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Abstract 

 

Breast cancer is a prevalent disease within today’s modern society, affecting 1 in 8 women and 

1 in 870 men within a lifetime. With the introduction of mammographic breast screening in 

1987 and marked improvements to targeted therapies, mortality rates declined, highlighting 

the need for early diagnosis and tailored treatment to halt disease progression in its foremost 

stages. Histology assessed biopsies, alongside initial two-view mammographic imaging, are 

paired as the current diagnostic “gold standard”.  The need to incorporate several techniques, 

applying an “all-angles” approach to diagnostics, provides an effective, streamlined diagnostic 

pathway, reducing patient wait times between testing and results – crucial in preventing disease 

progression.  

Optical spectroscopic techniques for the characterisation of biomolecular compounds and 

structures present within tissue are fast becoming the biomedical analysis tools of choice, 

coming to the forefront of clinical applications. Raman spectroscopy is one such technique 

providing highly chemically specific results, in a non-ionising and non-invasive way. When used 

in conjunction with metal nanoparticle probes, the inherently weak Raman signals of the 

biomolecules surrounding the nanoparticle surface undergo extensive levels of enhancement 

– an eponymous technique, Surface Enhanced Raman Scattering (SERS). 

This thesis is split into two principal areas of study. The first explores extrinsic SERS 

nanoparticles at depth within optical phantoms, “imaged” in a Transmission orientation, 

mimicking the composition of the breast within a cranio-caudal mammographic imaging 

position. The second concerns the micro-Raman quantification of gold nanoparticles, 

functionalised to a biocompatible level for the active targeting of hydroxyapatite – a calcium 
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apatite form which, when dominant within breast microcalcifications, act as a biomarker for 

malignancy. 

Key aspects drawn from the results include a greater understanding of Raman reporter gold 

nanoparticles at depth, and how the absorption profile of the sample material affects the 

garnered intensity profile. The synthesis of a novel nanoparticle probe was also founded, with 

promising future applications in terms of targeting and theranostic capabilities. Furthermore, a 

protocol into the implementation of an automated mapping system within an open optical set-

up is given, detailing the software, hardware and electrical installation requirements. 

The advantages of Raman spectroscopy integration within current diagnostic practices are 

highlighted, with limitations such as nanoparticle biocompatibility issues, the inherent optical 

properties of biological tissues, and system conditions touched upon. 
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1. Introduction 

 

 rapidly developing area in the field of biomedical research, optical techniques such as 

Raman and Infra-Red (IR) spectroscopy are fast becoming invaluable tools in cancer 

diagnostics. Specifically, Raman microspectroscopy and surface enhanced Raman spectroscopy 

(SERS) have gained widespread acceptance for their ability in characterizing biological samples. 

The on-going development of these techniques and constituent areas, such as the physio-

chemical advancement of nanoparticles as photonic probes, has broadened the scope of 

samples able to undergo analysis from in vitro to minimally invasive in vivo, providing much 

motivation for the work presented in this thesis.  

This introductory chapter presents the outline of the thesis together with some historical 

context of the spectroscopic techniques employed towards biomedical diagnostics. 

1.1 The History of Raman Spectroscopy 

The classical theory of light scattering without frequency change was postulated by Lord 

Rayleigh in 1871, through explanation of the age-old-question: “why is the sky blue?”.
1

 

Theorised by Austrian theoretical theorist Smekal in 1923,
2

 the phenomenon of inelastic light 

scattering, producing light of a higher and lower wavelength, was experimentally discovered 

by C.V. Raman and K.S. Krishnan in 1928, by focussing sunlight through a telescope onto a 

sample.
3

 A narrow band filter creates a monochromatic light source used to excite molecules 

producing scatter: elastically as Rayleigh scattering, and inelastically as the Raman effect – an 

extremely rare event where the frequency of ~1 in 10
6

 photons exhibits a change in 

wavelength. 

High-powered water-cooled mercury arcs were traditionally used as light sources – 

cumbersome and impractical, Raman was strictly a scientists’ gadget.
1

 Invented by Theodore 

A 
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Maiman in 1960,
4

 the advent of coherent “light amplification by stimulated emission of 

radiation”, or the laser, allowed Raman spectroscopy to become more instrumental. 

Subsequent technological advancement created accessible instrumentation at an affordable 

price and convenient size. This further increased applicability, however the inherently 

insensitive nature of the technique limited its growth.  

In 1973, a British group of scientists consisting of electrochemist Martin Fleishmann, Raman 

spectroscopist Patrick J. Hendra and postdoctoral fellow James McQuillan endeavoured to 

study in-situ electrochemical processes of species adsorbed on the surface of electrodes.
5

 Initial 

studies involving mercury chloride on platinum electrodes was limited in ability of signal 

detection.
6

 In an effort to enhance the Raman signal, a strong Raman scatterer, pyridine, was 

selected as the adsorbate, and silver as an electrode material suitable for electrochemical 

surface roughening to create a large surface area.
7

 In a landmark discovery, the Raman signal 

had been enhanced by a factor of ~10
6 

comparative to pyridine in solution, with adsorption 

in two distinct configurations.
8

 The finding was further confirmed in 1977 by David Jeanmarie 

and Richard Van Duyne with their prediction of an electromagnetic effect acting as the 

mechanism;
9

 and, Albrecht and Creighton in their proposal of a chemical, charge-transfer effect 

taking place.
10

 Both groups independently verified the enhanced signal could not be solely 

attributed to an increased concentration of the pyridine molecule. 

This localised enhancement phenomenon, known as Surface Enhanced Raman spectroscopy 

(SERS), allowed Raman to become a fully realised analytical technique for real-life applications, 

from bulk samples down to single molecules.  

More recently, the characterisation of the layers within bulk, turbid samples came with the 

development of Spatially Offset Raman spectroscopy, or SORS, in 2005 by Pavel Matousek et 

al. at the Rutherford Appleton Laboratory in the UK.
11

 The technique, involving the collection 
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of scattered photons lateral to the illumination source, has been used in combination with 

SERS to great effect, developed into the new expertise of SESORS.
12

 

The development of Raman spectroscopic techniques to real-world applications has expanded 

dramatically over the past three decades. Delving into a variety of fields including: art and 

archaeology including the determination of age and legitimacy of paintings;
13–15

 the detection 

of small quantities of illegal drugs or explosives adsorbed upon surfaces;
16–19

 and tamper-

reducing drug characterisation from within pharmaceutical blister packaging.
20–22

 One of the 

largest growing areas, however, is the field of biomedical diagnostics, explored further within 

this thesis. 

1.2 Overview of Thesis 

This thesis is split into two major sections: theory and experimental.  

The theory chapters allow the reader to gain greater understanding of the context of the work 

in terms of the pathophysiology and current diagnostic and therapeutic landscape surrounding 

breast cancer in Chapter 2; the Raman spectroscopic theory with particular emphasis on SERS 

and SORS in Chapter 3; and how nanoparticle biocompatibility plays a vital role in the success 

of an in vivo agent in Chapter 4. 

The preliminary experimental chapters, Chapters 5 and 6, outline the gold nanoparticle 

chemistry undertaken, of both synthesis and functionalisation, and the manufacturing of post-

menopausal breast, optically representative turbid phantoms, respectively. Following is the 

detailed experimental set-up within Chapter 7, which explores the engineering of 

optomechanical automation; the application of instrumental signal enhancement; and the 

tempering of nanoparticle dose in terms of biocompatibility. These three chapters preface the 

main experimental results and analysis.  
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Multiplexed gold nanoparticles present at varying depths is explored in Chapter 8, determining 

the possibility of in vivo depth measurements at a biologically sound dose. The signal recovery 

of the labelled nanoparticles at depth within a representative, 3D breast model under 

mammographic conditions is also considered, applying the technique in a complimentary way 

to the current mammographic imaging methods. 

Chapter 9 delves into active targeting nanoparticle functionalisation, with a combination of 

Raman reporter, polyethylene glycol and alendronate, a bisphosphonate. Type II 

microcalcifications have been presented as a major biomarker for breast carcinomas, especially 

within acidic environments with possible malignancy. The results obtained show that not only 

do these functionalised nanoparticles give the desired SERS signal, but that they do selectively 

target calcium phosphate present within malignant microcalcifications. 

Chapter 10 is the culmination of the thesis results, discussing and concluding on the findings, 

with potential future works also considered. 
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2. Breast Cancer 

 

ancer is the cause of 42% of premature deaths in England with a total of 477,667 new 

cases registered in 2014, totalling 234,664 men and 243,003 women. Of these new 

cases, breast carcinomas were most prevalent, accounting for 9.7% of all cancers. Incidence 

rates for men have remained stable since the late 1970s, however incidence has increased in 

women by 11% from 2000 to 2013.
23

 Through the advent of mammography screening in 

1987, and an increase of breast cancer awareness through major campaigns, crucial early 

diagnosis of the disease has risen, with 10-year survival rates climbing from just 40% in the 

early 1970s, to 78% of women in 2015.
24

 

In this chapter, an examination of the population in England affected by breast cancer is detailed 

in Section 2.1. Anatomical pathways of the breast and the biological mechanisms leading to 

carcinoma is presented in Sections 2.2 and 2.3. Sections 2.4 and 2.5 consider the necessity of 

early diagnosis and the current diagnostic imaging methods practiced in the clinical setting, 

respectively. Therapeutic pathways leading from diagnosis are discussed in Section 2.6. Base 

knowledge of the current diagnostic and therapeutic practices, and where improvements to 

these methods could be made, shapes the experimental design of this thesis. Section 2.7 

highlights the importance of working within the remits of current practice, to enhance the 

current diagnostic capabilities available through the incorporation of complimentary 

techniques. 

2.1 Epidemiology and Aetiology 

Breast cancer mainly affects women, one in eight of the UK population, with a small percentage 

of the male population also under threat of the disease – 46,085 women and 332 men of new 

diagnosis in England, 2014.
23

 Women aged 45 – 69 comprised the largest proportion of 

C 
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disease incidence of left and right breasts combined, with an overall increase in registrations of 

all ages, from 2004 to 2014, of 14.3%.
25

  

 

 

In North America and Western Europe the age-standardized incidence rate is four-fold of that 

in developing countries, contributed mainly by a “Western” diet and lack of physical activity, 

resulting in obesity.
27

 Other avoidable risk factors including smoking, consumption of alcohol, 

and hormonal differences, such as the oral contraceptive pill and pregnancy at a later stage in 

life. A combination of these elements are estimated to contribute to around 27% of female 

breast cancer cases in the UK.
28

  

An unavoidable risk factor is familial history. The likelihood of incidence increases with the 

number of relatives known to have developed breast cancer – zero affected members has a 

base risk of 7.8%; whilst one member holds a 13.3% increase, two members rises to 

21.1%.
29

 Early diagnosis is crucial for the survival rates of women who fall in this category, with 

Figure 2.1: Newly diagnosed incidence rate of breast cancer (left and right breasts) in women in 

England from 2004 to 2014.
26
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sufficiently high risk patients often opting for a bilateral mastectomy to eliminate the possibility 

of occurrence. 

 

 

From 2004 to 2014, the mortality rate across all age groups in England  decreased by 7.7%, 

most significantly in the 50 – 64 age group by 18.7%.
25

 A reduction in breast cancer mortality 

rates of women in the UK is recognised by the implementation of the mammography 

screening program in 1987, as visualised in Figure 2.2.  

An in-depth consideration into breast physiology gives a greater understanding into the 

significant role mammography plays in the diagnosis of intramammary carcinomas. 

2.2 Breast Anatomy 

Situated on the upper chest wall, the breast overlies the pectoral muscle in both men and 

women. Breast buds are formed during embryonic development. Until adolescence, the male 

and female breasts consist of an inactive network of lobes (glandular tissue) leading to the 

nipple, fatty (adipose) and connective (stromal) tissues.
30

 Puberty initiates the development of 

the female breast into the mammary gland (Figure 2.3). Mammogenesis is regulated through 

 

 

 

Figure 2.2: Mortality rate per 100,000 women in the UK from 1971 to 2014; the grey dotted line 

at the year 1987 marks the introduction of the Breast Cancer Screening Programme. Adapted from 

Cancer Research UK. 
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growth hormones, oestrogen and progesterone, developing the ability to lactate and feed 

young – prolactin begins and maintains the production of milk in pregnant and nursing women.  

 

Figure 2.3: Anatomy of the mammary gland. NOTE: Lactiferous sinuses (underlined in red) were 

proved to not existent through ultrasonography.
31,32

 

 

 

The anatomy of the breast is largely unchanged from the dissections of lactating breast cadavers 

conducted by Sir Astley Cooper in 1840.
33

 The functioning, glandular anatomy of the breast 

contains alveoli consisting of dense clusters of secretory epithelial cells, which cluster together 

to form lobules. These lobules are connected to lactiferous ducts which have an inner layer of 

epithelial cells encased in myoepithelial cells.
34

 Investigation with ultrasound has determined an 

average of 5 – 9 ducts open at the nipple, fewer than the 15 – 20 previously understood.
32,35

 

Adipose layers are meshed throughout the glandular tissue at a ratio of 1:1 in non-lactating 

breasts
31

 increasing to 1:2 in lactating women.
32

 Large breasts consist of a greater amount of 

adipose tissue. A network of stromal tissues – the extracellular matrix, blood vessels and 

Copper’s ligaments, eponymously named – support the layers of glandular and adipose 

tissue.
34
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Figure 2.4: Lymphatic drainage system and lymph node regions surrounding the breast.
34

 

 

 

The breast also consists of a lymphatic system dealing with immune responses to pathogens. 

Inflamed or enlarged lymph nodes, including all detailed in Figure 2.4, are a clinical marker for 

breast cancer. Neoplastic cells are able to spread through lymphatic and blood vessels forming 

metastases’, most commonly in the bone, lung and liver.
36

 

2.3 Pathology 

2.3.1 Physiology  

In a single breast, 25% of neoplasms occur in the upper outer quadrant, between 4 – 8% 

occur in the other three quadrants and only 1% in the nipple/areola and axillary areas.
23

 The 

earliest stage of breast cancer is confined to the epithelial cells within the lining of either the 

ducts or lobes, known as ductal/lobular carcinoma in-situ (DCIS/LCIS). Further growth leads 

to infiltrating or invasive carcinoma. LCIS is less likely to turn into an invasive carcinoma, often 

considered as neoplasia. Necrotic and pleomorphic cells are indicative of more aggressive 

cancers, more likely to be associated with DCIS. Figure 2.5 shows how DCIS develops into 

an invasive carcinoma, requiring a network of blood vessels, enabling a rapid growth rate. 
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Figure 2.5: Physiological characteristics of an aggressive cancer type tumour.
37

 

 

 

Malignant tumours, as small as 3 mm, rely on this rapid angiogenesis to curb hypoxic and 

necrotic regions from inevitably developing.
38

  Poor lymphatic clearance and dilated, leaky 

vasculature creates a high level of interstitial fluid pressure (IFP) within the tumour. This leads 

to an enhanced permeability and retention effect (EPR): drawing oxygen and nutrients in and 

a large percentage retained, keeping a high level of growth.
39

 The recently updated TNM 

(Tumour – Lymph Nodes – Metastasis) staging system for breast cancer is as follows: 

TNM Staging Classification 

 TX Primary tumour not assessable 
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T0 No primary tumour 

Tis DCIS 

T1 ≤20 mm in greatest dimension 

 T1a ≤1 mm 

 T1b >1 but ≤5 mm 

 T1c >5 but ≤10 mm 

 T1d >10 but ≤20 mm 

T2 >20 but ≤50 mm 

T3 >50 mm in greatest dimension 

T4 Tumour with direct extension to the chest wall and/or skin 

 T4a Extension to chest wall 

 T4b Ulceration and/or satellite nodules and/or oedema 

  T4c Both T4a and T4b 

  T4d Inflammatory Carcinoma 
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  Clinical (cN) 

 cNX RLNs cannot be assessed (e.g. previously removed) 

 cN0 No RNL metastases 

 cN1 Movable metastases in ipsilateral Level I, II axillary lymph node(s) 

   cN1mi Micro-metastases >0.2 mm but ≤2 mm 

 cN2 Clinically fixed or matted metastases 

   cN2a Metastases in axillary lymph nodes fixed to one another or other structures 

N
 –
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   cN2b Metastases in ipsilateral internal mammary nodes, fixed 

cN3 Multiple Node involvement 

  cN3a Metastases in ipsilateral infraclavicular lymph node(s) 

  cN3b Metastases in ipsilateral internal mammary and axillary lymph node(s) 

  cN3c Metastases in ipsilateral supraclavicular lymph nodes(s) 

 Pathological (pN) 

pNX RLNs cannot be assessed 

pN0 No RNL metastasis identified, or Isolated Tumour Cell (ITCs) 

  pN0(i+) ITCs only (malignant cell clusters ≤0.2 mm in RNLs) 

  pN0(mol+) Positive molecular findings; no ITCs detected 

pN1 Micro-metastases 

  pN1mi Micro-metastases >0.2 mm but ≤2 mm 

  pN1a Metastases in 1–3 axillary lymph nodes, at least one metastasis ≤2 mm 

  pN1b Metastases in ipsilateral internal mammary sentinel nodes, excluding ITCs 

  pN1c pN1a and pN1b combined 

pN2 RLN Metastases present 

  pN2a Metastases in 4–9 axillary lymph nodes (at least one tumor ≤2 mm) 

  pN2b Metastases in clinically detected internal mammary lymph nodes 

 pN3 Extensive RLN metastases present 

   pN3a Metastases in 10+ axillary lymph nodes (at least one tumor ≤2 mm); 

or 

metastases to the infraclavicular (Level III axillary lymph) nodes 

   pN3b pN1a or pN2a in the presence of cN2b, internal mammary nodes by imaging; 

or 

pN2a in the presence of pN1b 

   pN3c Metastases in ipsilateral supraclavicular lymph nodes 

 M0 No clinical or radiographic evidence of distance metastases 

M
 –

 M
e
t
a
s
t
a
s
is

 

  cM0(i+) No clinical or radiographic evidence of distant metastases in the presence of 

tumor cells or deposits ≤0.2 mm detected by molecular techniques in 

circulating blood, bone marrow, or other nonregional nodal tissue in a 

patient without symptoms or signs of metastases 

cM1d Distant metastases detected by clinical and radiographic means 

cM1 Any histologically proven metastases in distant organs; or if in 

 

Table 2.1: Tumour – Lymph Nodes – Metastasis (TNM) Staging Chart.
40

 

This is the most common tumour staging system. To further differentiate tumours, the 

biomolecular characteristics are a crucial sub-classification in determining the patient specific 

treatment pathway. 
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2.3.2 Molecular Subtypes 

Overexpression of three distinct types of molecular receptors define four main subtypes of 

breast cancer arising within cells. Oestrogen (ER), progesterone (PR) and human epidermal 

growth factor (HER2) receptors are overexpressed independently, resulting in either Luminal 

A, Luminal B, HER2 or Basal-like carcinomas, as described in the table: 

 

Table 2.2: Breast cancer subtype chart describing the presence of oestrogen, progesterone and human 

epidermal growth factor receptors. 

