women worldwide. In the UK alone, 9,300 women develop endometrial cancer, of whom 2,100 52 

die annually 1; ovarian cancer affects 7,300 women resulting in 4,100 deaths per year (i.e., 53 

~40% overall survival) 2. The epidemiology of endometrial and ovarian cancer is closely 54 

entwined, histological subtypes of endometrial cancer mirror subtypes found in ovarian cancer 55 

and the same risk factors seem to influence both diseases 3. Endometrial cancer is often 56 

symptomatic at an early stage (stage I) when there is still time for treatment 4. In the case of 57 

ovarian carcinoma, however, symptoms present late in most cases and after the cancer has 58 

already metastasized within the abdomen, resulting in late-stage disease and poor prognoses 5. 59 

An accurate and early diagnosis of both diseases, and especially ovarian cancer, is of major 60 

need as it would permit an early intervention and potentially early-stage diagnosis and 61 

consequently improved prognosis. 62 

The gold standard for diagnosis of endometrial cancer is biopsy performed either in an 63 

outpatient or inpatient setting after a patient presents with symptomatic bleeding. For ovarian 64 

cancer diagnosis in patients with symptoms, women initially undergo a pelvic examination, 65 

followed by measurement of serum cancer antigen (CA-125); if symptoms persist in the 66 

absence of raised CA-125 levels, an abdominal and transvaginal ultrasound follow 5. In 67 

asymptomatic women for ovarian cancer screening, a combination of these biomarkers is used. 68 

In the future, with the escalating incidence of endometrial cancer secondary to obesity, there 69 

might be a role for screening for disease. All of the above-mentioned diagnostic approaches 70 

have drawbacks, either being invasive (e.g., biopsy) or expensive (e.g., ultrasound). Even 71 

though a blood biomarker would be an ideal diagnostic approach, CA-125 has now been found 72 

to be unsuitable for early-stage diagnosis as it is only elevated in 50% of the individuals 6. A 73 
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number of research groups are actively investigating the utility of multiple biomarkers for a 74 

more accurate diagnosis of endometrial and ovarian cancers 6, 7. However, current methods of 75 

biomarker identification are heavily dependent on multiplex assays and molecular techniques 76 

which are costly. 77 

Vibrational spectroscopy has gained increasing attention in the recent years due to its 78 

potential as a diagnostic tool for various diseases, by providing chemical and structural 79 

information of the sample in use 8, 9. Both infrared (IR) and Raman spectroscopic techniques 80 

have been extensively used for cancer diagnostics using tissue, cells or biofluids, such as blood 81 

plasma/serum, urine, bile, ascitic fluid and cerebrospinal fluid 10, 11. A screening or diagnostic 82 

test should be non-invasive to facilitate compliance and, as such, venepuncture and urine 83 

analysis are ideal. Blood- and urine-based spectroscopy have already been applied successfully 84 

in studies including brain 12, breast 13, gynaecological 14, 15  and other types of cancer. In the 85 

present study, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy 86 

was used to analyse urine samples from women with endometrial and ovarian cancer and 87 

facilitate towards their segregation form healthy controls. The classification models that were 88 

employed to distinguish between these groups were partial least squares discriminant analysis 89 

(PLS-DA), principal component analysis with support vector machines (PCA-SVM) and 90 

genetic algorithm with linear discriminant analysis (GA-LDA). 91 

2. Materials and Methods 92 

 93 

2.1 Study population and sample collection 94 

 95 

 All samples were collected at Royal Preston Hospital UK after obtaining ethical 96 

approval (16/EE/0010). All experiments were performed in accordance with relevant laws and 97 

guidelines, and approved by the ethics committee at University of Central Lancashire (UCLan). 98 

