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Abstract

We examine stock index futures and Treasury futures around the release time of
30 U.S. macroeconomic announcements. Nine of the 20 announcements that move
markets show evidence of substantial informed trading before the official release time.
Prices begin to move in the “correct” direction about 30 minutes before the release
time. The pre-announcement price drift accounts on average for about 40% of the
total price adjustment. This implies that some traders have private information about
macroeconomic fundamentals. Pre-announcement drift might originate from a combi-
nation of information leakage and superior forecasting that incorporates proprietary
data.
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1 Introduction

Macroeconomic news announcements move financial markets as noted by, for example,

Andersen, Bollerslev, Diebold, and Vega (2007). They are quintessential updates to public

information on the economy and provide fundamental inputs to asset pricing. More than one

half of the cumulative annual equity risk premium is earned on announcement days (Savor &

Wilson, 2013), and the information is almost instantaneously reflected in prices once released

(Hu, Pan, & Wang, 2017). To ensure fairness, no market participant should have access to

this information until the official release time. Yet, in this paper we find strong evidence of

informed trading before several key macroeconomic news announcements.

We use second-by-second E-mini S&P 500 stock index and 10-year Treasury note futures

data from January 2008 to March 2014 to analyze the impact of 30 U.S. macroeconomic

announcements that previous studies and financial press consider most important. Nine out

of the 20 announcements that move markets exhibit some pre-announcement price drift in

the “correct” direction, i.e., in the direction of the price change predicted by the announce-

ment surprise. Four of these announcements exhibit drift in the stock market, and all nine

announcements exhibit drift in the bond market. The pre-announcement drift begins about

30 minutes before the official release time and accounts on average for about 40% of the total

price adjustment.

Previous studies on macroeconomic announcements can be categorized into two groups

with regard to pre-announcement effects. The first group does not separate the pre- and

post-announcement effects. For example, a seminal study by Balduzzi, Elton, and Green

(2001) analyzes the impact of 17 U.S. macroeconomic announcements on the U.S. Treasury

bond market from 1991 to 1995. Using a time window from five minutes before to 30 minutes

after the official release time t, they show that prices react to macroeconomic news. In this

approach, it is unclear how much of this reaction occurs before the announcement release.

The second group does separate the pre- and post-announcement effects but concludes that

the pre-announcement effect is small or non-existent.
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Our approach differs from previous research along four dimensions. First, some previous

studies measure the pre-announcement effect in small increments of time. Ederington and

Lee (1995), for example, use returns during 10-second intervals. For these short intervals,

they find that prices did not change significantly in the two minutes before an announcement

release in the Treasury, Eurodollar and DEM/USD futures markets around the year 1990.

However, if the pre-announcement drift is gradual (which is the case in our data), it will not

be detected in such small increments.

Second, we use a longer pre-announcement interval than other studies. Andersen et al.

(2007), for example, include ten minutes before the release time. For the sample period

from 1998 to 2002, they find that global stock, bond and foreign exchange markets react to

announcements only after their release time. We show that a pre-announcement interval of

at least 30 minutes is necessary to capture the price drift.

Third, we include a larger set of announcements. Instead of hand-picking announcements,

we start with essentially all macroeconomic announcements that academic research and/or fi-

nancial press consider relevant. We expand the largest set of announcements among previous

seminal studies (Andersen, Bollerslev, Diebold, & Vega, 2003; Andersen et al., 2007) by seven

additional announcements that are frequently discussed in the financial press. Although the

resulting set of 30 announcements is not a full set of U.S. macroeconomic announcements,

it does allow us to see the impact of macroeconomic announcements more comprehensively.

In our sample, three of the additional seven announcements exhibit drift.

Fourth, we study a recent sample period. Announcement release procedures change

over time, and information collection and computing power increase, which might enable

sophisticated market participants to forecast some announcements. The main analysis in

our paper is based on second-by-second data starting in January 2008. To compare our

results to those in previous studies that use earlier sample periods, we analyze minute-by-

minute data extended back to August 2003. The results suggest that the pre-announcement

effect was indeed weaker in earlier periods.
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Two notable exceptions among the previous studies discuss pre-announcement price dy-

namics. Hautsch, Hess, and Veredas (2011) examine the effect of two U.S. announcements

(Non-Farm Employment and Unemployment Rate) on German Bund futures during each

minute in the [t− 80min, t+ 80min] window from 1995 to 2005. They find that the return

during the last minute before the announcement release is correlated with the announce-

ment surprise. Bernile, Hu, and Tang (2016) use transaction-level data to look for evidence

of informed trading in stock index futures and exchange traded funds before the Federal

Open Market Committee (FOMC) and three macroeconomic announcements between 1997

and 2013. They find abnormal returns and order imbalances (measured as the difference

between buyer- and seller-initiated trading volumes divided by the total trading volume) in

the “correct” direction before the FOMC meetings but not before the macroeconomic an-

nouncements (Non-Farm Employment, Consumer Price Index and Gross Domestic Product).

Bernile et al. (2016) suggest these findings are consistent with information leakage.1

Our study differs from Hautsch et al. (2011) and Bernile et al. (2016) in two aspects.

First, our methodology and expanded set of macroeconomic announcements allow us to show

that pre-announcement informed trading is limited neither to the FOMC announcements nor

to the last minute before the official release time. Second, we explore the information leakage

explanation2 in more detail by examining two aspects of the announcement release process

– organization type and release procedures – and also consider other possible sources of

informed trading around public announcements.

1Beyond these studies that investigate responses to announcements conditional on the surprise, Lucca
and Moench (2015) report unconditional excess returns in equity index futures during 24 hours prior to the
FOMC announcements. They do not find excess returns for nine U.S. macroeconomic announcements or in
Treasury securities and money market futures.

2Macroeconomic announcement leakage has been documented in other countries. For example, Andersson,
Overby, and Sebestyén (2009) analyze news wires and present evidence that the German employment report
is regularly known to investors prior to its official release. Information leakage has also occurred in other
settings, for example, in the London PM gold price fixing (Caminschi & Heaney, 2013). In corporate finance,
some papers (for example, Sinha and Gadarowski (2010) and Agapova and Madura (2011)) regard price drift
before public guidance issued by company management as de facto evidence of information leakage while
others remain agnostic about the source of informed trading around company earnings announcements in
trading by institutional investors (for example, Campbell, Ramadorai, and Schwartz (2009)) and individual
investors (for example, Kaniel, Liu, Saar, and Titman (2012)).
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With respect to organization type, we focus on the difference between organizations sub-

ject to the Principal Federal Economic Indicator (PFEI) guidelines and other entities. The

U.S. macroeconomic data prepared by government agencies is generally considered closely

guarded with strict measures aimed at preventing premature dissemination. However, some

private data providers are not subject to the same guidelines, and some of them have been

known to follow release procedures that would not be allowed for the PFEIs, such as releasing

information to exclusive groups of subscribers before making it available to the public. In our

analysis, announcements released by organizations that are not subject to PFEI guidelines

exhibit a stronger pre-announcement drift.

With respect to release procedures, we are interested in the safeguards against prema-

ture dissemination. Surprisingly, many organizations do not have this information available

on their websites. We conducted an extensive phone and email survey of the organizations

in our sample. The release procedures fall into one of three categories. The first category

involves posting the announcement on the organization’s website at the official release time,

so that all market participants can access the information at the same time. The second

category involves pre-releasing the information to selected journalists in “lock-up rooms”

adding a risk of leakage if the lock-up is imperfectly guarded. The third category involves

the least secure pre-release procedure: Instead of being pre-released in lock-up rooms, these

announcements are electronically transmitted to journalists who are asked not to share the

information with others. In our analysis, pre-released announcements and, more specifi-

cally, the announcements pre-released under the least secure procedure are associated with

a stronger pre-announcement drift.

While these findings are suggestive, one cannot conclude that information leakage causes

observed pre-announcement drift because other possible causes of informed trading exist.

In particular, we consider information generated by informed investors and impounded into

prices through their trading (French & Roll, 1986). Some traders may be able to collect

proprietary information or analyze public information in a superior way to forecast an-
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nouncements better than other traders. This knowledge could then be utilized to trade in

the “correct” direction before announcement releases. We conduct an extensive forecasting

exercise with public information (individual analyst forecasts). We also show that propri-

etary information permits forecasting announcement surprises in some cases.

Recently, the possibility of data leaks has received a lot of public attention. For example,

the Securities and Exchange Commission (SEC) charged two individuals for hacking into

news wire services and selling the obtained information on upcoming corporate earnings

announcements to traders, which generated over $100 million of illegal profits (SEC, 2015).

In the context of macroeconomic news, further research on whether the source of informed

trading is leakage, proprietary data collection, or reprocessing of public information would,

therefore, be very timely.

The rest of this paper is organized as follows. The next two sections describe the

data and methodology. Section 4 presents the empirical results. Explanations for the pre-

announcement drift are tested in Section 5, and a brief discussion concludes in Section 6.3

2 Data

This section describes the announcements data and markets data.

2.1 Expected and Released Values of Macroeconomic Announce-

ments

We start with the 23 macroeconomic announcements in Andersen et al. (2003) and Andersen

et al. (2007), which is one of the largest sets of announcements among the previous seminal

3A separate Internet Appendix tests whether our results are robust to data snooping and to conditioning
on the sign of post-announcement returns. It also presents results based on the standard event study
methodology including potential impact of outliers, event window length, the effect of order flows, and other
markets (E-mini Dow stock index and 30-year Treasury bond futures). All tests confirm robustness of our
results.
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studies.4 We augment this set by seven announcements that have been frequently discussed

in the financial press: Automatic Data Processing (ADP) Employment, Building Permits,

Existing Home Sales, the Institute for Supply Management (ISM) Non-Manufacturing Index,

Pending Home Sales, and the Preliminary and Final University of Michigan (UM) Consumer

Sentiment Index. Expanding the set of announcements beyond the ones used in previous

studies reflects the evolution of available data. The ADP Employment report constructed

with actual payroll data, for example, did not exist until May 2006, but it has since then

become an influential announcement. Table 1 lists these 30 macroeconomic announcements

grouped by announcement category.5

We assume that efficient markets react only to the unexpected component of news an-

nouncements. Following Balduzzi et al. (2001), we compute this “surprise” as the differ-

ence between the actual announcement, Amt, of a macroeconomic announcement m re-

leased at time t and the market’s expectation of the announcement before its release,

Et−τ [Amt], where τ > 0.6 To convert macroeconomic announcements to common units,

we standardize this difference by the standard deviation of the respective announcement,

σm =
√

1
Nm−1

ΣNm
i=1(Sim − Sm)2 where Sm is the mean surprise for announcement m. The

4Andersen et al. (2003) and Andersen et al. (2007) list 24 macroeconomic announcements. We do not
report results for Capacity Utilization because it is always released simultaneously with Industrial Production
and the surprise components of these two announcements are strongly correlated with a correlation coefficient
of +0.8. When we account for simultaneity by using their principal component in equation (2), the results
are similar to the ones reported for Industrial Production. We omit monetary announcements (Money
Supplies M1, M2, M3, Target Federal Funds Rate) because these policy variables differ from macroeconomic
announcements by long preparatory discussions. The National Association of Purchasing Managers index is
now called ISM Manufacturing Index.

5In the remainder of the paper, we refer to these 30 variables as “announcements.” Our observations are
then “announcement releases.” In this terminology, for example, the GDP Advance announcement had 25
announcement releases.

6In five instances, Bloomberg shows releases for two or three months released at the same time: Building
Permits for September and October 2013, Construction Spending for September and October 2013, Factory
Orders for August and September 2013, Housing Starts for September, October and November 2013, and
New Homes Sales for September and October 2013. The delays appear to be due to the government shutdown
in the fall of 2013. For these releases, we compute the surprise as the arithmetic average of surprises for the
respective months.
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standardized surprise, Smt, is then

Smt =
Amt − Et−τ [Amt]

σm
. (1)

We proxy the expectation, Et−τ [Amt], by the median response of professional forecast-

ers during the days before the release, Et−∆[Amt], where ∆ > 0.7 We assume that the

expectation Et−∆[Amt] about a macroeconomic announcement is exogenous, in particular

not affected by asset returns during [t − τ, t].8 We use a survey carried out by Bloomberg,

which allows the professional forecasters to revise their responses until shortly before the

release time. Although ∆ 6= τ , the scarcity of revisions shortly before the official release

times indicates that the two expectations are more or less identical.9 Bloomberg collects the

forecasts during a two-week period preceding the announcements. The first forecasts for our

30 announcements appear on Bloomberg five to 14 days before the announcement releases.

Forecasts can be posted until two hours before the announcement release, i.e., ∆ ≥ 120min.

On average, the forecasts are five days old as of the release time. Bloomberg calculates

the consensus forecast as the median of individual forecasts and continuously updates the

consensus forecast when additional individual forecasts are posted.

2.2 Prices of Stock and Bond Futures

To investigate the effect of the announcements on stock and bond markets, we use intraday,

nearby contract futures prices. Our second-by-second transaction data from Genesis Finan-

cial Technologies spans the period from January 1, 2008 until March 31, 2014. We report

7Survey-based forecasts have been shown to outperform forecasts using historical values of macroeconomic
variable. See, for example, Pearce and Roley (1985).

8We test for unbiasedness of expectations. Almost all survey-based forecasts are unbiased. The mean
forecast error is statistically indistinguishable from zero at the 10% significance level for all announcements
except for the Index of Leading Indicators and Preliminary and Final UM Consumer Sentiment Index.
These three announcements do not exhibit pre-announcement drift (see Section 4), and our conclusions are,
therefore, not affected by them.

9For example, for one particular GDP release in 2014, only three out of 86 professional forecasters updated
their forecasts during the 48 hours before the announcement release.
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results for the E-mini S&P 500 stock index futures market (ticker symbol ES) and the 10-

year Treasury notes futures market (ticker symbol ZN) traded on the Chicago Mercantile

Exchange (CME). In the remainder of the paper, we refer to the E-mini S&P 500 stock index

futures as “S&P 500” and to the 10-year Treasury notes futures as “Treasury note”.

We sample trade price data every five minutes for each market. If a price is not available,

the most recent price is used. Because the nearby contract becomes increasingly illiquid

as its expiration date approaches, we switch to the next maturity contract when its daily

trading volume exceeds the nearby contract volume.

Our identification rests on a clear assignment of prices to the pre- or post-announcement

period. In the seconds just before an announcement release, this is difficult for two reasons:

intentional and unintentional early releases. First, Thomson Reuters used to pre-release the

University of Michigan Consumer Sentiment Index two seconds ahead of the official release

time to its high-speed data feed clients (Javers, 2013b).10 We want to capture trading

following these pre-releases in the post-announcement interval, so that it does not overstate

our pre-announcement price drift. Second, there have been instances of inadvertent early

releases such as Thomson Reuters publishing the ISM Manufacturing Index 15 milliseconds

before the scheduled release time on June 3, 2013 (Javers, 2013b). Scholtus, van Dijk, and

Frijns (2014) compare the official scheduled release times to actual release times and conclude

that such accidental early releases occur but are rare.11 Therefore, using five seconds before

the release time as the pre-announcement interval cutoff ensures that accidental early releases

do not fall into the pre-announcement interval.

For this reason, we replace every price at the release time of an announcement with the

10Thomson Reuters suspended the practice following a probe by the New York Attorney General in July
of 2013 (Javers, 2013a).