 

The four subtypes are largely associated with invasive ductal carcinoma (50-80%) and invasive 

lobular carcinoma (5-15%).
40

 Luminal subtypes account for around 70% (type A representing 

50-60% whilst type B represents 10-20%) of all invasive breast cancers, with HER2 and Basal-

like, or triple negative, types completing the last percentage with around 15% each.
41

 The 

subtype HER2 has the best prognosis whilst Basal-like is most critical due to the aggressive 

nature and tendency to relapse post-treatment.
42

 Luminal and HER2 subtypes are identified 

by ER, PR and HER2; Basal-like cancers have few or no hormone receptors, aptly described 

as “triple negative”, meaning non-responsiveness to targeted therapies.
43

 However, the 

subtype has a strong association with hypoxia inducible factor 1 protein (HIF-1α) and carbonic 

anhydrase XI mRNA, which is overexpressed in hereditary breast cancer (BRCA1 and 2 

mutation).
44

 Patients with this familial history of breast cancer are annually monitored using 

magnetic resonance imaging (MRI).
45

 

Subtype Receptor Expression 

Luminal A and B ER and/or PR +ve | HER2 -ve 

HER2  ER and/or PR -ve | HER2 +ve 

Triple Negative or Basal-like ER and/or PR -ve | HER2 -ve 
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2.3.3 Microcalcifications 

Breast microcalcifications are an important disease identifier presenting in around 93% of DCIS 

cases and having a strong association with lymph node invasion.
46

 The significance of clustering 

and size is a reliable indicator as to whether the occlusion is benign or malignant.
47

 Occurring 

within the lobes and ducts of the breast, the calcifications occurring within each have different 

appearances upon x-ray, as seen in Figure 2.6. 

Large, smooth, “tea cup” shaped calcifications which appear less clustered are associated with 

lobular areas, and tend to be classed as benign; smaller, pleomorphic and highly clustered 

calcifications are associated with ducts, and treated as suspicious or malignant. As Figure 2.6 

shows, both types of calcifications can be present at the same time. 

 

Figure 2.6: (a) Mammogram of a spiculated mass of invasive DCIS with both lobular and ductal 

microcalcifications present; graphics representing (b) benign lobular calcifications and (c) malignant 

ductal calcifications. 

 

 

A study by Frappart et al. looked at microcalcifications within benign and malignant breast tissue 

specimens using a microprobe and electron microscopy. Analysis found two distinct types: 

weddellite crystals, or calcium oxalate dihydrate, or Type I calcifications, and calcium 

phosphates characteristic of hydroxyapatite (HAP) make up Type II. Type I appears almost 

entirely in benign tissue and rarely non-invasive LCIS, whilst Type II is mainly associated with 

malignant tissue.
48

  

(a) (b) 

(c) 
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More recently, investigation with Raman and Infrared spectroscopy has considered the 

chemical composition of the microcalcifications. HAP undergoes carbonate (−𝐶𝑂3
  2−

) 

substitution, with hydroxy groups (-OH) known as Type A, or the phosphate groups (−𝑃𝑂4
 3−

) 

Type B. HAP specifically in breast malignancies undergoes B-type substitution,
49

 with a higher 

substitution percentage lending to an increase in tumour malignancy.
50

 

2.3.3.1 Bisphosphonates 

Bisphosphonates (BPs) have a high affinity and selective uptake for the bone mineral 

hydroxyapatite.
51

 BPs are administered for the skeletal disorders osteoporosis, however high 

doses administered either intravenously or orally can lead to osteonecrosis of the jaw.
53-55

  

Fundamentally, the BPs with the highest binding affinity to HAP contain a nitrogen ending, R
2

 

side chain. The ability of BPs to resorb bone is dramatically affected by the slightest change to 

the structure of this side chain.
54

 

 

Figure 2.7: Alendronate binding sites on basic HAP structure demonstrated: -O
-

 from the -PO4

3-

 

groups bind to the -Ca
2+

; strong H-bonding interaction occurs between -NH
2

 and oxygen groups. 

 

132° 

HAP 
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There are two main binding sites on BPs: the free -O
-

 form an ionic bond with the Ca2
+

 ions 

within the HAP, whilst the N-H hydrogen bonds to the free -OH
-

 within the HAP. 

Alendronate binding to HAP is visualised in  

Figure 2.7. The binding angle at the hydroxyl site greatly affects the binding affinity: a larger 

angle forms a stronger electrostatic attraction.  

In recent advances, BPs have been proven to help reduce pain encountered with bone cancer, 

reduce tumour growth rates within breast and prostate tissue, and slow or even halt the 

development of bone metastases.
55–58

 Recent studies have suggested the use of BP labelled 

AuNPs in order to provide a targeted contrast agent when using x-ray to image bone 

malignancies.
59

 

2.4 Early Diagnosis 

The early diagnosis of cancer is crucial in reducing mortality and morbidity, providing patient 

peace-of-mind and relief from underlying symptoms.
60

 The World Health Organisation has 

three steps to early diagnosis: cancer awareness and access to healthcare; clinical evaluation, 

diagnosis and staging; and access to treatment.
61

 A Walters et al. study looking at breast cancer 

survival over a seven-year period in six developed countries found that the UK 3-year survival 

rate was 87-89%, comparative to 91-94% in four other countries including Australia, Canada 

and Sweden.
62

 The National Awareness and Early Diagnosis Initiative (NAEDI) was launched 

across England in 2008 to bring awareness to the need for early diagnosis – however, the 

British trait of a tendency to avoid seeking medical advice or aid is difficult to overcome. 

Healthcare and treatment within the UK is widely accessible, although delay between 

symptom onset to diagnosis, and diagnosis to treatment greatly affects patient mortality.  

A systematic review by Richards et al. found that patients who had a 3 – 6 month delay 

between symptoms and diagnosis of breast cancer had a 7% worse 5-year survival rate than 
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those with a shorter delay.
63

 Aiming to reduce this delay, the latest NICE guidelines for 

suspected cancer has set the national target of referral within 2 weeks of initial patient 

assessment.
64

 

 

Figure 2.8: Graphic detailing whether early diagnosis is beneficial or conceivable for: (a) breast 

cancer, where early diagnosis is likely even before symptom onset with the use of screening, delaying 

or completely offsetting mortality; and (b) colorectal cancer, where symptomatic diagnosis is unable 

to improve mortality. Adapted from 
61

 

 

Despite increased awareness and improvements to early diagnosis, with some cancers, such 

as pancreatic or colorectal, the patient can remain asymptomatic until the disease has 

progressed to a level of poor prognosis, see Figure 2.8. In 2015, a Delphi study was 

undertaken to find expert consensus by ranking 21 common cancers by how beneficial early 

diagnosis would be for patient mortality and/or morbidity.
60

 After two-rounds, the final ranking 

conclusively placed breast cancer at the top with the greatest potential benefit. Pancreatic, 
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brain and oesophageal had the lowest rankings – unlike breast cancer, as seen in Figure 2.8, 

screening is unviable and treatment options are sparse making early diagnosis nowhere near 

as beneficial.
65

  

From these findings, it can be said that the early diagnosis of breast cancer is clearly favourable 

and justified, as a major factor in increased survival rates and reduced recurrence rates. 

However, when determining the effectiveness of screening for early diagnosis, it is important 

to analyse the age-specific mortality of the patients, rather than survival rates. This is due to 

lead time bias, as shown in Figure 2.9. 

 

Figure 2.9: Visualisation of lead time bias affecting breast cancer survival rate statistics 

 

In this example two patients with an identically timed onset of breast cancer succumb to the 

disease at the same age, however one patient was diagnosed earlier than the other due to 

screening. The period between the two patients for early and usual diagnosis is the lead time 

bias, in dashed red, hence markedly increasing the survival rate of this patient, in green, 

comparative to the usually diagnosed patient. Instead of this patient living for a longer time, as 

assumed with survival rates, the early diagnosed patient is just knowingly living with the disease. 

Hence, the age-specific mortality should be preferentially used to analyse screening studies. 

The cost of different diagnostic and therapeutic pathways of breast cancer, per person per 

year, in the UK is visualised in the bar charts below, Figure 2.10. 
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Many breast cancer cases will involve all four cost factors outlined above, totalling £18,352.30 

for a single patient in the year since diagnosis. Multiple adjuvant therapies, repeat check-up 

mammograms and sometimes more global surgery is required, increasing costs further. As 

such, it is imperative to diagnose and treat breast cancer as early as possible. 

2.5 Current Diagnostic Methods 

Diagnostic imaging methods of breast cancer range from mammography to ultrasound, and 

MRI, with histopathology as the “gold standard” in confirming diagnosis. A 2016 update to the 

NICE Quality Statements now requires “timely diagnosis” via a multimodality, triple diagnostic 

assessment, comprised of a physical examination, a mammogram or ultrasound imaging, and 

biopsy, in a single hospital visit.
71

  

2.5.1 Clinical Examination 

Regular self-breast examination (SBE) is encouraged as a low-cost, low-risk, self-performed 

method to catch breast cancer in the early stages to decrease morbidity and mortality.
72

 

Despite little evidence confirming this, it is a useful tool in breast awareness encouraging 

women to take responsibility in their health.
45

 The low-cost of self and clinical breast 

Figure 2.10: Charts outlining the annual cost of diagnostics (clinical examination, ultrasound, MRI and 

mammography breast cancer screening and ultrasound guided biopsy) and breast cancer 

therapeutics (adjuvant therapy using Trastuzumab, a HER2 chemotherapy drug, and breast surgery) 

of per person in the UK. Figures are extracted from reports between 2009 - 2016.
66–70
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examination (CBE) has hence become an invaluable screening method poorer areas of 

developing countries where diagnostic imaging is costly resource.
73

  

In a CBE both breasts and the lymph nodes from the axillae to above the clavicles are assessed. 

The clinician checks for numerous “red flags”: breast symmetry; movement of any palpable 

lumps; dimpling of the skin; inflammation or soreness in the lymph nodes; and unusual 

inversion or crusting of the nipple.
74

 This clinical examination is age followed up by either 

mammography, for post-menopausal women, or ultrasound, for pre-menopausal women or 

those with dense breast tissue.  

2.5.2 Mammography 

Mammography is the “gold standard” screening and diagnostic imaging method as it is tailored 

to the detection of slow-growing tumours within the general affected population of women.
27

 

Ionising radiation is used to produce a high contrast image of the breast tissue allowing 

visualisation of dense masses and microcalcifications which may be present. Mammograms are 

a risk factor in themselves - a single bi-lateral mammogram contributes a lifetime risk of inducing 

fatal breast cancer of 1.3–1.7 cases in 100,000 women aged 40 years at exposure.
75
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Figure 2.11: Annotated image of a mammography x-ray unit imaging patient in a cranial-caudal view. 

 

 

The two views are “cranial-caudal” or CC taken from above, and an oblique view 

“mediolateral-oblique” or MLO. The breast is compressed by the paddle, as seen in Figure 

2.11, at around 110 – 120 Newtons to gain a diagnostically “good” to “perfect” image under 

parameters set by the NHS Breast Screening Programme (NHSBSP) publication “Quality 

Assurance Guidelines for radiographers”.
76

 

Breast compression plays a key role in improving the image quality in several ways. An overall 

reduction in breast thickness will produce a thinner, uniform mass which requires a lower 

radiation dose. This minimizes x-ray scatter reducing the signal to noise ratio (SNR) whilst 

improving contrast
77

. Compression spreads the tissue layers apart allowing easier 

visualisation
78

; and the reduction of patient movement will create a sharper image.
77

 A further 

imaging technique of spot compression, as in Figure 2.12, focuses on a small area of the breast 

to maximise separation of the tissue allowing better contrast and visualisation of margins and 

microcalcifications.
78
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Figure 2.12: Left MLO projection using spot compression on a dense breast to highlight two large, 

posterior densities.
79

 

 

 

In recent years, Digital Breast Tomosynthesis (DBT) has been employed as an additional 

mammographic technique, enabling tomographic, pseudo-3D imaging of the breast 

combatting the “anatomical noise” created by overlying breast tissue features.
82

 This ability to 

easily visualise and better discriminate between tissues has been proven to markedly increase 

sensitivity leading to earlier detection of neoplasms in two meta-analysis studies in post pre- 

and post-menopausal women.
83,84

 

Risk factors in using mammography include the use of ionising radiation to obtain an image, 

false-positives - the patient does not have the disease despite positive results from both 

mammography and biopsy - of which there were 3.3% in 2011-12 leading to over-diagnosis 

and over-treatment.
80

 These risks are not only detrimental to the patient psychologically and 

physically, but also raises expenditure within the NHS. The specificity and sensitivity of 

mammography screening is vastly reduced when contending with patients who are 

premenopausal, present with glandular tissue, or have breast implants – ultrasound is the 

preferred imaging method for these patients.
81

 On average, the chance of a false positive result 

Spot Compression 

Paddle 
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after each mammogram is 10.7%, leading to an unnecessary biopsy; false negative diagnosis 

affects 20 – 26% of patients, delaying their true diagnosis.
27

 

2.5.2.1 Screening 

In the UK, women aged between 50 – 70 are invited every three years for breast screening. 

Between 2008 and 2009, 2,116,588 women were screened by the UK NHSBSP. In 17,045 

cases cancer was detected (8.1 per 1,000 women screened), of which 13,532 (79%) were 

invasive.
82

 The development of cancer from staging the invasive carcinoma at screening, to the 

surgically removed tumour size, shown in Figure 2.13, highlights the need for a streamlined 

diagnosis-to-treatment pathway. 93.1% of all breast screening patients were seen within the 

62-day period between referral from an NHS screening service and first definitive treatment, 

between 2015 and 2016.
83

 

 

 

One of the most important factors in determining the success of a screening programme is 

patient uptake and re-attendance, and the diagnostic accuracy of the technique.
80

 In 2013, a 

 

Figure 2.13: Invasive breast cancer discovered through screening, percentage categorized into: left 

pie chart – invasive cancer staging; right pie chart – size of the tumour surgically removed. 



 

46 

 

systematic review by Whelehan et al found that 25% – 46% cited pain due to compression 

as the main reason why they did not re-attend, which is comparable to approximately 47,000 

to 87,000 women per year in England alone.
84

  Growing rates of obesity in postmenopausal 

women is not only an associated risk factor but is affecting the required Newtons of 

compression needed to gain a diagnostic image. A positive trend has occurred in the standard 

CC breast thickness size. Traditionally, the average, compressed breast thickness was defined 

as 45 mm. After a review in 2005 this rose to 53 mm, which is now argued to be increased 

to ~60 mm.
85

  A study in 2015 looked at variations of breast compression in three UK sites, 

Manchester, Chester and Burnley, where the obesity prevalence rate is 61.5%, 64.2% and 

69.2% respectively.
86

 The mean CC thickness across all three sites was 50.4 mm, whilst the 

largest recorded thickness was 62.61 mm, with increased and variable compression force 

applied.
87

 Difficulty penetrating the breast tissue sufficiently for a diagnostic image leads to a 

higher rate of false positives and false negatives. 

2.5.3 Ultrasound 

Ultrasound (US) is an imaging technique which produces non-ionising, ultra-high-frequency 

soundwaves (standard clinical range 5-15 MHz) from piezoelectric crystals. A voltage is applied 

across the crystals causing them to oscillate, emitting ultrasonic waves from the medical 

transducer into the patient. The transducer detects the returning echoes from the tissue and 

interprets them into a monochromatic image. US is a highly sensitive technique capable of 

differentiating benign cysts and solid mass likely to be malignancies, usually presenting as 

anechoic and hyperechoic respectively.  

Ultrasound has a higher sensitivity to non-palpable breast masses and premenopausal, dense 

breasts.
88

 A large trail study found that US detected an additional 3.7 cancers per 1000 women 

post mammography screening, with the risk of false positives decreasing significantly.
89
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Figure 2.14: Doppler ultrasound imaging of (a) a malignant tumour with irregular vasculature and (b) 

a breast microcalcification, highlighted with the red arrow, creating a twinkling artifact.
90

 

 

 

Doppler US is a useful tool for assessing vascular abnormalities within a mass – leaky and 

enlarged vasculature present in malignant masses are easily identified this way.
91

 

Microcalcifications are reflective to Doppler US giving the appearance of turbulent blood flow, 

known as a twinkling artefact as seen in Figure 2.14(b).
90

  

The detection of microcalcifications with US is limited. A main attribute to this is the spatial 

resolution of the system – increasing the transducer to a high-frequency, 30 – 70 MHz, 

provides better visualisation, but this is traded with a lower level of depth penetration into the 

tissue.
97-99

 US also requires highly trained sonographers to image breast lesions effectively and 

in guiding the needle used for percutaneous biopsies. 

2.5.4 Biopsy and Histopathology 

There are two main types of breast biopsy – fine needle aspiration (FNA) and core biopsy, as 

pictured in Figure 2.15.  FNA, as the name suggests, uses a fine needle to aspirate a small 

volume of tissue from a suspicious lesion. Core biopsies, and vacuum-assisted core biopsies, 

use a much larger needle to extract a larger, cylindrical volume of tissue.
93

 Though providing 

a larger sample, core biopsies require local, or sometimes general, anaesthetic which comes 

with a patient risk of allergic reaction to the anaesthesia. 

(a) (b) 
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Figure 2.15: Graphics showing the procedures for (a) fine needle aspiration and (b) core needle 

biopsies.
94,95

 

 

 

As the gold standard, breast biopsies are taken to histopathology where they are sectioned 

and stained for diagnosis under the microscope. The piece of biopsy tissue first undergoes 

gross examination, with and without a microscope. The tissue is embedded in paraffin wax, 

sliced to 4 µm on a microtome to visualise the cells adequately at a high spatial resolution.
96

  

Stains are applied to highlight different cellular features – haematoxylin stains cell nuclei blue, 

whilst eosin stains cytoplasm, connective tissue and other extracellular substances pink or red 

– for analysis under a microscope. The nature of the tissue is decided to be either benign, 

“uncertain” or malignant. Tissues classified as uncertain follow the same pathway as those 

classed as benign – leading to false negatives but also a reduction in patient over-treatment. If 

a malignancy is found, the molecular subtype is investigated to determine the hormone 

receptor status necessary for therapy. 

A precedence in the importance of microcalcifications to diagnosis via histopathology has been 

set within the 2016 updated clinical guidance for breast cancer screening.
93

 If present within 

the x-ray imaging, the representative microcalcifications must be demonstrated within the core 

biopsy specimens. Failure to do so requires a repeat biopsy or an advanced diagnostic surgical 

biopsy, to ensure the microcalcification is excised for evaluation. This sets a high priority and 

(a) (b) 
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pressure on the practitioner to capture the required tissue and microcalcifications upon the 

first instance. 

Historically, agreement of diagnosis between histopathologists is a highly-disputed matter – 

interobserver studies of Stage I breast carcinomas over the past twenty years has increased 

from a 79.5% agreement in 1995
97

, to 90.3% in 2015.
98

 Development of fixation techniques 

and an increase in knowledge and experience has led to more agreeable diagnoses. 

