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Abstract: Connexins (Cxs) and pannexins (Panxs) are ubiquitous membrane channel forming proteins
that are critically involved in many aspects of vascular physiology and pathology. The permeation
of ions and small metabolites through Panx channels, Cx hemichannels and gap junction channels
confers a crucial role to these proteins in intercellular communication and in maintaining tissue
homeostasis. This review provides an overview of current knowledge with respect to the
pathophysiological role of these channels in large arteries, the microcirculation, veins, the lymphatic
system and platelet function. The essential nature of these membrane proteins in vascular homeostasis
is further emphasized by the pathologies that are linked to mutations and polymorphisms in Cx and
Panx genes.

Keywords: connexin; pannexin; vascular physiology; vascular disease

1. Introduction

The cardiovascular system consists of the heart pumping the blood to a closed circuit of
interconnected blood vessels, allowing for the indispensable and constant supply of O2 and vital
nutriments to every single tissue throughout the human body. The blood contains components, such as
coagulation factors and platelets, that are essential to keeping the cardiovascular circuit closed after
injury by initiating haemostasis and formation of a platelet clot. The systemic circulation is composed
of large elastic arteries such as the aorta, serving as high-pressure conduits for the blood to smaller
muscular arteries and arterioles. Arterioles are resistance arteries controlling blood flow into capillary
beds by their high vasodilatory and vasoconstrictive ability. In the capillary beds, the actual exchange
of O2/CO2, nutriments, catabolites and fluid takes place between the blood and the surrounding tissue.
The blood returns to the heart via venules and veins. The excess of interstitial fluid returns to the
systemic circulation via lymphatics, a blind-ended system of lymphatic capillaries converging into
collecting vessels and ending into the subclavian vein. Much evidence has demonstrated an important
role for connexins (Cxs) and pannexins (Panxs) in many aspects of vascular physiology and pathology.
In this review, we will focus on the role of Cxs and Panxs in the physiology/pathophysiology of the
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vascular system by systematically following the route of the blood from the left ventricle through the
systemic circulation to its way back to heart.

2. Connexins and Pannexins

Cxs belong to a family of 20 to 21 proteins expressed in a wide variety of tissues [1]. Cx genes
are separated into 5 subfamilies according to their sequence homologies [2]; most cardiovascular
Cxs are found in the α subfamily (for instance, GJA4). The names of Cx proteins, on the other hand,
are determined by their specific molecular weight in kDa (for instance, Cx37). Structurally, Cxs
comprise 4 α-helical transmembrane domains (TM1–TM4) and two extracellular loops (EL1 and EL2)
that are highly conserved among the family members. Substantial differences among Cxs, both in
length and composition, are found in their cytoplasmic amino-terminal (NT) and carboxy-terminal (CT)
parts, as well as in the intracellular loop (IL). The synthesis of Cxs occurs in the endoplasmic reticulum
(ER) and their oligomerization in the ER/Golgi or trans-Golgi network results in the formation of
hexameric connexons [3,4]. Then, connexons traffic to the plasma membrane along microtubules.
When the membranes of two cells are in close proximity, connexons from one cell can connect with
their corresponding parts in the adjacent cell and form gap junction channels, which permit the
intercellular exchange of ions and metabolites up to ~1kDa. Connexons are normally closed but may
operate in a pathological setting as hemi-channels enabling the transmembrane passage of Ca2+, ATP
and glutamate for instance [5,6]. Cx channel gating is critically regulated by a number of factors,
including voltage, pH and Ca2+ and post-translational modifications such as phosphorylation [7,8].
The “connexin interactome”, a protein interacting network with the Cx as central mediator [9,10],
has been receiving increasing attention in recent years. For example, an interacting complex of gap
junctions, desmosomes and Na+ channels that cooperate to control excitability, electrical coupling
and intercellular adhesion are found at intercalated discs in the heart [10,11]. The plethora of diseases
associated with mutations and polymorphisms in Cx genes further underlines the crucial role of these
structures in tissue homeostasis [12,13].

Pannexins (Panxs) represent a smaller family of 3 transmembrane proteins (Panx1–3) exhibiting a
topology similar to Cxs but no sequence homology [14–16]. The glycosylation of specific sites in the ELs
of Panx1 and Panx3 likely prevents docking of pannexons [16,17], and it is presumed that pannexons act
as single-membrane channels connecting the cytoplasm to the extracellular compartment. While Panx2
and Panx3 display a rather limited expression pattern (central nervous system for Panx2 and bones
and skin for Panx3), Panx1 shows a ubiquitous expression pattern and is thus also found in vascular
cells. Similar to Cx hemi-channels, pannexons serve as “communication channels” by permitting
the release of small molecules, for instance purines, that subsequently signal via the activation of
membrane receptors in neighboring cells or even at distance. An important difference between Cx
hemi-channels and Panx channels is that the latter can be opened at physiological membrane potential
and physiological intra- and extra-cellular Ca2+ concentration by, for example, mechanical stretching
or upon activation of purinergic P2 receptors [18]. Instead, Cx hemi-channels only become functional
under conditions associated with pathologies such as hypoxia or ischemia and will be only briefly
mentioned in this review. Excellent reviews on Cx hemi-channels have been published recently [19–21].