Informed consent was obtained from all human subjects. Urine samples were collected from 99 
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30 individuals: 10 healthy women with no symptoms of cancer who were used as controls, 10 100 

women with endometrial cancer and 10 women with ovarian cancer. All urine specimens were 101 

obtained after patients were administered a general anaesthetic prior to hysterectomy for benign 102 

or malignant indications. All patients had undergone a period of at least 6 hours fasting; the 103 

suggested preoperative fasting time is 6-8 hours for light meals and 2 hours for fluids 16, 17. 104 

Prolonged fasting (12-16 h) should be avoided as it triggers gluconeogenesis precipitation and 105 

increases the organic response to trauma 18. Specimens were obtained after aseptic preparation 106 

of the urethra and after catheterisation, thus avoiding any contamination.  All cases were staged 107 

according to the guidelines by the International Federation of Gynecologic Oncology (FIGO). 108 

Samples were kept at -80°C until the time of spectroscopic analysis. Before analysis, all 109 

samples were left to thaw at room temperature and 50 μl were deposited on low-emissivity 110 

(low-E) slides (MirrIR Low-E slides, Kevley Technologies, USA); they were then left to air-111 

dry for approximately 45 minutes. All urines were taken pre-operatively on the day of surgery 112 

in both controls and disease patients and patients had not received any treatment for the disease 113 

prior to surgery. All endometrial and ovarian cancers were high grade cancers. Sub-group 114 

analysis for other incidental diseases or factors such as type 2 diabetes, hypertension or 115 

medication was not performed in this study. 116 

2.2 Spectroscopic analysis  117 

 118 

ATR-FTIR spectroscopy was employed for the analysis of the urine samples. A Tensor 119 

27 FTIR spectrometer with a Helios ATR attachment (Bruker Optics Ltd, Coventry, UK) which 120 

contained a diamond crystal, was used for the data collection. The OPUS 7.2 software was used 121 

for spectral acquisition. Spectral resolution was set at 8 cm-1 and mirror velocity at 2.2 kHz; 32 122 

scans were acquired for each spectrum for optimal signal-to-noise ratio. The diamond crystal 123 

was cleaned with distilled water after the use of each sample and a background spectrum was 124 
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collected to eliminate atmospheric changes. A CCTV camera was used for visualisation and 125 

navigation across the sample’s surface; ten spectra were acquired from different locations of 126 

each sample to minimize bias. 127 

2.3 Data analysis  128 

After collection, the raw spectra need to be pre-processed in order to account for 129 

inconsistencies relating to the experimental procedure and spectral acquisition. Pre-processing 130 

and computational analysis of the data was performed using PLS Toolbox version 7.9.3 131 

(Eigenvector Research, Inc., Manson, USA) and an in-house developed IRootLab toolbox 132 

(http://trevisanj.github.io/irootlab/) 19. For the purposes of this study, raw spectra were initially 133 

pre-processed as following: cut to the bio-fingerprint region (1800-900 cm-1), rubberband 134 

baseline corrected and vector normalised. Rubberband baseline correction is used to correct 135 

underlying oscillations on the baseline of the spectra which can be caused by scattering effects, 136 

reflection, temperature, concentration, among other instrumental anomalies that render 137 

wavenumbers, known for having no absorption, with absorbance values different from zero 20. 138 

For further classification spectra were divided into training (60%, n = 18 patients) and 139 

test (40%, n = 12 patients) sets using the Kennard-Stone sample selection algorithm 21. Partial 140 

least squares discriminant analysis (PLS-DA), principal component analysis with support 141 

vector machines (PCA-SVM) and genetic algorithm with linear discriminant analysis (GA-142 

LDA) were used as classification methods. PLS-DA is a linear classification technique that 143 

uses partial least squares (PLS) to find a straight line that divide the classes spaces 22. PCA-144 

SVM makes use of principal component analysis (PCA) 23 for data compression; the PCA 145 

scores are then used as input variables for a support vector machine (SVM) classifier 24. The 146 

SVM classifier was based on a radial basis function (RBF) kernel which is used to transfer the 147 

data to a feature space by means of a non-linear discriminant criterion; a linear decision surface 148 

http://trevisanj.github.io/irootlab/
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is then constructed in this feature space to separate the classes analysed 25. Both PLS-DA and 149 