Communication between histopathologists and radiologists is key to ensuring a correct 

diagnosis is reached.
96

 

2.5.5 Magnetic Resonance Imaging 

MRI is a non-ionising imaging technique using strong magnetic fields and radio frequency (RF) 

pulses to analyse the motion of protons within hydrogen atoms on axial, sagittal and coronal 

planes. Bilateral breast coils are used to transmit and receive a homogeneous RF signal across 

the breast. Coils produce a high-quality image, keeping the fat signal supressed for good soft 

tissue contrast and reducing the SNR.
99

 Contrast enhanced MRI for breast imaging uses 

gadolinium to speed up the relaxation time of hydrogen atoms in water, improving the clarity 

of lesions in the imaging and changing diagnostic decisions for up to 40% of patients.
107

 

Gadolinium has, however, been linked to nephrogenic systemic fibrosis (NSF), causing 

thickening and scarring of the skin and internal organs in patients with poor kidney function.
107

 

As such, the use of several gadolinium based contrast agents is restricted to patients with a high 

estimated Glomerular Filtration Rate (eGFR).
107

 MRI images are significantly more sensitive and 

specific than mammography or ultrasound, 90.3% and 89.7% respectively, although this can 

increase the rate of false positives.
89,69

 MRI is costly, at a price per patient of £216 in 2010, 

making it unviable for use as a screening method for the entire population.
69

 However, annual 

surveillance is offered to women with a familial history, aged 30 years onwards.
100
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2.6 Therapeutics 

Breast cancer patients with early diagnosis typically follow the route of surgery followed by a 

second, or adjunctive, therapy to maximise the initial treatment effectiveness. For advanced 

cancer patients, the adjunctive therapy is used to control tumour growth and suppress the 

symptoms. Radiotherapy, chemotherapy and hormone therapy can also be used as a neo-

adjuvant, shrinking the tumour prior to surgery reducing risk of complications.   

2.6.1 Lumpectomy or Mastectomy  

Lumpectomy is breast-conserving surgery where the tumour and a radial margin of 2 mm of 

surrounding tissue is excised to be examined histopathologically, under the NHSBSP 

standards.
101

 Partial mastectomy or quadrantectomy involves a larger area of breast removal – 

preservation of the lactiferous ducts is a high priority since surgical disruption could affect the 

drainage of a large area of glandular tissue. For large tumours and elevated risk patients, as 

previously discussed, mastectomy removes the entire breast(s) which can include the 

surrounding lymph nodes.  

2.6.2 Adjuvant Treatment 

 Radiotherapy targets high energy x-ray photons directly into the tumour, disrupting the DNA 

within the cells and stopping proliferation. Post lumpectomy or mastectomy, radiotherapy is 

the most common adjuvant treatment, applied to the whole of the remaining breast or chest 

wall respectively. Major side effects of the combined treatment are localised skin burning, 

lymphoedema, reducing movement in the arm and shoulder of the affected side, and inducing 

increased osteoblastic and osteoclastic activity, leading to a higher risk of fragility fractures.
111 

Chemotherapy is the use of cytotoxic drugs which target highly-proliferating cells in the body, 

non-specifically destroying both malignant and healthy cells. Hair follicles, nail beds and the 

intestinal epithelium cells are most commonly affected, leading to hair and nail loss, reduction  
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in appetite and nausea. 

 

 

Typically, an amalgamation of two or three drugs are used to attack the cells at distinct stages 

of cell cycle growth. A widely used drug, Doxorubicin, has been shown to have poor 

penetration depth into the hypoxic regions of breast cancer tumours, as shown in Figure 

2.16.
102

 Chemotherapy is most effective when used in combination with radiotherapy which 

has the ability to penetrate deep into the tumour growth. 

Hormone therapy lowers or blocks the growth effects of Luminal A and B, and HER2 cancer 

subtypes. Historically, the competitively-binding estrogen receptor drug Tamoxifen had been 

used in 75 – 80% of patients to reduce recurrence rates of ER-positive breast cancer.
112

 More 

recently an enzyme that synthesizes estrogen from androgens has been developed into a 

treatment drug, Aromatase Inhibitor (AI). AIs have provided an alternative means of hormone 

therapy in women whose ovaries cannot produce significant amounts of aromatase.
112,113

 For 

patients who have a Triple Negative or Basal like cancer, exhibiting no receptor expression, 

hormone therapy is not employed. Targeted therapy interrupts the pathways of, or blocks 

growth proteins characteristic to the breast cancer cell. Antibodies are targeted to the specific 

 

Figure 2.16: A three-colour composite fluorescence microscopy image shows scarce  uptake of 

Doxorubicin, administered via the blood vessels, into the hypoxic regions of a breast cancer 

tumour.
102
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protein type, such as HER2 and epidermal growth factor receptor (EGFR), making the 

treatment less destructive compared to chemotherapy. 

2.7 Summary 

Breast cancer incidence continues to grow across the globe. Campaigns to increase disease 

awareness, minimize the delay between symptoms to diagnosis, and implement effective 

treatment has resulted in significant improvements in breast cancer survival rates across the 

UK. The value of detecting cancer early is clear, and significant improvements can be made in 

the clinical applications surrounding cancer diagnosis.  

Current medical imaging techniques are inefficient in disease detection, often requiring the 

carcinoma to reach a late stage before visualisation can occur – even in the highly successful 

asymptomatic screening programme, around half of all cases present as Stage II. The ability to 

gain mammographic images of diagnostic quality causes procedural pain through compression, 

and hence lower patient return rates, due to increased rates of obesity. Ultrasound imaging 

caters to those patients with denser breasts, yet requires an additional, invasive biopsy. MRI is 

a highly sensitive imaging technique; large costs play a key role in the selectivity of patients for 

which the procedure can cater for, limiting its use. 

False positive diagnosis is responsible for the over treatment of patients. Human error and 

differential diagnosis is inevitable with radiologists interpreting images and histopathologists 

determining the presence of malignancy within the biopsy. 

Multimodality imaging allows a more thorough approach to diagnostics. It is therefore 

important to increase the potential of current diagnostic methods by introducing techniques 

which are complimentary to present procedures, providing unique and further information. 

Current imaging methods assess and discriminate breast tissue and cellular features on a 

morphological basis. The biochemical analysis of the tissue, detecting the molecular changes 
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prior to a physiological change, is a diagnostic technique currently unexplored in the hospital 

setting. Moreover, the use of a diagnostic and therapeutic, or theranostic, combined technique 

is yet to be considered as a clinical practice. 
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3. Raman Spectroscopy 

 

o gain an understanding of how vibrational spectroscopy is applicable in the analysis of 

biological samples, it is important to first discuss the main theoretical principles 

surrounding Raman spectroscopy, discussed in Section 3.1  . Surface Enhanced Raman 

spectroscopy (SERS), the history of which is briefly covered in the introductory chapter, is a 

critical technique employed within this body of work – its mechanisms and adaptations are 

covered in Section 3.2. Further emerging biomedical “imaging” techniques are further 

discussed in Section 3.3.  

3.1 Theory of Raman Scattering 

Light interacting with matter can be either absorbed, taking a molecule from a ground to 

excited state, or scattered. When an oscillating photon of light interacts with a molecule, the 

negatively charged electron cloud is distorted by the oscillating electric field and the molecule 

is shifted to a higher, virtual energy state. The oscillating molecular dipole will emit a new 

photon at the same frequency or wavelength to the incident one if there is no change in 

polarisability of the molecule during this oscillation. In this case the scattered light is equal to 

that of the incident light – elastic, Rayleigh scattering. However, if there is a change in the 

polarisability of the molecule, a discrete change in energy to the molecule can take place, 

changing its molecular vibrational state. The molecule can gain or lose energy from the photon, 

moving to a higher (Stokes) or lower (anti-Stokes) state.
103

  

At ambient temperature, room or body, the lowest vibrational ground state level is prevalent. 

Hence Stokes' is the predominantly produced and therefore more favourable Raman 

scattering in the analysis of molecular content.  

T 
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Figure 3.1: A Jablonski diagram showing the energy level transitions involved during Infrared 

absorption, Rayleigh, Raman Stokes and anti-Stokes scattering (h𝒗𝟎 = incident laser energy; h𝒗𝒗𝒊𝒃 

= vibrational energy; ∆𝝊 = Raman shift; 𝒗𝒗𝒊𝒃 = vibrational frequencies.)
104

 

 

 

If a molecule has a vibrational mode whereby a dipole moment oscillates at the frequency of 

the incident radiation absorption will occur, demonstrated in Figure 3.1 as for IR absorption in 

from ground to molecular vibrational levels. Mid-IR photons are highly absorbed by biological 

materials and are incompatible with deep in vivo measurements planned here forth in this 

thesis. Conversely Raman scattering relies on a change in polarizability of a molecule. 

 

3.1.1 Polarizability 

The ease of which a molecule can be distorted is known as the polarizability, 𝛼, which is 

dependent on the number of electrons and how many energy levels they occupy. Atoms with 

a large nucleus have a strong polarizability – the electron cloud is distant from the nucleus 

allowing an ease of distortion. 

The principles of Raman scattering can be mathematically described. Polarizability, 𝛼, induces 

a dipole moment, 𝜇𝑖𝑛𝑑, under the applied electric field, 𝐸, as seen in Equation (1) below. 
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 𝜇𝑖𝑛𝑑 = α E (1) 

 

At a molecule's nuclear geometrical equilibrium, 𝛼0, and at a distance away from the 

molecule's equilibrium geometry, ∆𝑟, the polarisability 𝛼 is  

 𝛼 =  𝛼0 + 
𝛿𝛼

𝛿𝑟
∆𝑟 (2) 

 

with the derivative 

 
𝛿𝛼

𝛿𝑟
 (3) 

 

explaining the change in polarizability depending on the change of the molecular position. If 

this value is equal to 0, the molecule being described does not have a changeable polarisability 

and is therefore not Raman active. 

The ∆𝑟 details the vibrations or rotations of the molecule undergoing polarization in terms of 

time, 𝑡, and the frequency of the vibration, 𝑣, where 𝑟𝑚𝑎𝑥 is the maximum vibrational 

amplitude, shown in Equation (4). 

 𝛥𝑟 = 𝑟𝑚𝑎𝑥 cos(2𝜋𝑣𝑡) (4) 

 

The applied electric field, 𝐸, also has a specific frequency, 𝑣𝑖𝑛, which has a maximum electric 

field frequency, 𝐸𝑚𝑎𝑥, as explained below:  

 𝐸 = 𝐸𝑚𝑎𝑥 cos(2𝜋𝑣𝑖𝑛𝑡) (5) 

 

Both Equations (4) and (5) include the term 2𝜋 to convert the frequency and time parts of the 

equation into values which oscillate from 1 to 0 to -1 in a co-sinusoidal fashion, mimicking the 

induced molecular vibration under the applied electric field. 

Substituting the Equations (2), (4) and (5) for 𝛼, ∆𝑟 and 𝐸 respectively allows for the Equation: 
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 𝑝 =  𝛼0𝐸𝑚𝑎𝑥 cos(2𝜋𝑣𝑖𝑛𝑡) + 𝐸𝑚𝑎𝑥𝑟𝑚𝑎𝑥

𝛿𝛼

𝛿𝑟
cos(2𝜋𝑣𝑡) cos (2𝜋𝑣𝑖𝑛𝑡) (6) 

 

The relationship between the two cosines is as shown: 

 𝑐𝑜𝑠 𝑎 × 𝑐𝑜𝑠 𝑏 =  
1

2
(cos(𝑎 + 𝑏) + cos (𝑎 − 𝑏)) (7) 

 

where 𝑐𝑜𝑠 𝑎 represents 2𝜋𝑣𝑖𝑛𝑡 and 𝑐𝑜𝑠 𝑏 signifies 2𝜋𝑣𝑡. “cos(𝑎 + 𝑏)” defines the Anti-

Stokes scattering of Raman, where the value is the sum of the incoming light plus the vibrational 

frequency; “cos(𝑎 − 𝑏)” is the Stokes scattering, where the incoming light minus the 

vibrational frequency is defined. 

By substituting the product of the two cosines into Equation (6) we obtain the following 

Equation: 

𝑝 = 𝛼0𝐸𝑚𝑎𝑥 cos(2𝜋𝑣𝑖𝑛𝑡) + 
𝐸𝑚𝑎𝑥𝑟𝑚𝑎𝑥

2

𝛿𝛼

𝛿𝑟
(cos(2𝜋(𝑣𝑖𝑛 + 𝑣)) + cos (2𝜋(𝑣𝑖𝑛 − 𝑣))) (8) 

 

From Equation (8) we can find the terms for both inelastic/Raman and elastic/Rayleigh 

scattering. The variable 𝑣𝑖𝑛 is the frequency of the incoming light, but also describes the 

outgoing scattered photon of the same frequency. Therefore, the polarizability of a molecule 

and hence scattering of light is dependent on the frequency of the incoming light, vibrations of 

the molecule and applied electric field, with the derivative 

𝛿𝛼

𝛿𝑟
 giving the selection rule to 

whether the molecule is Raman active.  

 

3.1.2 Hooke’s Law 

Within the molecule, individual atomic bonds are more readily Raman active than others. A 

strong double bond will allow less distortion, storing more energy compared to a single bond. 
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Under Hooke’s law, the vibration of these individual bonds within a diatomic molecule can be 

described as: 

 𝑣𝑚 = 
1

2𝜋
√
𝐾

𝜇
 (9) 

where 𝐾 is the spring constant (N/m) of the bond between the two atoms. The molecular 

vibration, 𝑣𝑚, is proportional to the strength of the bond, whilst being inversely proportional 

to the inertial or reduced mass, 𝜇, described as: 

 𝜇 =  
𝑚1𝑚2

𝑚1 +𝑚2
 (10) 

 

where 𝑚1 and 𝑚2 are the masses of the atoms. Hence, both the atoms and individual bonds 

contribute to the characteristic, molecular vibrations. Symmetric vibrations cause the greatest 

distortion to the electron cloud, most commonly associated with Raman active molecules. 

Conversely, asymmetric vibrations cause a change in dipole and hence allow IR absorption.
103

 

Typical bond vibrations include stretching, rocking and wagging as seen in Figure 3.2. 

Figure 3.2: Six types of vibrational modes. Adapted from 
105

 

 

twisting wagging 
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3.1.3 Raman Cross Section 

Every molecule has a total Raman cross section, 𝜎𝑅𝑆, measured in units of cm
2

 denoting the 

area of the molecule readily available for particle-photon interaction. This cross section defines 

the Raman signal, 𝐼𝑅, that a density of molecules per cm
3

, 𝐷, can produce:  

 𝐼𝑅 = 𝐼0𝜎𝐷𝑑𝑧 (11) 

 

The excitation laser intensity, 𝐼0, and path length travelled through the sample, 𝑑𝑧, also affects 

the Raman scattering produced.
106

 The relationship between the intensity of Raman signal and 

the wavelength of incident light can be described as: 

 𝑃𝑆  ∝  
𝐼0
𝜆4

 (12) 

 

where it is inversely affected to the fourth power. This is known as the scattering coefficient of 

the material.
107

 The 𝜎𝑅𝑆 of a molecule is incredibly small, requiring large concentrations or 

changes in the spectroscopic technique and hence optical set-up, such as coherent anti-stoke 

Raman scattering (CARS) and stimulated Raman scattering (SRS), to provide sensitive 

measurements.
108,109

 The use of surface enhanced Raman spectroscopy (SERS) enables low 

analyte concentrations to garner a large 𝜎𝑅𝑆, whilst keeping the Raman system unaltered. 

A typical, modern Raman spectroscopy system is generally comprised of: a monochromatic 

laser source; an arrangement of optics guiding and focussing light to and from a sample; a 

spectrometer collecting and detecting the Raman photons; and computer aided analysis of the 

detector results. A Raman spectrum displays the biochemical, molecular “fingerprint” of the 

sample. Known as Raman shift, measured as a function of energy in units of wavenumbers 

(cm
-1

). The intensity of the signal is proportional to the number of Raman active bonds within 

the sample – which can be increased by orders of magnitude with the introduction of metallic 

nanoparticles for SERS. 
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3.2 Surface Enhanced Raman Spectroscopy Theory 

As discussed in the introductory chapter, SERS can be broken down into two processes: 

electromagnetic enhancement as proposed by Jeanmaire and Van Duyne; and chemical 

enhancement suggested by Albrecht and Creighton.
9,10

 This section delves into the theory 

behind SERS, and how the technique can be adapted to suit an array of biomedical applications. 

3.2.1 Mie Theory and Localised Surface Plasmon Resonance 

Colloids have historically been utilised since the fourth century (AD). The most visible example 

today is stained glass within churches and cathedrals. The process involved medieval artists 

mixing gold and silver metallic salts into the molten silica compound. The respective metals 

created red and yellow panes of glass as light shone through, as seen in Figure 3.3. Varying the 

size of metal NPs to “give rise to a variety of colours” was theorised by Michael Faraday in 

1856.  

 

Figure 3.3: 14
th

 century medieval stained-glass window at Troyes Cathedral, France. 

 

 

This could not be fully established however until the turn of the twentieth century. The optical 

properties of colloids theorised in 1908 by German physicist, Gustav Mie, through his solution 

of Maxwell’s equation.  
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The eponymous theory is used to describe the absorption, scattering and extinction cross 

section of a spherical NP. The interacting photon distorts the electron cloud forming a 

collective, sinusoidal oscillation of the free electrons, altering the Raman cross section. Mie 

theory holds two assumptions: both the surrounding media and the NPs are dielectric in 

nature; and the radius of the NP is smaller than that of the incident light wavelength (𝜆).  

The extinction cross section (𝐶𝑒𝑥𝑡) of NPs suspended within a medium is calculated as
110

: 

 𝐶𝑒𝑥𝑡 = 
24𝜋2𝑟3𝜀𝑚

    3/2

𝜆
 

𝜀𝑖
(𝜀𝑟 + 2𝜀𝑚)

2 + 𝜀𝑖
  2 (13) 

 

The dielectric constants of the real and imaginary parts of the metal is described as 𝜀𝑟, or real, 

and 𝜀𝑖, imaginary, respectively; 𝜀𝑚 describes the medium. The dielectric constants and the 

size of the NP are the main variables affecting 𝐶𝑒𝑥𝑡.  

Further, the extinction of the light is separated into two areas: scattering (𝐶𝑠𝑐𝑎) and absorption 

(𝐶𝑎𝑏𝑠) cross sections. The relationship can be described as: 

 𝐶𝑒𝑥𝑡 = 𝐶𝑎𝑏𝑠 + 𝐶𝑠𝑐𝑎 (14) 

 

Equations (15) and (16) breaks down 𝐶𝑎𝑏𝑠 and 𝐶𝑠𝑐𝑎. In the equations, 𝑘 describes the 

direction and magnitude of light through the sample (𝑘 =  2𝜋 𝜆⁄ ), whilst the nanoparticle 

volume is defined by 𝑟: 

 𝐶𝑎𝑏𝑠 = 4𝜋𝑘𝑟3 𝐼𝑚 [
𝜀𝑛𝑝 − 𝜀𝑚𝑒𝑑𝑖𝑎

𝜀𝑛𝑝 − 2𝜀𝑚𝑒𝑑𝑖𝑎
]  ∝  

𝑟3

𝜆
 (15) 

 𝐶𝑠𝑐𝑎 = 
8𝜋

3
𝑘4𝑟6 |

𝜀𝑛𝑝 − 𝜀𝑚𝑒𝑑𝑖𝑎

𝜀𝑛𝑝 − 2𝜀𝑚𝑒𝑑𝑖𝑎
|

2

 ∝  
𝑟6

𝜆4
 (16) 

 

Whereby 𝜀𝑛𝑝 and 𝜀𝑚𝑒𝑑𝑖𝑎 are the dielectric constants of the NP and surrounding media, 

respectively. 
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This shows both scattering and absorption cross sections increase proportionally to NP size, 

hence the number of free electrons upon the NP surface, with 𝐶𝑎𝑏𝑠 increasing at half the rate 

to 𝐶𝑠𝑐𝑎. This phenomenon of electromagnetic enhancement, known as localised surface 

plasmon resonance (LSPR), is visually interpreted in Figure 3.4. 

Adsorption of a molecule to the NP surface, distance Angstrom in length, creates a further 

chemical enhancement, Figure 3.5.  