11Scholtus et al. (2014) analyze 20 U.S. macroeconomic and monetary announcements from January 2009
to December 2011. Their sample period includes 800 announcement releases. Only thirteen of these 800
releases arrived before the scheduled release time. Among these thirteen releases, three releases arrived in
the second before the official release time, and only four releases arrived more than one minute before the
official release time. Three of these four releases were FOMC rate announcements that are not relevant for
our paper because we do not analyze monetary announcements; only one release (CB Consumer Confidence
Index on June 28, 2011) falls into our sample.
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price that was prevailing five seconds before the announcement release.12 We then compute

continuously compounded asset returns, Rt, for the entire sample as the first difference

between adjacent log prices in this modified time grid.

Suppose that there is an isolated macroeconomic announcement release at time t. Then

the return Rt covers the [t − 5min, t − 5sec] time window, i.e., the price change in the

five minutes before the announcement release excluding five seconds immediately before the

release. The return Rt−1 covers the [t − 10min, t − 5min] interval, i.e., a period without

announcement releases. The return Rt+1 includes the announcement impact at release time,

spanning the [t− 5sec, t+ 5min] interval.

Returns are sampled from 7:15 to 16:00 over the period from August 1, 2008 to March

31, 2014. The sampling starts one hour before the earliest announcement at 8:15 and ends

one hour after the latest announcement at 15:00 per Table 1. If any sum of six subsequent

five-minute returns, i.e., a 30-minute return, equals zero, then that day is excluded from

the sample similarly to Andersen et al. (2007). Based on this rule, we remove 56 days that

correspond to the U.S. holidays.

Finally, we place the announcement surprises of the 30 announcements listed in Table 1

on the same time grid as the returns. If there is no announcement release during a given

time interval, then the surprise is zero.

3 Methodology

We follow a time-series approach which embeds all announcements in a single regression

(Andersen et al., 2003).13 Within each market, the asset return is a linear function of three

components. The first component, lagged asset returns, accounts for possible autocorrelation

12Therefore, in no-release periods the time grid is exactly five minutes, whereas the last pre-release period
is five seconds shorter, and the first post-release period is five seconds longer. Results without this timing
correction, i.e., with a [t − 30min, t] window, are similar, suggesting that the drift in the last five seconds
before the announcement release is not substantial.

13The Internet Appendix presents a robustness check based on event study methodology that estimates a
separate regression for each announcement.
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and cross-serial correlation across the two markets. The second component, lagged surprises

of each announcement, captures the impact that an announcement may have on the market in

the following periods. The third and most important component, contemporaneous and lead

values of each announcement surprise, captures the pre-announcement drift. We assume that

the surprise process is exogenous; in particular, macroeconomic surprises are not affected by

past asset returns. We analyze J = 2 markets, the E-mini S&P 500 futures and the 10-year

Treasury note futures market. For a given market, the model becomes

Rt = β0 +
J∑
j=1

βjRj,t−1 +
M∑
m=1

K∑
k=−1

γmkSm,t+k + εt. (2)

We choose one lag of returns for each market based on the Bayesian information criterion.

The second sum is over the M = 30 announcements listed in Table 1. To capture the

regular post-announcement price move, we include one lag of surprise. To capture the pre-

announcement drift, we use the contemporaneous surprise and K = 5 leads of the surprise

which together span the [t− 30min, t− 5sec] window.

To account for heteroskedasticity in the error term εt, we estimate equation (2) with a

two-step weighted least squares procedure. In the first step, equation (2) is estimated with

an ordinary least squares regression (OLS). In the second step, an estimate of time-varying

volatility is derived from the residuals, et, (estimates of εt) of this OLS regression, which is

then used in the weighted least squares estimation analogous to Andersen et al. (2003).

The weight wt is an estimate of volatility computed by the exponential moving average

wt = αwt−1 + (1 − α)|et| with the smoothing parameter α = 0.9.14 Standardization of the

residuals by wt removes almost all heteroskedasticity and performs better than other methods

such as regressing the absolute value of the residuals on seasonal hourly dummies.15 We

standardize the dependent and explanatory variables by wt and estimate the OLS regression

14The results are robust to other values of this smoothing parameter such as 0.8 and 0.95.
15In the first period, w1 = |e1|. Because the estimator is very volatile in the initial periods, we discard

the first 50 observations in the sample which correspond to the morning of January 2, 2008. This leads to
discarding one release of Construction Spending and ISM Manufacturing Index announcements.
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with these standardized variables.

A statistical test of whether a particular announcement m in a given market exhibits

pre-announcement price drift can be based on the sum of coefficients on the contemporane-

ous and lead surprises corresponding to the [t − 30min, t − 5sec] window. Under the null

hypothesis of no drift, γm ≡
∑K

k=0 γmk = 0, and under standard assumptions, the resulting

test statistic follows the Student’s t-distribution. Then, we test the hypothesis that these

sums are different from zero for both the stock and the bond market, i.e., whether we can

reject the joint hypothesis that γS&P
m = 0 and γTnotem = 0. The respective Wald test statistic

follows a χ2-distribution with two degrees of freedom. For this test, we use the estimated

covariance between the residuals in the stock and bond market equations to account for

correlation between the stock and bond market regression coefficients.

4 Empirical Results

This section presents regression and graphical evidence of the pre-announcement price drift.

Section 4.1 presents a time-series regression and cumulative average return graphs. Sec-

tion 4.2 presents cumulative order imbalance graphs. Section 4.3 extends the sample back

to the year 2003 using minute-by-minute data.

4.1 Pre-Announcement Price Drift

We start with results based on second-by-second data from January 2008 to March 2014.

We first estimate equation (2), followed by the single and joint hypotheses tests, which sum

up coefficients corresponding to the window spanning from 30 minutes before the official

release time to five seconds before the official release time for each market. Table 2 presents

the results of these tests. The last column tests the hypothesis that these sums for the

stock and bond markets are jointly different from zero. In the table, the announcements are

sorted by the p-value of this joint test. There are nine announcements whose summed drift
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coefficients are significant at the 5% level indicating a pre-announcement price drift (column

4). Four of these announcements exhibit significant drift in the stock market (column 2),

and all nine announcements exhibit significant drift in the bond market (column 3).16 In

all nine announcements, the drift is in the “correct” direction, i.e., the direction of the price

change predicted by the announcement surprise.

Stock prices increase and bond prices decrease before good economic news, for example,

higher than anticipated ISM Non-Manufacturing Index. Specifically, the S&P 500 futures

prices increase on average by 0.104 percent before a one standard deviation positive surprise

in the ISM Non-Manufacturing Index. The magnitude of the coefficients is sizable. For

comparison, one standard deviation of 5-minute returns during our entire sample period for

the stock and bond markets is 0.12 and 0.04 percent, respectively. These results stand

in contrast to previous studies concluding that the pre-announcement effect is small or

non-existent in macroeconomic announcements. The results show that pre-announcement

informed trading is limited to neither corporate announcements (Campbell et al., 2009;

Kaniel et al., 2012) nor FOMC announcements (Bernile et al., 2016).

The full set of macroeconomic announcements is vast. Most announcements, however,

contain information of only secondary importance. These announcements have only a neg-

ligible effect on the market and thus no meaningful profit potential for informed traders.17

To limit the analysis to the set of relevant, i.e., market-moving, announcements we use the

sum of the coefficients on the lagged, contemporaneous and lead surprises, γ̃m ≡
∑K

k=−1 γmk,

as test criterion. This sum corresponds to the window spanning from 30 minutes before the

official release time to five minutes after the official release time.18 We identify the set of

16A joint test of the 30 hypotheses overwhelmingly confirms the overall statistical significance of the pre-
announcement price drift. The large Wald statistic (12,292 and 11,849 for the stock and bond markets,
respectively) implies statistical significance of the pre-announcement drift at the 1% level.

17Focusing on a small subset of announcements with high intrinsic value (Gilbert, Scotti, Strasser, & Vega,
2017) can be seen as a consequence of an optimal information acquisition strategy in presence of private
information (Hirshleifer, Subrahmanyam, & Titman, 1994).

18We use five minutes after the official release time as the end of the post-announcement interval, to capture
the full price move after the official release. Although previous papers such as Hu et al. (2017) indicate that
announcements are almost instantaneously reflected in prices once released, we find some evidence of ongoing
price adjustment after the first minute.
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Table 2: Announcement Surprise Impact During [t− 30min, t− 5sec]

E-mini S&P 500 10-year Treasury Note Joint Test
Announcement γm γm p-value

ISM Non-manufacturing index 0.104 (0.017)*** -0.044 (0.009)*** <0.001
Pending home sales 0.099 (0.018)*** -0.028 (0.008)*** <0.001
ISM Manufacturing index 0.088 (0.019)*** -0.022 (0.008)*** <0.001
CB Consumer confidence index 0.040 (0.020)* -0.032 (0.008)*** <0.001
Existing home sales 0.054 (0.021)*** -0.016 (0.007)** 0.012
Advance retail sales 0.003 (0.018) -0.019 (0.007)*** 0.016
GDP preliminary 0.049 (0.030) -0.031 (0.011)*** 0.018
Initial jobless claims -0.005 (0.007) 0.008 (0.003)*** 0.020
GDP advance 0.015 (0.032) -0.035 (0.015)** 0.049

Factory orders -0.043 (0.021)** 0.019 (0.010)* 0.060
Industrial production 0.032 (0.018)* -0.006 (0.010) 0.203
Trade balance -0.016 (0.016) 0.010 (0.006)* 0.219
Construction spending 0.030 (0.019) -0.009 (0.007) 0.226
Consumer credit -0.024 (0.015) 0.000 (0.006) 0.238
Building permits -0.018 (0.015) -0.005 (0.007) 0.244
Personal income -0.020 (0.015) -0.001 (0.007) 0.296
Government budget -0.020 (0.024) 0.011 (0.007) 0.333
Personal consumption 0.008 (0.015) 0.005 (0.006) 0.433
New home sales -0.021 (0.020) 0.009 (0.008) 0.456
Wholesale inventories 0.008 (0.019) -0.009 (0.008) 0.539
Durable goods orders -0.004 (0.014) -0.005 (0.006) 0.644
Consumer price index -0.014 (0.016) 0.003 (0.007) 0.648
UM Consumer sentim. (prel.) 0.017 (0.020) -0.005 (0.008) 0.671
Index of leading indicators 0.014 (0.018) -0.005 (0.008) 0.678
Non-farm employment 0.001 (0.013) -0.005 (0.006) 0.686
Housing starts 0.009 (0.017) -0.005 (0.007) 0.704
Producer price index -0.003 (0.016) -0.003 (0.007) 0.858
ADP employment 0.005 (0.015) -0.003 (0.006) 0.859
UM Consumer sentim. (final) 0.005 (0.017) -0.003 (0.007) 0.895
GDP final 0.003 (0.020) -0.003 (0.014) 0.978

The sample period is from January 1, 2008 through March 31, 2014. The reported results sum up coefficients
corresponding to the [t− 30min, t− 5sec] window estimated using equation (2) with weighted least squares
procedure for each market described in Section 3. Standard errors are shown in parentheses. *, **, and
*** indicate statistical significance at 10%, 5% and 1% levels, respectively. The last column shows p-values
for the joint χ2-test that sums of coefficients on announcement surprises in the S&P 500 and Treasury note
markets are different from zero as described in Section 3.

market-moving announcements by testing the null hypothesis that surprises have no effect

in each market, i.e., γ̃m = 0. The two middle columns of Table 3 present – analogous to

Table 2 – the results of this t-test on γ̃m separately for the stock and the bond market. The

last column tests the hypothesis that the sums in these two markets are jointly different from
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zero. The results are sorted by the p-value of this joint test.19 Based on this p-value, 20 of

the 30 announcements have a price impact that is statistically significant at the 5% level,

and as expected all announcements with significant pre-announcement drift in both markets

fall in this category.

To quantify the relevance of the pre-announcement price drift, we compare it to the

total price impact of a given announcement. We measure the total impact again by the

price change from 30 minutes before to five minutes after the official release time. Table 4

shows the pre-announcement price drift as a proportion of the total price change, sorted by

the ratio obtained for the stock market. We divide the γm coefficients from Table 2 by the

corresponding γ̃m coefficients from Table 3 and present the ratios in columns (3) and (6). All

values are positive and below 100%. This means that the early signal is informative but noisy.

It is either not always present or imperfect. The ratio ranges from 30 percent in the ISM

Manufacturing Index announcement to 67 percent in the Pending Home Sales announcement

indicating that the pre-announcement price move is a substantial proportion of the total price

move. The mean ratio is 49 percent in the stock market and 36 percent in the bond market.

Therefore, failing to account for the pre-announcement effect substantially underestimates

the total impact of these macroeconomic announcements on financial markets.

A drift of almost 50 percent of the total announcement impact appears large at first

sight. However, in a model of Bayesian learning, little information is needed to generate a

pre-announcement drift of this magnitude. In Appendix Section A.1, we derive a condition

on the relative precision and surprise size of early signals and official release under which

the impact of the early signals exceeds the impact of the official release. The appendix

presents an example without prior public information, in which an early signal with one half

of the precision and with two thirds of the surprise generates the same price impact as the

19Similarly to Table 2, the last column is again based on a χ2-test where we use the estimated covariance
between the residuals in the stock and bond market equations to account for correlation between the stock
and bond market regression coefficients. We also conduct a joint test of the 30 hypotheses. This test
overwhelmingly confirms the overall statistical significance of the total price move. The computed values of
the Wald statistic are very large (159,560 and 258,212 for the stock and bond markets, respectively). This
translates into statistical significance of the total price move at the 1% level.
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Table 3: Announcement Surprise Impact During [t− 30min, t+ 5min]

E-mini S&P 500 10-year Treasury Note Joint Test
Announcement γ̃m γ̃m p-value

Non-farm employment 0.435 (0.016)*** -0.283 (0.008)*** <0.001
ISM Manufacturing index 0.292 (0.022)*** -0.131 (0.009)*** <0.001
Initial jobless claims -0.096 (0.008)*** 0.052 (0.003)*** <0.001
ADP employment 0.159 (0.017)*** -0.099 (0.007)*** <0.001
Advance retail sales 0.160 (0.020)*** -0.089 (0.008)*** <0.001
ISM Non-manufacturing index 0.167 (0.019)*** -0.090 (0.010)*** <0.001
CB Consumer confidence index 0.171 (0.023)*** -0.078 (0.008)*** <0.001
Pending home sales 0.147 (0.020)*** -0.053 (0.009)*** <0.001
Consumer price index -0.080 (0.017)*** -0.034 (0.008)*** <0.001
Existing home sales 0.148 (0.023)*** -0.048 (0.008)*** <0.001
GDP preliminary 0.130 (0.034)*** -0.081 (0.012)*** <0.001
Durable goods orders 0.073 (0.015)*** -0.042 (0.007)*** <0.001
Housing starts 0.048 (0.018)*** -0.044 (0.007)*** <0.001
GDP advance 0.134 (0.036)*** -0.064 (0.016)*** <0.001
UM Consumer sentim. (prel.) 0.083 (0.022)*** -0.027 (0.009)*** <0.001
New home sales 0.071 (0.022)*** -0.033 (0.009)*** <0.001
Construction spending 0.040 (0.022)* -0.027 (0.008)*** 0.003
Producer price index -0.004 (0.018) -0.021 (0.007)*** 0.005
GDP final 0.059 (0.022)*** -0.029 (0.015)* 0.014
Industrial production 0.052 (0.020)*** -0.017 (0.010)* 0.021

Index of leading indicators 0.036 (0.020)* -0.011 (0.008) 0.158
Personal consumption 0.020 (0.016) -0.011 (0.007) 0.222
UM Consumer sentim. (final) 0.013 (0.019) -0.013 (0.008)* 0.233
Building permits 0.002 (0.017) -0.012 (0.007) 0.236
Wholesale inventories -0.006 (0.021) -0.009 (0.009) 0.454
Personal income 0.015 (0.016) -0.008 (0.007) 0.490
Consumer credit 0.003 (0.017) -0.005 (0.006) 0.701
Trade balance -0.001 (0.018) 0.005 (0.007) 0.777
Government budget -0.011 (0.026) 0.004 (0.008) 0.849
Factory orders -0.001 (0.024) -0.004 (0.011) 0.933

The sample period is from January 1, 2008 through March 31, 2014. The reported results sum up coefficients
corresponding to the [t− 30min, t+ 5min] window estimated using equation (2) with weighted least squares
procedure for each market described in Section 3. Standard errors are shown in parentheses. *, **, and
*** indicate statistical significance at 10%, 5% and 1% levels, respectively. The last column shows p-values
for the joint χ2-test that sums of coefficients on announcement surprises in the S&P 500 and Treasury note
markets are different from zero as described in Section 3.

news at the official release time itself. Earlier information can get more attention than later

information and thus have a larger price impact even if the later information is “official” and

more precise.