PCA-SVM were optimized using cross-validation venetian blinds in a “leave one patient out” 150 

fashion (10 splits with 1 sample per split). GA-LDA was optimized using an external validation 151 

data set having half of the samples of the test set. The algorithm was applied three times, using 152 

100 generations with 200 chromosomes, and the best model was selected. Crossover and 153 

mutation probabilities were set to 60% and 10%, respectively. 154 

 In order to study the differences at specific wavenumbers, we implemented a simple 155 

approach, namely difference-between-means (D-B-M) spectra, which subtracts the mean 156 

spectra from a reference class (i.e., healthy controls). A peak-detecting algorithm was then used 157 

to denote six of the most differentiating peaks. 158 

2.4 Availability of data 159 

 160 

 All data (raw and pre-processed spectra) along with appropriate code identifiers have 161 

been uploaded onto the publicly accessible data repository Figshare 162 

(https://figshare.com/articles/Potential_of_mid-infrared_spectroscopy_as_a_non-163 

invasive_diagnostic_test_for_endometrial_or_ovarian_cancer_in_urine/5929516).  164 

2.5 Statistical analysis 165 

 166 

The classification performance of the chemometric algorithms was evaluated according 167 

to the accuracy, sensitivity and specificity on the test set. The accuracy (AC) represents the 168 

number of samples correctly classified considering true and false negatives; sensitivity (SENS) 169 

and specificity (SPEC) measure the proportion of positives and negatives that are correctly 170 

identified, respectively 26. These parameters are calculated as follows: 171 

AC(%) = (
TP+TN

TP+FP+TN+FN
) × 100         (3) 172 

https://figshare.com/articles/Potential_of_mid-infrared_spectroscopy_as_a_non-invasive_diagnostic_test_for_endometrial_or_ovarian_cancer_in_urine/5929516
https://figshare.com/articles/Potential_of_mid-infrared_spectroscopy_as_a_non-invasive_diagnostic_test_for_endometrial_or_ovarian_cancer_in_urine/5929516
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SENS(%) = (
TP

TP+FN
) × 100           (4) 173 

SPEC(%) = (
TN

TN+FP
) × 100          (5) 174 

where TP stands for true positive, TN for true negative, FP for false positive and FN for false 175 

negative. 176 

The peaks that were responsible for the differentiation after the D-B-M spectra 177 

approach, were imported into GraphPad Prism 7 (GraphPad Software, Inc., La Jolla, CA, 178 

92037, USA) to conduct statistical analyses and calculate the P-values. Differences between 179 

the two groups (i.e., healthy vs cancer) were assessed using a Student’s t-test (two-tailed, non-180 

parametric, Mann-Whitney test, 95% confidence interval). The data were expressed as the 181 

mean ± standard deviation (SD). A P-value of 0.05 or less was considered significant. 182 

3. Results 183 

3.1 Segregation between cancer patients and controls 184 
 185 

All spectra were pre-processed before comparison of the cancer patients with the 186 

healthy controls. Supplementary Fig. 1A shows the average pre-processed spectra for each 187 

class. The most discriminatory peaks for the comparison between endometrial cancer and 188 

healthy women were: 1593 cm-1 (P <0.0001, 95% CI = -0.0179 to -0.012), 1508 cm-1 (P 189 

<0.0001, 95% CI = 0.0038 to 0.0103), 1462 cm-1 (P <0.0001, 95% CI = -0.0115 to -0.0058), 190 

1400 cm-1 (P <0.0001, 95% CI = 0.0107 to 0.0161), 1335 cm-1 (P <0.0001, 95% CI = 0.0053 191 

to 0.0093), 1041 cm-1 (P <0.0001, 95% CI = 0.0063 to 0.0118) (Supplementary Fig. 1B). Fig. 192 