 

 

Contributing factors to the signal enhancement include: the change of molecular polarizability 

once adsorbed; a charge-transfer between the analyte and metal complex; and molecular 

resonance with the LSPR.
111–113

 Van der Waals forces leading to this physisorption upon a NP 

 

Figure 3.4: Localised surface plasmon resonance – free electron cloud oscillation occurring upon the 

NP surface, within the interacting wavelength (𝒉𝒗𝒆𝒙𝒄), enhances the local EM field.  

 

Figure 3.5: Molecule adsorbed to or orientated within Angstrom length near to NP produces 

chemical enhancement. Adapted from 
114

 

ℎ𝑣𝑒𝑥𝑐 
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surface affects molecular symmetry, vastly changing the Raman spectrum. This is dependent 

upon the newly found vibrational modes of the molecule, and the molecular orientation. 

The enhancement factor (EF) of a molecule within SERS is denoted by the following equation: 

 𝑆𝐸𝑅𝑆 𝐸𝐹 =  
𝐼𝑆𝐸𝑅𝑆 𝑁𝑆𝐸𝑅𝑆⁄

𝐼𝑅𝑆 𝑁𝑅𝑆⁄
 (17) 

whereby 𝐼𝑆𝐸𝑅𝑆 denotes the SERS Raman intensity, whereas 𝐼𝑅𝑆 relates to the normal Raman 

intensity; 𝑁𝑆𝐸𝑅𝑆 and 𝑁𝑅𝑆 correspond to the number of molecules under the respective 

conditions.
115

 Electromagnetic enhancement accounts for signal increase by a factor of 10
4

 – 

10
6

, whilst the magnitude of chemical enhancement accounts for a factor of ~10
2

. Single 

molecule measurements have been shown to create enhancements of up to 10
14

.
116,117

 This 

is generally not well understood.  

In utilising the SERS technique, adjustments to NP composition and morphology allows the 

adaptation of the LSPR to be fit for purpose in terms of the illumination wavelength and 

material to be analysed. 

3.2.2 Plasmon Tuning 

The two most common metals used for SERS techniques are gold (Au) and silver (Ag). This is 

due to the real dielectric function contributing to 𝐶𝑎𝑏𝑠 and 𝐶𝑠𝑐𝑎, from Equations (15) and (16), 

of both metals being highly enhanced at resonance with the incident wavelength – known as 

the Fröhlich condition.
118

 The NP dielectric constant, 𝜀𝑛𝑝, is controlled by changing the size, 

shape and material, as seen in Figure 3.6. This effectively changes the plasmon absorption, and 

hence scattering, tuning the LSPR.
109

 Binding events lead to a slight change in the surrounding 

medium, 𝜀𝑚𝑒𝑑𝑖𝑎, with the resulting change in refractive index, which also affect the LSPR 

causing a red-shift – this in itself can be used as a LSPR sensor, biomolecule detection 

method.
119

 Ag inherently surpasses Au as a SERS substrate due to higher absorption at the 
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LSPR region. However, for biomedical applications of SERS, the red-shifted LSPR position of 

AuNPs makes them a preferred plasmonic substrate, further discussed in Section 3.3.
120

 

In selecting laser wavelength, maximum enhancement is observed when wavelength is red-

shifted with respect to the LSPR, in order to achieve electromagnetic enhancement of both 

the incident and radiated fields.
121,122

  

In increase in the overall radius of spherical NPs achieves a resonant enhancement red-shift, 

as seen by the LSPR peak shift of gold and silver nanospheres in Figure 3.6. Elongation of these 

spherical NPs to a rod-like shape creates a secondary, further red-shifted plasmon peak, 

corresponding to the shorter longitudinal and longer transverse axes.
123

 Anisotropic particles 

with sharp surface features, such as nanorods and prisms, possess the “lightening rod” effect, 

whereby the localised electromagnetic enhancement can increase up to a hundred fold.
124

 

  

 

The dipole moments of NPs can be capitalised upon in the form of “hot spots”. NPs placed 

within the formation of dimers, with an interparticle gap of 0 – 1 nm, was found to red-shift 

the LSPR with approximately 2 orders of magnitude greater enhancement, known as “dipole 

coupling”.
120,125

 Structures with sharper tips present greater maximal enhancements, such as 

triangle NPs, which can be shaped into bowties, garner the maximum dipole coupling.
126,127

 

  

Figure 3.6: Graphs to show the optical density, attenuation of scattered and absorbed light, of silver 

(left) and gold (right) spherical NPs increasing in diameter size. This shows the tunability of the LSPR 

of NPs depending on the size and material used.
130
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Dipole coupling, however, as the enhancements are highly localized to the region, drop off 

rapidly with distance.
128,129

 Requiring uniform positioning, the trait is often reproducibly 

exploited within a NP array setting. 

Another large area of development is the use of core/shell NPs. Specifically in multimodal 

imaging, iron oxide core/Au-shell NPs: harnessing the superparamagnetic properties for MRI 

use and magnetic guidance through the body, whilst using the inert gold surface as a 

biocompatible material with scope for further surface functionalisation.
131–135

 The use of an Au 

shell also affects the LSPR in the form of a red-shift. Multifunctionality in AuNPs opens a wide 

range of imaging possibilities, including the use of extrinsic SERS and therapeutic capabilities.   

3.2.2.1 Raman Reporters for Extrinsic SERS 

Intrinsic SERS is the direct enhancement of a desired molecule. Conversely, extrinsic SERS is 

the NP surface chemisorption of molecules having inherently strong Raman active modes. 

These molecules are commonly referred to as Raman reporters (RRs).
12,136

 RRs including 

aromatic compounds are most widely used, with the ring breathing mode of benzene 

recognised as a highly sensitive marker. Extrinsic SERS has a number of advantages over 

intrinsic: the technique is extremely sensitive, negating the need to enhance low concentration 

biomolecules; a protective and/or targeting layer, such as silicon and polyethylene glycol (PEG), 

and/or antigens and receptor molecules can be used to encase the reporter NP, encouraging 

biocompatibility; and a number of distinctive reporters may be used concurrently for 

multiplexed Raman imaging capabilities. 
12,128,136–138

 

The mechanism of Raman-reporter-to-colloid-surface attachment commonly used is covalent 

bonding. Most studies use -thiolated RR due to the chemical stability against competing 

molecules, however nitrogen and isothiocyanate terminal group RR are also used, having an 

affinity to the gold colloid surface.
139,140

 AuNPs of larger diameters (≥50 nm) have been shown 
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to adsorb Raman reporter molecules, 2-NT and 4-MBA, with increasing efficiency and signal 

intensity, up to an enhancement factor of 10
3

, as the nanoparticle size increased.
110

 

Several sets of RR-AuNPs allow for multiplexed use within a single system.
12,138

 Coupled with 

individual and specific targeting capabilities, each RR would signal distinct areas of disease in 

either highlighting benign or malignant regions, or determining the molecular subtype of a 

carcinoma for tailored therapy. 

3.2.2.2 Nanoparticle Theranostics 

Theranostics are considered valuable techniques, allowing clinicians to diagnose and treat 

simultaneously within one patient visit. The intrinsic nature of NPs can be exploited in creating 

a theranostic NP probe. In tuning the laser wavelength to the maximum resonance of the NP 

(𝜆𝑚𝑎𝑥) , laser irradiation can occur, causing heating of the NPs in a technique known as 

photothermal therapy.
141–143

  

As described in Equations (15) and (16), the efficiency of absorption, 
𝑟3

𝜆
, dominates over the 

scattering efficiency, 
𝑟6

𝜆4
, especially with smaller NPs. As seen in  

Figure 3.7, from the study by Jain et al, nanospheres and nanorods of a smaller diameter and 

effective radius and nanoshells composed of a greater shell ratio, are more efficient at light 

absorption and hence photothermal therapy techniques.
144
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(a) (b) 

(c) (d) 

 

Figure 3.7: Tunability of the ratio of scattering to absorption of nanoparticles. Variation of 𝑪𝒔𝒄𝒂 𝑪𝒂𝒃𝒔⁄  

with (a) nanosphere diameter D; (b) nanorod effective radius reff at fixed aspect ratio R = 3.9; (c) 

nanoshell total radius R2 at fixed R1/R2 = 0.857; and (d) nanoshell core/shell ratio R1/R2 at fixed R2 

= 70 nm.
144

 

 

 

AuNP mediated photothermal therapy of human breast epithelial carcinoma (SK-BR-3 cells) 

by means of silicon core/Au shell (100:10 nm core/shell ratio) nanoshells, was first studied by 

Hirsch et al..
145

 Thermally induced cell death, via loss of cell membrane integrity and protein 

denaturation, occurred in tuning the laser wavelength to the 𝜆𝑚𝑎𝑥 = 820 nm. The 

composition of a smaller nanosphere diameter favours the 𝐶𝑠𝑐𝑎 𝐶𝑎𝑏𝑠⁄  efficiency for 

photothermal therapies; however for diagnostic purposes, the 𝜆𝑚𝑎𝑥 must be taken into 

consideration when selecting the laser wavelength and NP size in respect to the NIR “biological 

window”.
144,145
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3.3 Spectroscopic Bioimaging Techniques 

Spectroscopic techniques for the analysis of biological samples requires both the illumination 

and collection wavelengths to lie within the NIR region between 650 – 900 nm.
148

  

 

 

This spectral region is the “biological window”, whereby water, haemoglobin, and most 

relevant to breast tissue, fat, are at the lowest absorption coefficients, as seen in Figure 

3.8.
147,149

 To maximise the efficiency and penetration depths of spectroscopic techniques, 

selection of the illumination wavelength is an important factor. The illumination wavelength, 

which in turn affects the sample collection wavelengths, must both sit within the NIR window 

to avoid the absorption of photons allowing the maximum number Raman photons to be 

created and collected from the system. The absorption profile of eumelanin which is black- 

brown, is inherently greater than that of pheomelanin, red-yellow, which is represented in 

Figure 3.8. This is an unavoidable variance between patients and wavelength selection.  

Figure 3.8: Absorption coefficients of biological molecules and the NIR window which allows 

photons to enter and exit the media with increased ease. Adapted and modified from 
146,147
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Propagation of light through a biological medium is dictated by the scattering and absorption 

coefficients of the sample, 𝜇𝑠 and 𝜇𝑎 respectively, measured in units of cm
-1

. Adding the two 

coefficients leads to the total attenuation coefficient of the media. 

Absorption in biological tissues is due to water and macro-molecules, such as fats, melanin and 

haemoglobin.
107

 The inverse of 𝜇𝑎, 𝐼𝑎, defines the mean penetration depth into the absorbing 

medium. 

 

Figure 3.9: Possible photon pathways through tissue. Adapted from 
150

 

 

 

In biological media, light scattering is generally anisotropic, 𝑔, whereby light propagates in a 

continuous, forward direction.
151,152

 This diffusion of light through a biological sample is known 

as the reduced scattering coefficient, described as: 

 𝜇𝑠
′ = 𝜇𝑠(1 − 𝑔) (18) 

Figure 3.9 shows the diverse ways photons can be scattered or absorbed within biological 

media. 

Optical scattering within a homo- or heterogeneous biological layer, such as skin tissue, is due 

to particles refracting light to varying degrees of efficiency. The inverse parameter of 𝜇𝑠, 1 𝜇𝑠⁄  

(cm), is known as the mean free path (MFP). Combining mean penetration depth and MFP 
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length statistically predicts a photon scattering potential. For example, at ~650 nm skin tissue 

has a penetration depth of ~50 µm, and MFP of 5 mm; hence, single photon absorption 

occurs after 100 scattering events.
153

 

Laser wavelengths employed in biological sample studies range from 532 – 830 nm, and most 

typically 785, 808 or 830 nm, allowing penetration and collection of inelastic light with minimal 

photodamage occurrence.  

Research into biological specimens is vast, with the main area of study concerning carcinomas. 

The Raman fingerprint of biological tissues generally ranges between 400 – 2000 cm
-1

, and 

sometimes into the higher wavenumbers between 2,700 – 3,500 cm
-1

 most commonly 

associated with the CH2CH3 symmetric stretch of lipids and proteins.
154

 Disease changes 

significantly alters the ratio of intensity, peak broadening or peak shift within the characteristic 

Raman spectrum.  

3.3.1 Micro-Raman Spectroscopy 

The technique of micro-Raman spectroscopy utilises a microscope objective to both focus and 

collect the scattered light, termed as backscattering geometry, at a 180° angle. Samples are 

mounted onto slides for analysis.  The most commonly used substrate is quartz, having no 

photoluminescence addition to the Raman spectrum, present in standard glass microscope 

slides. 

The disease change and progression of neoplasia in various regions of the body, such as within 

brain, breast, bladder, colorectal, larynx, lung, lymph node, oesophageal, prostate, uterine and 

cervical tissues, is usually presented as fixed histopathological tissue slices or tumour micro 

arrays (TMAs).
155

 The major obstacle with micro-Raman spectroscopy of biological specimens 

is the sole reliance upon the native signal of the tissue. Low concentrations of the desired 
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biomolecule, or too much interference from auto-fluorescent molecules, is a major obstacle 

intrinsic to micro-Raman spectroscopy. 

3.3.2 Deep Raman 

Deep Raman is an umbrella term for a range of techniques developed for layered turbid 

sample analysis, from the micro to millimetre scale.  

Spatially offset Raman spectroscopy, or SORS, relies on the collection of diffusely scattered 

Raman photons to form depth measurements.  

 

As seen in Figure 3.10, photons are illuminated and collected in a point to ring fashion, or 

inversely. Principally, photons with longer scattering pathways travel a greater depth and 

breadth through biological media. Hence, a collection point distanced further from the 

illumination point will collect Raman scattering from the greatest z-direction. 

Inverse SORS is the reverse, with the illumination distributed across the ring area, allowing for 

higher and sustained laser power over the region without the issue of tissue irradiation 

occurring. SORS and inverse SORS can be achieved either in an open optics set-up using an 

 

Figure 3.10: Schematic of the two varieties of spatially offset Raman spectroscopy: standard SORS, 

single illumination point and adjustable ring collection zone; and inverse SORS, single collection point 

and ring illumination for distribution of photons across a larger area, reducing burning and allowing 

an increased laser power. 
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axicon lens, or in a closed system as a point-to-ring fibre optic bundle, discussed further in 

Section 3.3.3. 

Another type of deep characterisation method is Transmission Raman spectroscopy, or TRS, 

whereby the collection point is positioned on the opposite face from the illumination point, 

obtaining Raman scattering through the sample. Unlike SORS, media layers are unable to be 

distinguished as the sample is measured as a whole. This is the technique which will be 

employed for the measurement of the turbid, phantom samples. 

Surface Enhanced Spatially Offset Raman spectroscopy, or SESORS, combining deep Raman 

with the SERS technique opens the possibility of examining areas of disease far deeper within 

tissue – currently at a maximal transmission of ~47 mm through chicken breast tissue.
12

 

3.3.3 Fibre Optic Probes 

The use of fibre optic probes within the medical community is common place, allowing 

flexibility in traversing through the body and providing a safer imaging option for both patient 

and practitioner. Fibre optic probes are a precise technique with the ability to directly hone in 

on areas of interest, markedly improving the signal gained of low concentration biological 

molecules of interest. 

The inclusion of Raman fibre optic probes has been studied within current practices, such as 

colorectal, cervical and lung endoscopy.
156–158

  Recently, a  novel techniques for brain tumour 

margin determination using a Raman fibre optic probe, and lymph node characterisation with 

an internalised needle probe have been proven as a significant diagnostic possibilities.
159,160

  

Photoluminescent emissions inherent to fibre optics cause disruption across the whole 

fingerprint region.
161

 Filtering or separately allocated illumination and collection fibres are two 

techniques employed in the avoidance of subsequent signal loss from this type of fluorescence. 
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Fibre optic probes are also an inherently invasive diagnostic technique, requiring the probe to 

traverse into the body, respectively requiring local or general anaesthetic in either breaking the 

skin barrier or entering the body anally or orally. 

Other Techniques 

In vivo near-infrared diffuse reflectance spectroscopy (NIRS) was developed in 1977 by Frans 

Jöbsis as a bulk, biological analytical technique, able to non-invasively detect cerebral and 

myocardial oxygenation levels.
162

 NIRS relies on the transparency of tissue within the biological 

water window allowing the transmission and reflectance of scattered photons to the detector. 

As seen in Figure 3.8, haemoglobin, water and fat absorbs near-infrared light, as does other 

chromophore molecules such as glucose. The level of these chromophores within the tissue 

causes differential attenuation levels, allowing the prediction of blood glucose levels or 

neovascularisation synonymous with tumour growth, for example.
163,164

 

As a comparative non-invasive technique to SESORS, NIRS is a highly insensitive technique 

unable to fully distinguish the biochemical make-up of the tissue. This is a major drawback in 

the identification of disease type present, hindering the ability to tailor the patient’s treatment 

pathway or stage a cancerous legion. 

3.4 Summary 

The fundamentals of Raman spectroscopy theory have been outlined within this chapter. 

When considering the use of Raman spectroscopy within a clinical setting, several parameters 

must be met. 

Biomedical Raman imaging techniques requires thought into the selection of laser wavelength. 

Both the illumination wavelength and Raman shifted photons must avoid lying within the region 

of absorption outside the NIR window, allowing a greater amount of light into and out of the 
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biological system. Moreover, the avoidance of patient skin burning through the tempering of 

laser power and acquisition time must also be met.  

The selection of the Transmission Raman technique aligns with the current diagnostic 

technique of mammography. By capitalising on the compressed, and hence thinner, nature of 

the breast required for this diagnostic technique, the Raman photons have a shorter distance 

to travel, increasing the possibility of photon collection in comparison to absorption. 

Moreover, the use of AuNPs during mammographic imaging act as a contrast agent, increasing 

the sensitivity of the technique. Incorporating new techniques within existing practices 

streamlines diagnostic pathways. 

In the employment of SERS, plasmon tuning in terms of the selected material, and the size and 

shape of the nanoparticles is key in delivering large signal enhancement. It can be seen in Figure 

3.6 that the overall enhancement of Ag as a NP material is greater than that of Au. Despite 

this, in a biomedical imaging setting gold is a better candidate due to its stable nature and ease 

of surface chemistry for functionalisation.
109

  

The nature of extrinsic SERS is suitable in the exploitation of multiplexed imaging, a useful 

technique in the development of disease distinct AuNP targeting probes employed 

simultaneously. AuNPs of larger diameters (≥50 nm) have been shown to adsorb RR 

molecules, such as the commonly used 4-Mercaptobenzoic acid and 2-Naphthalenethiol, with 

increasing efficiency and signal intensity, up to an enhancement factor of 10
3

, as NP size 

increased.
110

 As such extrinsic SERS with AuNPs of a >50 nm size were selected for use within 

this thesis. 

Consideration into the AuNP shape was still required. The ability to utilise nanoshell NPs as 

theranostic agents through their photothermal capabilities further increases their benefit for 

medical use.   
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As such, the toxicology of AuNPs in relation to humans is explored in the following Chapter. 

NP material, size and shape selection is examined – nanoshells can be exploited as theranostic 

agents, however their robust size may be unfit for biomedical purpose – plus further 

functionalisation possibilities for use within this thesis. 
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4. Nanoparticle Biocompatibility 

 

anoparticle interaction within the body, pharmacodynamics, and hence nanoparticle 

metabolism by the body, pharmacokinetics, amounts to vast areas of research crucial 

to the ongoing effort towards in vivo use of nanoparticles for theranostic purposes.  