To illustrate our findings graphically, we present cumulative average return (CAR) graphs.
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Table 4: Pre-announcement Price Drift as a Proportion of Total Price Change

(1) (2) (3) (4) (5) (6)
E-mini S&P 500 10-year Treasury Note

[t− 30min, [t− 30min, Ratio [t− 30min, [t− 30min, Ratio
t− 5sec] t+ 5min] t− 5sec] t+ 5min]

Pending home sales 0.099 0.147 67% -0.028 -0.053 53%
ISM Non-manufacturing index 0.104 0.167 62% -0.044 -0.090 49%
Existing home sales 0.054 0.148 37% -0.016 -0.048 34%
ISM Manufacturing index 0.088 0.292 30% -0.022 -0.131 17%
GDP advance n.d. -0.035 -0.064 55%
CB Consumer confidence index n.d. -0.032 -0.078 41%
GDP preliminary n.d. -0.031 -0.081 38%
Advance retail sales n.d. -0.019 -0.089 22%
Initial jobless claims n.d. 0.008 0.052 16%

Mean 49% 36%

The sample period is from January 1, 2008 through March 31, 2014. Only announcements showing significant
evidence (at the 5% level) of pre-announcement drift in each market in Table 2 are included. “n.d.” denotes
no significant drift (at the 5% level) in the S&P 500 market.

We classify each event based on whether the surprise has a positive or negative effect on the

stock and bond markets using the coefficients in Table 3. Following Bernile et al. (2016),

we invert the sign of returns for negative surprises.20 CARs are then calculated in the

[t − 60min, t + 60min] window for each of the “drift” and “no drift” categories based on

Tables 2 and 3: In the stock market, there are four drift and sixteen no-drift announce-

ments, and in the bond market, there are nine drift and eleven no-drift announcements.21

The CARs in Figure 1 reveal what happens around these announcements. In the no-drift

announcements in Panel (a), a significant price adjustment does not occur until after the

release time. In the drift announcements in Panel (b), the price begins moving in the correct

direction about 30 minutes before the official release time.22

In terms of underlying trading strategies it is interesting to note that the significant pre-

20Based on Table 3 higher than expected Initial Jobless Claims drive stock markets down and bond markets
up. Accordingly, we invert the signs for the Initial Jobless Claims in both stock and bond CARs. For the
same reason, we reverse the sign for the Consumer Price Index (CPI) and Producer Price Index (PPI) in
the stock market CAR.

21The Internet Appendix Figure B.1 shows CARs for the individual announcements.
22The CARs hover around zero during the [t − 180min, t − 30min] window (in the Internet Appendix)

similarly to during the [t− 60min, t− 30min] window in Figure 1.
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Figure 1: Cumulative Average Returns

E-mini S&P 500 10-year Treasury Note

(a) Announcements without evidence of drift
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(b) Announcements with evidence of drift
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The sample period is from January 1, 2008 through March 31, 2014. We classify each event as “good” or
“bad” news based on whether the announcement surprise has a positive or negative effect on the stock and
bond markets using the coefficients in Table 3. Following Bernile et al. (2016), we invert the sign of returns
for negative surprises. Cumulative average returns (CARs) are then calculated in the [t− 60min, t+ 60min]
window for each of the “drift” and “no drift” categories based on Tables 2 and 3. In the stock market,
there are four drift and sixteen no-drift announcements, and in the bond market, there are nine drift and
eleven no-drift announcements. For each category the solid line shows the mean CAR. Dashed lines mark
two-standard-error bands (standard error of the mean).
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announcement price drift occurs only about 30 minutes before the release time. If informed

traders possessed private information already earlier, the question would arise why they

trade on their knowledge only shortly before the respective announcement. We offer three

possible explanations for this. In all of these rationales, the source of private information is

irrelevant for the optimality of a given trading strategy.

First, it is possible that traders gain access to private information just shortly before the

official release time. The recent SEC (2015) press release gave an example of a corporation

that transmitted earnings and revenue information to a news release agency 36 minutes

before the official release time. Hackers intercepted this information and relayed it to traders

in their international criminal ring who started trading ten minutes after the corporation’s

transmission while the information was still confidential. Similarly, the information might be

obtained shortly before the official release time by proprietary data collection, for example,

by proprietary surveys, to maximize the accuracy of the collected data.

Second, traders may choose to execute trades close to the release time instead of dur-

ing the preceding hours in order to minimize exposure to risks that are unrelated to the

macroeconomic announcement but are driven by other unpredictable economic or geopoliti-

cal events.

Third, informed traders might choose their timing in an attempt to strategically “hide”

their trades. Trading on private information is easier when liquidity is high because then

it is more likely that informed trades will go unnoticed (Kyle, 1985). Although we do not

have limit order data to measure the bid-ask spread, research such as Wang and Yau (2000)

shows that the bid-ask spread is inversely related to trading volume in the futures markets.

Trading volume increases substantially (more than fivefold) in the S&P 500 futures market

at 9:30 due to the opening of the stock market and the beginning of the open outcry trading.

All four announcements exhibiting drift in the S&P 500 futures (Existing Home Sales, ISM

Manufacturing Index, ISM Non-Manufacturing Index and Pending Home Sales) are released

at 10:00, and indeed there is a substantial increase in trading volume 30 minutes before the
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announcement release time. This timing can allow informed traders to take advantage of

this increase in volume not related to the announcement.23

4.2 Order Flow Imbalances and Profits to Informed Trading

Evidence of informed trading is not limited to prices but is visible in order imbalances as well.

We use data on the total trading volume and the last trade price in each one-second interval.

Following Bernile et al. (2016), we classify trading volume as buyer- or seller-initiated using

the tick rule. Specifically, the trade volume in a one-second interval is classified as buyer-

initiated (seller-initiated) if the price for that interval is higher (lower) than the last different

price.24 Figure 2 plots cumulative order imbalances for the same time window as Figure 1.

Similarly to price drift, order flow imbalances start building up about 30 minutes prior to the

announcement release, pointing to informed trading during the pre-announcement interval.

The magnitude of the drift is economically significant. To approximate the magnitude

of total profit in the S&P 500 futures market earned by market participants trading in

the correct direction ahead of the announcements, we proceed as follows: Assume that

there is an entry price, PEntry, at which informed traders enter a trade before the release,

and an exit price, PExit, at which they exit shortly after the release. PEntry and PExit are

computed as volume-weighted average prices (VWAP) over the [t− 30min, t− 5sec] and

[t+ 5sec, t+ 1min] windows, respectively. We exclude the five seconds before and after

the announcement releases to reduce, in our calculations, the dependence on movements

immediately surrounding the release. We then multiply PExit − PEntry by the sign of the

surprise and take the sample average. This average represents the average return of trading

23Appendix Figure A1 illustrates both the spike in trading at 9:30 (upper panel) as well as the increase in
trading volume 30 minutes before the announcement releases in event time (lower panel). Kyle (1985) and
Admati and Pfleiderer (1988) provide a theoretical exposition of how informed speculators trade strategically
to avoid revealing their information in the price.

24We examine the performance of this volume classification algorithm using detailed limit order book
data for our futures contracts that we have available for one month (July 2013). This limit order book
data contains accurate classification of each trade as buyer- or seller-initiated. Based on the classification
accuracy measure proposed by Easley, Lopez de Prado, and O’Hara (2016), the tick rule correctly classifies
95% and 91% of trading volume in the S&P 500 and the Treasury note futures, respectively.
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Figure 2: Cumulative Order Imbalances

E-mini S&P 500 10-year Treasury Note

(a) Announcements without evidence of drift
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(b) Announcements with evidence of drift
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The sample period is from January 1, 2008 through March 31, 2014. Announcements are categorized as no
“drift” and “no drift” categories based on Tables 2 and 3. In the stock market, there are four drift and sixteen
no-drift announcements, and in the bond market, there are nine drift and eleven no-drift announcements.
For each category, we compute cumulative order imbalances in the event window from 60 minutes before the
release time to 60 minutes after the release time. Analogous to Figure 1 we invert the sign of returns for
negative surprises. We winsorize the order imbalances at the 1st and 99th percentiles to reduce the influence
of extreme observations. Dashed lines mark two-standard-error bands (standard error of the mean).
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in the direction of the surprise since all the surprises have positive impact on the S&P 500

prices. Because the sign of the surprise is either positive or negative unity, this can also be

interpreted as a regression of the VWAP return on the sign of the surprise. To estimate the

quantity, we use the fact that the order flow is on average in the direction of the surprise as

shown in Figure 2. In fact, the correlation between the sign of the surprise and the order flow

in the S&P 500 market is approximately +0.19. Hence, we compute the order flow over the

[t− 30min, t− 5sec] window and multiply it by the sign of the surprise.25 We then compute

the sample average and consider this to be the average quantity traded by informed traders.

This quantity can be interpreted as the order flow explained by the surprise. Our estimate

of profits is the product of the average return times the average quantity times the value of

the contract. The contract size of the S&P 500 futures contract is $50 times the index.

Using this methodology, we compute the average profit for each announcement that

exhibits a drift (four announcements in the stock market and nine announcements in the

bond market per Table 2). We multiply this average profit by the number of observations for

the given announcement to compute the total profit for that announcement. We then add

up these total profits across announcements. The approximate total profit during a little

more than six years adds up to $95 million and $89 million in the E-mini S&P 500 futures

and 10-year Treasury note futures markets, respectively.

The median effective bid-ask spread is 0.020% for the E-mini S&P 500 futures and 0.013%

for 10-year Treasury notes futures.26 This is far below the two standard deviation band of

the CAR around drift announcements in Figure 1. Sophisticated traders who use execution

algorithms are likely able to trade round trip close to the spread midpoint and incur a

slippage that is smaller than the spread. Informed trades around drift announcements are,

therefore, profitable.

As a robustness check, we also compute the profit obtained by trading in the direction

25We winsorize the order flow at the 1st and 99th percentiles to reduce the influence of extreme observations.
26We compute the effective bid-ask spread as the average absolute value of price changes (after excluding

price changes in the same direction), which is a common approach to estimating the spread with transaction
data used in, for example, Kurov (2008).

22



of the order flow on non-announcement days using the same methodology but without mul-

tiplying by the sign of the surprise as no announcement is released on those days. We find

that simply trading in the direction of the order flow produces profits that are one order of

magnitude lower than trading the pre-announcement price drift with information on the sur-

prise. We conclude that there is evidence that the economic profits of the pre-announcement

price drift are substantial.

4.3 Increase in Drift After 2007

Our second-by-second data starts on January 1, 2008. The existing literature referenced in

Section 1 analyzes earlier sample periods, for which we do not have such high-frequency

data. However, we have minute-by-minute data for the sample period from August 1, 2003

to December 31, 2007. Therefore, we repeat the analysis of Section 4.1 using the same

30 announcements for this sample period.27 We use one minute before the official release

time as the cutoff for the pre-announcement interval to again ensure that early releases (for

example, pre-releases of the UM Consumer Sentiment two seconds before the official release

time discussed in Section 2) do not fall into our pre-announcement interval.

Figure 3 shows CARs for market-moving announcements based on this minute-by-minute

data for 2003-2007. Compared to 2008-2014 sample period in Figure 1, two features stand

out. First, the total announcement impact is less pronounced particularly in the S&P 500

futures market. Second, the pre-announcement drift is negligible. Only four announcements

exhibit a pre-announcement price drift during the pre-2008 period. The pre-announcement

effect was weaker or non-existent during the pre-2008 period.

A variety of factors may have contributed to this change. One contributing factor may

be a differential impact of macroeconomic announcements on financial markets between

recessions and expansions as shown by, for example, Boyd, Hu, and Jagannathan (2005)

and Andersen et al. (2007). This state-dependence suggests that the pre-2008 and post-2008

27This sample contains intraday data for the bond market starting at 8:20 a.m. ET. Therefore, returns
are sampled in the 8:20-16:00 window, whereas in Section 4.1 they are sampled in the 7:15-16:00 window.
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Figure 3: Cumulative Average Returns, 2003–2007

E-mini S&P 500 Futures 10-year Treasury Note Futures
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The sample period is from August 1, 2003 through December 31, 2007. We classify each event as “good”
or “bad” news based on whether the announcement surprise has a positive or negative effect on the stock
and bond markets. Analogous to Figure 1 we invert the sign of returns for negative surprises. Cumulative
average returns (CARs) are then calculated in the [t − 60min, t + 60min] window for all market-moving
announcements. For each category the solid line shows the mean CAR. Dashed lines mark two-standard-
error bands (standard error of the mean).

periods should differ because an economic expansion ended and the Great Recession began

at the end of 2007. Our results confirm this state-dependence.

Interestingly, the response to surprises does not change its direction again around the

(official) end of the Great Recession, dated by the National Bureau of Economic Research to

June 2009. Better than expected news boosts prices in the stock market and lowers prices

in the bond market throughout the 2008-2014 sample period. Andersen et al. (2007) relate

the changing stock market reaction to macroeconomic news across the business cycle to

anti-inflationary monetary policy, with good economic news causing a negative response in

expansions but a positive response in contractions. The absence of the reversal in 2009 can

be explained using an analogous argument related to the effect of post-2008 unconventional

monetary policies on the market expectations. The stock market response to news hinges

on the expected reaction of monetary policy to macroeconomic news (Kurov & Stan, 2018).

After the official end of the Great Recession, the Federal Reserve continued unconventional

monetary policies because of a slow recovery and other reasons. The Federal Reserve’s

24



quantitative easing and communication with the markets muted expectations of notable

tightening of monetary policy until the spring of 2013. Absent any imminent tightening, good

economic news continued to be good news for stocks until the end of our sample period. The

strong response of the stock market to macroeconomic announcements increased the rewards

to informed trading before the official release time.

General macroeconomic conditions and the related monetary policy are not the only

changes in recent years. The procedures for releasing the announcements changed, and

information collection and computing power increased, which might have enabled sophisti-

cated market participants to forecast some announcements. We discuss these explanations

in Section 5.