3. Role of Cxs and Panxs in Distributing Arteries and Atherosclerosis

The largest distributing arteries are elastic vessels, which allows them to receive a high and
pulsatile pressure from the heart. The elastic properties of the distributing vessels further contribute to
the so-called Windkessel effect, transforming a pulsatile flow at the entry into a constant flow at the level
of the capillaries. The aorta, pulmonary trunk, carotids as well as the illiac and subclavian arteries are all
examples of elastic arteries. As elastic arteries have such fundamental roles in the vascular physiology,
any pathology affecting the function of these vessels by inducing a stiffening of their wall may exert
dramatic effects on the supply of vital substances to organs. Atherosclerosis principally impacts
on large and medium-sized arteries and is the leading cause of mortality worldwide [22]. In brief,
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the pathogenesis of the disease initiates with the dysfunction of endothelial cells (ECs) characterized by
expression of adhesion molecules, secretion of chemokines and increased permeability to low-density
lipoproteins (LDL), which will subsequently accumulate in the sub-endothelial space where they get
oxidized. The expression of adhesion molecules and secretion of chemokines promotes the entry of
inflammatory cells such as monocytes, T lymphocytes and neutrophils into the intimal layer [23,24].
After their infiltration into the intima, monocytes differentiate into macrophages that will take up
oxidized LDL and convert it into foam cells. Inflammatory cells secrete metalloproteinases that degrade
extracellular matrix (ECM), as well as growth factors stimulating the proliferation and migration of
smooth muscle cells (SMCs) from the media to the intima. Intimal SMCs synthesize collagen and their
further proliferation eventually leads to the formation of a fibrous cap segregating the necrotic core of
the plaque from the luminal blood flow. Plaques with a large necrotic core, a thin fibrous cap, many
inflammatory cells and a few SMCs display increased propensity to rupture [25]. Upon rupture, ECM
and tissue factor (TF) present in atherosclerotic lesions are exposed to the bloodstream, which initiates
a coagulation cascade leading to the formation of a fibrin monolayer covering the site of injury [26,27].
In parallel, the activation of platelet receptors by atherosclerotic plaque components leads to platelet
activation and aggregation [26]. If platelet aggregation is not limited, thrombus formation may
compromise the arterial lumen and provoke acute ischemic events such as myocardial infarction
and stroke.

3.1. Connexins and Atherosclerotic Disease

The integrity of the endothelial barrier is warranted by various types of endothelial junctions
including gap junctions [28]. During atherosclerotic plaque development pro-inflammatory molecules
induce a progressive deterioration of EC junctions and an increase in endothelial permeability.
ECs are, for instance, responsive to TNF-α, which induces the expression of adhesion molecules
and inflammatory cell recruitment. It has been shown that treating ECs with TNF-α dampens the
expression of some Cxs, in particular Cx37 and Cx40, suggesting a possible implication of Cxs in
the pathogenesis of atherosclerosis [29]. Moreover, increased vascular permeability is associated
with an elevation of Cx43 expression in ECs [30,31]. The first support for the hypothesis that
Cxs may participate in the development of atherosclerotic disease came from studies analyzing
atherosclerotic lesions at different disease stages in specimen of human, rabbit or mouse origin.
In summary, it has been reported that Cx43 was generally absent in ECs of large arteries, but
that its expression was induced in ECs at the shoulder region of advanced atherosclerotic plaques,
a localization known to experience disturbed blood flow [32]. In addition, high expression of Cx43
was found in macrophages and SMCs of young atherosclerotic lesions, whereas Cx43 levels were
downregulated in SMCs of more mature plaques [32–35]. Interestingly, the oxidized phospholipid
derivative 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) has been shown to
decrease Cx43 expression in SMCs, to increase its phosphorylation, and to promote SMC proliferation
in vitro and in vivo in a mouse model of atherosclerosis [36]. Besides Cx43, the expression patterns of
Cx37 and Cx40 have also been reported to be affected during atherosclerotic plaque development in
humans and in mice [32]. In fact, Cx40 and Cx37 expression was abolished in ECs covering advanced
plaques, while Cx37 levels were increased in foam cells. Moreover, long-term hypercholesterolemia in
mice decreased Cx37 and Cx40 expression in aortic ECs. Interestingly, this outcome could be reversed
exclusively for Cx37 by a one-week treatment with simvastatin, a well-known lipid-lowering drug [37].
Collectively, these observations support the idea that Cxs expression or their post-translational
modifications might evolve in atherosclerotic plaques over time, depending on the stage of the
lesion, and might thus affect atherogenesis.

As the ubiquitous deletion of Cx43 is lethal [38], Cx43+/− mice were crossed with atherosclerosis-
prone LDL receptor-deficient (Ldlr−/−) mice and fed a high cholesterol diet to study atheroma
formation. These initial studies revealed that Cx43 has an overall atherogenic effect, and that reducing
Cx43 might be beneficial by both reducing plaque burden as well as stabilizing the lesions [39].



Int. J. Mol. Sci. 2018, 19, 1663 4 of 23

However, the exact scenario by which global reduction in Cx43 ultimately led to this dual benefit was
unclear, due to Cx43 expression in multiple atheroma-associated cell types. To examine specifically the
role of Cx43 in immune cells, Ldlr−/− mice were lethally irradiated and reconstituted with Cx43+/+,
Cx43+/− or Cx43−/− hematopoietic fetal liver cells [40]. Intriguingly, the progression of atherosclerosis
was lower in Cx43+/− chimeras compared with Cx43+/+ and Cx43−/− chimeras, and their plaques
contained fewer neutrophils. It turned out that chemoattraction of neutrophils, which did not
themselves express Cx43, was reduced in response to supernatant secreted by Cx43+/− macrophages
in comparison with the ones of Cx43+/+ and Cx43−/− macrophages. Thus, titration of Cx43 levels in
macrophages might regulate their chemoattractant secretion, leading to reduced atherosclerosis [40].
Recently, it was shown that an upregulation of Cx43 expression in human umbilical vein ECs resulted
in enhanced adhesion of monocytes via a mechanism involving increased vascular adhesion molecule-1
and intercellular cell adhesion-1. This effect was independent from the expression of other Cxs such as
Cx37 and Cx40 [41].

In contrast to Cx43, Cx40 expression has been reported to protect against atherosclerosis in mice
by synchronizing endothelial anti-inflammatory signaling thus inhibiting leukocyte recruitment to the
atherosclerotic lesion [42]. Interestingly, Cx40 expression is induced in arterial ECs by high laminar
shear stress, as normally observed in straight parts of arteries that are known to be protected from
atherosclerosis [43]. IκBα, a member of a protein complex inhibiting the activation of the transcription
factor NFκB, was recently identified as a binding partner of Cx40-CT. The Cx40 interactome may be
relevant for the control of NFκB activation in arterial ECs and the initiation of atherogenesis [43].