Several current imaging techniques use contrast agents to highlight areas of diagnostic interest. 

Computed Tomography (CT), Positron Emission Tomography–CT (PET–CT) and MRI utilise 

contrast agents, iodine, F–fluoro–2–deoxy–D–glucose (F–FDG) and gadolinium respectively. 

They can however be non-specific and toxic in nature. Intravenous iodine has a short imaging 

time, produces poor contrast in obese patients, and can cause nephropathy. F-FDG highlights 

unspecific areas of tissue with high-turnover-rates which efficiently take up glucose – this 

includes not only tumours, but also areas of inflammation and the heart. Gadolinium affects 

the magnetic field of nearby water molecules enhancing image quality. Though rarely inducing 

side effects, many gadolinium products have been discontinued due to concerns over toxicity. 

Yet contrast agents such as these are in use within the hospital setting. A precedence of 

importance in identifying patients who can metabolise nanoparticles efficiently should be 

applied to the field moving forwards. 

This chapter considers the effects of NP adaption, relating to cell clearance and tumour 

targeting efficiency. Section 4.1discusses the metabolic pathway of nanoparticles within the 

body. The selection of material, size and shape of the NPs required for effective clearance is 

evaluated in Section 4.2. Section 4.3  considers how NP pH and dispersion affects cell 

interactions. Protein corona formation, altering the likelihood of phagocytosis, is considered in 

Section 4.4. An established method for tackling an immune response is through surface 

modification using polyethylene glycol (PEG), further discussed in section 4.5. Section 4.6 

N 
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considers the best method for achieving intercellular NP uptake – targeted or untargeted. 

Finally, a consideration of all factors in tailoring nanoparticles of high biocompatibility is 

summarised in Section 4.7. 

4.1 Pharmacokinetics 

The metabolic pathway of nanoparticles is through the mononuclear phagocyte system (MPS), 

or reticuloendothelial system (RES), consisting of macrophages located in the reticular 

connective tissue of the RES organs. Nanoparticle clearance takes place mainly within the 

Kupffer cells of the liver. A study by Sadauskas et al found that 40 nm AuNPs could remain 

within the Kupffer cells of a mouse model up to six months after the primary injection.
165

  

Figure 4.1 displays the intravenous route of AuNPs, considering the size of NPs able to be 

metabolised out of the body through the liver, kidneys and spleen, or lodge within the cells of 

different regions within the lungs. 

Nanoparticle pharmacokinetics are dose dependent – low and medium doses, ~0.01 and 

~0.1 mg/Kg respectively, have been proven to reduce cytotoxicity within rat models, deemed 

as suitable comparatives to humans due to the relative liver to body weight ratio.
166,167

 

Biocompatible NPs are required to be engineered with specific performance characteristics, 

allowing a long blood circulation lifetime to increase uptake probability, whilst triggering a 

delayed, post-diagnostic or therapeutic immune response, prompting cell clearance to reduce 

cytotoxicity.
168

 The upcoming sections within this chapter detail the five areas where tailoring 

colloids can lead to a level of optimal biocompatibility. 
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4.2 Material, Size and Shape 

Nanoparticle material choice forms the basis of biocompatibility. Seemingly unreactive carbon 

nanotubes, championed as strong candidates for drug delivery,
169

 have been found to spear 

through macrophages and cause pulmonary toxicity, not dissimilar to high levels of asbestos 

contact.
170,171

 Quantum dots, highly regarded as excellent bioimaging tool, have also been 

found to have a high toxicity potential.
172

  

Inert, inorganic compounds, such as silica and gold, have been widely studied as strong 

candidates for therapeutics, including drug delivery, and diagnostics, specifically as shells, 

containing bio-toxic materials. As found by Shukla et al, gold has a low production level of 

reactive oxygen and nitrite species, reducing proinflammatory cytokine secretion, making them 

suitable candidates for nanotheranostics.
173

 Other metals, such as silver, give way to reactive 

and antibacterial properties, less suitable for in vivo use.
174,175

 

NP size also plays a significant role – as seen in Figure 4.1, NPs <8 nm in diameter, including 

nanorods, undergo glomerular filtration, whilst Kupffer cells within the liver expunge larger 

sized NPs from circulation. Accumulation within these organs has been most commonly 

associated with AuNPs sized either ≤30 nm and >100 nm.
176–181

 

Biocompatible sized NPs can lead to cytotoxicity when administered in large doses, with low 

doses generally considered as ~ 0.01 mg/Kg.
176

 In a study by Mironava et al, however, NPs 

which had been internalised were transferred during cell division, effectively decreasing the 

number of NPs within the overall cell population over time.
182

 

4.3 Dispersion State  

Colloidal stability is governed by the electrokinetic potential of surface-ion accumulations, 

which in turn is influenced by pH.
183

 This potential, known as Zeta potential (ζ-potential), 

denotes the level of electrostatic repulsion, characterising the dispersion stability and interfacial 
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chemistry of the NPs, including aggregation level, ligand chemistry success, and cell 

disruption.
184–187

 ζ-potential is a measurement of the electric double layer of the NP, 

comprised of the stationary “stern” layer and moving “slipping plane”, bordering the bulk 

solution.
184

  

 

Figure 4.2: A graph showing the relationship of ζ-potential to colloidal pH. The magnitude of ζ-
potential is denoted as aggregation between 0 – ±5 mV, of minimal stability between ±5 – ±20 

mV, of moderate stability between ±20 – ±40 mV, and high stability ≥ ±40 mV. Values of 

commercially purchased AuNPs, Nanocomposix (San Diego, USA), ranging from 20 nm to 100 nm 

are displayed. The physiological pH value of 7.365 is marked. Typical metal NP values adapted 

from
186,188

 

 

 

As seen in  

Figure 4.2, a decrease in H
+

 ions leads to a basic NP environment, creating an electrostatic 

force greater than the Van de Waals forces of attraction, gaining dispersion stability.
186,187

  For 

biocompatible intracellular interactions, minimal levels of NP aggregation and limited cell 

membrane disruption must occur – commercially purchased NPs used throughout this thesis 

are plotted on the graph in Figure 4.2, showing high stability levels and conformation around 

the physiological pH point. 
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Figure 4.3: Endocytosis and cell membrane interaction of different NP surface charges: (a) anionic 

NPs such as citrate capped or PVA coated; (b) cationic NPs including cetyltrimethylammonium 

bromide coated. Adapted from 
189

 

  

 

Figure 4.3 shows the interaction differences between cationic, (b), and anionic, (a), NP 

surfaces. Cationic surfaces, such as cetyltrimethylammonium bromide (CTAB) capped 

nanorods, have a high affinity to the cell membrane, increasing the rate of endocytosis into 

cells. They have been seen, however, to cause disruption to cell membranes, mitochondria 

and red blood cell morphology, leading to apoptosis.
180,190

 Conversely, anionic NPs, such as 

citrate capped, show little disturbance to cell biology with relatively less cell uptake.  

Despite a generally neutral pH across the body, the pH level within solid breast tumours is 

lowered. A recent study by Rong et al capitalised on this fact, developing NPs functionalised 

with pH sensitive cleaver links which, once residing within the acidic tumour environment, 

release doxorubicin, the triple negative breast cancer drug.
191

 Desired localisation of NPs 

within the body through intravenous injection is met with difficulties in the first instance. Studies 

have shown that once NPs have been introduced to plasma fluids, ζ-potential values tend to 

trend towards 0 mV, with up to a ±21.8 mV change.
192,193

 This is attributed to the surface 

interaction of biomolecules, specifically in the formation of the protein corona. 
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4.4 Protein Corona & Opsonisation 

A major hurdle in site-specific NP targeting for diagnostics and drug delivery is in ensuring an 

extended blood circulation life-time and the efficacy of targeting ligands. Protein corona 

formation cloaks any targeting ligands present on the NP surface, preventing target site 

recognition, whilst presenting a biological shell for opsonins to attach, flagging the particle for 

phagocytosis. 

 

Figure 4.4: Relevant processes (arrows), in both directions (on/off), for a nanoparticle interacting 

with a receptor. Biomolecules in the environment adsorb strongly to the bare nanoparticle surface 

(k1), forming a tightly bound layer of biomolecules, the ‘hard’ corona, in immediate contact with the 

nanoparticle. Other biomolecules, the ‘soft’ corona, have a residual affinity to the nanoparticle–hard-

corona complex (primarily to the hard corona itself), but this is much lower, so those molecules are 

in rapid exchange with the environment (k2). If sufficiently long-lived in the corona, a biomolecule 

may lead to recognition of the nanoparticle–corona complex as a whole by a cell-membrane 

receptor (k3). The same biomolecule alone can also be recognized by the receptor (k4). If present, 

the bare surface of the nanoparticle may also interact with cell surface receptors (k5) or other 

constituents of the cell membrane.
194

 

 

 

NPs delivered via intravenous administration encounter proteins highly abundant in blood 

plasma, such as albumin, fibrinogen, and apolipoproteins, which are primarily adsorbed. This 

initial surface formation is replaced by low concentration proteins with a higher affinity to the 
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NP surface, leading to a “hard” corona. The surrounding, loosely bound proteins form a low 

affinity, highly changeable “soft” corona.
195

  

Corona formation increases the likelihood of opsonisation – whereby opsonins attach to the 

NP-corona, flagging the particles as foreign bodies to be removed from the body through the 

MPS. Particle size, and hence surface curvature, dictates the amplitude of protein adsorption 

and conformation upon the NP surface.
196

 With proteins such as albumin and fibrinogen, NPs 

< 30 nm in diameter possessing a large surface area and greater curvature, a reduced level of 

interaction occurs; pseudo-flat surfaces, characteristic to nanoparticles > 60 nm, absorb these 

proteins more readily.
197

 However, high surface curvature allows proteins to retain their 

original conformation, with NPs ≤50 nm undergoing vast protein saturation with strongly 

formed hard coronas.  

The phenomenon of opsonisation through protein corona formation can be capitalised upon. 

One such technique assumes that, once taken up by the phagocytes, the NPs will be 

transported to an area of inflammation, hence accumulating within the tumour tissue.
198

 

Another involves the engineering of a biomolecule specific protein corona; creating specialised 

targeting capabilities, whilst remaining resistant to immune response. An example of such is 

the use of platelet fragments in targeting dysmorphic vasculature found in tumours.
199,200

 

Conversely, cloaking mechanisms can be employed, such as the use of polyethylene glycol 

(PEG), as discussed in the next section. 

4.5 Polyethylene Glycol 

Polyethylene glycol (PEG) is a hydrophilic, ethylene repeating polymer, creating a passive NP 

surface reducing interactions with biofluid molecules, creating a “stealth” NP.
201

 PEG and PEG-

ylated NPs have been widely accepted for clinical use, having low toxicity and provoking 
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minimal immune response, with over 35 US FDA-approved preclinical studies, for both 

imaging and therapy purposes, in progress.
201,202

 

Surface modification of AuNPs with PEG for biological purposes has become a staple 

technique. Examples include it’s use within enhanced anti-tumour drug delivery,
203

 

photothermal therapy,
190,204

 distal end tethering of targeting ligands
205

, and use within in vivo 

Raman reporter SERS studies.
206

 

The density and length of PEG molecules on the NP surface greatly affects the blood circulation 

half-life. A high density of short chain PEG molecules leads to a brush-like formation; lower 

densities, or longer chains able to fold, creates a less effective mushroom formation.
207,208

 

A mouse model toxicology study of PEGylated AuNPs by Zhang et al discovered that NPs of 

60 nm in size reflected the lowest concentration within the heart, liver, spleen and kidneys, 

comparative to the 5, 10 and 30 nm AuNPs.
176

 Unlike other un-PEGylated biocompatibility 

studies however, there were no discernible growth effects or changes to the major organs at 

every AuNP size.  

4.6 Passive vs Active Targeting 

Enhanced vascular permeability has been observed in solid tumours leading to an EPR effect, 

as briefly discussed in Chapter 2, Section 2.3.1. The key mechanisms allow NPs between 10 

– 100 nm to extravase to a higher level within carcinoma, comparative to healthy tissue 

vasculature, and to be retained within the diseased area.
201,209

 The blood flow within tumour 

tissue, already encouraging permeability due to the immature nature of the vasculature, 

increases dramatically with a higher blood pressure level. This fact can be exploited using an 

angiotensin II to induce hypertension: whilst having no effect on normal tissue blood flow, the 

lack of smooth muscle within tumour vasculature creates elevated extravasation, vastly 
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increasing the EPR effect.
39,210

 Which begs the question, does this mechanism alone provide 

sufficient passive, tumour targeting, or is active, receptor-mediated targeting required also?  

Many studies have employed disease specific biomolecules targeting ligands, such as anti-HER2 

(Human Epidermal Receptor), Tumour Necrosis Factor (TNF), and Vascular Endothelial 

Growth Factor (VEGF), which have been successful in NP-cell interactions, in both in vitro and 

in vivo studies.
203,204,211,212

 Designing the fixed-orientation of these targeting ligands is crucial in 

gaining highly effective and consistent conjugation.
213

 A study by Salvati et al discovered that 

the optimal design for 50 nm silica NPs cell penetration consisted of a targeting ligand attached 

distally upon a PEG molecule. However, a level of bio-identity was still lost once in contact 

with PBS with protein corona formation.
214

 

4.7 Summary 

In understanding how the tailoring of NPs affects biocompatibility, the development of near to 

non-cytotoxic NP probes can be achieved. Figure 4.5 displays a heat map, summarising how 

the level or inclusion of specific NP features may affect biocompatibility.  

The composition of the NP itself, in terms of size and shape, is the major factor in determining 

the success of an in vivo NP probe. Not only in terms of inaccessible site-location, mainly due 

to inability to traverse through tight vasculature for larger NPs, but also the heightened levels 

of pharmacokinetics through the kidneys or liver. As such, a size between 60 – 100 nm and 

hence a nanospherical shape was selected for this study. With nanospheres 

In relation to previous studies performing in vivo SERS and biocompatibility experiments, 

spherical AuNPs 60 – 100 nm have been found to produce an enhanced Raman signal whilst 

causing low levels of cytotoxicity.
206,215–222

  

NP stability, and hence circulation half-life, is crucial factor in ensuring enhanced permeability 

and retention is achieved at an efficient and elevated level. Ensuring a highly positive/negative 
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Zeta potential, alongside an organic pH level, are two key factors in gaining biological stability. 

The use of a “cloaking agent” such as PEG or also enforces stability, however the choice of 

chain-length and density must be considered in terms of the disease targeting specifications of 

the NPs. A biologically engineered protein corona can also be used; however, this omits the 

use of disease-specific ligand surface modification, which has also been proven to increase the 

desired site location of AuNPs. 

 

Figure 4.5: Physical characteristics of nanoparticles determine in vivo biocompatibility. The three-

dimensional phase diagram displays the qualitative biocompatibility trends revealed after in vivo 

screening of around 130 nanoparticles. The main independent particle variables that determine the 

in vivo biocompatibility are size, zeta potential and hydrophobicity. Biocompatibility is reflected in 

the colour spectrum, with red representing likely toxicity, blue likely safety and blue–green–yellow 

intermediate levels of safety. Small, cationic particles with high surface reactivity are most likely to be 

toxic (red hue) compared to than the larger relatively hydrophobic or poorly dispersed particles, 

which are rapidly and safely (blue hue) removed by the reticuloendothelial system (RES). Particles 

that promote enhanced permeation and retention (EPR) effects—and are therefore optimal for 

cancer theranostics — generally have mid-range sizes and relatively neutral surface charges.
168

 

 

 

Targeted delivery of drug-bearing or theranostic NPs allows site-specific treatment, avoiding 

the overall toxicity induced by chemotherapy and eliminating the use of ionising radiation 

required for radiotherapy.
234

 For example, the PEGylated liposomal encapsulation of 

Doxorubicin has been shown to improve uptake by up to 300-fold within ovarian and breast 

carcinomas, effectively improving bioavailability and reducing costs.
235

 However, when 
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considering the use of nanoparticles in vivo, it is important to weigh up the risk versus benefit 

on an individual patient basis. Much like the required eGFR assessment with iodine contrast 

use in CT for example, patients with non-alcoholic fatty liver disease (NAFLD) have a reduced 

Kupffer cell functionality, which would affect the clearance rate of circulating NPs >8 – <100 

nm.
236

 Pharmacokinetic reducing factors such as this would reduce patient eligibility for 

SESORS, further constricting its use as a specialist technique. 

Hence, the key factors ensuring an elevated level of site-specific NP delivery include the size, 

shape and zeta potential, engineered to allow the EPR effect to take place, with the addition 

of a PEG-ylated and targeting functionalisation, for extra circulation and homing capabilities. 
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Thesis Aims 

The use of optical spectroscopic techniques within the clinical arena is a fast-developing area 

of biomedical application. The need for early diagnosis, especially within symptom presenting 

diseases, is vital in combating high mortality rates associated with extended referral times from 

initial patient assessment. The amalgamation of novel techniques within current diagnostic 

techniques can lead to an improvement in the sensitivity of the original method, and/or lead 

to a reduction of patient wait time between assessments, streamlining the diagnostic pathway. 

The aims of this thesis, in relation to the transferability of the SERS Transmission Raman 

technique within a clinical setting, are as follows: 

• Highlight the need to develop novel, spectroscopic techniques with a mind to incorporate 

with, rather than replace, current diagnostic methods.  

• Cement the use of turbid, PDMS phantoms as viable optical tissue replicas. Incorporation 

of tissue layers, and even occlusions, within the phantoms elevates the optical and 

morphological representation. 

• The use of RR-AuNPs in combination with mammographic imaging to provide further 

depth information, highlighting the cancerous region independently, with use with Raman 

spectroscopy, or within x-ray imaging as a contrast agent.  

• Explore the use of these RR-AuNPs as a more biocompatible probe, able to actively target 

biomarkers synonymous with highly malignant breast carcinomas – microcalcifications.  
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5. Synthesis and Functionalisation of 
Gold Nanoparticles 

5.1 Introduction 

Exploration into the synthesis of gold nanoparticles (AuNPs) leading to Raman reporter 

labelling, and hence further functionalisation, with the necessary biocompatibility measures 

accounted for, is detailed within this Chapter. 

The chemistry and characterisation, via TEM imaging and UV/Vis analysis, of the initially 

synthesised AuNPs is discussed in Section 5.2. Leading on from this, the Raman reporter 

labelling of the commercially purchased AuNPs is explored in Section 5.3. The characteristic 

SERS signals gained from the three reporter labels (2-Naphthalenethiol, 4-Acetamidophenol 

and 4-Mercaptobenzoic acid) are detailed, with the binding mechanisms of each compared. 

The full functionalisation of the AuNPs is described in Section 5.4 with three separate 

components: a Raman reporter label, polyethylene glycol (PEG) and a hydroxyapatite targeting 

bisphosphonate molecule. The design, carbodiimide chemistry and characterisation of these 

AuNPs is discussed.  A summation of all findings within the Chapter are presented in Section 

5.5. 

These experiments form the basis of the Raman reporter AuNPs (RR-AuNPs) and active 

targeting AuNPs (2-NT-PEG-BP AuNPs) employed in the proceeding Chapters 8 and 9, 

respectively. 