5 Causes of Pre-Announcement Price Drift

The pre-announcement price drift documented in Section 4 establishes that market prices

are based on a broader information set Ωt−τ than the information set Ωt−∆ reflected in

market expectations measured by the Bloomberg consensus forecast, i.e., Ωt−∆ ⊂ Ωt−τ . An

equality of these two information sets would require that, first, there is no information in

the market beyond public information, and, second, the public information is fully captured

by the Bloomberg consensus forecast.

A popular explanation for a failure of the first requirement is information leakage. The

corporate finance literature (for example, Sinha & Gadarowski, 2010; Agapova & Madura,

2011) considers price drift before public guidance issued by company management as de

facto evidence of information leakage. We explore this possible explanation in Section 5.1.1.

But at least one alternative explanation exists. In Section 5.1.2, we look for evidence that

some traders may collect proprietary information themselves which allows them to forecast

announcements better than other traders.

A failure of the second requirement could stem from a variety of unavoidable data im-
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perfections. First, the calculation of the consensus forecast by Bloomberg is a plausible

summary statistic of the forecasters’ responses but not necessarily the best one. Second,

the forecasters’ responses might not reflect an optimal forecast, which creates room for some

traders to analyze public information in a superior way. Third, if the sampling of expecta-

tions precedes the beginning of the event window, i.e., if ∆ > τ , market expectations might

change by time t− τ . We discuss these possible explanations in Section 5.2.1. Section 5.2.2

discusses the possibility of uninformed traders “jumping on the bandwagon” with informed

traders.

5.1 Private Information

This section considers possible links between the pre-announcement drift and private in-

formation. We start with private information obtained by leakage and follow with private

information obtained by proprietary data collection.

5.1.1 Information Leakage

Insider trading based on leaked information can seriously impair markets. It reduces risk

sharing and the informational efficiency of prices in the long run (Brunnermeier, 2005).

The U.S. macroeconomic data is generally considered closely guarded as federal agencies

restrict the number of employees with access to the data, implement computer security

measures and take other actions to prevent premature dissemination. The procedures of

the U.S. Department of Labor (DOL), for example, are described in Fillichio (2012). The

last documented case of a U.S. government employee fired for data leakage dates far back:

In 1986, one employee of the Commerce Department was terminated for leaking the Gross

National Product data (Wall Street Journal, 1986). However, the possibility of leakage in

more recent times still exists. In this section, we examine two aspects of the release process

that may affect leakage: organization type and release procedures.

With respect to organization type, we distinguish organizations subject to the Principal
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Federal Economic Indicator (PFEI) guidelines and other entities. Guidance on releasing data

is provided to statistical agencies by the Office of Management and Budget. Key economic

announcements are designated as PFEIs, and the agencies are required to follow strict se-

curity procedures when releasing them to ensure fairness in markets (Office of Management

and Budget, 1985). This includes government agencies and the Federal Reserve Board.

However, ensuring that market participants receive all market-moving macroeconomic

data at the same time is complicated by the fact that some important data is collected

and released by private entities that are not subject to the PFEI guidelines. Some of these

data providers have been known to follow release procedures that would not be allowed

for the PFEIs. For example, Thomson Reuters created a high-speed data feed for paying

subscribers where the Consumer Sentiment Index prepared by the University of Michigan was

released two seconds earlier to an exclusive group of subscribers before being made available

to the public as discussed in Section 2.2. We, therefore, examine the possibility that the

organization type is related to the pre-announcement drift. In Table 5 there are thirteen

PFEI and seven non-PFEI announcements among our 20 market-moving announcements.

Five of the seven non-PFEI announcements show evidence of pre-announcement drift.

With respect to release procedures, we are interested in safeguards against premature

dissemination. We conducted a thorough phone and email survey of the organizations in our

sample. We distinguish three types of release procedures summarized in the “Pre-release”

and “Safeguarding” columns of Table 5.

The first type refrains from any pre-release and involves posting the announcement on

the organization’s website that all market participants can access at the same time. It

is used in four announcements in our sample. The second type involves pre-releasing the

information to journalists in designated “lock-up rooms.” The purpose of the preview is

to allow the journalists to understand the data before writing their news stories and thus

provide more informed news coverage to the public.28 This release type is wide-spread and

28The pre-release period is 60 minutes in the Bureau of Economic Analysis announcements and 30 minutes
in the Bureau of Labor Statistics, Bureau of Census, Conference Board (until 2013), Employment and
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Table 5: Principal Federal Economic Indicators and Pre-release Procedures

Announcement Source PFEI Pre-release Safeguarding

Pre-Announcement Drift
Advance retail sales BC Y Y Lockup room
CB Consumer confidence index CB N Y/Nb Embargo onlyb

Existing home sales NAR N Y Lockup room
GDP advance BEA Y Y Lockup room
GDP preliminary BEA Y Y Lockup room
Initial jobless claims ETA Ya Y Lockup room
ISM Non-manufacturing index ISM N N n.a.
ISM Manufacturing index ISM N N n.a.
Pending home sales NAR N Y Embargo only

No Pre-Announcement Drift
ADP employment ADP N N n.a.
Consumer price index BLS Y Y Lockup room
Construction spending BC Y Y Lockup room
Durable goods orders BC Y Y Lockup room
GDP final BEA Y Y Lockup room
Housing starts BC Y Y Lockup room
Industrial production FRB Y Y Embargo only
New home sales BC Y Y Lockup room
Non-farm employment BLS Y Y Lockup room
Producer price index BLS Y Y Lockup room
UM Consumer sentiment - Prelc TRUM N N n.a.

a The Initial Jobless Claims is not a PFEI. We mark this announcement as PFEI because it is released by the
Department of Labor (DOL) Employment and Training Administration under the same release procedures
as the DOL PFEIs such as Non-Farm Employment.
b The Conference Board eliminated the pre-release in June 2013.
c Until July of 2013, the Preliminary University of Michigan Consumer Sentiment Index was pre-released
via Thomson Reuters two seconds before the official release time to high-speed data feed clients.

used in thirteen market-moving announcements in our sample. A testimony in front of the

U.S. House of Representatives by the DOL official responsible for lock-up security highlights

the challenges of preventing premature dissemination from lock-up rooms. For example, news

media installed their own computer equipment in the DOL’s lock-up room without the DOL

staff being able to verify what exactly the equipment does (Fillichio, 2012; Hall, 2012). A

wire service accidentally transmitted the data during the lock-up period (Fillichio, 2012; Hall,

2012). Cell phones were supposed to be stored in a designated container, but one individual

accessed and used his phone during the lock-up (Fillichio, 2012). Some organizations have

Training Association, and National Association of Realtors announcements. We were unable to determine
the pre-release period length for the Federal Reserve Board.
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exploited the loose definition of what constitutes a media outlet and obtained access to

the lock-up rooms designed for journalists. Mullins and Patterson (2013) write about the

“Need to Know News” outlet. After the DOL realized that this entity was in the business of

transmitting data via high-speed connections to financial firms, the DOL revoked its access

to the lock-up room. Recognizing that securing pre-release is a formidable task, the DOL

has been reported to consider eliminating the lock-up room (Mullins, 2014).

In addition, our survey uncovers a third type of release procedures that has not been

documented in academic literature. Three announcements are pre-released to journalists

electronically. The Pending Home Sales announcement is transmitted by the National Asso-

ciation of Realtors to journalists who are asked not to share the information with individuals

other than those working on the news story. The Industrial Production announcement is pre-

released by the Federal Reserve Board through an electronic system to selected reporters at

credentialed news organizations that have written agreements governing this access (Federal

Reserve Board, 2014). The Conference Board (CB) used to pre-release the CB Consumer

Confidence Index to a group of media outlets that had signed an agreement not to distribute

the information prior to the release time; this pre-release was eliminated in June of 2013,

and the information is now posted directly on the CB website.

We examine the possibility that the release procedures play a role in our findings. A

cursory look at Tables 4 and 5 reveals that two of the three announcements with the least

secure release procedure (CB Consumer Confidence Index and Pending Home Sales) are

among our nine drift announcements.

To test this more formally, we introduce three indicator variables X i
m,t, i ∈ {1, 2, 3}

that capture the organization type and release procedures. The “PFEI” indicator X1
m,t

takes on the value of unity if the announcement is released by an organization required to

follow PFEI procedures, the “pre-release” indicator X2
m,t equals unity if the announcement

is pre-released,29 and the “embargo-only” indicator X3
m,t is unity if the announcement is

29The pre-release variable does not capture leakage outside of the lock-up, for example, via staff that
prepares and disseminates the information or the government officials that receive the information ahead of

29



pre-released under a simple embargo. In all other cases, the indicator variables are zero.

Only for the CB Consumer Confidence Index the release procedure changed during our

sample period. Otherwise, the indicator variables for a given announcement are constant

over time. The identification of the effect of release procedures must, therefore, rely on

cross-sectional variation. To allow the pooling of announcements, we adjust the sign of the

surprises such that a positive surprise increases stock and lowers bond prices based on the

sign of the sum of γ̃m coefficients in Table 3.30

Let us denote the sign-adjusted surprise by S̃m,t. We define S̄t as the cross-sectional

average of all non-zero surprises at time t:

S̄t =
M∑
m=1

S̃m,t

/
M∑
m=1

1(|S̃m,t| > 0).

Further, we define X̄i,t which interacts the release procedure dummies X i
m,t with the surprise.

Here the cross-sectional average at time t is conditional on the release procedure:

X̄i,t =
M∑
m=1

[
S̃m,t1(X i

m,t = 1)
]/ M∑

m=1

1(|S̃m,t| > 0).

By including these averages in equation (2) we obtain:

Rt = β0 +
2∑
j=1

βjRj,t−1 +
5∑

k=−1

[
γkS̄t+k +

3∑
i=1

δikX̄i,t+k

]
+ εt. (3)

Table 6 reports the sum of the contemporaneous and leading coefficients in equation (3).

This sum of coefficients captures the pre-announcement drift.31 The first row gives the 30-

time (Javers, 2012) or leakage via information technology systems accessed by hackers (SEC, 2015). Other
factors that might affect the likelihood of leakage include the number of individuals involved in the release
process and the length of time from data collection to release. However, this information is not publicly
available, and we were unable to obtain it from all organizations.

30For the E-mini S&P 500 market, the surprises are multiplied by the sign of the sum of γ̃m coefficients (on
one lagged, one contemporaneous and five lead terms as explained in Section 4.1). For the 10-year Treasury
note, the surprises are multiplied by minus one times the sign of the sum of the γ̃m coefficients. This ensures
that surprises are signed to have the same impact as in equation (2).

31Similarly to Tables 2 and 3, we test as well whether the sums of coefficients in the S&P 500 and Treasury
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Table 6: Effect of Organization Type and Release Procedures

E-mini S&P 500 10-year Treasury Note
(1) (2) (3) (4)

Surprise 0.028 (0.007)*** 0.032 (0.006)*** -0.014 (0.003)*** -0.015 (0.003)***
PFEI -0.057 (0.013)*** -0.025 (0.008)*** 0.017 (0.005)*** 0.008 (0.004)**
Pre-release 0.040 (0.014)*** n.a. -0.011 (0.006)** n.a.
Embargo-only n.a. 0.034 (0.012)*** n.a. -0.012 (0.006)**

The sample period is from January 1, 2008 through March 31, 2014. The results show weighted least squares
estimates of equation (3) for each market as described in Section 3. Reported coefficients in the first row are

the sum
∑5
k=0 γk and in the bottom three rows the sum

∑5
k=0 δik. Standard errors are shown in parentheses.

*, **, and *** indicate statistical significance at 10%, 5% and 1% levels, respectively.

minute pre-announcement drift of an average non-PFEI announcement, which is either not

prereleased or released in a lockup room, i.e.,
∑5

k=0 γk. The bottom three rows show how

release procedures affect the pre-announcement price drift, reflected in the respective sums

of the interaction variables,
∑5

k=0 δik. We present two regression specifications: The first

specification in columns (1) and (3) includes the Surprise, PFEI and Pre-release variables.

The second specification in columns (2) and (4) includes the Surprise, PFEI and Embargo-

only variables.

The first row in Table 6 confirms that the benchmark announcements display significant

pre-announcement drift, with the correct sign in both markets. This drift varies systemat-

ically with the release procedure. In particular, the coefficients on the PFEI indicator in

row 2 are all significant and have the opposite sign of the benchmark announcements in row

1.32 This indicates that announcements subject to the PFEI guidelines are less affected by

pre-announcement drift.

The coefficients on the Pre-release indicator in the third row and on the Embargo-only

indicator in the fourth row share the sign of the coefficient on the surprise itself, i.e., they are

positive and statistically significant in the stock market and negative and statistically signif-

note markets are different from zero. The χ2-statistic of this joint test is significant at 1% level for all variables
for both markets.

32All PFEI announcements in our sample are pre-released, as shown in Table 5. The average effect of
subjecting an announcement to PFEI standards is, therefore, the sum of the PFEI and the Pre-Release
coefficients, which implies a dampening but no reversal of the pre-announcement drift.
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icant in the bond market. This shows that pre-releasing announcements is associated with

a stronger drift. This applies in particular to the least secure release procedure, “Embargo-

only”. However, caution needs to be exercised in interpreting these results. Fully examining

the leakage explanation would require a thorough analysis of individual trader data that is

available only to the futures exchanges and the Commodity Futures and Trading Commission

(CFTC) that oversees the U.S. futures markets.

5.1.2 Proprietary Information

In addition to information leakage, private information can be created by market participants

generating their own proprietary information by collecting data related to macroeconomic

announcements. In the context of company earnings announcements, Kim and Verrecchia

(1997) interpret this pre-announcement information as “private information gathered in an-

ticipation of a public disclosure.” If the private data acquisition merely attempts to antici-

pate the official announcement but does not generate any new information beyond it, then its

effect on the informativeness of prices parallels the effect of leakage in Brunnermeier (2005).

Typically this proprietary information is never published and remains a noisy private

signal of the official announcement. The nature of proprietary information usually makes it

impossible for researchers to verify its existence.33 However, proprietary data that is released

to researchers or the public later provides an opportunity to explore the role of proprietary

information in the pre-announcement price drift.

We were able to obtain three examples of such proprietary data collection: The State

Street “PriceStats” automatically scrapes online prices to compute daily estimates of the U.S.

inflation, the State Street Investor Confidence Index measures investor confidence based on

buying and selling activity of institutional investors on a monthly basis, and the Case-Shiller

Home Price Index by S&P Dow Jones provides monthly data on home prices. We test

33Examples of proprietary data collection could be exclusive subscriptions (for example, credit-card
“SpendingPulse” data of MasterCard), tailor-made data from surveillance helicopters monitoring activ-
ity around industrial complexes (see, for example, Rothfeld and Patterson (2013)), or even the proprietary
insights that trading platforms may gain from monitoring order flow.
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whether information at its collection time (when it was still proprietary) is useful for fore-

casting macroeconomic announcement surprises by regressing the announcement surprise,

Smt, on the proprietary data. We pick the macroeconomic announcement most closely re-

lated to the proprietary data: CPI for the State Street PriceStats inflation indicator, CB

Consumer Confidence Index for the State Street Investor Confidence Index, and housing

sector announcements for the Case-Shiller Home Price Index. We find predictive power

in the PriceStats inflation indicator but no predictive power in the State Street Investor

Confidence Index and the Case-Shiller Home Price Index. This result may be due to the

PriceStats data collection occurring daily which would allow traders with access to this in-

formation to trade more in real-time than monthly indicators. Although a comprehensive

test of the effect of proprietary information is not feasible by construction, the results (in

the Internet Appendix) for these three proprietary data sets raise the possibility that early

access to proprietary information permits forecasting announcement surprises.