Deletion of Cx37 has been shown to promote atheroma formation in atherosclerosis-susceptible
apolipoprotein E-deficient (Apoe−/−) mice. Mechanistically it was demonstrated that Cx37
hemichannels in monocytes modulate the initial steps of atherosclerosis by regulating their adhesion
to the endothelium [44]. Even in later stages of the disease, Cx37 deletion also reduced the stability of
shear stress-induced atherosclerotic plaques in Apoe−/− mice by increasing macrophage contents of
the advanced plaques [45]. As the Cx37-CT directly binds to the NO reductase domain of endothelial
nitric oxide synthase (eNOS), thereby influencing the function of the enzyme and NO production [46],
absence of Cx37 in ECs covering the atherosclerotic lesion may contribute to the dysfunctionality of
these cells. Of note, a single nucleotide polymorphism (SNP) in the human Cx37 gene (Cx37 1019C > T)
associates with an increased risk for coronary artery disease, myocardial infarction, stroke and
peripheral artery disease [47]. This Cx37 1019C > T SNP results in a non-conservative Proline-to-Serine
substitution in the CT of Cx37 and appeared to have a significant impact on channel function
under basal and phosphorylating conditions [46,48,49]. When transfected in HeLa or N2A cells,
both polymorphic channels are efficiently transported to the cell membrane, where they may function
both as hemi-channels and gap junction channels; however, the unitary conductance of channels
formed by the Cx37-Proline isoform appeared 1.5 times larger than the one of the Cx37-Serine
isoform [48]. In addition, it was shown that monocytic cells expressing Cx37-319P were markedly
less adhesive than cells expressing Cx37-319S. Thus, Cx37-319P polymorphic hemi-channels may
function as a protective genetic variant by specifically retarding recruitment of monocytes to human
atherosclerotic lesions [44].

Altogether, these studies revealed important and diverse contribution of vascular Cxs to the
development of atherosclerosis. Before we may consider Cx-based strategies to fight atherosclerotic
disease, more work is needed to discriminate between beneficial effects of reduction of (hemi-) channel
function and alteration of the Cx interactome of atherogenesis. Moreover, it remains to be determined
whether Cxs may play a role in the mechanisms linked to plaque regression.

3.2. Panx1 and Atherosclerosis

As illustrated in the next section, Panx1 channels are important regulators of microvascular
physiology, mostly through their capacity to release purines, including ATP [50,51]. As such, Panx1
channels were long time hypothesized to play a role in atherosclerotic disease via their effects on
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inflammasome activation, neutrophil and macrophage chemotaxis and the activation of T cells [52].
Moreover, Panx1 may play a potential role in macrophage apoptosis and clearance from atherosclerotic
lesions by allowing the release of “find me” signals from apoptotic cells to recruit phagocytes at the
initial steps of programmed cell death [53–55]. Examination of Panx1 expression in carotid arteries
of Apoe−/− mice fed with high cholesterol diet revealed Panx1 in the arterial endothelium and in
macrophage foam cells in atherosclerotic lesions, and confirmed its absence in the SMCs of the media
in these large arteries [56] (Figure 1).

Figure 1. Panx1 expression in healthy and atherosclerotic arteries. (A) Panx1 (in green) is expressed in
ECs (arrowheads) separating the arterial wall from the lumen (L) of a healthy mouse carotid artery;
(B) Panx1 is found in lipid-laden macrophages (asterisks) present in atherosclerotic lesions. Of note,
Panx1 is absent from the SMC-rich media of non-diseased and diseased conduit arteries. Nuclei are
stained with DAPI (in blue) and elastic laminae are counterstained with Evans Blue (in red). Scale bar
represents 25 µm.

To investigate the potential contribution of Panx1 in endothelial and monocytic cells to
atherosclerosis, mice with a conditional deletion of Panx1 were generated. Atherosclerotic lesion
development in response to high cholesterol diet was enhanced in Tie2-CreTgPanx1fl/flApoe−/− mice
as compared to Panx1fl/flApoe−/− controls, pointing to a protective role for Panx1 in endothelial
and/or monocytic cells in atherosclerosis. Unexpectedly, atherogenesis was not altered in mice with
ubiquitous Panx1 deletion (Panx1−/−Apoe−/−), but these mice displayed reduced body weight, serum
cholesterol, triglycerides (TG) and free fatty acids (FFA), suggesting altered lipid metabolism in mice
with ubiquitous Panx1 deletion. As it is well known that lowering serum cholesterol and TG levels
protects against atherosclerosis in human, it was hypothesized that the lack of effect of ubiquitous
deletion of Panx1 on the extent of atherosclerosis may be explained by simultaneous opposite effects
of Panx1 on lipid metabolism and inflammation. Interestingly, Panx1-deficient mice show impaired
lymphatic function [56] (see Section 6). Future work should unravel the mechanisms linking the
lymphatic system, lipid metabolism and atherosclerosis.

4. Coordination of Microvascular Function by Gap Junctions

The arterial vascular system supplies oxygen and nutrients to peripheral tissues by controlling
blood flow distribution through a complex network of vessels. Resistance to blood flow is a function of
the lumen diameter of the vessels, which depends on the degree of vascular smooth muscle constriction
(i.e., vasomotor tone). Most of the total resistance to blood flow resides on feed arteries and arterioles;
therefore, coordination of changes in vasomotor tone in the microvascular network plays a central role
in the regulation of blood flow distribution and arterial blood pressure [57].

The endothelium plays an essential role in the tonic control of vascular function by Ca2+-dependent
production of vasodilator signals such as NO and prostaglandins [58–60]. Although NO is the
primary endothelium-dependent vasodilator signal in large conduit vessels, the inhibition of NO
or prostaglandin production only attenuates the relaxation initiated by endothelium-dependent
vasodilators in small resistance arteries [61–63]. The NO- and prostaglandin-independent response
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observed in these arteries is associated with the hyperpolarization of SMCs, which leads to smooth
muscle relaxation by the consequent reduction in the open probability of L-type voltage-dependent Ca2+

channels. In addition to the complex EC signaling, the appropriate control of blood flow distribution
also relies on the direct cell-to-cell communication via gap junctions, which has emerged as a key
pathway to coordinate vascular wall function in resistance arteries by radial (among ECs and SMCs)
and longitudinal (along the vessel length) conduction of vasomotor signals [62,64–66].

4.1. Radial Conduction in the Vascular Wall

Gap junctions play a central role in the intercellular communication of the endothelium-generated
vasodilator signals. Although ECs and SMCs are physically separated by the internal elastic lamina
in resistance arteries, these cells can make contact through cell projections that penetrate the
internal elastic lamina and reach the other cell type at discrete points known as myoendothelial
junctions [62,67–69]. These points of contact appear to constitute highly specialized subcellular
signaling microdomains and gap junctions located at myoendothelial junctions (i.e., myoendothelial
gap junctions) provide a critical pathway for fine regulation of vasomotor responses through the radial
transmission of current, Ca2+ and small signaling molecules such as IP3 [68,70–72].