5.2 Synthesis of Gold Nanoparticles 

Initially, AuNPs were synthesised using the traditional method developed by Turkevich, et 

al..
223

 The formation of gold nanospheres occurs via the addition of aqueous trisodium citrate 

to an aqueous solution of tetrachloroauric acid (𝐻𝐴𝑢𝐶𝑙4). The citrate acts as both a reducing 

agent and stabilizer of the NPs. The multi-step chemical reactions which take place are 
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described below.
224

 Prior to synthesis, all glassware used was washed with Aqua Regia (1 part 

nitric acid to 3 parts hydrochloric acid molar ratio), rinsed thoroughly three times with DI 

water, and placed in a glass drying oven until bone-dry. 

The 𝐻𝐴𝑢𝐶𝑙4 salt disproportionates upon its addition to water: 

 𝐻2𝑂 + 𝐻𝐴𝑢𝐶𝑙4  → 𝐴𝑢𝐶𝑙3 + 𝐻+ + 𝐶𝑙− (19) 

 

This initial solution, starting out as a straw-yellow colour, is placed in a round bottom flask and 

placed in a heating mantle. The solution was stirred at a constant rate to approximately 90°C, 

cautious not to bring to the boil.  

Separately, the aqueous trisodium citrate solution is formed. Water causes the citrate to 

oxidise, producing dicarboxy-acetone and carbon dioxide as a by-product: 

 𝐻2𝑂 + C6H5O7
  −3 → 𝐶5𝐻6𝑂5 + 𝐶𝑂2 + 𝐻− + 2𝑒− (20) 

 

The dicarboxy-acetone has a further reaction in the aqueous solution forming acetone: 

 2𝐻2𝑂 + 𝐶5𝐻6𝑂5  →  𝐶3𝐻6𝑂 + 2𝐶𝑂2 + 2(𝑂𝐻)− (21) 

 

The citrate solution is slowly added to the tetrachloroauric acid solution, where the acetone 

reduces the auric salt (𝐴𝑢𝐶𝑙3) to aurous salt (𝐴𝑢𝐶𝑙): 

 𝐴𝑢𝐶𝑙3 + 2𝑒−  → 𝐴𝑢𝐶𝑙 + 𝐶𝑙2
−

 (22) 

 

Facilitated by remaining dicarboxyacetone, the aurous salt forms a complex (3𝐴𝑢𝐶𝑙), allowing 

a second disproportionation causing the nucleation of the Au NPs: 

 3𝐴𝑢𝐶𝑙 → 2𝐴𝑢0 + 𝐴𝑢𝐶𝑙3 (23) 

The nucleation sites continue grow as more Au is adsorbed onto the surface. The reaction is 

held under reflux for 30 minutes, turning the solution to a deep, ruby red. Remaining citrate 
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particles form a negatively charged monolayer capping the NPs, giving the colloid electrostatic 

stability reducing the potential of aggregation. The colloidal solution is then slowly cooled to 

room temperature. Tin foil wrapped glass storage jars were used, protecting the colloid from 

direct light, and stored in the fridge at 4°C to prolong shelf life. 

A slight deviation to the Turkevich method was made in pursuit of “dumbbell” or peanut-like 

AuNPs. 20% of the initial 𝐻𝐴𝑢𝐶𝑙4 stock volume was heated, and then refluxed with the total 

volume of citrate solution. This created initial points of nucleation. After 20 minutes of reflux, 

the remaining 80% 𝐻𝐴𝑢𝐶𝑙4 stock solution was added, and refluxed for a further 30 minutes, 

turning the solution ruby red. This process allowed two separate nuclei to form, grow and 

adjoin. The NPs were cooled and stored in a similar fashion as previously set out.  

All NP preparation required the use of a centrifuge, Mikro 22 (Hettich, Germany), and 

deionised water (18.5 MΩ), Arium Mini (Sartorius, Germany); especially in the removal of 

supernatant and washing of the NPs between functionalisation steps, removing excess 

conjugate from the colloidal solution. 

Once synthesised, the crystal lattice, size and dispersity of colloids were investigated using 

Transmission Electron Microscopy (TEM) and Ultraviolet-Visible spectroscopy (UV/Vis). 

To characterise the structure of nano-sized particles Transmission Electron Miscroscopy 

(TEM), JEM-2100 LaB6, JEOL (Tokyo, Japan), is employed. A high powered electron beam is 

passed through the sample under vacuum. The crystalline lattice of the sample structure acts 

as a diffraction grating – the electron beam waves are diffracted through the lattice causing 

interference patterns, forming the density based image. The NP samples are prepared in 

several steps. First, a 1 mL volume of colloid is concentrated via centrifugation, removing 0.8 

mL of supernatant.  
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 Figure 5.1: Agar Scientific Carbon Film 300 Mesh Copper TEM grid – an illustrative representation 

of the grid with a highlighted area visualised with TEM.
225

 

 

 

A micropipette is used to transfer 0.1 mL the colloidal concentration onto a carbon film 300 

mesh copper grid, AGS160-3H, Agar Scientific (Stansted, UK). The TEM grid is dried for up 

to 48 hours in a sterile environment, reducing contamination and ensuring stable imaging. A 

limitation to TEM is the propensity for NP aggregation during sample preparation. 

 

Figure 5.2: TEM images of AuNPs synthesised from standard Turkevich method: (a) and (c) display 

a wide field view of the polydisperse NPs; (b) shows a near-field variety of AuNP shapes, namely 

spherical, pentagonal, and two truncated triangular nanoplates, which have been synthesised within 

the same batch; (d) a spherical, poly-lattice NP, averaging 20 nm in diameter. 

(a) (b) 

(d) (c) 
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Figure 5.3: A spherical, 20 nm AuNP with a compact poly-lattice; A truncated triangular plate with 

wider D-spacing, and a single lattice synonymous of non-spherical nanoplate. Scale bars are to 5 

nm. 

 

 

From  

Figure 5.2 (a), the standard Turkevich synthesis method mainly produced pseudo-spherical NPs, 

cuboctahedron in structure, with an average size of 20 nm.
226

 In several batches, a variety of shapes 

such as pentagons and truncated triangular nanoplates were also produced, as seen in  

Figure 5.2 (b). The crystal lattice is further investigated. 

The formation of the crystallographic planes indicates the nature of the NP shape: a tight, poly 

lattice is suggestive of spherical shape, whilst plate type NPs have a more open, single lattice, 

as  

Figure 5.3 displays.  

The modified synthesis method led to the formation of “peanut” like NPs, as seen in  

Figure 5.4 (a) and (b). The joined-double-spherical shape of the NP prompted a pursuit of this 

method. As discussed in the Chapter 3, Section 3.2, large hot-spots induced by the proximity 

of two NPs is a highly sought-after attribute.   

The lattice was investigated to ensure the two nucleation points had cross-lattice joined, which 

can be clearly seen in Figure 5.5. 
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Figure 5.5: TEM image of a peanut-like AuNP cross-nucleation point confirming the presence of a 

compact poly-lattice structure adjoining the two spherical NPs, creating a singular doublet. 

 

 

Figure 5.4: TEM images of the peanut-like/doublet AuNPs synthesised from the modified Turkevich 

method: (a) wide field of view display of the AuNPs, most are seemingly paired closely with a few 

individual NPs; (b) a near-field view of a singular doublet AuNP – the width of the adjoining 

nucleation point neck was ~5 nm, with the average dimensions of a successful doublet synthesis 

being 20 x 50 nm; (c) and (d) display the variations in NP synthesis within the batches, creating larger 

diameters of 40 nm ±10 nm, or elongated almost rod like NPs.   

1.82 Å 

(a) (b) 

(d) (c) 
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An Ultraviolet/Visible Absorbance Spectrophotometer, Evolution Array, Thermo Fisher 

(Massachusetts, USA), is used to analyse the absorbance of materials, including the LSPR and 

stability of NPs. with an effective measurement range between of 185 – 1100 nm. The UV/Vis 

is equipped with a durable tungsten lamp and a photodiode array for illumination and collection 

respectively. A blank sample of DI water is run initially to gain a normalised absorbance 

spectrum, prior to further sample measurements. 

 

 

UV/Vis testing determined the LSPR of the AuNP batches, displayed in Figure 5.7, in relation 

to a reference peak of commercially purchased 20 nm spherical AuNPs. The plasmon 

resonance of the doublet AuNP batches were expected to contain a second absorption peak 

not dissimilar to that of Au nanorods, however this did not appear for either batch. 

 

Figure 5.6: Thermo Fisher Evolution Array UV/Vis Absorbance Spectrometer – simplified optical 

set-up schematic of the equipment.
227

 



Synthesis and Functionalisation of Gold Nanoparticles 

97 

 

 

 

Inconsistency in AuNP concentrations between batches affected the ability to determine the 

overall size and aggregation status of the batches. Hence, a normalised optical density chart, 

Figure 5.8, for solely spherical AuNPs was produced. A direct comparison of doublet AuNPs 

to the reference peak could not be made due to the difference in shape and size. The graph 

shows the synthesised AuNPs were not aggregating but were not reduced enough to form an 

overall batch size of 20 nm. Instead, a wide range of AuNPs were formed in each batch, on 

average smaller than 20 nm. Over time, AuNPs in an aqueous solution can release gold ions 

from the surface which can aggregate to form smaller AuNPs within the original batch, leading 

to further narrowing and an overall blue-shift in LSPR. 

Figure 5.7: UV/Vis spectrum of all synthesised AuNP batches, four standard Turkevich method 

spherical AuNPs and two modified Turkevich method doublet AuNPs, and a reference spectrum of 

Nanocomposix 20 nm spherical AuNPs. Spherical batches #1 – 3 matches similarly to the reference 

spectrum, confirming a ~20 nm diameter average; batch #4 has a 𝝀𝒎𝒂𝒙 of 520 nm, relating to a 

smaller average diameter. Doublet batches #1 and #2 both have a broadened LSPR peak, 

confirming the presence of elongated AuNPs, however a secondary, red-shifted peak was 

unexpectedly not present, confirming a low overall volume of doublets within each of the batches. 
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Figure 5.8: Normalised optical density UV/Vis spectrum of the synthesised Turkevich method AuNPs 

in relation to the reference spectrum of Nanocomposix 20 nm spherical AuNPs. The two green 

arrows denote the narrowing of the synthesised AuNPs in comparison to the reference peak 

indicative of a size distribution. The gradated left arrow denotes the blue-shift in LSPR by 1-2 nm for 

each of the synthesised batches. 

 

 

Consecutive batches following the Turkevich and adjusted synthesis methods produced a 

varied and desirable range of NP size and shapes. Achieving a consistency of spherical or 

doublet NPs between batches was problematic, with several batches aggregating prior to 

completion. Adjustments were made to stabilise colloids – a decrease in citrate salt 

concentration for greater nanoparticle size formation and diligence in maintaining a consistent 

synthesis temperature were two main attuned parameters. Consistency and successful 

synthesis issues were still met however. With the modified method, additional 𝐻𝐴𝑢𝐶𝑙4 would 

increase the growth size of original nucleation sites rather than conduct new formations, as 

seen in Figure 5.4 (c) and (d). Human error in not thoroughly cleaning the glassware is also a 

factor affecting successful synthesis. 
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Ensuring monodispersity and consistency between self-synthesised AuNP batches could not 

be guaranteed. Synthesis of AuNPs inconsistently produced NPs larger than ~20 nm.  

To ensure experimental consistency in the following experiments, a pragmatic decision was 

made to purchase commercially available 80 nm colloids from Nanocomposix (San Diego, 

USA). Each batch is mass produced under consistent conditions and supplied with a data sheet 

providing information on Zeta potential, a size distribution histogram and absorbance 

spectrum. All purchased batches of colloids were cross checked with UV/Vis and TEM imaging 

on site and found to be concordant with the given results. As a wholly accessible and viable 

option, further experimentation with AuNPs were performed using the NanoXact bare gold 

nanospheres, 0.05 mg/mL, in aqueous 2 mM sodium citrate solution. 

5.3 Labelling with Raman Reporters 

In preparation for multiplexed depth measurements within breast phantoms, the optical 

response of the Raman reporter labelled AuNPs was assessed. The following materials were 

obtained: 80 nm spherical AuNPs (Nanocomposix); 2-Naphthalenethiol (2-NT), 4-

Acetamidophenol (4-ATP), more commonly known as paracetamol, and 4-Mercaptobenzoic 

acid (4-MBA) (Sigma Aldrich, USA) diluted into 10 mM ethanol stock solutions, where 

subsequent aliquots were diluted to 4 µM solutions ready for conjugation. For micro-Raman 

experiments a stainless-steel slide was used for drop-drying analysis. 

For consistency, 0.5 mL of colloid was transferred via micropipette into a triple DI water rinsed 

Eppendorf, followed by the dropwise addition of the reporter solution at a 1: 0.3 volumetric 

ratio. During this process, the colloid solution was placed upon an Eppendorf mixing platform, 

Vortex VariMix (SciQuip, UK), and consequently thoroughly mixed for five minutes. Upon 

resting the colloid solution at room temperature for ten minutes to aid full binding 

confirmation, the NPs were centrifuged at 2700 RPM for 7 minutes. Once the supernatant 
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was removed and the NP pellet re-suspended in DI water, the process was repeated a further 

two times. To increase shelf life, the Raman reporter stock solutions and reporter-conjugated 

AuNPs were stored in dark conditions at 4°C. 

 

Figure 5.9: UV/Vis and TEM imaging examples of the 2-NT RR AuNPs, with the reference bare 

citrate-capped absorbance spectrum displayed in the UV/Vis imaging figure. 

 

 

For each reporter, a complete surface coverage under a non-aggregating, stable reporter-to-

colloid ratio was determined and followed in subsequent experiments. The size of the AuNP 

also affected the ratio in terms of concentrations: a concentration of 9.7 x10
9

 nanoparticle per 

mL. Variations between purchased AuNP batches were noted and adjusted for.  

The SERS spectrum of each reporter AuNP was analysed via point spectra of the drop dried 

solutions on a stainless-steel slide. The system used for point-spectra, and micro-Raman 

mapping, was a Renishaw InVia Reflex (Renishaw, Wotton-Under-Edge, UK). A diagrammatic 

of the optical set-up can be seen in Figure 5.10.  
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Figure 5.10: Renishaw InVia Reflex optical set-up – the illumination source passes through beam 

expanders allowing the small, collimated beam to fill the optics; mirrors guide the beam to the 

objective, 50X magnification displayed here, and onto the sample; the scattered light is collected and 

passed through Rayleigh scattering filters and a slit to clean the wavelength of the beam; a reflector 

prism guides the beam onto the grating, where the light is dispersed, and CCD detector array for 

computer analysis. 

 

 

Two NIR lasers at 785 and 830 nm, reaching 140 mW power at sample illumination, are built 

into the system. Two Leica microscope objectives, both with a 200 mm working focal length, 

were used: 5X/0.12 NA (numerical aperture; inversely related to working distance) for large 

area surface montages, and 50X/0.75 NA for small area montages, mapping, and point 

spectra. The laser focused spot size, assuming uniform illumination, can be described as: 

Hence, for the two working objectives and laser wavelengths, the spot sizes are: 

  Spot Size (µm) 

Objective NA 785 nm 830 nm 

5x 0.12 7.98 8.44 

50x 0.75 1.28 1.35 

 

Table 5.1: The variability of microscope objective (5x and 50x) spot sizes depending on the selected 

wavelength (785 and 830 nm) and the intrinsic numerical aperture.  

 

 𝑆𝑝𝑜𝑡 𝑆𝑖𝑧𝑒 =  
1.22𝜆

𝑁𝐴
 (24) 
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The spatial resolution of the system is in the order of 1 µm. Governed by the diffraction limit 

of light, spatial resolution it is dependent on the laser wavelength and the NA of the objective 

in use, and can be described as  

 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  𝜆/2𝑁𝐴 (25) 

Hence, an 830 nm laser wavelength through a 0.75 NA objective has a 675 nm spatial 

resolution. A shorter wavelength and a higher NA will increase the spatial resolution closer to 

the diffraction limit. 

Scattered photons are guided from the sample to the Rayleigh scattering filters. Holographic 

notch filters are used to retain a high level of Raman scattering intensity. The selected Raman 

signal travels through a 50 µm slit, is dispersed with a 600 line/mm grating and detected with 

the -70°C Peltier cooled, deep depletion CCD array (1024 x 256 pixels). The spectral 

resolution of the system is ~2 cm
-1

 (600 mm/l grating). Spectral resolution dictates the number 

of resolvable peaks a system can produce. CCD pixel quantity and size, the diffraction grating 

density, and slit size are the main factors affecting spectral resolution. A minimum of three 

pixels are required to resolve a single peak, hence a CCD array with a high quantity of small 

pixels increases resolution. The use of high density line/mm grating increases resolution but 

decreases spectral range and strength. Similarly, a small slit increases optical resolution but 

decreases signal strength. Laser wavelength also plays a crucial role – a shorter wavelength will 

increase Raman scattering efficiency, but also increase the risk of fluorescence and sample 

burning, reducing quantifiable Raman signal.  

The samples are placed on an automated stage, enabling an ease of surface montage imaging 

and mapping.
108

 The system was calibrated by taking a spectrum of a silicon wafer and using 

the reference peak of 520 cm
-1

. Arbitrary intensity Raman spectra for each of the Raman 

reporters is seen in  
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Figure 5.11.  

 

 

As Figure 5.11 shows, the three types of reporter molecule have distinct, yet similar, spectral 

features. The main, characteristic peak assignments when measured under the outlined SERS 

conditions are classified as follows: 

Peak Position (cm
-1

) 

 Vibrational Mode Reporter Assignment 

2-NT 4-ATP 4-MBA 

1066 
Benzene ring 

symmetric stretch 
  

1078   
𝜈12 Benzene ring 

symmetric stretch 

1081  
Out-of-plane C–C 

skeletal stretch 
 

1380 
Benzene ring 

symmetric stretch 
  

1587   
𝜈8𝑎 Benzene ring 

symmetric stretch 

1589  𝛿 N-H bending  

 

Figure 5.11: Micro-Raman spectrum of the three 80 nm reporter-AuNPs and the corresponding 

molecular structure of the reporters: 2-NT, 4-ATP and 4-MBA, from top to bottom. The signal 

intensities plotted across each spectrum is plotted in relation to the colour bar. The AuNP surface 

binding point for each of the reporter molecules is highlighted in red. The acquisition for each 

measurement was at a 70 mW sample illumination power, 2 seconds and 5 accumulations.  

4-MBA 

2-NT 

4-ATP 

2-Naphthalenethiol  

4-Mercaptobenzoic acid  

4-Acetamidophenol   

1066 1380 

1620 

1081 

1589 

1078 

1587 

1712 
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1618 
Benzene ring 

symmetric stretch 
  

1712   C=O stretch 

 

Data for the characteristic peaks of 2-NT taken are from the papers by Alvarez-Puebla et 

al.
228,229

; of 4-ATP from the book section by Cinta Pinzaru and Pavel
120

; and 4-MBA from 

Michota and Bukowska paper.
230

 

4-MBA and 2-NT bind to the NP surface via a gold-thiolate bond. Conversely, the 4-ATP is 

bound via the acetamido nitrogen present. The reporter binding angle affects the orientation 

of the molecule, perpendicular or parallel to the NP surface, the latter being the case with 4-

ATP as seen in Figure 5.12. The significant enhancement of the C-C skeletal stretch at 1081 

cm
-1

 supports this suggested orientation.
120

 

 

Figure 5.12: Orientation of the 4-ATP Raman reporter molecule when bound to a gold surface, 

represented in pink. The bond angle of 108.85° between the gold-thiol and benzene ring is also 

displayed.  