5.2 Public Information

In this section, we discuss the possibility that published market expectations are mismeasured

and explore the possibility of a “bandwagon effect.” We show that neither of these two

explanations can convincingly explain the pre-announcement drift.

5.2.1 Individual Analyst Forecasts

The definition of a surprise in equation (1) involves market expectations, Et−τ [Am,t]. Sec-

tion 4 uses the Bloomberg consensus forecast. However, Bloomberg’s way of calculating a

consensus forecast as the median of individual forecasts is not innocuous. Individual forecast-

ers might differ in their forecasting abilities and loss functions.34 The forecasts of individual

34In such a situation, the median of individual forecasts may not be optimal. Nevertheless, such parameter-
free approaches perform well in many situations due to the elimination of the estimation error on combination
weights (Elliott & Timmermann, 2005).
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analysts are available to Bloomberg subscribers.35 If the announcement surprises are pre-

dictable with individual forecasts, but most traders rely on the consensus forecast, then

traders with deeper insight obtained from individual forecasts could trade on this insight

before the announcement, which would explain the drift.36

Bloomberg provides a rank for a subset of up to ten active professional forecasters who

have issued accurate forecasts in previous months. We compute the median consensus for

the ranked forecaster subset, ERanked
t−∆ [Amt], using forecasts submitted no more than seven

days before the release date to avoid stale forecasts.37 We use this variable as a predictor

of the actual announcement, Amt. Our forecast of the surprise is the difference between the

median values of the professional forecasters ranked by Bloomberg and all forecasters in the

Bloomberg survey:

Pmt = ERanked
t−τ [Amt]− Et−τ [Amt]. (4)

To determine whether Pmt is a reasonable forecast of the unstandardized surprise, Ŝmt,
38

we regress the unstandardized surprise, Ŝmt, on a constant and the prediction, Pmt. Nine

announcements out of the 20 market-moving announcements show significance of the slope

coefficient at 10% level.39

35We build on previous research that uses individual forecasts. Energy markets react more to inventory
forecasts by professional forecasters with a track record of higher forecasting accuracy (Chang, Daouk, &
Wang, 2009; Gay, Simkins, & Turac, 2009). In forecasts of macroeconomic announcements, Brown, Gay,
and Turac (2008) use individual forecasts to construct a forecast that improves on the Bloomberg consensus
forecasts for 26 U.S. macro announcements. In contrast, Genre, Kenny, Meyler, and Timmermann (2013)
caution that picking the best combination of forecasts in real time using the European Central Bank’s Survey
of Professional Forecasters data for GDP growth, inflation and unemployment is difficult because the results
vary over time, across forecasting horizons and between target variables.

36Forecasting a nonlinear data generating process under an asymmetric loss function can give an optimal
forecast with non-zero mean (Patton & Timmermann, 2007). Insights into the data generating process and
the loss functions of individual analysts might allow predicting this bias. Some investment institutions indeed
place considerable resources in building models of announcement surprises.

37Since some individual forecasters submit their forecasts days before the releases as described in Sec-
tion 2 and Bloomberg equal-weights the forecasts, we also test whether more up-to-date forecasts are better
predictors of the surprise and find that removing stale forecasts does not improve forecasts of the surprise.

38We use a forecast of the unstandardized surprise Ŝmt = Amt−Et−τ [Amt] = σmSmt to avoid the estimation
of additional parameters.

39These announcements are Advance Retail Sales, CB Consumer Confidence Index, CPI, Durable Goods
Orders, Existing Home Sales, GDP Advance, Industrial Production, Pending Home Sales and PPI. Detailed
results are reported in the Internet Appendix.
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We compare the predictive accuracy of this surprise forecast with a white noise fore-

cast under quadratic loss (Diebold & Mariano, 1995; Diebold, 2015). The forecast error in

predicting the next surprise is Ŝmt − Pmt under (4), and Ŝmt under white noise. The test

of the null hypothesis H0 : E
(
Ŝmt − Pmt

)2

= E
(
Ŝmt

)2

against the one-sided alternative

hypothesis H1 : E
(
Ŝmt − Pmt

)2

< E
(
Ŝmt

)2

reveals that the improvement over the white

noise forecast for five of the 20 market-moving announcements is significant at the 10% level.

Only one of these announcements (Existing Home Sales) shows a drift in Table 2, whereas

the other four (CPI, Durable Goods Orders, Industrial Production, and PPI) do not.40

Thus, while there is some limited forecastability of announcement surprises, it is unlikely

that the weighting of individual analyst forecasts in the Bloomberg consensus and trading

on refined forecasts generates the pre-announcement effect.41

5.2.2 Bandwagon Effect

A possibility arises that uninformed speculators manage to “jump on the bandwagon” with

informed traders by observing the trading activity and returns before the announcement

releases.42 However, the markets that we examine are very liquid. The order imbalances

before these announcements are sizable, but they represent only a small fraction of the overall

trading activity. For example, the average trading volume in the 30-minute window before

drift announcements is about 247,000 and 89,000 contracts in the E-mini S&P 500 and 10-

year Treasury note futures, respectively. As discussed at the end of Section 4.1, such high

trading activity likely allows informed traders to camouflage their information and trade

profitably before announcement releases.

To replicate this strategy, we consider uninformed traders observing price movements at

the beginning of the drift period and trading accordingly. For example, we analyze correla-

tions of returns in the [t−30min, t−15min] window with returns in the [t−15min, t−5sec]

40Appendix Table A1 shows the results.
41Recently, Zhou (2016) describes traders predicting announcements by other public information.
42For example, Brunnermeier (2005) shows that leakage makes prices before the news announcement more

informative.
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window. Such correlations are not significant, however, suggesting that simply observing

price movements cannot be easily used for profitable trading ahead of announcement re-

leases.

6 Conclusion

There is evidence of substantial pre-announcement informed trading in equity index and

Treasury futures markets for nine out of 20 market-moving U.S. macroeconomic announce-

ments during 2008–2014. About 30 minutes before the release time, prices begin to drift in

the direction of the market’s subsequent reaction to the news. This drift accounts for 49

percent and 36 percent of the overall price adjustments in the E-mini S&P 500 and 10-year

Treasury note futures markets, respectively, and the estimated magnitude of profits of in-

formed traders underscores the economic significance of these price moves. Therefore, failing

to account for the pre-announcement effect substantially underestimates the total impact

that these macroeconomic announcements have on financial markets.

We examine possible sources of informed trading. We focus on two features of the release

process that may affect information leakage: organization type and release procedures. The

results suggest that announcements from organizations that are not subject to the Principal

Federal Economic Indicator guidelines and announcements released under less secure release

procedures are associated with a stronger drift. Resource-intensive legwork creating original

proprietary datasets that proxy the data underlying public announcements might also permit

anticipating their values before their release. It is also possible that a combination of various

factors causes the drift.

The definite source of the drift remains an open question. In view of the public interest in

the safeguarding of macroeconomic data and considering the public and regulatory attention

that leakage has received, for example, in the recent hacking scandal (SEC, 2015), the source

of informed trading merits more research. Of particular interest is the effect of proprietary
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real-time data collection on announcement surprises and prices, and a comparison of pre-

announcement effects across countries with different regulations and supervisory structures.
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A Appendix

A.1 Impact of Early Signals

A pre-announcement price drift of 50% of the total announcement impact shown for some

macroeconomic announcements in Table 4 appears large at first sight. This appendix il-

lustrates in a model of Bayesian learning that very little information is needed to generate

a pre-announcement drift of such a large magnitude. The earlier information gets more

attention than the later information and thus has a larger price impact even if the later

information is “official” and more precise.

We consider an economy with one risky asset with payoff X, which could also be seen

as the state of the economy. Traders have access to two sources of information. First,

(select) traders observe a private signal A1 about the state of the economy via leakage or

own information collection at t < 2:

A1 = X + ε1.

The official announcement, which is released to the public at time t = 2, is

A2 = X + ε2.

Both private signal and official announcement are subject to normally distributed noise

εi ∼ N
(

0, 1
ρAi

)
for i = 1, 2 where ρAi denotes the precision of signal i. Investors form

homogeneous expectations about X at each point in time. We denote by µX0 the normally

distributed prior market expectation of the state of the economy X at time t = 0 with

precision ρX0.

Traders update their conditional expectations by Bayesian learning. Their first update

before the official release time, immediately after observing the leaked or proprietary infor-
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mation, changes their expectation of X to

E[X|A1] ≡ µX1 = ρ−1
X1(ρX0µX0 + ρA1A1) (5)

with precision ρX1 = ρA1 + ρX0. After the official announcement release, they update their

expectation again, now to

E[X|A1, A2] ≡ µX2 = ρ−1
X2(ρX1µX1 + ρA2A2) (6)

with precision ρX2 = ρA2 + ρX1.

We assume that traders choose their asset holdings D to maximize their expected CARA

utility of next period’s wealth

E [U (W )] = E [−exp (−DX)] ,

which generates a linear demand function. Under an exogenous, zero mean, and normally

distributed supply of the risky asset, using the conditional expectations (5) and (6), market

clearing implies that the price change equals the conditional expected net payoff in the

respective period. In the pre-announcement period, the price changes by

p1 − p0 =
ρA1

ρX1

(A1 − µX0).

At the official release time, the price changes again, now by

p2 − p1 =
ρA2

ρX2

(A2 − µX1).

For concise notation, we write for each surprise Si ≡ Ai−µXi−1. The following proposition

provides a condition for the price change in the pre-release period exceeding the price change

at the official release time.
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Proposition (Impact of Early News)

p1 − p0 > p2 − p1 ⇔
ρA1

ρA2

+
ρA1

ρX0 + ρA1

>
S2

S1

(7)

Proof: p1 − p0 > p2 − p1

⇔ ρA1

ρX1

S1 >
ρA2

ρX2

S2

⇔ (ρA2 + ρA1 + ρX0)ρA1

(ρA1 + ρX0)ρA2

>
S2

S1

⇔ ρA1

ρA2

+
ρA1

ρA1 + ρX0

>
S2

S1

q.e.d.

The proposition shows that even vague proprietary information can have a large price

impact. To see this in a specific example, suppose that there is no prior public information

(ρX0 → 0), and that the pre-release information is less precise and less surprising than the

official release later on (ρA2 = 2ρA1, S2 = 1.5S1). Substituting into condition (7), we find

that the pre-release price change is equal to the price impact at the official release time.

Therefore, even a modest amount of private information suffices to explain a price drift

amounting to 50% of the total price adjustment. In our example, pre-release information

with only one half of the precision and with only two thirds of the surprise suffices. The

reason for the amplified impact of the private information is its early availability.
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A.2 Additional Figures and Tables

Figure A1: Trading Volumes

E-mini S&P 500 10-year Treasury Note

(a) Calendar time
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(b) Event time
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The sample period is from January 1, 2008 through March 31, 2014. The figure shows the average trading
volume in the number of contracts per minute. The top panel shows the average trading volume in calendar
time. The bottom panel shows the average trading volume in event time for each of the “drift” and “no
drift” categories based on Tables 2 and 3.
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Table A1: Results of Forecasting the Announcement Surprise Using Individual
Forecasts

DM p-value

ADP employment -1.06 0.86
Advance retail sales 0.69 0.25
CB Consumer confidence index 1.01 0.16
Construction spending -4.42 1.00
Consumer price index 2.81 0.00
Durable goods orders 2.56 0.01
Existing home sales 1.32 0.09
GDP advance 1.00 0.16
GDP final -3.20 1.00
GDP preliminary -0.75 0.77
Housing starts -0.83 0.80
Industrial production 1.81 0.04
Initial jobless claims -0.41 0.66
ISM Manufacturing index 0.71 0.24
ISM Non-manufacturing index -0.70 0.76
New home sales -0.51 0.69
Non-farm employment -1.61 0.95
Pending home sales 0.68 0.25
Producer price index 1.77 0.04
UM Consumer sentiment (prel.) 0.37 0.36

The sample period is from January 1, 2008 through March 31, 2014. The Diebold-Mariano test statistic in
column DM is computed for the prediction, Pmt, of the unstandardized surprise, Ŝmt, based on the consensus
of the ranked professional forecasters against a zero surprise benchmark. A large value means rejection of

the null hypothesis, H0 : E
(
Ŝmt − Pmt

)2
= E

(
Ŝmt

)2
, in favor of an alternative hypothesis of an improved

prediction using the consensus of the ranked professional forecasters, H1 : E
(
Ŝmt − Pmt

)2
< E

(
Ŝmt

)2
.
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1 Overview

This Internet Appendix presents additional details and robustness checks for the “Price Drift

before U.S. Macroeconomic News: Private Information about Public Announcements?” pa-

per. Section 2 shows summary statistics for the announcements listed in Table 1 in the paper.

Section 3 provides additional detail for Figure 1 in the paper by showing cumulative average

returns for individual announcements. Section 4 compared cumulative average returns in the

expanded [t−180min, t+60min] window to the [t−60min, t+60min] window reported in the

paper. Section 5 checks the robustness of testing multiple hypotheses using the Holm (1979)

step-down procedure. Section 6 analyzes the pre-announcement drift conditional on the sign

of the post-announcement return. Complementing the time-series methodology followed in

the paper, Section 7 repeats the analysis based on event study methodology including ro-

bustness checks for outliers, event window length, effect of order flows, and other markets

(E-mini Dow futures and 30-year Treasury bond futures). Section 8 provides additional in-

formation on forecasting the announcement surprise using proprietary data sets. Section 9

provides additional information on forecasting the announcement surprise using individual

analyst forecasts.

2 Summary Statistics for Announcements Data

Table B1 shows summary statistics for the 30 announcements listed in Table 1 in the paper.

3 Cumulative Average Returns for Individual Announce-

ments

Figure 1 in the paper presents cumulative average returns (CARs) averaged across announce-

ments. Here, in Figure B1 we present CARs for the individual announcements that exhibit

drift per Table 2 in the paper (four in the E-mini S&P 500 market and nine in the 10-year

Treasury note market).
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Figure B1: Cumulative Average Returns for Individual Announcements

E-mini S&P 500 10-year Treasury Note
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The sample period is from January 1, 2008 through March 31, 2014. We classify each event as “good” or
“bad” news based on whether the announcement surprise has a positive or negative effect on the stock
and bond markets using the coefficients in Table 3 in the paper. Cumulative average returns (CARs)
are then calculated in the [t − 60min, t + 60min] window. Only announcements showing evidence of
pre-announcement drift in each market in Table 2 in the paper are included (four in the E-mini S&P 500
market and nine in the 10-year Treasury note market).

4 Cumulative Average Returns for [t−180min, t+60min]

Window

Figure 1 in the paper presents CARs for the [t − 60min, t + 60min] window. Figure B2

presents CARs in the expanded [t − 180min, t + 60min] window. The CARs during the

[t − 180min, t − 60min] window hover around zero similarly to the [t − 60min, t − 30min]

window.