The endothelium-mediated NO-independent smooth muscle hyperpolarization was first
attributed to a diffusible factor released by ECs and, in consequence, this vasodilator signal was termed
endothelium-derived hyperpolarizing factor (EDHF) [61,62]. Several EDHF candidates have been
proposed, such as K+ ions [73], epoxyeicosatrienoic acids [74,75], hydrogen peroxide [76], and C-type
natriuretic peptide [77,78]. Although the NO-independent smooth muscle hyperpolarization is likely
to rely on a combination of these signals, depending on the vascular territory [61,79] and experimental
preparation used in the study [80], this vasodilator component is however typically paralleled
by the hyperpolarization of ECs [61,62]. In addition, it has been consistently observed that the
endothelium-dependent smooth muscle hyperpolarization is sensitive to simultaneous inhibition
of Ca2+-activated K+ channels (KCa) of small (SKCa) and intermediate (IKCa) conductance [61,63,81].
In the vessel wall, these K+ channels are only expressed in ECs [81,82], which prompted the proposal
that a prominent component of the EDHF signaling is the simple direct electrotonic transmission from
ECs to SMCs via myoendothelial gap junctions of a hyperpolarizing current initiated by SKCa and
IKCa activation [61,81,83–85]. In which case, the release of a diffusible factor is not consistent with
this signaling mechanism, which led to replacing the term abbreviated as EDHF with the expression
endothelium-derived hyperpolarization (EDH) [86]. Consistent with this notion, the contribution of
the EDH-mediated responses and the expression of myoendothelial gap junctions increase as the vessel
size decreases [87,88] and the EDH-associated vasodilator signaling has been shown to be attenuated or
abolished by the Cx-mimetic peptides 37,40Gap26, 40Gap27 and 37,43Gap27 [89,90]. These peptides are
homologous to specific domains of EL1 (Gap26) or EL2 (Gap27) and were designed to block channels
formed by Cx37 or Cx40 in the case of 37,40Gap26, Cx40 in the case of 40Gap27, and Cx37 or Cx43 in
the case of 37,43Gap27. In addition to these findings, EC-selective loading with antibodies directed
against the carboxyl-terminal region of Cx40 [91] or deletion of Cx40 specifically in ECs also leads
to a reduction in the EDH pathway [80], which highlight the functional relevance of this Cx in the
endothelial cell signaling and in the control of vasomotor tone.

Interestingly, a pool of eNOS is also found at myoendothelial junctions [92], which provide a
subcellular location that is coherent, not only with the vasodilator function of the enzyme, but also
with the intercellular signaling pathway of NO. Although the biophysical properties of NO are
compatible with the assumption that it can diffuse freely across cell membranes, blockade of gap
junction communication in mesenteric resistance vessels with 18β-glycyrrhetinic acid was shown to
prevent the NO transfer from ECs to SMCs and the associated NO-dependent vasodilation observed
in response to acetylcholine (ACh) [93], suggesting that myoendothelial gap junctions provide a
directional pathway for effective NO signaling in the wall of small arteries. The Cx isoforms involved
in the gap junction-mediated NO signaling have not been identified, but, as NO-induced relaxation
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is mediated by a reduction in the Ca2+ sensitivity of smooth muscle contractile machinery [94,95]
and EDH signaling decreases the intracellular Ca2+ concentration of SMCs [61,94], regulation of
myoendothelial gap junctions may play a pivotal role in the balance of these two complementary
vasodilator components.

4.2. Longitudinal Conduction of Vasomotor Responses

Control of peripheral vascular resistance and blood flow distribution is a dynamic process that
depends on coordination of changes in diameter between different segments and cellular elements
of the vascular resistance network [57,96]. Vasomotor signals generated in a short arteriolar segment
(100 µm) rapidly spread (<1 s) several millimeters along the vessel length without apparent delay,
demonstrating functional coupling between distal and proximal segments of the vasculature [97,98].
Therefore, longitudinal conduction of vasomotor signals endows the microvascular network with a
mechanism that is most likely to contribute to integrate function within the arteriolar network and
between arterioles and feed arteries [96,99,100]. Direct measurements of membrane potential indicate
that conducted vasomotor responses are associated with changes in the membrane potential of cells of
the vessel wall [97,101,102]. As gap junctions provide a low-resistance intercellular pathway between
ECs and SMCs, the conduction of vasomotor responses along the vessel length is thought to be the
result of electrotonic spread of changes in membrane potential generated at the stimulation site through
gap junctions connecting cells of the vessel wall [103,104]. Then, in the case of endothelium-dependent
vasodilators, such as ACh, the conduction of the vasodilation is thought to be the result of the
electrotonic spread along the vessel length of an EDH-initiated vasodilation [62,64,105]. In contrast,
in the case of vasoconstrictor signals, such as those activated by phenylephrine (PE), a depolarization
is conducted [101,106].

The cellular pathway of conducted vasomotor signals seems to depend on the cell type that
initiates the response, and vasoconstrictor responses activated by the stimulation of SMCs are
consistently conducted by SMCs [107,108]. In contrast, vasodilator signals have been shown to
spread either exclusively by the endothelium in feed arteries [97,109] or by both SMCs and ECs in
arterioles [107,108], which led to the proposal that the cellular pathway for conduction of vasodilations
depends on the functional location of the vessel in the microvascular network [66]. However,
the cellular pathway of vasodilator signals may also depend on the stimulus that initiated the response,
because, in contrast to ACh, selective damage of the endothelium blocked the vasodilation induced by
bradykinin in arterioles [104,108].