 

 

The comparable intensity of the 4-MCBA and 2-NT is owed to the increased number and 

compact nature of the reporter molecules bound to the AuNP surface. A excess of 

approximately 82,700 RR molecules per AuNP was used. 

5.4 Active Targeting Functionalisation 

The development of a highly specific targeting agent for breast malignancy is critical for early 

detection and diagnosis. Research into breast cancer relevant ligands primarily study antibodies 

and receptors. A relatively untapped, relevant marker of disease is microcalcifications, which 

108.85° 
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when present, contain higher levels of hydroxyapatite (HAP) shown to be synonymous with 

malignant DCIS, discussed in Chapter 2 Section 2.3.3. Bisphosphonates (BP), a widely-used 

molecule for targeting HAP, is discussed in sub-section 2.3.3.1. 

Cole et al have a number of studies into AuNPs labelled with a type of BP, alendronate, to 

target bone tumours and microcalcifications, acting as a contrast agent for CT imaging.
59,231,232

 

Deciding upon the ligands necessary to achieve a strong SERS signal, effectively target HAP, 

and remain biologically inert was a crucial initial step. Hence, the targeted AuNPs were made 

up of three constituent parts to satisfy the needs: a strong, carbodiimide chemistry inert Raman 

reporter 2-naphthalenethiol (2-NT) was selected, 2,000 Da polyethylene glycol (PEG) to 

ensure stability and a high binding molecule affinity, and the targeting BP, alendronate. To 

achieve the full potential of the three components, the configuration and positioning upon the 

surface of the NP was essential. 

5.4.1 Raman Reporter, PEG and Alendronate Conformation 

As previously discussed in Chapter 4 Section 4.4, in terms of biocompatibility and avoiding 

protein corona formation, the most effective conformation of PEG is in a brush-like orientation. 

The overall most effective conformation of both PEG and targeting ligand is visualised in Figure 

5.13 (c). 

Using a high grafting volume of 2,000 Da PEG results in a conformation as in  

Figure 5.13 (a) occurring. The ideal tethering is seen in  

Figure 5.13 (c): the targeting BP attached upon the distal end of a dense, brush-like PEG barrier. 

Furthermore, it has been shown that distally tethered binding moieties have a significantly enhanced 

target-specific avidity of up to 4.5 orders of magnitude through multivalent interactions.
234,235

 The use 

of the shorter 2-NT molecule required for SERS could lead to a conformation similar to  

Figure 5.13 (d), leading to the BP molecule being buried within the PEG.
233

 As such, the ratio 

of 2-NT: PEG requires tempering. 
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Figure 5.13: PEG and targeting ligand NP surface attachment variations: (a) PEG in a mushroom-like 

conformation with the targeting molecule anchored to the surface of the AuNP; (b) higher PEG 

grafting densities lead to a brush-like conformation which blocks the target molecule from binding; 

(c) anchoring the targeting ligand to the distal end of the brush-like PEG; (d) shorter neighbouring 

molecules can cause the PEG molecule to relax back into a mushroom-like conformation.
233

 

 

 

Ensuring the alendronate molecules have little steric hindrance, occurring within large 

molecular groupings preventing targeted binding of smaller molecules, is key to increasing their 

ability to locate the binding points within HAP. The role of PEG tether length affecting steric 

hindrance is explored by Cole et al.
232

 The assumption of a longer chain length increasing the 

binding ability of distally-attached bisphosphonates has been disproven both in vitro and in 

vivo. Long PEG tethers can provide too much distance between the BPs, leading to distant 

and low concentrations.
236

 Further investigations by Cole et al. found an ideal tether length of 

2,000 Da, resulting in a greater binding affinity in vitro compared to 1,000 and 5,000 Da.
232

 

The design outline of the active targeting AuNP is seen in Figure 5.14. 
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5.4.2 2-NT to PEG Ratio 

The necessity of both the 2-NT and the PEG to readily bind to the NP surface with little 

competition required the use of thiolated PEG. The ratio of 2-NT to PEG molecules also 

needed to satisfy two specifications: a high enough level of 2-NT molecules to gain a significant 

SERS signal; and an appropriate amount of PEG to gain a brush-like conformation. The 

preparation method was adjusted from Qian et al.  to deliver an optimization of surface 

coverage.
206

  

A 4 µM ethanol solution of 2-NT and a 10 µM aqueous solution of 2,000 Da PEG was 

prepared. NPs : 2-NT : PEG was added as a ratio of 1 ∶  0.1 ∶  0.2. Initially, 100 µL of 2-NT 

solution was added dropwise to 1 mL of colloid, then shaken vigorously for 5 minutes. 500 

µL of PEG solution was then added dropwise and again shaken to ensure complete coverage 

of the NPs. The colloid solution was centrifuged at 3000 RPM for 7 minutes, supernatant 

removed, and washed with DI water – repeating three times to remove any remaining, 

unattached -thiols. Prior to attachment of alendronate, the 2-NT-PEG NPs were analysed 

using UV/Vis to determine whether aggregation had occurred, detailed in Section 5.4.4. 

Figure 5.14: An image portraying the overall design of the targeting NPs: 2-NT and PEG layers 

attached directly to the AuNP surface, alendronate fixed at the distal end of the PEG molecule. 

= PEG 
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Under successful conjugation conditions, an approximate ratio of 2,474 2-NT molecules to an 

excess of 58,978 PEG molecules per 80 nm nanoparticle could be attained.  

5.4.3 Carbodiimide Chemistry 

In conjugating targeting molecules to a PEG layer, one of the most common coupling 

techniques is carbodiimide chemistry.
237,238

 In this process a carbodiimide cross linker and a 

stabilizing ester facilitates a zero-length, carboxyl-to-amine reaction. Hence, a distal PEG group 

of -COOH is required.  

The two most commonly used carbodiimide structures are 1-ethyl-3-(-3-

dimethylaminopropyl) carbodiimide (EDC) suitable for aqueous crosslinking, and N',N'-

dicyclohexyl carbodiimide (DCC) for organic synthesis methods. With the pre-prepared 2-

NT-PEG NPs suspended in DI water, EDC was chosen. The carbodiimide reacts with the 

carboxyl group, forming the intermediate, active ester o.-acylisourea – Figure 5.15.  

 

Figure 5.15: Reaction pathway of initial -COOH PEG with EDC: C=N reacts to the receptive -OH 

group, forming the intermediate O.-acylisourea. 
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When in aqueous solution, o.-acylisourea is unstable. If left destabilised, hydrolysis can occur. 

Hydrolysis deactivates the binding site, regenerating the carboxyl group. This significantly 

reduces the number of reaction sites available, decreasing overall yield. Carboxylate activation 

with EDC is most efficient at pH 3.5 – 4.5.
239

 However, the rate of hydrolysis at this level of 

acidity is estimated to be 2 – 3 s
-1

.
240

   

 

 

Avoiding yield loss and hydrolysis requires the use of a hydrophilic, stabilising ester: N-

hydroxysuccinimide (NHS), chemical reaction pathway seen in Figure 5.16. 

EDC used in conjunction with NHS at pH 7.5, retains a high yield and significantly increases 

hydrolysis rate to 40 minutes.
241

 0.1 M phosphate-buffered saline (PBS) at pH 7.4 was used 

for the EDC, NHS and alendronate solutions – amine deprotonation occurs at an acidic pH 

halting further reactions. The final reaction pathway conjugating the alendronate to the PEG is 

seen in Figure 5.17.  

 

Figure 5.16: Reaction pathway of O.-acylisourea with NHS to form a stabilised platform for amine 

group bonding. A non-toxic urea by-product is formed through the reaction. 
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Figure 5.17: Reaction pathway of NHS stabilized PEG with alendronate amine group forming final 

resultant of carbodiimide chemistry; ester by-product is substituted in the reaction. 

 

 

The process began with 4 mL of 2-NT-PEG NP colloid decanted into a flask with a magnetic 

stirrer. PBS solutions of NHS (20 mg/mL) and EDC (15 mg/mL) were added in unison, at a 

1:2 parts ratio, to activate the carboxylic group. The solution was stirred at a constant rate for 

20 minutes. A PBS solution of alendronate (1 mg/mL) was then added at a 1:1 molar ratio of 

alendronate:PEG, and left to gently stir at room temperature for up to 3 hours. The final 

product (2-NT-PEG-BP NPs) was centrifuged at 2,500 RPM for 7 minutes, and rinsed with 

DI water, three times. 

Post-labelling, the 2-NT-PEG-BP NPs were stored at 4ºC in foil wrapped, sealed glass 

containers. Characterisation of the NPs with UV/Vis and TEM was then carried out. 

5.4.4 UV/Vis and TEM Analysis 

UV/Vis measurements were taken at each step of NP labelling: bare, with 2-NT Raman 

reporter, 2-NT with PEG, and fully functionalised with alendronate, as seen in Figure 5.18. 
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Crucially, at each labelling step the peak width remained consistent that of the bare AuNPs, 

verifying that little aggregation had occurred at each stage of labelling. The slight red-shift of the 

peaks following each stage confirmed that further surface modification had been successful, or 

that an overall increase in NP size had occurred. Both the 2-NT-PEG and 2-NT-PEG-BP 

colloids were imaged with TEM to clarify the NP labelling at each crucial step.  

The 2-NT-PEG NPs are visualised with TEM imaging in  

Figure 5.19. As can be seen, the PEG molecules appeared to have conformed upon the NP 

surface into a mushroom-like formation. This brought doubt upon the success of the 

carbodiimide chemistry in both carboxyl-to-amine binding, and effectiveness of HAP targeting 

thereafter. Analysis of the 2-NT-PEG-BP NPs brought light to the situation. 

 

Figure 5.18: Normalised UV/Vis spectra of each labelling step from bare NPs to fully targeting. Three 

batches of the targeting NPs were measured to check consistency in the carbodiimide chemistry. 

Apart from the fully functionalised batch #1, minimal aggregation occurred at all steps. 
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Figure 5.19: A range of TEM images displaying the features of the 2-NT-PEG NPs, clustered and 

individually. Larger annotations of the scale bar added for clarity. 

 

 

Figure 5.20 characterises the PEG as a brush-like conformation post-carbodiimide chemistry. 

Slight thinning of the conjugated layer on one side of the NP relates to the orientation of the 

NP with regards to the microscope. Across the main bulk of the targeted NPs viewed with 

TEM, successful labelling had occurred remaining disperse in nature. However as seen in 

Figure 5.21, success was varied. Several NPs showed levels of aggregation; and whilst some 

achieved a “patchy” formation others failed to undergo successful conjugation of any type. PEG 

disassociation or non-binding also occurred, evident in the mottled background effect created 

by these lone, aggregate molecules present in Figure 5.20 and Figure 5.21 TEM images. 

 

100 nm 5 nm 

5 nm 
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Figure 5.20: TEM images of singular 2-NT-PEG-BP NPs displaying a brush-like conformation, from 

magnification levels 100 – 5 nm. Larger annotations of scale bars added for clarity. 

 

 

Figure 5.21: TEM images displaying occurrences of unsuccessful carbodiimide chemistry. Highlighted 

by the orange arrow is a PEG-only labelled NP. Larger annotations of scale bars added for clarity. 

 

 

As seen in the UV/Vis spectra in Figure 5.18, little overall aggregation had occurred within the 

bulk of the colloid – this highlights the propensity of aggregation occurring during TEM 

preparation.  

100 nm 20 nm 

20 nm 5 nm 

100 nm 100 nm 
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5.5 Discussion and Conclusions 

The nature of gold colloid production on a small scale resulted in a prominence of 

polydispersity, with a low level of batch reproducibility. Consistency in SERS requires 

uniformity in AuNP size with monodispersity.
109,115

 As such, to ensure reproducible 

experiments in SERS commercially available AuNPs were obtained. The batch specific 

properties supplied on a data sheet were cross checked using TEM imaging and UV/Vis to 

ensure validity. 

Persistence in the production of the peanut-shaped AuNPs could have been made, however 

consistency in synthesis was lacking and difficult to reproduce due to the need to temper the 

two nucleation points. This may be an interesting avenue to pursue for future work. 

The selection of 80 nm AuNPs falls within the remit of biocompatibility, with a higher known 

success rate of RR binding to the colloidal surface and hence extrinsic enhancement. RRs 2-

NT and 4-MBA are two of the most commonly used as RRs due to the thiolated binding 

mechanism and highly Raman active benzene ring within the molecules. 4-ATP, more 

commonly known as paracetamol, is less widely used, and generally selected as a Raman 

standard.
106

 The difference in binding mechanisms and angles between the acetamido nitrogen 

of 4-ATP, and -thiols of 4-MBA and 2-NT is a point of interest moving forwards in terms of 

the signal intensity garnered from each. 

The actively targeting AuNPs are next considered. To be effective, NPs must avoid clearance 

from the body through the liver, achieving long circulation times with passive, EPR effect and 

active targeting mechanisms enabling tumour retention. The necessary steps were taken to 

considerate the functionalisation design: use of the 2-NT Raman reporter as a carbodiimide 

chemistry inert molecule; the length of PEG chain for optimal brush-like coverage; and the 
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tethering of the actively targeting alendronate molecule at the distal end of the PEG to reduce 

steric hindrance.  

An increase in the chain length of the PEG, plus an increase in the ratio of spacer Raman 

reporters on the colloid surface, may provide a brush-like formation in the first, non-targeting 

functionalisation step. Other BPs with a greater HAP binding affinity, such as risedronate and 

zolendronic acid, could also be tested in place of the alendronate molecule. This brings up the 

possibility of using a different PEG binding mechanism other than the amine, which is known 

to be the main binding site to the HAP. 

The ability to test the RR-AuNPs at depth required the manufacture of optically representative 

breast tissue phantoms, the remit behind the material selection and consideration of the 

required shape for transferability of experimental results into a clinical setting is explored in the 

next Chapter. 
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6. Optical Phantom Construction 

6.1 Introduction 

The use of optical and morphologically representative “tissue-mimicking” phantoms was first 

experimentally proposed in the 1980s, detailing the trans-illumination of the phantoms with 

infra-red light as a potential new method for breast cancer diagnosis.
242,243

 Henceforth, key 

factors enabling the use of optical phantoms, other than crucially representing the scattering 

and absorption factors of the desired tissue type over clinically useful wavelengths, include the 

stability, homogeneity and reproducibility in phantom formation.
243

 

Within this chapter, Section 6.2 considers the optical matching properties of various phantom 

materials relating to breast tissue at an 830 nm wavelength. The fabrication of 

polydimethylsiloxane (PDMS) phantoms is detailed in Sections 6.3 and 6.4. Section 7.4 is 

broken down into two key areas: 6.4.1 describing optically representative breast phantoms of 

a semi-infinite form, and 6.4.2 which considers optically and morphologically representative 

breast phantoms; both utilising additive manufacturing in mould creation. The latter sub-

section considers the transferability of the deep Raman technique into a hospital setting, in 

combination with mammography. This required a notable change of the optical phantoms in 

becoming representative of a breast in a compressed state.  

6.2 Postmenopausal Breast Tissue Optical Property Matching 

Graphs pertaining the results from the breast optical properties studies of pre- and post-

menopausal women have been plotted in Figure 6.1 and Figure 6.2. The vertical, dark grey 

dotted line marks the 830 nm wavelength selected for experimental use in this study; the 

vertical, light grey dotted line marks the collection wavelength of the benzene ring, 

predominant across all RR-AuNPs. 
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Appreciable differences in the optical properties of breast tissue during the phases of the 

menstrual cycle, due to the physiological changes in haemoglobin concentration (oxy- and 

deoxy-), and oxygen and water saturation, have been documented.
244–247

 This increased 

variation is highlighted by the standard deviation values for pre-menopausal women in the 

studies by Cerussi et al and Shah et al.
245,248

  

In relation to the epidemiology of this thesis, predominantly women over 45 years of years 

undergoing or post-menopausal, these cyclical factors can be disregarded. A slowing of 

hormonal and glandular activity in menopausal breast tissue leads to a reduction in vascular 

requirements. A lower blood volume effectively reduces the absorption and reduced 

scattering coefficients, by approximately 230 – 300 % and 16 – 22% respectively.
245

 

Pre- and post-menopausal µs’ trendlines – indicative of Cerussi et al, Shah et al and Thomsen 

& Tatmen (considering the glandular tissue values for pre-menopausal, and adipose tissue for 

post-menopausal) – intersect 830 nm at 9.702cm
-1

 and 8.852 cm
-1

 respectively.  

From Figure 6.2, averaged haemoglobin and adipose values derived from the Jacques review 

paper
147

 were factored by ~4.6 times to be relative to the plotted results, forming the 

absorption trendline.  

At 830 nm for post-menopausal breast tissue, the mean reduced scattering coefficient value 

of ~8.8 cm
-1

, and the average absorption coefficient of approximately 0.056 cm
-1

, were 

selected for use. 

6.3 Optical Phantom Fabrication Techniques 

In the creation of turbid phantoms for spectroscopic diagnosis, both µs’ and µa must be taken 

into consideration.
249

 Materials historically used for optical phantoms in a biomedical setting 

include intralipid, agarose, and animal substitutes, such as porcine fat and muscle. Whilst the 

porcine tissues can be layered, the liquid phantom is unable to create inhomogeneous layers 
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of realistic complexity within itself. Though the optical density of diluted Intralipid is closely 

related to that of tissue, the scattering anisotropy value of g = 0.8 is decreased from that of 

tissue (g = ≥0.9).
250

 Another drawback is the unstable nature of these materials, having a 

short working life-span – for intralipid and agarose this can be no more than two months, 

whilst porcine tissue is around only three days, with adequate refrigeration between 

measurements. Requiring substitutions, repeatable measurements of the initial phantoms 

cannot take place over a long-time period. 

Solid materials, such as polytetrafluoroethylene (PTFE) and polyurethane (PU), hold long term 

optical stability and a greater freedom in morphological representation. PTFE and PU supplied 

as blocks, sheets or rods, can be machined to size. Castable liquids, such as 

polydimethylsiloxane (PDMS), give an extra element of flexibility, with the stability of a 10-year 

shelf life. The optical nature of the solid polymers is rudimentary, however, much like the 

agarose and intralipid phantoms, scattering and absorbing agents can be added to the PDMS 

to vary the optical properties. The refractive index of PDMS, 1.40 – 1.42, which sits within 

the mammalian soft tissue range, between 1.35 – 1.48.
251

  

Titanium dioxide (TiO2) and aluminium dioxide (Al3O2) are the two most common scattering 

agents used for optical phantoms, whilst an array of inks, such as India or Nigrosin, can be used 

to create further absorption within the PDMS material if required.
249,252

 The anisotropy of TiO2 

of g = 0.93 is more characteristically aligned with the scattering profile of tissue.
253

 

The solid, reproducible phantom material PDMS with scattering agent TiO2 was investigated. 

The reduced scattering and absorption coefficients of these materials, in comparison with post-

menopausal breast tissue and Caucasian skin tissue, is given in Table 6.1. The optical values 

for pork fat, muscle and dermis are also given, as a representative of breast adipose, glandular 

and skin tissue, respectively. PTFE was also measured as a possible alternate solid phantom. 
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Material 
Reduced Scattering 

Coefficient (µs’) cm
-1

 

Absorption Coefficient (µa) 

cm
-1

 

Human Breast tissue 8.8 0.056 

Human Skin tissue 
254

 15.2 0.38 

Pork Muscle
255

 2.7 0.11 

Pork Adipose
256,257

 4.5 0.8 

Pork Dermis 
258

 10.8 0.3 

PTFE 
259

 161 >0.01 

PDMS 
260

 ~0.01 ~0.01 

 

Table 6.1: The reduced scattering (𝝁𝒔′) and absorption (𝝁𝒂) coefficients of human tissues, comparative 

to the phantom materials of porcine tissue, PTFE and PDMS. 