5 Robustness Check: Multiple Hypotheses Testing and

Data Snooping

Table 2 in Section 4.1 in the paper presents results showing the pre-announcement price

drift. In that table, we test multiple hypotheses. Increasing the number of hypotheses leads

to the rejection of an increasing number of hypotheses with probability one, irrespective of

the sample size. Failure to adjust the p-values can be viewed as data snooping. To rule out

this possibility, we use the Holm (1979) step-down procedure. This procedure adjusts the

3



Figure B2: Cumulative Average Returns for [t− 180min, t+ 60min] Window

E-mini S&P 500 10-year Treasury Note
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The sample period is from January 1, 2008 through March 31, 2014. We classify each event as “good” or
“bad” news based on whether the announcement surprise has a positive or negative effect on the stock and
bond markets using the coefficients in Table 3 in the paper. Following Bernile, Hu, and Tang (2016), we
invert the sign of returns for negative surprises. Cumulative average returns (CARs) are then calculated in
the [t − 180min, t + 60min] window for the “drift” category based on Table 2 in the paper. In the stock
market, there are four drift announcements. In the bond market, there are nine drift announcements. The
solid line shows the mean CAR. Dashed lines mark two-standard-error bands (standard error of the mean).

hypothesis rejection criteria to control the probability of encountering one or more type I

errors, the familywise error rate (see, for example, Romano and Wolf (2005)). Denote the

hypotheses by H1, ..., HM , one for each of the M = 30 announcements in Table 2. Denote the

corresponding p-values by p1, ..., pM . Consider the significance level of 0.05. The procedure

orders the Table 2 joint test p-values from the lowest to the highest. Denoting the ordered

hypotheses by k = 1 . . . 30, it computes 0.05
M+1−k for each k and compares this computed value

to the Table 2 p-value. The null hypothesis of no drift is rejected if 0.05
M+1−k exceeds the

p-value in Table 2. Based on this conservative approach, four announcements ranked at the

top of Table 2 (ISM Manufacturing, Pending Home Sales, ISM Non-Manufacturing and CB

Consumer Confidence Index) show a statistically significant drift.

6 Robustness Check: Conditioning on Sign of Post-

Announcement Return

The results in Section 4 in the paper show that the pre-announcement drift is in the di-

rection of the surprise. In this section, we focus instead on returns and show that the

pre-announcement drift exists also conditional on the sign of the post-announcement return.
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Table B2: Holm’s Step-down Procedure

Table 2 Joint Test Null Hypothesis
Announcement p-value 0.05

M+1−k of No Drift Rejected

ISM Non-manufacturing index 8.033E-11 0.0017 Yes
Pending home sales 7.560E-08 0.0017 Yes
ISM Manufacturing index 0.150E-05 0.0018 Yes
CB Consumer confidence index 0.109E-04 0.0019 Yes

Existing home sales 0.012 0.0019 No
Advance retail sales 0.016 0.0020 No
GDP preliminary 0.018 0.0021 No
Initial jobless claims 0.020 0.0022 No
GDP advance 0.049 0.0023 No
Factory orders 0.060 0.0024 No
Industrial production 0.203 0.0025 No
Trade balance 0.219 0.0026 No
Construction spending 0.226 0.0028 No
Consumer credit 0.238 0.0029 No
Building permits 0.244 0.0031 No
Personal income 0.296 0.0033 No
Government budget 0.333 0.0036 No
Personal consumption 0.433 0.0038 No
New home sales 0.456 0.0042 No
Wholesale inventories 0.539 0.0045 No
Durable goods orders 0.644 0.0050 No
Consumer price index 0.648 0.0056 No
UM Consumer sentim. - Prel 0.671 0.0063 No
Index of leading indicators 0.678 0.0071 No
Non-farm employment 0.686 0.0083 No
Housing starts 0.704 0.0100 No
Producer price index 0.858 0.0125 No
ADP employment 0.859 0.0167 No
UM Consumer sentim. - Final 0.895 0.0250 No
GDP final 0.978 0.0500 No

The sample period is from January 1, 2008 through March 31, 2014. All 30 announcements are included.

For announcements showing drift in Table 2 in the paper, the returns in the [−30min,

−5sec] window are strongly correlated with the returns in the [−5sec,+1min] window. The

correlation of returns in these two windows is highly significant with values of 0.19 and 0.15

in the stock and bond markets, respectively. In contrast, for no-drift announcements this

5



correlation is not significant with values of -0.01 and -0.02 in the stock and bond markets,

respectively.

We show CARs conditioned on the sign of the returns in the [−5sec, 1min] window in Fig-

ure B3 following Ederington and Lee (1995). The CARs suggest that the pre-announcement

drift is in the direction of the post-announcement price move.1

Figure B3: Cumulative Average Returns Conditional on Sign of Return in
[−5sec, 1min] Window for Drift Announcements

E-mini S&P 500 10-year Treasury Note
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The sample period is from January 1, 2008 through March 31, 2014. Similarly to Ederington and Lee (1995),
if the return in the [−5sec,+1min] window in the stock market is negative, we multiply the returns by -1.
In the bond market, if the return in the [−5sec,+1min] window is positive, we multiply the returns by -1.
Cumulative average returns (CARs) are then calculated in the [t− 60min, t+ 60min] window for each of the
drift announcements per Table 2 in the paper. We omit the weekly Initial Claims announcement to avoid this
announcement disproportionately affecting the results comprised of monthly and quarterly announcements.
The solid line shows the mean CAR. Dashed lines mark two-standard-error bands (standard error of the
mean).

7 Robustness Check: Event Study Methodology

Complementing the time-series methodology used in the paper, we repeat the analysis here

based on event study methodology. We start with an OLS regression, followed by outlier

robustness checks, then present cumulative average return graphs and perform additional

robustness checks with event window length, the effect of order flows, and other markets.

1As we would expect, the magnitude of the pre-announcement price move as a proportion of the total price
move is slightly lower in Figure B3 (about a third) compared to Figure 1 in the paper (about a half) because
returns are not predictable. Therefore, even an informed trader that perfectly forecasts the announcement
surprises and enters a position based on this information before the announcement release may experience
the market move against this position due to reasons unrelated to the announcement.
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7.1 OLS Regression

Let Rt+τ
t−τ denote the continuously compounded asset return around the official release time

t of announcement m, defined as the first difference between the log prices at the beginning

and at the end of the intraday event window [t − τ , t + τ ]. Let Smt denote the unexpected

component of news announcements (“the surprise”) as in the paper. The effect of news

announcements on asset prices can then be analyzed by standard event study methodology

(Balduzzi, Elton, & Green, 2001). The reaction of asset returns to the surprise is captured

by the ordinary least squares regression

Rt+τ
t−τ = γ0 + γmSmt + εt, (1)

where γ0 captures the unconditional return around the release time (Lucca & Moench, 2015),

and εt is an i.i.d. error term reflecting price movements unrelated to the announcements.

As in the paper, the standardized surprise, Smt, is based on the difference between the

actual announcement, Amt, released at time t and the market’s expectation of the announce-

ment before its release, Et−τ [Amt], proxied by the median response of professional forecasters

during the days before the release, Et−∆[Amt].
2 As in the paper, we standardize the differ-

ence by the standard deviation of the respective announcement, σm, to convert them to equal

units. Specifically,

Smt =
Amt − Et−τ [Amt]

σm
. (2)

To isolate the pre-announcement effect from the post-announcement effect, we first iden-

tify market-moving announcements among our set of 30 macroeconomic announcements. We

estimate equation (1) with an event window spanning from τ = −5 seconds before the offi-

cial release time to τ = 5 minutes after the official release time. Analogously, the dependent

variable Rt+τ
t−τ is the continuously compounded futures return over the [t − 5sec, t + 5min]

window.

Table B3 shows that there are 21 market-moving announcements based on the p-values

from the joint test of both stock and bond markets using a 5% significance level. The coef-

ficients have the expected signs: Good economic news (for example, higher than anticipated

GDP) boosts stock prices and lowers bond prices. Specifically, a one standard deviation

positive surprise in the GDP Advance announcement increases the E-mini S&P 500 futures

price by 0.171 percent, and its surprises explain 22 percent of the price variation within

the announcement window. Our subsequent analysis is based on these 21 market-moving

2We also estimate equation (1) including the market’s expectation of the announcement, Et−∆[Amt], on
the right-hand side. The coefficients are not significant suggesting that markets indeed do not react to the
expected component of news announcements.
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announcements.

Table B3: Announcement Surprise Impact During [t− 5sec, t+ 5min] Using Event
Study Methodology

E-mini S&P 500 Futures 10-year Treasury Note Futures Joint Test
Announcement γm R2 γm R2 p-value

GDP advance 0.171 (0.052)*** 0.22 -0.028 (0.026) 0.04 0.002
GDP preliminary 0.113 (0.051)** 0.15 -0.056 (0.015)*** 0.25 <0.001
GDP final 0.053 (0.039) 0.06 -0.042 (0.018) ** 0.17 0.025
Personal income 0.020 (0.012) 0.01 0.000 (0.012) 0.00 0.253
ADP employment 0.178 (0.023)*** 0.59 -0.093 (0.017)*** 0.49 <0.001
Initial jobless claims -0.115 (0.013)*** 0.23 0.043 (0.006)*** 0.19 <0.001
Non-farm employment 0.420 (0.046)*** 0.50 -0.261 (0.043)*** 0.43 <0.001
Factory orders 0.035 (0.026) 0.04 -0.017 (0.009)* 0.07 0.060
Industrial production 0.043 (0.013)*** 0.17 -0.008 (0.004)* 0.04 0.001
Construction spending -0.005 (0.039) 0.00 0.007 (0.013) 0.00 0.863
Durable goods orders 0.096 (0.020)*** 0.23 -0.045 (0.012)*** 0.20 <0.001
Wholesale inventories -0.033 (0.021) 0.04 0.005 (0.007) 0.01 0.239
Advance retail sales 0.161 (0.024)*** 0.42 -0.073 (0.015)*** 0.27 <0.001
Consumer credit 0.036 (0.015)** 0.07 -0.004 (0.003) 0.03 0.019
Personal consumption 0.007 (0.014) 0.00 -0.015 (0.008)* 0.02 0.147
Building permits 0.045 (0.022)** 0.06 -0.020 (0.013) 0.04 0.037
Existing home sales 0.120 (0.030)*** 0.20 -0.038 (0.010)*** 0.17 <0.001
Housing starts 0.050 (0.024)** 0.08 -0.039 (0.015)*** 0.17 0.003
New home sales 0.122 (0.026)*** 0.25 -0.044 (0.006)*** 0.39 0.001
Pending home sales 0.087 (0.032)*** 0.11 -0.032 (0.008)*** 0.18 <0.001
Government budget 0.013 (0.013) 0.02 0.001 (0.007) 0.00 0.612
Trade balance 0.024 (0.016) 0.01 -0.003 (0.007) 0.00 0.280
Consumer price index -0.111 (0.041)*** 0.15 -0.030 (0.013)** 0.06 0.002
Producer price index 0.013 (0.033) 0.00 -0.023 (0.011)** 0.06 0.124
CB Consumer confidence index 0.196 (0.029)*** 0.47 -0.051 (0.008)*** 0.41 <0.001
Index of leading indicators 0.058 (0.027)** 0.05 -0.009 (0.008) 0.01 0.058
ISM Manufacturing index 0.240 (0.034)*** 0.46 -0.111 (0.014)*** 0.50 <0.001
ISM Non-manufacturing index 0.064 (0.037)* 0.07 -0.041 (0.009)*** 0.25 <0.001
UM Consumer sentim. - Final 0.046 (0.020)** 0.06 -0.014 (0.006)** 0.07 0.005
UM Consumer sentim. - Prel 0.071 (0.025)*** 0.10 -0.017 (0.007)** 0.08 0.001

The sample period is from January 1, 2008 through March 31, 2014. The reported response coefficients γm
are the ordinary least squares estimates of equation (1) with the White (1980) heteroskedasticity consistent
covariance matrix. Standard errors are shown in parentheses. *, **, and *** indicate statistical significance
at 10%, 5% and 1% levels, respectively. The p-values are for the joint Wald test that the coefficients of
announcement surprises for the E-mini S&P 500 and 10-year Treasury note futures are equal to zero. The
intercept, γ0, is significant only for the Pending Home Sales announcement in the stock and bond markets.

Next, we re-estimate equation (1) for the 21 market-moving announcements identified in

Table B3 using the pre-announcement window [t − 30min, t − 5sec]. Accordingly, we now
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use the continuously compounded futures return over the [t− 30min, t− 5sec] window.3

Table B4 shows the results sorted by the p-values of the joint test for stock and bond

markets. There are seven announcements significant at 5% level.4 Most of these announce-

ments show evidence of significant drift in both markets. A joint test of the 21 hypotheses

overwhelmingly confirms the overall statistical significance of the pre-announcement price

drift.5 In all seven announcements, the drift is in the “correct” direction, i.e., direction of

the price change predicted by the announcement surprise.

Although there are some differences in the results using the above event study method-

ology compared to the results using the time-series methodology in Section 4 in the paper,

overall the event study methodology results confirm the time-series methodology results: A

substantial number of announcements exhibits substantial pre-announcement drift.

7.2 Outliers

Since our sample period includes the turbulent financial crisis, a possibility arises that our

results are driven by a few unusual, large observations. We verify that this is not the case. We

conduct two robustness checks. First, we re-estimate equation (1) with the robust procedure

of Yohai (1987). Second, we split surprises by size into deciles and estimate equation (1)

using the pre-announcement [t− 30min, t− 5sec] window for each decile.

7.2.1 Yohai (1987) Procedure

We re-estimate equation (1) with the robust procedure of Yohai (1987). This so-called MM-

estimator is a weighted least squares estimator that is not only robust to outliers but also

refines the first-step robust estimate in a second step towards higher efficiency. Table B5

shows that all seven announcements significant in Table B4 remain significant. We label

them as “strong drift” announcements. Ten announcements do not display significant drift

either in the robust regression or in the Table B4 joint test. We label them as “no drift”

3At first sight, this “two-step” procedure could be subject to a sample selection bias. The bias would be
present if selection of market-moving announcements based on the estimated surprise regression coefficient
using the post-announcement [t−5sec, t+5min] window is correlated with the surprise regression coefficient
using the pre-announcement [t− 30min, t− 5sec] window. However, if this were the case, the error terms in
the pre- and post-announcement regressions would have to be (conditionally) correlated. This would violate
market efficiency, and it would be evidence of a significant pre-announcement drift.

4As a robustness check, we estimate the model using seemingly unrelated regressions to allow for the
covariance between parameters γm in the stock and bond markets to be used in the joint Wald tests. The
results confirm those reported in Table B4.