Conduction of vasomotor responses may be mediated by interaction of one or more of the five Cx
isoforms that are expressed in the vascular system: Cx32, Cx37, Cx40, Cx43, and Cx45 [100,110–112].
Although the contribution of each of these Cxs to the longitudinal coordination of the changes in
diameter has not been clearly determined, it has been consistently observed that global deletion of
Cx40 results in the development of an irregular arteriolar vasomotion and in a reduced spread of
vasodilator signals activated by ACh or bradykinin in feed arteries as well as in arterioles of the
cremaster muscle microcirculation [98,113,114]. In blood vessels of the mouse, the expression of
Cx40 is restricted to the endothelium [98,115,116], which raises an apparent disagreement with the
participation of SMCs in the conducted vasodilation in arterioles. However, the involvement of Cx40 in
the transmission of the EDH signaling may explain the detriment of the alternative conduction through
SMCs observed previously in response to ACh [80]. In addition, ablation of Cx40 is also associated
with a decrease in Cx37 expression and the development of a hypertension caused by a dysregulation
of renin production [98,99,114,116,117]. As with Cx40, the expression of Cx37 is also confined to ECs in
the vessel wall of mice [98,116], and then, the decline in Cx37-mediated communication in the absence
of Cx40 and the development of hypertension may contribute to the reduction in the conduction of
vasodilator signals observed in Cx40 knockout animals. Nevertheless, conducted vasodilator responses
are intact in Cx37 knockout mice [98] and in animals with an angiotensin-dependent hypertension
evoked by deletion of Cx40 in the renin-producing cells [116]. Furthermore, the disruption in the
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propagation of the response to endothelium-mediated vasodilators attained after global deletion
of Cx40 was also observed in EC-specific Cx40 knockout mice [116] and in animals expressing a
mutated Cx40 (Cx40A96S) that exhibits a substantially lower junctional conductance [116,118–120].
Although the mutation Cx40A96S causes a renin-dependent hypertension, as that observed with global
deletion of Cx40, the endothelial Cx37 levels are normal in these mice [116]. Therefore, these findings in
conjunction confirm the critical role of Cx40 in the control and coordination of microvascular function
by ECs.

5. Coordination of Microvascular Function by Pannexins

There are three different pannexin isoforms (Panx1, Panx2 and Panx3), with Panx1 being the
most ubiquitously expressed throughout the vasculature [121]. There are organ-specific circulations
where it appears that other Panx isoforms have been described, but their function has not yet
been described [121]. In general, Panx1 is expressed in endothelium throughout conduit and
microcirculation, whereas Panx1 is restricted to smooth muscle of resistance arteries, and is not
found in conduit smooth muscle [56,121]. Overall, much less is known about the Panxs (compared
with Cxs) in the microcirculation, likely due to their more recent discovery, the inherent problems
associated with the global Panx1 knockout mouse (e.g., compensation with up regulation of Panx3
throughout the vasculature [122], as well as other cell types [123]), and specific inhibitors for Panx1
that do not also block connexin-built gap junctions (e.g., [124]). However, there are exciting pieces of
data emerging using inducible cell type specific Panx1 knockout mice that have revealed phenotypes
that are fundamental to the microcirculation.

For example, multiple groups have now demonstrated that Panx1 and the α1-adrenergic
receptor (AR) are uniquely coupled in a signaling axis that can regulate vasoconstriction [125–129].
Either SMC-specific Panx1 deletion, or use of multiple Panx inhibitors, blunts noradrenaline and
PE mediated vasoconstriction of resistance arteries, but leaves other vasoconstriction pathways
intact [125,127–129]. This translates to a hypotensive blood pressure response by the mouse at periods
of highest sympathetic nerve activity (evening) [130]. Importantly, the Panx1-α1-AR signaling axis is
not observed in large conduit arteries (e.g., aorta or carotid), which is likely because Panx1 is absent
from conduit vessel smooth muscle [56,121], and sympathetic nerve innervation is very low.

The Panx1-α1-AR signaling axis also highlights a potent link between sympathetic nerves and
vasoconstriction that may be directly druggable for treatment of hypertension in humans (e.g., [127,129]).
Indeed, this was recently highlighted by the discovery of trovafloxacin and spironolactone being able to
work directly on Panx1 channels [127,131], as evidenced by electrophysiology, inhibiting ATP release,
and blunting of vasoconstriction. Spironolactone in particular has been used for decades as a potent
anti-hypertensive whose primary effect had been thought to be due to mineralcorticoid antagonism.
Other more specific mineralcorticoid antagonists failed to block the Panx1 channel, indicating that the
potent effect of spironolactone may be due to blocking both mineralcorticoids and Panx1.

The mechanism of α1-AR activation of Panx1 is still under investigation, although based on
previous work it is thought that Panx1 may be selectively regulated by receptor stimulation at the
intracellular loop [130]. The use of both peptides and amino acid mutagenesis have confirmed
the importance of this region [130]. However, there are likely other regions where Panx1 can be
regulated that are especially important in the vasculature. For example, NO potently inhibits Panx1
channels by S-nitrosylating amino acids cysteine 40 and cysteine 346 to prevent channel opening
and ATP release [132]. This could be an important mechanism for feedback on sympathetic nerve
vasoconstriction. How the cross-talk of several different post-translational modifications fit together to
regulate Panx1 channel gating properties will be important moving forward.

There are other more specific regions where Panx1 may play a role in the microcirculation. There is
no identified role yet for Panx1 in regulation of endothelial-mediated dilation, except in large conduit
vessels, which do have augmented responses to endothelial-induced vasodilation in global Panx1
knockout animals [133]. However, this effect is not seen in resistance arteries, and endothelial specific
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deletion of Panx1 has no effect on blood pressure [134]. Thus, it is not clear what exactly the augmented
endothelial mediated dilation in conduit arteries may mean physiologically at this point.

Panx1 utilization could also be considered vascular bed specific. For example, it has recently
been demonstrated that myogenic tone is attenuated in the cerebral circulation of EC-specific Panx1
knockout animals, but is not altered in the mesenteric circulation of the same animals [134]. The EC-
specific Panx1 knockout mice also had resistance to middle cerebral artery occlusion (stroke model).
SMC-specific Panx1 knockout animals did not have an attenuation of myogenic tone in the cerebral
or mesenteric circulation, and were not resistant to induction of stroke [134]. Thus, different vascular
beds may utilize Panx1 differently. It also highlights the importance of using cell type-specific Panx1
knockouts in order to properly identify phenotypes.