1 shows the differences in the absorbance of the above-mentioned peaks; a general increase 193 

was denoted in the endometrial cancer patients with the exception of the peaks at 1593 cm-1 194 

and 1462 cm-1 which showed decreased levels. The means and SD values for these peaks were: 195 

1593 cm-1 (mean/SD for healthy: 0.18/0.011; mean/SD for cancer: 0.164/0.0098), 1508 cm-1 196 

(mean/SD for healthy: 0.0445/0.0115; mean/SD for cancer: 0.0506/0.0104), 1462 cm-1 197 
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(mean/SD for healthy: 0.0958/0.0151; mean/SD for cancer: 0.0833/0.0064), 1400 cm-1 198 

(mean/SD for healthy: 0.0509/0.007; mean/SD for cancer: 0.0645/0.0095), 1335 cm-1 199 

(mean/SD for healthy: 0.0237/0.0053; mean/SD for cancer: 0.0315/0.007), 1041 cm-1 200 

(mean/SD for healthy: 0.0286/0.0083; mean/SD for cancer: 0.0383/0.0109). 201 

The peaks responsible for differentiation between healthy and ovarian cancer patients 202 

were: 1597 cm-1 (P <0.0001, 95% CI = -0.0173 to -0.0114), 1508 cm-1 (P <0.0001, 95% CI = 203 

0.0038 to 0.0103), 1408 cm-1 (P <0.0001, 95% CI = 0.0102 to 0.0149), 1373 cm-1 (P <0.0001, 204 

95% CI = 0.0076 to 0.0122), 1231 cm-1 (P <0.0001, 95% CI = 0.0042 to 0.0074), 1041 cm-1 (P 205 

<0.0001, 95% CI = 0.0063 to 0.0118) (Supplementary Fig. 1B). Similarly, to endometrial 206 

cancer, the majority of the peaks showed increased absorbance when cancer was present, apart 207 

from the peak at 1597 cm-1 (Fig. 2). Means and SD values for each of the abovementioned 208 

peaks were: 1597 cm-1 (mean/SD for healthy: 0.18/0.0104; mean/SD for cancer: 0.166/0.0098), 209 

1508 cm-1 (mean/SD for healthy: 0.0445/0.0115; mean/SD for cancer: 0.0506/0.0104), 1408 210 

cm-1 (mean/SD for healthy: 0.0548/0.0067; mean/SD for cancer: 0.0676/0.0085), 1373 cm-1 211 

(mean/SD for healthy: 0.0326/0.0075; mean/SD for cancer: 0.0427/0.0085), 1231 cm-1 212 

(mean/SD for healthy: 0.0198/0.0079; mean/SD for cancer: 0.0256/0.0079), 1041 cm-1 213 

(mean/SD for healthy: 0.0286/0.0083; mean/SD for cancer: 0.0383/0.0109). 214 

3.1 Classification algorithms to calculate diagnostic accuracy 215 

All classification algorithms (PLS-DA, PCA-SVM and GA-LDA) were applied to the 216 

data after the same pre-processing (cut to the bio-fingerprint region [1800-900 cm-1], 217 

rubberband baseline correction and vector normalisation). 218 

PLS-DA was employed to differentiate healthy, endometrial and ovarian cancer 219 

samples using 10 latent variables (LVs), accounting for 96.02% of cumulative variance (Fig. 220 

3A). The number of LVs was selected according to the lowest error of cross-validation (15.4% 221 
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for healthy; 16.2% for endometrial cancer; and 12.5% for ovarian cancer) and maximum 222 

explained variance (96.02%). PLS-DA loadings are shown in Fig. 3B, where the first three LVs 223 

have higher coefficients at ~1041 cm-1, ~1082 cm-1, ~1462 cm-1, ~1547 cm-1, ~1589 cm-1 and 224 