5Assuming the t-statistics in Table B4 are independent and standard normal, squaring and summing
them gives a χ2-statistic with 21 degrees of freedom. The computed values of this statistic for the E-mini
S&P 500 and 10-year Treasury note futures are 63.5 and 79.1, respectively. This translates into statistical
significance of the pre-announcement drift at the 1% level.
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Table B4: Announcement Surprise Impact During [t−30min, t−5sec] Using Event
Study Methodology

E-mini S&P 500 Futures 10-year Treasury Note Futures Joint Test
Announcement γm R2 γm R2 p-value

ISM Non-manufacturing index 0.139 (0.030)*** 0.19 -0.058 (0.011)*** 0.30 <0.0001
Pending home sales 0.154 (0.083)* 0.09 -0.035 (0.010)*** 0.16 0.001
ISM Manufacturing index 0.091 (0.036)** 0.06 -0.027 (0.009)*** 0.09 0.001
Existing home sales 0.113 (0.040)*** 0.10 -0.019 (0.009)** 0.04 0.002
CB Consumer confidence index 0.035 (0.052) 0.01 -0.031 (0.010)*** 0.12 0.007
Industrial production 0.066 (0.023)*** 0.15 -0.007 (0.008) 0.01 0.013
GDP preliminary 0.146 (0.068)** 0.15 -0.022 (0.011)* 0.08 0.013

Housing starts 0.000 (0.021) 0.00 -0.020 (0.010)** 0.05 0.112
Non-farm employment 0.040 (0.021)* 0.07 -0.009 (0.010) 0.01 0.123
Advance retail sales 0.009 (0.029) 0.00 -0.020 (0.011)* 0.06 0.190
Consumer credit -0.072 (0.051) 0.03 0.007 (0.009) 0.01 0.271
ADP employment 0.035 (0.027) 0.03 -0.006 (0.007) 0.01 0.291
UM Consumer sentiment - Final -0.055 (0.042) 0.04 -0.007 (0.014) 0.00 0.361
Initial jobless claims -0.009 (0.012) 0.00 0.007 (0.006) 0.01 0.369
New home sales 0.030 (0.033) 0.01 -0.005 (0.009) 0.01 0.539
Building permits -0.023 (0.025) 0.02 -0.007 (0.012) 0.01 0.567
GDP advance 0.024 (0.044) 0.01 -0.023 (0.027) 0.06 0.608
GDP final 0.005 (0.022) 0.00 0.008 (0.011) 0.01 0.739
UM Consumer sentiment - Prel -0.023 (0.055) 0.00 -0.005 (0.012) 0.00 0.845
Durable goods orders -0.004 (0.016) 0.00 -0.003 (0.007) 0.00 0.852
Consumer price index -0.005 (0.035) 0.00 -0.001 (0.011) 0.00 0.981

The sample period is from January 1, 2008 through March 31, 2014. Only the announcements with a
significant effect on the E-mini S&P 500 and 10-year Treasury note futures prices (based on the joint test
in Table B3) are included. The reported response coefficients γm are the ordinary least squares estimates
of equation (1) with the White (1980) heteroskedasticity consistent covariance matrix. Standard errors are
shown in parentheses. *, **, and *** indicate statistical significance at 10%, 5% and 1% levels, respectively.
The p-values are for the joint Wald test that the coefficients of announcement surprises for the E-mini
S&P 500 and 10-year Treasury note futures are equal to zero. The intercept, γ0, is significant only for the
Initial Claims announcement in the stock market, CPI announcement in the bond market, and Non-Farm
Employment announcement in both markets.

announcements.6 Four announcements are not significant in the joint test of Table B4 but

show significant coefficients in the robust regression using 5% significance level (mainly in

the bond market). We label them as “some drift” announcements. Overall, the Yohai (1987)

outlier-robust procedure confirms results from the OLS regression in Section 7.1.

Similarly to the paper, we quantify the magnitude of the pre-announcement price drift.

We divide the γm coefficients from Table B4 by the corresponding sum of coefficients from Ta-

6We include the Building Permits announcement among the ten announcements that do not move markets
because this announcement is not significant in Table B4 and shows a drift in the “incorrect” direction in
Table B5.
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Table B5: Announcement Surprise Impact During [t− 30min, t− 5sec]
Using Event Study Methodology and Robust Regression

E-mini S&P 500 10-year Treasury Note
Announcement γm R2 γm R2

Strong Evidence of Pre-Announcement Drift
CB Consumer confidence index 0.023 (0.035) 0.01 -0.036 (0.009)*** 0.14
Existing home sales 0.091 (0.034)*** 0.02 -0.016 (0.007)** 0.05
GDP preliminary 0.063 (0.034)* 0.06 -0.026 (0.013)** 0.16
Industrial production 0.077 (0.016)*** 0.10 -0.007 (0.001) 0.01
ISM Manufacturing index 0.076 (0.034)** 0.03 -0.025 (0.009)*** 0.09
ISM Non-manufacturing index 0.139 (0.033)*** 0.12 -0.042 (0.009)*** 0.15
Pending home sales 0.087 (0.031)*** 0.09 -0.028 (0.007)*** 0.16

Some Evidence of Pre-Announcement Drift
Advance retail sales 0.028 (0.016)* 0.01 -0.021 (0.009)** 0.07
Consumer price index -0.051 (0.013)*** 0.08 0.001 (0.009) 0.00
GDP advance 0.035 (0.032) 0.05 -0.067 (0.015)*** 0.16
Initial jobless claims -0.009 (0.007) 0.00 0.013 (0.005)*** 0.01

No Evidence of Pre-Announcement Drift
ADP employment 0.008 (0.014) 0.01 -0.006 (0.008) 0.01
Building permits -0.036 (0.016)** 0.05 0.005 (0.009) 0.00
Consumer credit -0.043 (0.028) 0.02 0.004 (0.007) 0.00
Durable goods orders 0.005 (0.015) 0.00 -0.007 (0.006) 0.01
GDP final 0.005 (0.025) 0.00 0.010 (0.013) 0.00
Housing starts -0.006 (0.016) 0.00 -0.016 (0.009)* 0.02
New home sales 0.021 (0.031) 0.01 -0.005 (0.008) 0.00
Non-farm employment 0.018 (0.016) 0.00 0.000 (0.009) 0.00
UM Consumer sentiment - Final -0.019 (0.031) 0.00 0.003 (0.011) 0.00
UM Consumer sentiment - Prel 0.003 (0.035) 0.00 -0.009 (0.009) 0.00

The sample period is from January 1, 2008 through March 31, 2014. Only the announcements that have a
significant effect on the E-mini S&P 500 and 10-year Treasury note futures prices (based on the joint test
in Table B3) are included. The reported response coefficients γm of equation (1) are estimated using the
MM weighted least squares (Yohai, 1987). Standard errors are shown in parentheses. *, ** and *** indicate
statistical significance at 10%, 5% and 1% levels, respectively. Classification as “strong drift”, “some drift”
and “no drift” uses combined results from Tables B4 and B5. “Strong drift” announcements show significance
at 5% level in Table B4 joint test and at least one market in Table B5. “No drift” announcements are not
significant in either Table B4 or B5 at 5% level. “Some drift” announcements are not significant in Table B4
joint test but show significance in Table B5 in at least one market at 5% level.

bles B3 and Table B4, i.e., Γm = γτ=−5sec
m /(γτ=−5sec

m +γτ=+5min
m ). Table B6 shows these ratios

sorted by the proportion obtained for the stock market. The ratio Γm ranges from 15 per-

cent in the CB Consumer Confidence Index up to 69 percent in the ISM Non-Manufacturing

Index indicating that the pre-announcement price move is a substantial proportion of the

total price move. The mean ratio across all seven announcements and both markets is 44

percent.
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Table B6: Pre-announcement Price Drift as a Proportion of Total Price Change
Using Event Study Methodology

E-mini S&P 500 10-year Treasury Note
γm γm Γm γm γm Γm

[t−5sec, [t−30min, [t−5sec, [t−30min,
t+5min] t−5sec] t+5min] t−5sec]

ISM Non-manufacturing index 0.064 0.139 69% -0.041 -0.058 59%
Pending home sales 0.087 0.154 64% -0.032 -0.035 52%
Industrial production 0.043 0.066 60% -0.008 -0.007 46%
GDP preliminary 0.113 0.146 56% -0.056 -0.022 28%
Existing home sales 0.120 0.113 49% -0.038 -0.019 34%
ISM Manufacturing index 0.240 0.091 28% -0.111 -0.027 20%
CB Consumer confidence index 0.196 0.035 15% -0.051 -0.031 37%

Mean 49% 39%

The sample period is from January 1, 2008 through March 31, 2014. Only the announcements classified as
having strong evidence of pre-announcement drift in Table B5 are included.

7.2.2 Decile Analysis

We split surprises by size into deciles and estimate equation (1) using the pre-announcement

[t− 30min, t− 5sec] window for each decile. In these estimations, we pool together all seven

announcements exhibiting strong drift in Table B5.7 Since our sample includes positive and

negative surprises, deciles 1 and 10 correspond to the largest surprises in absolute value,

and deciles 5 and 6 correspond to the smallest surprises in absolute value. Table B7 shows

that all deciles except for 5 and 6 in the stock market and 3 and 8 in the stock and bond

market exhibit a significant drift. These results, therefore, again confirm that the results in

Section 7.1 using the OLS regression are not driven by a few unusual, large observations.

7.3 Cumulative Average Returns

This section illustrates our findings from the above Sections 7.1 and 7.2 graphically using

cumulative average return (CAR) graphs. As in the paper, we classify each event as “good”

or “bad” news based on whether the surprise has a positive or negative effect on the stock and

bond markets using the coefficients in Table B3. Following Bernile et al. (2016), we invert the

sign of returns for negative surprises. CARs are then calculated in the [t−60min, t+60min]

window for each of the “strong drift”, “some drift” and “no drift” categories defined in

Table B5. The CARs in Figure B4 reveal what happens around the announcements.

7This approach assumes the same coefficients for all announcements, but it provides a larger sample size.
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Figure B4: Cumulative Average Returns

E-mini S&P 500 10-year Treasury Note

(a) Announcements with no evidence of drift
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(b) Announcements with some evidence of drift
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(c) Announcements with strong evidence of drift
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The sample period is from January 1, 2008 through March 31, 2014. We classify each event as “good” or
“bad” news based on whether the announcement surprise has a positive or negative effect on the stock and
bond markets using the coefficients in Table B3. Following Bernile et al. (2016), we invert the sign of returns
for negative surprises. Cumulative average returns (CARs) are then calculated in the [t− 60min, t+ 60min]
window for each of the “strong drift”, “some drift” and “no drift” categories defined in Table B5. For each
category the solid line shows the mean CAR. Dashed lines mark two-standard-error bands (standard error
of the mean).
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Table B7: Announcement Surprise Impact During [t− 30min, t− 5sec] by Decile

Surprise Surprise E-mini S&P 500 10-year Treasury Note Joint Test
Size Decile n γ R2 γ R2 p-value

1 5 and 6 96 -0.269 (0.234) 0.01 -0.164 (0.061)*** 0.06 0.015
2 4 and 7 95 0.228 (0.093)** 0.06 -0.055 (0.029)* 0.03 0.009
3 3 and 8 95 0.063 (0.051) 0.01 0.001 (0.014) 0.00 0.464
4 2 and 9 96 0.075 (0.030)** 0.06 -0.031 (0.009)*** 0.11 0.000
5 1 and 10 94 0.115 (0.027)*** 0.16 -0.030 (0.005)*** 0.26 <0.0001

All 476 0.102 (0.020)*** 0.08 -0.029 (0.004)*** 0.09 <0.0001

The sample period is from January 1, 2008 through March 31, 2014. Only the announcements classified as
having strong evidence of pre-announcement drift in Table B5 are included. These announcements are pooled
together and split into deciles by surprise size. Since our sample includes positive and negative surprises,
deciles 1 and 10 correspond to the largest surprises in absolute value, and deciles 5 and 6 correspond to
the smallest surprises in absolute value. The reported response coefficients γ are the ordinary least squares
estimates of equation (1) with the White (1980) heteroskedasticity consistent covariance matrix. Standard
errors are shown in parentheses. *, **, and *** indicate statistical significance at 10%, 5% and 1% levels,
respectively. The p-values are for the joint Wald test that the coefficients of announcement surprises for the
E-mini S&P 500 and 10-year Treasury note futures are equal to zero.

The left column shows CARs for the stock market. In the no-drift announcements in

Panel (a), a significant price adjustment does not occur until after the release time. In the

strong-drift announcements in Panel (c), the price begins moving in the correct direction

about 30 minutes before the official release time, and the move becomes significant about

ten minutes later. In the intermediate group in Panel (b), there is a less pronounced price

adjustment in the correct direction before the releases. The second column presents CARs

for the bond market. Panel (c) shows the same pattern as the stock market with the price

starting to drift about 30 minutes before the official release time and the move becoming

statistically significant about 20 minutes later.8 Overall, Figure B4 tells the same story as

Figure 1 in the paper that illustrates substantial pre-announcement drift for a substantial

number of announcements.

7.4 Event Window Length

The analysis in the above Sections 7.1 and 7.2 uses a [t− 30min, t− 5sec] event window. To

show that our results are not sensitive to the choice of the window length, we re-estimate

8For the bond market, Panels (b) and (c) look similar. This is because the classification of announcements
as “some evidence of drift” is mainly driven by the bond market results in Table B5. Panels (a) and (b) for
the bond market appear to show some drift (only about one basis point) starting about 60 minutes prior
to the announcement. Therefore, we estimate the regression in equation (1) for the [t − 60min, t − 30min]
window. Only the ADP Employment announcement is significant.
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equation (1) with [t− τ , t− 5sec] for various τ ∈ [5min, 120min]. Figure B5 plots estimates

of the corresponding γm coefficients for the seven drift announcements. The results confirm

the conclusions from the lower panel of Figure B1: For most of the announcements, the drift

starts at least 30 minutes before the release time. Shortening the pre-announcement window

generally results in lower coefficients (and lower standard errors). This is typical for intraday

studies where the ratio between signal (i.e., response to the news announcement) and noise

increases as the event window shrinks and fewer other events affect the market.

Figure B5: Sensitivity of Coefficients to Event Window Length

(a) E-mini S&P 500 Futures
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The sample period is from January 1, 2008 through March 31, 2014. The figure plots response coefficients,
γm, based on the ordinary least squares estimates of equation (1) against τ , the beginning of the pre-
announcement window [t− τ , t− 5sec], for seven strong drift announcements identified in Table B5.
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7.5 Effect of Order Flows

We verify that our results in Sections 7.1 and 7.2 of this appendix are not driven by order

flows having a different impact before drift announcements than at other times. We introduce

the identifier m̃ to distinguish the returns around m announcements and the returns during

corresponding time windows on non-announcement days. m̃ can take on 33 different values

because there are 30 announcements and three time windows for which we compute the order

flow impact on non-announcement days. These non-announcement day windows are [8:30 –

30min, 8:30 – 5sec], [9:15 – 30min, 9:15 – 5sec], [10:00 – 30min, 10:00 – 5sec] because all of

our announcements with evidence of drift are released during these windows.9

Let Rm̃t be the return on day t during the [t−30min, t−5sec] window around the release

of announcement m or during one of the three time windows on non-announcement days.

Let OFmt be the corresponding order flow. Now consider the relation

sign (OFm̃t)Rm̃t = c+am̃+b0

√
|OFm̃t|+b11NoDrift (m̃)

√
|OFm̃t|+b21Drift (m̃)

√
|OFm̃t|+εm̃t,

(3)

where 1NoDrift (m̃) and 1Drift (m̃) are indicator variables. 1NoDrift equals 1 only if m̃ stands

for an announcement without strong evidence of drift, and 1Drift is 1 only if m̃ is an an-

nouncement with strong evidence of drift. They are zero otherwise.

By this specification, significant estimates of b1 and/or b2 would indicate that the impact

of the order flow for those announcement types is different from the usual impact on non-

announcement days captured by the coefficient b0. To account for announcements happening

at different times, we also include the fixed effects am̃ which depend on the announcement

m and, for the non-announcement days, on the three time windows.