Besides regulation of blood pressure, among other important aspects of the microcirculation, it is
an important regulator of the acute inflammatory response. It was recently demonstrated that TNFα
stimulation activates Panx1 in the venous, but not the arterial microcirculation [135]. Interestingly,
TNFα (but not IL-1β) induced ATP release via Panx1, as demonstrated in cultured venous ECs,
as well as isolated murine veins, but not in any arterial EC or isolated arteries [135]. The effect of
the increased ATP release caused an increase in leukocytes that was Panx1 dependent as shown
by genetic deletion [135]. The effect of EC deletion of Panx1 has also recently been shown in
ischemia, with deletion of Panx1 inducing a significant decrease in leukocytes after occlusion of
the middle cerebral artery, lessening the overall impact of the ischemic response [136]. Recently,
this work was even further expanded to include ischemic models in the lung and kidney [137,138].
These exciting observations point to a central role for Panx1 in ECs regulating ischemia and the acute
inflammatory response.

Also, in the microcirculation, there has been significant attention paid to the possible role of
purinergic signaling from red blood cells (RBCs) to endothelium to induce vasodilation, especially
during hypoxia. It had been hypothesized that Panx1 on RBCs was the mechanism by which ATP
(or other purinergic signals) could leave the RBC, bind to purinergic receptors on endothelium,
and induce vasodilation. However, although Panx1 can be localized to RBCs [136], the role for ATP
coming from RBCs has recently been called into question, especially via activation of the channel by
cAMP/PKA [136,139]. Indeed, the mechanism for increased ATP may be lysis of the RBCs [136,139].
This highlights the need to be careful with measurement of ATP, which is an inconsistent and difficult
methodological technique. However, further questions that arise based on this potential heterocellular
communication between RBCs and endothelium include what the possible role of Panx1 on RBCs
would be if it was present, or if other signaling mechanisms besides cAMP could induce Panx1 channel
opening on RBCs.

6. Role of Connexins and Pannexins in Venous and Lymphatic Function

Apart from their role in inflammatory cell recruitment at the level of venules (see Section 5),
the function of Panxs and Cxs in larger veins is much less studied. Venous valves play a crucial role in
the systemic circulation, promoting the one-way movement of blood from peripheral veins towards
the heart and augmenting venous return. In humans, valvular dysfunction or (congenital) absence of
valves in large veins typically result in common venous disorders such a varicose veins and edema in
the legs. Three gap junction proteins, i.e., Cx37, Cx43, and Cx47, are expressed in ECs, covering venous
valves in a highly polarized fashion, with Cx43 on the upstream side of the valve leaflet and Cx37 on
the downstream side. Cx47 seems more restricted to a small subset of ECs in the venous valves [140].
Similar to earlier observations in the lymphatic vasculature [141,142] veins from Cx37-deficient mice
lack valves [140]. As Cx37 seems a crucial regulator of valve development in both veins and lymphatic
vessels, there may be common molecular pathways controlling valve development in these distinct
vessel types. Mechanistically, it has been shown in lymphatic valves that the transcription factors
Prox1, Foxc2, as well as lymphatic flow, coordinately control the expression of Cx37 and activation
of calcineurin/NFAT signaling. Indeed, Cx37 and calcineurin are required for the assembly and
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delimitation of lymphatic valve territory during development and for its postnatal maintenance [142].
Interestingly, the development of venous valves, but not the formation of lymphatic valves, is affected
in Cx47-deficient mice [143,144]. Accordingly, Cx47 null mice also display normal lymphatic vascular
function [145]. Mutations in the Cx47 gene are associated with reduced venous valve number and
length, a crucial finding for understanding how some Cx47 mutations cause inherited (lymph) edema
in humans [144]. Recently, both Cx47 and Cx43 have been added to the limited repertoire of primary
lymphedema-associated genes (such as Foxc2, Vegfr3 and Sox18) [146–149]. Furthermore, Cx47 and
Cx37 mutations have been associated with increased risk for secondary lymphedema following breast
cancer treatment [150,151].

The lymphatic system regulates tissue fluid homeostasis, trafficking of immune cells to draining
lymph nodes and absorption of dietary fat. To investigate whether Panx1 affects lymphatic flow,
drainage of interstitial fluids following injection of Evans Blue in the footpad was recently compared
between Panx1−/−Apoe−/− and Apoe−/− mice. The dye progressively spread throughout the lymphatic
system to successive draining lymph nodes and finally the systemic circulation. The dye transport
was considerably smaller in Panx1−/−Apoe−/− mice than in control Apoe−/− mice. Moreover, tails
of Panx1−/−Apoe−/− mice showed increased diameters and increased interstitial fluid content than
control Apoe−/− mice, suggesting that lymphatic flow is impaired in mice with ubiquitous deletion
of Panx1. Finally, Panx1−/−Apoe−/− mice had reduced dietary fat absorption with control animals.
Collectively, these findings suggest a pivotal role for Panx1 in lymphatic function [56], and it will be
exciting to learn more on the cell type and molecular mechanism involved in this regulation.

7. Connexins and Pannexins in the Control of Platelet Function, Haemostasis and Thrombosis

Cx hemichannels and gap junctions have been studied widely in various cell types where
sustained cell interactions occur. Some reports, however, indicate the presence of Cxs on the surface of
some circulating cells, such as monocytes and T-cells, where gap junction and hemichannel functions
control cellular functions [152–154]. In recent studies, fundamental roles for these proteins in platelets
have emerged.

7.1. Platelets: Mediators of Haemostasis and Thrombosis

Platelets provide a front line of defense in response to injury, triggering haemostasis at sites of
injury, and are increasingly recognized for their involvement in a range of other (patho)physiological
processes, including inflammation, atherogenesis, and cancer cell metastasis. Platelets adhere to
collagens that are exposed at sites of arterial damage, initially via an indirect interaction with plasma
von Willebrand factor (VWF), which through binding to the platelet glycoprotein (GP) Ib-V-IX receptor
complex, a short-lived interaction that therefore serves to slow platelets, allows subsequent direct
binding to platelet collagen receptors GPVI and integrin α2β1 (Figure 2A) [155,156]. Integrin α2β1

functions principally as an adhesive receptor for collagen [157], while collagen binding to GPVI
stimulates platelet activation.

Collagen binding to GPVI causes receptor clustering and the tyrosine phosphorylation of the
Fc receptor γ-chain [158,159] by Src-family kinases [160]. The tyrosine kinase Syk is then recruited
and initiates the first step in a complex and branching signaling pathways incorporating, among
others, the linker for activation of T cells, phosphatidylinositol 3-kinase, protein kinase B, Bruton’s
tyrosine kinase, phospholipase Cγ2, integrin-linked kinase, and the mobilization of intracellular
calcium stores [161,162]. This culminates, via the GTP binding protein Rap1b, in an increase in affinity
of integrins that enhance adhesion to collagen (α2β1), and causes aggregation through the binding of
plasma fibrinogen to integrin αIIbβ3 [161,163].