~1670 cm-1. The predicted classes for each sample spectrum analysed by PLS-DA are shown 225 

in Fig. 3C (healthy), 3D (endometrial cancer) and 3E (ovarian cancer), where a degree of 226 

superposition is observed among the three classes. Only the ovarian cancer dataset showed 227 

clearer separation from the other two classes. 228 

 PCA-SVM was performed using 10 principal components (PCs), accounting for 229 

97.33% of cumulative variance (Fig. 4A). The PCA loadings (Fig. 4B) had higher coefficients 230 

in regions very similar to PLS-DA: ~1042 cm-1, ~1090 cm-1, ~1130 cm-1, ~1462 cm-1, ~1508 231 

cm-1, ~1543 cm-1, ~1589 cm-1 and ~1667 cm-1. The predicted classes for each sample are shown 232 

in Fig. 4C (healthy), 4D (endometrial cancer) and 4E (ovarian cancer). In comparison to PLS-233 

DA, Fig. 4 C-E shows a clearer separation among the classes, with only a few samples being 234 

misclassified. 235 

 GA-LDA classified healthy, endometrial and ovarian cancer with a fitness of 1.53 (Fig. 236 

5A). The GA-LDA discriminant function (DF) plot for the three classes is shown in Fig. 5B 237 

with clear segregation between the three classes. A total of 20 variables showed differences 238 

between the three classes: 922 cm-1, 972 cm-1, 1007 cm-1, 1011 cm-1, 1018 cm-1, 1045 cm-1, 239 

1049 cm-1, 1061 cm-1, 1084 cm-1, 1265 cm-1, 1362 cm-1, 1366 cm-1, 1400 cm-1, 1412 cm-1, 1500 240 

cm-1, 1535 cm-1, 1562 cm-1, 1566 cm-1, 1682 cm-1 and 1716 cm-1 (Fig. 5B). 241 

 Table 1 shows the classification rates achieved by the three algorithms, with PCA-SVM 242 

being superior. Both accuracy and sensitivity values for PCA-SVM model ranged from 92.5% 243 

(healthy) to 100% (ovarian cancer); and specificity ranged from 96.3% (ovarian cancer) to 244 

100% (endometrial cancer). GA-LDA had accuracy ranging from 90.0% (endometrial cancer) 245 
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to 98.3% (ovarian cancer); sensitivity ranging from 70.0% (endometrial cancer) to 100% 246 

(healthy/ovarian cancer); and specificity ranging from 87.5% (healthy) to 100% (endometrial 247 

cancer). PLS-DA was the worst model as only the ovarian cancer data set had quality 248 

parameters as good as the other algorithms. Accuracy ranged from 57.5% (endometrial cancer) 249 

to 92.5% (ovarian cancer); sensitivity ranged from 62.5% (endometrial cancer) to 87.5% 250 

(ovarian cancer); and specificity ranged from 86.3% (healthy) to 90% (ovarian cancer). The 251 

classification rates for the training and test sets using all three algorithms are shown in 252 

Supplementary Table 1. 253 

4. Discussion 254 

 255 

The wavenumbers that were mostly responsible for segregation between the different 256 

classes could facilitate as potential diagnostic biomarkers. In endometrial cancer patients the 257 

majority of the IR bands, associated with proteins and nucleic acids, were increased in 258 

comparison to healthy individuals. This could potentially be due to an elevated concentration 259 

of biomolecules, previously suggested as biomarkers for endometrial cancer, such as human 260 

epididymis protein 4 (HE4), CA-125 or carcinoembryonic antigen (CEA) 7, 27, 28; the increased 261 

level of nucleic acid may be caused by the unconstrained proliferation of cells. Only two out 262 

of the six discriminatory peaks were lower in the cancer cases; these were attributed to C-C 263 

vibrations of phenyl rings of proteins (~1593 cm-1, Amide II) and CH2 vibrations of lipids 264 

(~1462 cm-1). These results could be potentially explained by a number of possible reasons. 265 