The square root impact of order flow on returns in the above specification reflects the

concave impact of trades on returns commonly accepted in the literature (for example,

Hasbrouck and Seppi (2001) and Almgren, Thum, Hauptmann, and Li (2005)). The use

of absolute order flow and of sign (OFm̃t)Rm̃t as dependent variable allows us to capture

the heterogeneity among announcement types using the fixed effects am̃. Taking the first

difference ∆ within each m̃, the fixed effects drop out, and we estimate the equation

∆sign (OFm̃t)Rm̃t = c1 + b0∆
√
|OFm̃t|+ b11NoDrift (m̃) ∆

√
|OFm̃t|

+ b21Drift (m̃) ∆
√
|OFm̃t|+ ∆εm̃t, (4)

where we keep an intercept and test whether it equals zero. Hence, testing the hypothesis

9To keep comparisons meaningful, we do not include time windows around other release times, i.e., 8:15,
9:55, 14:00 and 15:00, because no drift announcements are released during these times.
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that the impact of order flow on returns on announcement days with drift is the same as

on other days involves a t-test on the estimated coefficient for b2. The results in Table B8

show that this is the case because the t-statistic is insignificant. We conclude that order flow

impact on announcement days with drift is no different from its impact on other days.

Table B8: Order Flow Analysis

E-mini S&P 500 Futures 10-year Treasury Note Futures

b0 1.282 (0.067)*** 0.037 (0.002)***
b1 0.069 (0.117) 0.004 (0.003)
b2 -0.178 (0.137) -0.003 (0.004)

R2 0.321 0.219

The sample period is from January 1, 2008 through March 31, 2014. The reported response coefficients b0,
b1 and b2 are the ordinary least squares estimates of equation (4). Standard errors are shown in parentheses.
*, **, and *** indicate statistical significance at 10%, 5% and 1% levels, respectively.

7.6 Other Markets

This section presents results for two other major markets: E-mini Dow stock index futures

and 30-year Treasury bond futures. Table B9 confirms the results from Table B4: Pre-

announcement price drift is evident not only in the E-mini S&P 500 futures and 10-year

Treasury note futures but also in E-mini Dow stock index futures and 30-year Treasury

bond futures.

8 Forecasting with Proprietary Information

This section provides additional information for Section 5.1.2 in the paper about predicting

the announcement surprise using proprietary data sets. As described in Section 5.1.2, we

use three examples of proprietary data collection to predict surprises in announcements most

related to this proprietary data. Tables B10, B11 and B12 show results for the Consumer

Price Index, Conference Board (CB) Consumer Confidence Index, and housing sector an-

nouncements, respectively. We find predictive power in the PriceStats inflation indicator

but no predictive power in the State Street Investor Confidence Index and the Case-Shiller

Home Price Index.
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Table B9: Announcement Surprise Impact During [t− 30min, t− 5sec] for E-mini
Dow and 30-year Treasury Bond Futures

E-mini Dow 30-year Treasury Bond Joint Test
Announcement γm R2 γm R2 p-value

ISM Non-manufacturing index 0.105 (0.025)*** 0.15 -0.079 (0.016)*** 0.25 <0.0001
Pending home sales 0.148 (0.063)** 0.11 -0.073 (0.029)** 0.15 0.002
ISM Manufacturing index 0.074 (0.035)** 0.04 -0.041 (0.015)*** 0.08 0.003
Existing home sales 0.092 (0.038)** 0.07 -0.043 (0.015)*** 0.07 0.001
CB Consumer confidence index 0.021 (0.054) 0.00 -0.061 (0.016)*** 0.17 0.001
Industrial production 0.047 (0.018)** 0.10 -0.016 (0.016) 0.01 0.023
GDP preliminary 0.135 (0.049)** 0.16 -0.037 (0.019)* 0.06 0.004

Housing starts 0.003 (0.018) 0.00 -0.026 (0.016) 0.03 0.279
Non-farm employment 0.034 (0.018)* 0.07 -0.007 (0.018) 0.00 0.164
Advance retail sales 0.004 (0.027) 0.00 -0.047 (0.019)** 0.10 0.050
Consumer credit -0.057 (0.045) 0.02 0.014 (0.015) 0.02 0.301
ADP employment 0.029 (0.022) 0.03 -0.006 (0.012) 0.00 0.392
UM Consumer sentim. - Final -0.064 (0.040) 0.05 0.007 (0.017) 0.00 0.247
Initial jobless claims -0.006 (0.011) 0.00 0.014 (0.008) 0.01 0.220
New home sales 0.005 (0.030) 0.00 -0.010 (0.016) 0.01 0.808
Building permits -0.012 (0.023) 0.01 -0.012 (0.020) 0.01 0.733
GDP advance 0.037 (0.039) 0.04 -0.043 (0.035) 0.09 0.296
GDP final 0.005 (0.021) 0.00 -0.005 (0.022) 0.00 0.950
UM Consumer sentim. - Prel -0.025 (0.045) 0.00 -0.008 (0.017) 0.00 0.770
Durable goods orders -0.001 (0.015) 0.00 -0.013 (0.015) 0.01 0.664
Consumer price index -0.005 (0.031) 0.00 0.000 (0.013) 0.00 0.987

The sample period is from January 1, 2008 through March 31, 2014. Only the announcements that have a
significant effect on the E-mini S&P 500 and 10-year Treasury note futures prices (based on the joint test
in Table B3) are included. The reported response coefficients γm are the ordinary least squares estimates
of equation (1) with the White (1980) heteroskedasticity consistent covariance matrix. Standard errors are
shown in parentheses. *, **, and *** indicate statistical significance at 10%, 5% and 1% levels, respectively.
The p-values are for the joint Wald test that the coefficients of announcement surprises for the E-mini Dow
stock index and 30-year Treasury bond futures are equal to zero. The intercept, γ0, is significant only
for the Pending Home Sales announcement in the stock market, GDP Advance and Initial Jobless Claims
announcements in the bond market, and Non-Farm Employment announcement in both markets.

9 Forecasting with Individual Analyst Forecasts

This section provides additional information for Section 5.2.1 in the paper about forecasting

the announcement surprise using the forecasts of individual analysts. As described in Sec-

tion 5.2.1, we regress the unstandardized surprise, Ŝmt, on a constant and the prediction,

Pmt. The results for this regression are reported in Table B13 where the p-values are for

a two-sided test. The intercept is significant for only one announcement (UM Consumer

Sentiment - Final), indicating that our forecast for the surprise is generally unbiased. Nine

announcements show significance of the slope coefficient at 10% level (Advance Retail Sales,
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Table B10: Predicting CPI surprises with State Street PriceStats data

Predictor N Coefficient

Average daily value PriceStats for month t 68 0.157 (0.049)***
Last daily value PriceStats for month t 68 0.155 (0.048)***

The sample period is from August 1, 2008 through March 31, 2014 because the PriceStats data begins in
August of 2008. N denotes the number of observations. The dependent variable is the Consumer Price Index
surprise for month t. The reported response coefficients are estimated using the MM weighted least squares
(Yohai, 1987). Standard errors are shown in parentheses. *, ** and *** indicate statistical significance at
10%, 5% and 1% levels, respectively.

Table B11: Predicting CB Consumer Confidence Index surprises with State
Street Investor Confidence

Predictor N Coefficient

Monthly State Street Investor Confidence Index 74 0.082 (0.063)

The sample period is from January 1, 2008 through March 31, 2014. N denotes the number of observations.
The dependent variable is the Consumer Confidence Index surprise for month t. The reported response
coefficients are estimated using the MM weighted least squares (Yohai, 1987). Standard errors are shown in
parentheses. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively.

Table B12: Predicting surprises for housing sector announcements with the Case-
Shiller Home Price Index

Dependent Variable N Coefficient

Building permits 72 95.951 (50.65)*
Existing home sales 72 -0.074 (0.233)
Housing starts 72 -9.065 (68.13)
New home sales 71 21.925 (40.83)
Pending home sales 73 -0.113 (0.050)**

The sample period is from January 1, 2008 through March 31, 2014. N denotes the number of observations.
The dependent variables are surprises in announcements related to the housing sector for month t. The
reported response coefficients are estimated using the MM weighted least squares (Yohai, 1987). Standard
errors are shown in parentheses. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels,
respectively.

CB Consumer Confidence Index, CPI, Durable Goods Orders, Existing Home Sales, GDP

Advance, Industrial Production, Pending Home Sales and PPI), only five of which are an-

nouncements with a pre-announcement drift.

A significant linear relation between the predictions and surprises does not necessarily
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imply that the forecasts have superior predictive power for returns. To explore this, we

estimate equation (1) using the prediction, Pmt, instead of the surprise, Smt. Table B14

Panel (a) shows the slope coefficients for predicting the pre-announcement return during the

[t−30min, t−5sec] window using the surprise prediction for the E-mini S&P 500 and 10-year

Treasury note futures markets. The reported p-values are for a two-sided test. Similarly,

Table B14 Panel (b) reports the results for the [t− 5sec, t+ 5min] window. Pmt is a useful

predictor of returns only for a handful of announcements.

Table B13: Regression of Unstandardized Surprise, Ŝmt, on a Constant and Pre-
diction, Pmt

Slope
Coefficient s.e. p-value R2

ADP employment 0.173 0.371 0.320 0.02
Advance retail sales 1.096 0.724 0.065 0.07
CB Consumer confidence index 1.188 0.586 0.021 0.06
Construction spending -0.004 0.002 0.984 0.08
Consumer price index 0.961 0.113 <0.001 0.35
Durable goods orders 1.946 0.468 <0.001 0.17
Existing home sales 1.621 0.767 0.017 0.09
GDP advance 1.371 0.784 0.040 0.17
GDP final -0.0005 0.0001 1.000 0.22
GDP preliminary 0.118 0.593 0.421 0.04
Housing starts -0.039 0.453 0.466 0.01
Industrial production 1.026 0.318 0.001 0.22
Initial jobless claims 0.360 0.289 0.106 0.01
ISM Manufacturing index 0.580 0.540 0.141 0.03
ISM Non-manufacturing index -0.149 0.782 0.575 0.01
New home sales -0.324 1.157 0.610 0.01
Non-farm employment -0.052 0.332 0.562 0.01
Pending home sales 0.762 0.405 0.030 0.08
Producer price index 1.206 0.397 0.001 0.15
UM Consumer sentiment - Prel 0.608 0.821 0.229 0.02

The sample period is from January 1, 2008 through March 31, 2014. The unstandardized surprise is defined
as Ŝmt = Amt−Et−τ [Amt] = σmSmt. The prediction of the unstandardized surprise is the difference between
the median values of the professional forecasters ranked by Bloomberg and the whole set of forecasters in the
Bloomberg survey: Pmt = ERankedt−τ [Amt]−Et−τ [Amt]. Results are from the ordinary least squares regression,
where the standard errors are based on a heteroskedasticity consistent covariance matrix.
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Table B14: Regression of Returns on Prediction

a) [t− 30min, t− 5sec] Window

E-mini S&P 500 10-year Treasury Note Wald
γm s.e. R2 γm s.e. R2 Test p-value

ADP employment 0.030 0.015 0.03 -0.019 0.007 0.09 11.108 0.004
Advance retail sales 0.002 0.019 0.01 -0.009 0.010 0.02 0.781 0.677
CB Consumer confidence idx -0.004 0.039 0.01 -0.019 0.007 0.06 7.788 0.020
Construction spending -0.008 0.053 0.01 -0.009 0.012 0.02 0.592 0.744
Consumer price index 0.001 0.022 0.01 -0.002 0.009 0.01 0.050 0.975
Durable goods orders 0.019 0.013 0.03 -0.007 0.007 0.03 3.334 0.189
Existing home sales 0.014 0.065 0.01 -0.021 0.018 0.05 1.424 0.491
GDP advance 0.087 0.055 0.19 -0.016 0.016 0.07 3.495 0.174
GDP preliminary 0.005 0.044 0.04 -0.007 0.013 0.05 0.278 0.870
GDP final -0.001 0.028 0.04 -0.022 0.013 0.12 3.088 0.214
Housing starts 0.006 0.016 0.01 -0.015 0.006 0.04 6.959 0.031
Industrial production 0.012 0.020 0.02 -0.002 0.005 0.07 19.136 <0.001
Initial jobless claims -0.025 0.010 0.02 0.006 0.005 0.01 7.340 0.025
ISM Manufacturing index -0.010 0.070 0.01 0.004 0.014 0.02 0.113 0.945
ISM Non-manufacturing index 0.012 0.032 0.01 -0.009 0.017 0.02 0.384 0.825
New home sales -0.015 0.030 0.02 -0.008 0.006 0.03 2.167 0.338
Non-farm employment 0.009 0.019 0.02 -0.006 0.011 0.02 0.514 0.774
Pending home sales -0.023 0.032 0.02 -0.012 0.007 0.03 3.649 0.161
Producer price index -0.027 0.022 0.03 0.013 0.009 0.04 3.691 0.158
UM Consumer sentim. - Prel -0.076 0.036 0.04 0.001 0.009 0.01 4.561 0.102
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b) [t− 5sec, t+ 5min] Window

E-mini S&P 500 10-year Treasury Note Wald
γm s.e. R2 γm s.e. R2 Test p-value

ADP employment -0.001 0.023 0.01 0.018 0.013 0.03 2.028 0.363
Advance retail sales 0.043 0.031 0.04 -0.020 0.014 0.03 3.947 0.139
CB Consumer confidence idx 0.016 0.037 0.02 0.001 0.010 0.01 0.214 0.899
Construction spending -0.037 0.032 0.02 0.039 0.014 0.08 9.063 0.011
Consumer price index -0.040 0.035 0.03 -0.006 0.012 0.02 1.541 0.463
Durable goods orders 0.046 0.020 0.07 -0.027 0.011 0.08 11.136 0.004
Existing home sales -0.039 0.031 0.03 -0.009 0.013 0.02 2.089 0.352
GDP advance -0.015 0.089 0.04 0.035 0.023 0.09 2.270 0.321
GDP final 0.069 0.047 0.13 0.006 0.012 0.04 2.458 0.293
GDP preliminary -0.055 0.037 0.07 0.040 0.021 0.17 5.883 0.053
Housing starts 0.021 0.019 0.03 -0.005 0.008 0.02 1.688 0.430
Industrial production 0.000 0.014 0.01 0.003 0.004 0.02 0.595 0.743
Initial jobless claims -0.018 0.013 0.00 0.004 0.005 0.00 0.865 0.649
ISM Manufacturing index 0.004 0.040 0.01 -0.001 0.017 0.01 0.017 0.991
ISM Non-manufacturing index 0.022 0.033 0.02 -0.005 0.008 0.02 0.892 0.640
New home sales 0.020 0.022 0.02 0.005 0.009 0.02 1.205 0.547
Non-farm employment -0.066 0.076 0.03 0.020 0.043 0.02 0.964 0.618
Pending home sales -0.016 0.038 0.02 0.016 0.006 0.06 8.110 0.017
Producer price index 0.010 0.023 0.02 -0.004 0.017 0.02 0.238 0.888
UM Consumer sentim. - Prel 0.019 0.020 0.02 0.002 0.006 0.01 0.945 0.623

The sample period is from January 1, 2008 through March 31, 2014. The response coefficients γm are the
ordinary least squares estimates of equation (1) using the prediction Pmt of the standardised surprise Smt,

where Smt =
Amt−Et−τ [Amt]

σm
and Pmt = ERankedt−τ [Amt] − Et−τ [Amt]. The standard errors are based on a

heteroskedasticity consistent covariance matrix.
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