A rapid and full platelet response is ensured through the autocrine and paracrine actions of factors
that are released by activated platelets such as ADP and thromboxane A2. Following the binding
of fibrinogen to integrin αIIbβ3 and collagen to integrin α2β1, outside-in signaling through these
integrins also contributes to sustained platelet activation and irreversible thrombus formation [164,165].
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Thrombin, which is generated on the surface of activated platelets within a thrombus, is also a potent
platelet agonist that is important for effective haemostasis.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  12 of 22 
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Figure 2. Gap junction intercellular communication between platelets: a working model. (A) Blood
vessel injury leads to the exposure of subendothelial collagens. Through interaction with von Willebrand
factor, which also binds to collagens, platelets roll along the surface, slowing their movement and
allowing direct binding of collagen to the cell surface receptors integrin, α2β1, and GPVI, initiating
platelet intracellular signaling. This results in the secretion or release of prothrombotic factors such as
ADP and TXA2 that further propagate platelet activation. This culminates in an increase in affinity
of integrin αIIbβ3 which then binds fibrinogen that supports platelet-platelet adhesion and thrombus
formation. Close contact between platelets allows the formation of gap junctions that permit intercellular
signaling during thrombus formation and stabilization; (B) Intercellular signaling controls thrombus
contraction by enabling the formation of a core of platelets that are highlight activated and tightly
packed. A more loosely packed shell of platelets develops, although this is inhibited in the presence of
ADP receptor antagonists or aspirin (to prevent TXA2 formation). Whether gap junctional intercellular
communication controls platelet thrombus core and shell assembly has yet to be formally established.

A reactive system such as this, which incorporates many positive feedback mechanisms, requires
precise control to prevent un-needed platelet activation. The healthy endothelium produces molecular
signals, NO and prostaglandin I2, short-lived molecules that exert powerful inhibitory effects on
platelets through the stimulation of cyclic nucleotide-dependent intracellular signaling [166].

Inappropriate platelet activation, for example, at the site of atherosclerotic plaque formation or
rupture, results in the exposure of platelets to activatory substances, including collagens, resulting
in thrombosis and the occlusion of blood flow. As the principle cause of myocardial infarction and
ischemic stroke, platelets represent an important therapeutic target [163].
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In the last 20 years, substantial progress has been made in understanding the molecular
mechanisms that control platelets, and this is beginning to impact in the development of new
therapeutic approaches. These advances have largely involved study of traditional intra-cellular
signaling, the identification of key activatory or inhibitory signals, cell surface receptors required
to respond to these signals and the intracellular signaling pathways or networks that these
control. While platelets are singular circulating cells, activation and thrombus formation bring
them into close proximity for prolonged periods, and increasing evidence supports the importance
of sustained inter-platelet communications within the thrombus derived largely through integrin
outside-in signaling, with additional contributions from, for example, Eph family kinases and ephrin
counter-ligands [167–169]. Sustained signaling within the thrombus enables platelets to cooperate to
regulate thrombus compaction, structure and stability and subsequently clot retraction, a step believed
to be important for wound repair [170]. The ability of platelets to coordinate their functions within
a developing thrombus, particularly in the control of calcium signaling, led to early experimental
evidence that this may be mediated by intercellular communication (Figure 2B), although this was not
initially attributed to gap junctions [171].

7.2. Platelets Possess Connexins

Messenger RNA profiling of megakaryocytes, the precursor bone marrow cells from which
platelets form, revealed that these cells likely possess notable levels of Cx37, with additional expression
of Cx40 and Cx62. Indeed, Cx37 mRNA and protein were first reported to be expressed in human
and mouse platelets, and were found to be present at the cell surface [172,173]. Scanning electron
microscopy of sections of human platelet thrombi revealed regions of apposite membrane structures
with a typical appearance of gap-junction-like structures [173].

7.3. Platelet Gap Junction Formation—Orchestration of Intercellular Signaling within Arterial Thrombi

The transport of dye between platelets was first demonstrated following micro-injection of
neurobiotin, and transfer into surrounding platelets [172]. Gap junctional intercellular coupling
between platelets was confirmed by fluorescence recovery after photo-bleaching (FRAP) analysis
of thrombi preformed under arterial flow conditions using blood reconstituted with platelet that
were labelled preloaded with cytosolic calcein [173]. Transfer of dye was inhibited by selective or
non-selective inhibition of Cx37 (37,43Gap27). Clot retraction responses were also inhibited in the
presence of inhibitor, or the absence of Cx37 (using blood from Cx37-deficient mice) suggesting that
gap junctional coupling mediates physiological responses within platelets.

There currently exists a difference of experimental conclusions drawn from the study of
Angelillo-Scherrer, who reported modestly elevated platelet aggregation responses on Cx37-deficient
mouse platelets and following the use of inhibitory peptides with human platelets [172], while Vaiyapuri
reported substantially diminished responses [173]. Vaiyapuri also reported similar outcomes following
the inhibition or deletion of Cx40 [173]. These differences are likely to be explained by differences in
experimental conditions, although both studies indicate the potential importance of Cxs in the control
of platelet function.

The use of flow cytometry gated to examine the function of individual platelets revealed
that platelet activation, prior to platelet-platelet contact is inhibited in the absence of functional
Cx37, which is suggestive of important roles for Cx hemichannels in the initiation of platelet
responses [173,174]. Whether this is due to channel function or through interaction with other cell
surface proteins has yet to be established, although inhibition of Cx37 or Cx40 is associated with
diminished intracellular mobilization of calcium from stores, indicating a fundamental role in the
propagation of platelet cell signaling [173,174]. Consistent with this, inhibition of Cx37 in whole blood
results in diminished thrombus formation on a collagen-coated micro-fluidic flow cells under arterial
flow conditions. Infusion of 37,43Gap27 [173] or 40Gap27 (unpublished observation) into mice prior
analysis of laser induced thrombosis in cremaster muscle arterioles was found to result in diminished
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thrombotic responses. Diminished thrombus formation appears to be at the expense of haemostatic
control, since bleeding times were extended modestly. It is interesting to note the Cx37-deficient mice
were found to exhibit reduced survival time using a thrombo-embolism model, induced by intravenous
injection of collagen and adrenalin [172], which may be a consequence of reduced thrombus stability
that results in increased thrombus fragmentation and lung occlusion.