For instance, preceding research has demonstrated a simultaneous increased degradation of 266 

proteins as well as a decreased protein synthesis during cancer cachexia 29. Another study 267 

demonstrated decreased expression of follicle-stimulating hormone (FSH) in endometrial 268 

cancer patients when these were compared to healthy controls 30. The same study also showed 269 

decreased levels of matrix metalloproteinases (MMP), which is a family of enzymes implicated 270 
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in normal and pathological processes, and previously suggested as novel biomarkers and/or 271 

therapeutic targets in human cancer 31. Also, apolipoprotein-1 (ApoA-1), prealbumin (TTR) 272 

have also been shown to be decreased in endometrial cancer patients 7. 273 

With regards to the decrease in the lipid region of endometrial cancer cases, previous 274 

work may again justify the results of the current study. After studying a number of lipids in 275 

urine, Skotland et. al revealed that increased and/or decreased levels of molecular lipids could 276 

be used as non-invasive biomarkers for prostate cancer with high levels of diagnostic accuracy. 277 

Therefore, similar conclusions could possibly be extrapolated to endometrial cancer 32. 278 

Previous research has also suggested that lipids, and specifically cholesterol, were lower in 279 

blood samples of endometrial cancer than controls 33; this might explain the lower absorbance 280 

in the lipid region (~1462 cm-1) of endometrial cancer patients. More recent studies have further 281 

confirmed the increased risk of low cholesterol concentration in other types of cancer as well, 282 

such as lung, prostate or colon 34, 35. 283 

When we compared ovarian cancer patients with healthy controls, the discriminatory 284 

peaks were mainly attributed to proteins and nucleic acids. Increased levels of these 285 

biomolecules were observed in cancerous samples with an exemption of a peak 1597 cm-1 286 

which was assigned to C-C phenyl ring of proteins. Continuous research has previously shown 287 

that a cancer biomarker can be either upregulated or downregulated. After reviewing several 288 

biomarkers, a total of 111 were found significantly altered between ovarian cancer and controls, 289 

with ~60% of them being elevated in cancer and ~40% decreased 36. Some of the biomarkers 290 

showing lower levels in cancerous state are, for instance, ApoA-1, FSH, microtubule-291 

associated protein 1 light chain 3 (LC3) and epidermal growth factor receptor (EGFR) 6, 37, 38. 292 

Therefore, this may explain the observed decrease in the Amide II region. On the contrary, 293 

increased peaks could potentially be attributed to other established biomarkers such as HE4, 294 

previously found to be increased in urine samples of ovarian cancer patients, CA-125, cancer 295 
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antigen 15-3 (CA15-3) and others 6, 39. A relatively recent study, also demonstrated increased 296 

levels of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) when urine samples from 297 

ovarian cancer patients were analysed 40. 298 

 Three classification algorithms were employed to calculate the diagnostic accuracy 299 

with which spectroscopy identified endometrial and ovarian cancer. The optimal approach was 300 

PCA-SVM which identified endometrial cancer with 95% sensitivity and 100% specificity 301 

(95% accuracy) and ovarian cancer with 100% sensitivity and 96.3% specificity (100% 302 

accuracy), which are exceptionally high in comparison to conventional molecular and imaging 303 

methods. 304 

Previously, numerous studies have investigated blood biomarkers as a relatively non-305 

invasive approach towards diagnosis of endometrial cancer. A study using serum HE4 yielded 306 

sensitivity of 45.4% and 95% sensitivity 41; another study developing a multimarker panel for 307 

the early detection of endometrial cancer suggested that prolactin could be used as an accurate 308 

biomarker with sensitivity and specificity of ~98% 30 . Combination of three different 309 

biomarkers (ApoA-1, prealbumin and transferrin) distinguished normal samples from early-310 

stage endometrial cancers with 71% sensitivity and 88% specificity, as well as normal samples 311 

from late-stage cancer with 82% sensitivity and 86% specificity 7. After reviewing 13 studies, 312 

Timmermans et. al., showed that ultrasonography achieved sensitivity and specificity of 90-313 

98% and 35-54%, respectively 42. Magnetic resonance imaging (MRI) has been shown to detect 314 

early and advanced endometrial cancer with high sensitivity (87-100%) and specificity (90-315 

99%) but stage Ic and stage II disease had significantly reduced sensitivity (19-56%) whereas 316 

specificity remained high (86-96%) 43.  317 

Currently, molecular tests measuring serum CA-125 for ovarian cancer, achieve 318 

sensitivity of only 50-60% for early-stage disease and specificity of >95% 6, 44. Moreover, 319 
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transvaginal ultrasound (TVS), computed tomography (CT), MRI and power Doppler are of 320 

high-cost and achieve sensitivity <90% for early ovarian cases and relatively high false positive 321 

results which render them less useful for screening 6. Combination of different biomarkers has 322 

been shown to achieve higher sensitivity and specificity values. For example, two combinations 323 

of serum biomarkers for ovarian cancer are CA-125, CA 72-4, CA 15-3 and macrophage 324 

colony-stimulating factor (M-CSF) 45, as well as CA-125, ApoA-1, a truncated form of 325 

transthyretin and a cleavage fragment of inter-alpha-trypsin inhibitor heavy chain H4 46; the 326 

above-mentioned combinations of biomarkers improved sensitivity and specificity to 70-73% 327 

and 97-98%, respectively. Even though the improved accuracy is acceptable, there is still room 328 

for improvement. A different study found that a blood-based assay of 11 analytes could 329 

distinguish ovarian cancer from benign case with sensitivity and specificity of 90% 37. 330 

However, an important drawback of molecular methods is their expense and laborious sample 331 

preparation and analysis, in contrast to spectroscopic methods which are rapid and label-free. 332 

5. Conclusion 333 

 334 

This pilot study demonstrates the efficacy of ATR-FTIR spectroscopy in detecting 335 

endometrial and ovarian cancers in urine samples, with high levels of accuracy. Being rapid, 336 

non-destructive and at the same time cost-effective, spectroscopy is introduced as an ideal 337 

method for studying these types of cancer and could potentially be translated into clinical 338 

practise in the future as either a screening or diagnostic test. An adequately powered study will 339 

be required to demonstrate the true diagnostic accuracy and validate these preliminary results. 340 

Furthermore, the quick and non-invasive nature of urine collection and subsequent analysis has 341 

the potential of a preferable vehicle for repeated measurements, thus facilitating monitoring of 342 

disease progression/regression/recurrence or even therapeutic response. 343 
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 441 

Figure Legends 442 

 443 

Figure 1: Analysis of the top six discriminatory peaks between healthy controls and 444 

endometrial cancer patients. 445 

Figure 2: Analysis of the top six discriminatory peaks between healthy controls and ovarian 446 

cancer patients. 447 

Figure 3: Cumulative explained variance using PLS-DA (A); PLS-DA loadings on LV1, 2 and 448 

3 (B); predicted healthy class versus endometrial and ovarian cancer (C); predicted endometrial 449 

cancer class versus healthy and ovarian cancer (D); predicted ovarian cancer class versus 450 

healthy and endometrial cancer (E). Class measured 1 = healthy control; 2 = endometrial 451 

cancer; 3 = ovarian cancer. LV: Latent Variable. 452 

Figure 4: Cumulative explained variance using PCA (A); PCA loadings on PC1, 2 and 3 (B); 453 

predicted probability of healthy class versus endometrial and ovarian cancer (C); predicted 454 

probability of endometrial cancer class versus healthy and ovarian cancer (D); predicted 455 

probability of ovarian cancer class versus healthy and endometrial cancer (E). Class measured 456 

1 = healthy control; 2 = endometrial cancer; 3 = ovarian cancer. PC: Principal Component. 457 

Figure 5: Fitness function (A); Discriminant Function (DF) plot (B); and selected variables by 458 

GA-LDA (C). 459 