7.4. Panx1 Contributes to Platelet Function at Low Agonist Concentrations

Recent analysis of the megakaryocyte (and therefore the platelet) channelome revealed that
among a range of cell surface channel proteins, Panx1 is also likely to be expressed. A series of
pharmacological approaches using selective mimetic peptide inhibitor [175], subsequently confirmed
using Panx1-deficient mouse platelets [176], demonstrated this protein to contribute to calcium
responses to low concentrations of various platelet agonists. The ability of Panxs to facilitate the
release of ATP from cells is a property that has also been observed in platelets. Panx1 mediated
ATP release results in subsequent stimulation of the ATP-gated calcium channel P2X1, which causes
enhanced calcium influx and therefore propagation of platelet functional responses [175,176]. At higher
concentrations of collagen or other platelets agonists P2X1 makes little contribution to cell responses,
and therefore the effects of Panx1 are restricted to conditions where agonist concentrations are limited.

7.5. Cx37 and Panx1 Polymorphisms

It is fair to ask, are the effects of platelet Cxs likely to be physiologically important, or do they
contribute to cardiovascular disease risk? The clearest indication that gap junction and hemichannel
function may be important stem from studies that have explored the effects of common gene SNPs
in the human population. As discussed before (Section 3), a SNP in the coding sequence of Cx37
(P319S) influences the gating of Cx37 channels [46,48]. When transfected into HeLa cells, the 319P
polymorphism is associated with reduced diffusion of dye between cells [172]. 96 Caucasian men were
genotyped to explore the relationship between this polymorphism and platelet function. A relationship
was observed between the number of 1019C alleles of the Cx gene possessed by volunteers, with the
CC genotype associated with modestly increased platelet function [172]. These data suggest that
platelet reactivity levels may be determined by connexin-mediated platelet function.

Three variants exist in the human Panx1 coding sequence. These result in a Q5H variant at the
N-terminus, a I272V variant within the 4th transmembrane domain and deletion of amino acids 401 to
404 at the CT due a splice variant. In a population of 96 male Caucasian volunteers the splice variant
was not detected [176]. Two thirds of subjects possessed the allele coding for the histidine variant at
position 5 in the protein sequence, and the associated with a small increase in platelet aggregation in
response to collagen, although responses to other agonists were unaltered. Comparison between the
Panx1 alleles responsible for variability at position 272 showed no relationship with platelet reactivity.

The numbers of subjects included in these studies were relatively small, and more detailed
analysis of the relationship between platelet Cx and Panx polymorphisms and variability in platelet
responsiveness would be required to confirm these observations. Current data are, however, consistent
with a role of Cxs and Panxs in the regulation of haemostasis and potentially thrombosis, allowing the
potential development of new strategies for the prevention of thrombosis, or other conditions in which
these cells are implicated.

8. Conclusions and Perspectives

It is now well established that Cxs have an important function in the control of blood flow
distribution and tissue homeostasis, as well as in pathologies that involve a tight regulation and
coordination between cells in the blood vessel wall and circulating blood cells such as atherosclerosis
and hypertension. Strong evidence now also supports an important role for gap junctions and Cx
hemichannels in the control of haemostasis and thrombosis, although many questions remain to
be addressed in this field. More insight into the nature of molecular signals that are transported
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through gap junctions and hemichannels will be required in order to tease apart the basis of their
ability to modulate diverse aspects of vascular function. Systems biology approaches have revealed
exquisite detail regarding the architecture of platelet thrombi, which are organized into a densely
packed core, surrounded by a less densely packed shell, which is sensitive to the actions of anti-platelet
drugs [177]. It is possible that gap junctional intercellular communication mediates the organization
of thrombus architecture, function and sensitivity to anti-thrombotic medication. The ability of gap
junctions to support interactions between different cell types that are implicated in the stimulation
of localized inflammatory responses and atherogenesis [44,178,179], further supports the notion that
gap junctional coupling between different vascular cell types may impact on a wide(r) range of
(patho)physiological processes.

The release of ATP or Ca2+ are generally assumed to be the most relevant signaling mechanisms
mediated by both Cx hemichannels and Panx1 channels in vascular (patho)physiology. While recent
years have shown great progress in the knowledge on Cx43 protein domains involved in gap junction
channel vs. hemichannel gating [180], one of the inherit problems with Panxs is that the biophysical
properties of the channels are still being worked out, and thus technically there remains a significant
number of unknowns. For example, does ATP always come out of a channel? There is no reason that
this needs to be the case, as Panxs in general are large pore channels. Also, being able to distinguish
between receptor-mediated and caspase cleavage of the channel has become an important technical
differential. The physiological effects described in Section 5 would be considered receptor-mediated
Panx1 channel opening, which is uniquely different than caspase cleavage-mediated Panx1 opening
that occurs during apoptosis. Key physiological parameters such as electrophysiology and ATP
release can be observed in both receptor- and caspase cleavage-mediated Panx1 channel opening.
The difference being that receptor mediated Panx1-channel opening is transient, and caspase cleavage
produces a permanently “open” channel [126]. Perhaps differential dye uptake could help differentiate
these two events? Whatever the case, there is still a significant amount to learn about the relatively
recently discovered Panx1 channel and how it may affect vascular and platelet function.
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Abbreviations

Cx Connexin
Panx Pannexin
TM Transmembrane
EL Extracellular loop
CT Carboxy-terminus
NT Amino-terminus
IL Intracellular loop
ER Endoplasmic reticulum
EC Endothelial cell
LDL Low-density lipoprotein
ECM Extracellular matrix
SMC Smooth muscle cell
TF Tissue factor
POPVC 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine
eNOS Endothelial NO synthase
SNP Single nucleotide polymorphism
TG Triglycerides
FFA Free fatty acids
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EDHF Endothelium-derived hyperpolarizing factor
EDH Endothelium-derived hyperpolarization
ACh Acetylcholine
PE Phenylephrine
AR Adrenergic receptor
RBC Red blood cells
VWF von Willebrand factor
GP Glycoprotein
FRAP Fluorescence recovery after photo-bleaching
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