 

The values for the PDMS are negligible as the material possesses no inherent scattering or 

absorption properties.
260

  

In determining the thickness limitation of the optical phantoms, the SESORS study by Stone et 

al. was considered: the group were able to gain a transmission signal of Raman reporter AuNPs 

at a depth of ~47 mm.
12

 However, to determine the SESORS technique within turbid 

phantoms as a proof of concept, phantoms of a reduced thickness, between 23 – 33 mm, 

was selected. 

6.4 PDMS with Titanium Dioxide Phantoms 

The suitable scattering and absorption coefficients to optically match the pre-menopausal 

breast tissue properties, as defined in Section 6.2, were selected. Although molecular densities 

change person to person, an average blood and fat content value was used to represent the 

absorption coefficients, as in Figure 6.2.
147

 In terms of a quasi-skin layer, melanin content varies 

with ethnicity – for this study, the focus is on developed world groups, represented mainly as 

Caucasian.  
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In creating the quasi-skin layer, a study by Pope et al. determined the breast skin thickness of 

the superior (0.7 – 2.3 mm), inferior (0.7 – 2.7 mm), medial (0.6 – 2.4 mm) and lateral (0.5 

– 2.1 mm) quadrants.
261

 This led to the average across all quadrants of 1.5 mm. Hence, this 

determined the constant thickness required for the quasi-skin layer. 

The TiO2/PDMS phantoms were produced in the same way. The preparation was modified 

from the studies by de Bruin et al and Iping Petterson et al, following the latter in the use of 

rutile TiO2, Sigma Aldrich (Missouri, USA), to provide uniform scattering at a wavelength of 

830 nm.
262,263

 The volume of PDMS, and hence quantity of TiO2 to provide the required 

reduced scattering coefficient value, was calculated to the total required mould volume. Table 

6.2 describes the required ratios, adjusted to an 830 nm wavelength from the study by 

Greening et al.
264

 

Phantom Type 
PDMS Ratio (mL) 

(10:1 base:curing agent) 
TiO2 Quantity (g) 

Breast tissue 56 : 5.6 48 mg/mL = 2.957 

Skin 9 : 0.9 74 mg/mL = 0.731 

 

Table 6.2: The ratio of PDMS base to curing agent required to fill the semi-infinite tray mould, alongside 

the respective quantities of TiO2 required to fulfil the optical scattering properties of the post-

menopausal breast and skin tissue. 

 

According to the defined ratios, the TiO2 was added to the PDMS curing agent, Dow Corning 

(Wales, UK), and sonicated to ensure an even particulate distribution. The PDMS base was 

then added to the mixture and stirred for 10 minutes until homogeneous. After placing under 

vacuum to remove bubbles, the de-gassed TiO2/PDMS liquid was poured into the moulds, 

and cured in an oven at ~85°C for one hour. Rapid cross-linking of the PDMS through curing 

minimises the “fall-out” of TiO2, improving the optical homogeneity across the whole phantom 

section.
252

  Multiple phantoms were cast from the same batch of breast tissue/skin matching 

TiO2/PDMS to reduce inter-sample variation.
249
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6.4.1 Semi-Infinite Breast & Skin Phantoms 

The desired block phantom proportions were required to consist of a semi-infinite-geometry. 

The longitudinal dimensions of the phantom must be representative of a large volume medium 

and hence ≥45 mm, reducing the lateral dissipation of photons from the system.
265–267

 

Transferability of experimental measurements to a clinically viable, in vivo setting is made 

feasible when measuring semi-infinite phantoms with an optical axis thickness greater than 20 

mm.
265,268

  

As such, a tray with four mould insertions was 3D printed. Additive manufacturing, or 3D 

printing, of models designed in Autodesk Inventor were completed using the Form 2, 

Formlabs (Massachusetts, USA) and the MakerBot Replicator+, MakerBot (New York, USA). 

The lateral dimensions of each mould within the tray was set at 50 x 45 x 10 mm. 1.5 mm 

depth skin phantoms, a combination of 10 and 5 mm thickness breast phantoms were cast. 

The combination of these layers allows the formation of semi-infinite phantoms, smallest 

thickness of 23 mm (1.5 mm skin | 10 mm breast | 10 mm breast | 1.5 mm skin), increasing 

by a depth diameter of 5 mm. The 3D printed tray mould and a 33 mm phantom combination 

is seen in Figure 6.3.   

Of the breast tissue phantoms, a single hole was driven in at half phantom depth using a cork 

borer, ⌀5 mm, creating a centrally positioned chamber for an AuNP containing NMR tube 

inclusion. Further breast phantom pieces remained whole, allowing layering and depth 

variation possibilities to be explored. 
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The use of silicone releasing agent spray ensured mould reusability, granting consistency in 

both breast tissue and skin phantom production. 

 

 

6.4.2 Morphologically Representative Whole Breast Phantoms 

As with endoscopic Raman fibre optic probes, as discussed in Chapter 3, Section 3.3.3, 

incorporation of new techniques within existing ones allows the diagnostics process to be 

efficiently streamlined, eliminating patient wait times between tests and hence delaying disease 

progression. Post-menopausal patients susceptible to breast cancer undergo mammographic 

imaging via referral, or through triennial screening. Capitalising on this current diagnostic 

pathway would create minimal disruption to current procedure. Also, with the breast in a 

compressed state, tissue penetration depth required when using TRS is minimised, with the 

possibility of spot compression further reducing breast thickness and raising the ease of Raman 

photon collection. 

 

 

Figure 6.3:  Left image: 3D printed mould tray, 50 x 40 x 10 mm section dimensions, to be cast. 

The mould is seen here post additive manufacturing, yet to be removed from the base plate within 

the Form2 3D printer. Right image: The completed breast tissue and skin block phantoms, arranged 

with the inclusion space in the middle of the phantom (11.5 mm depth) at a thickness of 33 mm. 

33 mm 
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6.4.2.1 Exploration of Breasts in a Compressed State 

 

Figure 6.4: Standard, two-view mammogram images of both left and right breasts - craniocaudal, 

top level, and mediolateral oblique, bottom level - of three patients under a screening program, 

above 40 years of age. The dashed yellow line marks the margin, and hence general shape, of the 

breasts under compression of a diagnostic quality. 
269

 

 

 

Modelling morphologically representative compressed breast moulds required image analysis 

of mammograms, taking into consideration differences in breast volume and variation in 

pressure applied across the compression paddle. Gaining this understanding of breast shape 

under mammographic compression was an important first step prior to mould making.  

The general, guideline shape can be seen in both craniocaudal and mediolateral oblique 

mammographic images of  

Figure 6.4. To produce a radiographic exposure with consistency in contrast, the compression 

paddle applied must create an even thickness across the whole of the breast, from chest wall 

to nipple. Following this knowledge and the guideline shape, whilst taking into consideration 

the 177.8 mm NMR tubes requiring stable inclusions, a flat sided, elongated, “D” shape was 

chosen. The 3D model and phantom casting process is seen in Figure 6.5. 
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6.4.2.2 Formation of Breast Phantoms 

 

Figure 6.5: Left image: The 11 mm half breast mould design in Autodesk Inventor; Right image: 

Casting progress of one half of the 22 mm breast tissue phantom. The two rows of holes positioned 

at the back of the mould are covered using PTFE tape to avoid leaks. Two ø 5 mm PTFE rods are 

pushed through and affixed into position at a depth of 60 mm into the phantom.  

 

 

Breast tissue phantoms sized 25 mm, 27.5 mm and 30 mm were selected. 3D models of the 

breast moulds were created using Autodesk at three, half sizes: 11 mm, 12.25 mm, and 13.5 

mm. This allowed the two halves of the phantom to be made individually in the reusable 

moulds, avoiding as much TiO2 planar fall-out as possible. Hole positioning using ø 5 mm PTFE 

rods was selected prior to casting, forgoing the need to bore inclusions post-cure. Due to the 

thin walled nature of the moulds, “High Temperature” resin was used to minimise the effects 

of heat shrinkage when placed within the curing oven. 

6.4.2.3 Quasi-Skin 

An encompassing quasi-skin layer was produced, representative of the optical properties of 

skin and the morphological nature of the breast. Large tray moulds, similar to that of the study 

by Saager et al, were 3D printed at a 1.5 mm fillable depth, as an average breast skin 

thickness.
270

 An excess of quasi-skin was cast to ensure an even, un-stretched layer over the 
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tissue phantom. A bidirectional spirit level was used, as seen in Figure 6.6, as the nature of a 

thin TiO2/PDMS layer requires precise, even curing. 

 

Figure 6.6: The bidirectional spirit level placed within the oven; a close-up of the centred bubbles. 

 

 

The quasi-skin was required to wrap round the curved features of the breast phantom as 

seamlessly as possible. An area of the quasi-skin was required to be removed. This was 

calculated by subtracting the filleted surface area of the breast phantom from the assumed 

cuboidal area, detailed in Figure 6.7.  

Figure 6.7: Quasi-skin template sector removal maths. The filleted surface area considers the skin 

thickness of 1.5 mm.  

 

 

The 68.702 mm
2

 area for removal was distributed over seven sectors, placed evenly across 

the fillet in 22.5° segments, equalling a total area of 9.815 mm
2

 per sector. The sector shape 

8.639 mm 
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geometry was calculated in three steps: finding the individual length of each sector, the angle 

of the sector and consequently the sector arc length. 

To create a smooth surface layer, the sector length was required to begin half way along the 

length of the curve. As such, the half curve length was calculated: 

 

𝐶𝑢𝑟𝑣𝑒 𝐿𝑒𝑛𝑔𝑡ℎ =  (
2 𝜋 𝑟

4
) 

                  (
2 𝜋 11

4
) = 17.278 𝑚𝑚 

              
17.278 

2
= 8.639 𝑚𝑚 

(26) 

The angle of the sector could then be derived from the area and length: 

 

 𝑆𝑒𝑐𝑡𝑜𝑟 𝐴𝑛𝑔𝑙𝑒 =  
𝑆𝑒𝑐𝑡𝑜𝑟 𝐴𝑟𝑒𝑎

𝜋 𝑟2
 

9.815

𝜋 8.6392
=  7.534° 

(27) 

 

Hence, the arc length could be calculated: 

 

               𝑆𝑒𝑐𝑡𝑜𝑟 𝐴𝑟𝑐 𝐿𝑒𝑛𝑔𝑡ℎ =  
𝑆𝑒𝑐𝑡𝑜𝑟 𝐴𝑛𝑔𝑙𝑒

180
 ×  𝜋 𝑟 

7.534

180
 ×  𝜋 8.6395 =  1.136 𝑚𝑚 

(28) 

 

The full template design could therefore be produced using the 2D plotting software in 

Autodesk, see Appendix for all three templates. The annotated template is seen in Figure 6.8. 
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Figure 6.8: Final template for 25 mm breast phantom half quasi-skin. The dotted lines highlight the 

cut-out segments, with the shaded area denoting areas to be removed, including a 5 mm area of 

provision.  

 

 

Once precisely cut to shape, the quasi-skin was affixed to the tissue, initially with double-sided 

tape and then more robustly with a thin layer of PDMS. This process was repeated for the 

12.25 mm and 13.5 mm breast phantoms halves. The final 25 mm breast phantom can be 

seen in Figure 6.9. 

 

 

 

 

Figure 6.9: Two views of the completed 25 mm optical breast phantom, displaying the continuous 

nature of the quasi-skin on the surface. 
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6.5 Scattering and Absorbance Plots 

The scaling of light scattering in terms of phantom thickness was measured in relation to pork 

fat and muscle tissue, as a commonly used optical phantom representative of breast tissue.  

Though mice are traditionally used as disease models, for toxicological and pathological studies 

porcine tissues are being chosen as an alternative over dog or monkey due to their similar 

anatomical functionalities to humans.
269,285,286

 

For consistent characterisation and comparison across the materials, semi-infinite layers were 

produced in sections of 10 mm thickness, with an experimental standard of 1.5 mm quasi-skin 

also measured.  

The Transmission Raman set-up, detailed in Section 7.2, and a power meter PM100D, 

Thorlabs (New Jersey, USA), with a 400 – 1700 nm, 500 mW, silicone photodiode power 

sensor, S121C, Thorlabs (New Jersey, USA) was selected for the characterisation of the 

phantom materials. At each thickness, several power meter measurements were recorded (6 

± 3) and averaged up to a 40 mm thickness. This value was divided by the laser power at the 

sample illumination point (300 mW) to calculate the logarithmic value (𝐼/𝐼𝑂) for each phantom. 

The results for the TiO2/PDMS breast and skin phantoms against PTFE, and pork adipose and 

muscle tissue is presented in  

Figure 6.10. 

The grey shaded area behind each of the materials denotes the highest and lowest intensity 

measurements at each thickness point. Variability between measurements was considerably 

higher for all pork tissue samples, with the PTFE and TiO2/PDMS phantoms remaining largely 

consistent throughout testing. However, due to the variability of measurements of highly 

scattering materials the quantity of light detected by the power meter either great, as with the 

1.5 mm skin phantom, or very little, with the breast phantom at 40 mm. This leads to 
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inconsistencies. Another factor leading to variability is the nature of the material. Unlike the 

rigid polymer structure of PTFE, pork tissues are inherently disorganised, leading to a wide-

ranging measurement catchment. 

 

Figure 6.10: A logarithmic intensity scale graph of the breast and skin phantoms, ranging in thickness 

from 1.5 to 40 mm, against PTFE, and a combination of pork adipose and muscle. The shaded grey 

areas map the highest and lowest intensity points for each of the materials power meter 

measurements. 

 

 

At a 10 mm thickness, the breast tissue phantom closely optically matches density of the pork 

muscle. As the thickness increases to 40 mm, the values trend towards the pork adipose 

measurement. This is representative of post-menopausal breasts at variable sizes – with an 

overall increase in breast thickness, the ratio of glandular to adipose tissue increases, trending 

towards “fattier” breasts. The skin phantom values are of a greater optical density than either 

the pork fat or muscle, as expected with the highly scattering characteristics. The absorbance 

of the PDMS at increasing mg/g concentrations of TiO2 was also assessed using the UV/Vis 
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Spectrophotometer, details of which can be found in Section 5.2. The results are displayed in 

Figure 6.11. 

 

Figure 6.11: Absorbance spectra of Sylgard with increasing quantities (mg/g) of TiO2 within the 

PDMS. The inherent absorbance of plain PDMS is minimal at around 0.001, with an absorption 

peak at 908 nm. The scattering nature of the TiO2 causes the absorbance intensity to increase. 

 

 

The absorbance of plain PDMS (Sylgard 184) is minimal, extending above 0.01 AU at two 

separate points – a peak at 908 nm and a smaller “extended” peak area across 1008 – 1030 

nm. These inherent absorbance peaks remain with the addition of TiO2 (mg/g) to the PDMS, 

with an overall trend of an increasing absorbance value due to the highly scattering nature of 

the material. 

6.6 Discussion and Conclusions 

An understanding of the inherent material properties of the PDMS and how the concentration 

of TiO2 determines the characterisation of the phantom for both post-menopausal breast 

tissue and skin tissue optical properties were explored. The PDMS material desirable qualities 

of higher optical stability and prolonged shelf-life, comparative to liquid phantoms, dictated its 

use as the scattering agent vehicle. 
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The relation of the phantom logarithmic intensities in comparison to porcine adipose and 

muscle tissue values confirmed the desired optical properties had been met for each. The skin 

phantom displayed the desired highly scattering properties, whilst the breast phantom had a 

low level of absorption and scattering matching closely to the values of the pork adipose tissue. 

This denoted optical property matching comparable to that of post-menopausal breast tissue. 

 

Figure 6.12: Double integrating sphere for simultaneous transmittance and reflectance 

measurement: (1) incident beam, (2,7) entrance port, (3) exit port, (4) diffuse reflected photons, (5) 

sample, (6) transmitted photons, (8) integrating sphere.
271

 

 

 

Calculation of the absolute absorption and reduced scattering coefficient values of the 

phantoms can be made using of a single or double, visualised in Figure 6.12, integrating sphere, 

determining the total transmittance and reflectance of a sample. 

This technique requires the use of a microtome, as the sample thickness must be reduced to 

one MFP length, or 0.1 mm. Structural integrity of the material post-microtome is a major 

area of concern, with possible weak or breakage points being incorporated into the sample. 

Furthermore, the mathematical modelling of the phantom optical properties requires the use 

of the inverse adding–doubling algorithm within a robust Monte Carlo simulation.
107

 This level 

of optical density specificity was beyond the scope of this thesis. Unlike the sourced values of 

µ𝑎 and µ𝑠′, there is limited transferability of published results from single/double integrating 

sphere studies.  

To gain smoother depth transition possibilities, the dimensions of semi-infinite phantom 

sections could be reduced to a 2 mm thickness. This however brings inconsistencies into 



 

134 

 

phantom reproducibility, which is more easily avoidable with the manufacture of ≥5 mm 

sections. Additional layers of subcutaneous adipose tissue between the skin and breast tissue 

would add another dimension of realism to the phantom. The adoption of a spin-coating 

technique, as used by Lurie et al in the creation of bladder phantoms, could be adopted to 

circumvent pouring discrepancies and establish additional tissue (glandular/adipose) layering.
272

 

Moreover, future work into manufacturing phantoms with tumour or microcalcification 

occlusions present, as with 3D anatomical training models, could also be investigated. This 

level of phantom manufacture did not fall within the remit of possibility for this thesis. 

Additional absorption properties derived from the inclusion of India Ink within the phantom 

was not explored within this thesis. Undoubtedly this is an area which could be improved 

upon. Furthermore, changing the absorption properties of the skin layer to represent distinct 

levels of pigmentation would increase phantom applicability across different races.  

The effect of compression upon the breast could not be mechanically represented. This is an 

area of interest as compression forces may vary comparatively to stationary optical density 

values. This has been previously studied using freeze-thawed polyvinyl alcohol phantoms for 

realistic simulation of compression, however repeatability issues occurred with prolonged 

storage.
273

 

The use of PDMS/TiO2 phantoms within the Raman/SERS field is minimal, with turbid 

phantoms of this nature more widely used in the realms of X-radiation dosimetry 

characterisation
249,274

, diagnostic imaging (both x-ray and ultrasound) studies
150,231,243,252,270

, and 

optical coherence tomography (OCT)
262,272,275

. The incorporation of optical biomedical 

techniques within the current diagnostic remit is essential to ease clinical transferability. The 

production of morphologically representative phantoms, presented as within the imaging 

modality setting, is therefore key. With the foundations for the depth analysis of RR-AuNPs 
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set, the experimental design and set-up for the two phantom types is pursued within the 

following Chapter.  
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7. SESORS of Breast Phantoms: 
Experimental Design 

7.1 Introduction 

This chapter explores the incorporation of the reporter labelled AuNPs within the turbid breast 

phantoms at defined inclusion positions. Point measurements of singular inclusions forms the 

depth intensity profile for each of the Raman reporters, whilst Raman mapping with several 

inclusions determines the ability to distinguish the depth position of the AuNPs in phantoms of 

increasing thickness.  The experimental design and data analysis of such is investigated in 

separate Chapters – Chapter 8 and Chapter 9 respectively. 

Several components and design constraints needed to be met prior to experimentation. 

Section 7.2 details the deep Raman Transmission set-up. Section 7.3 covers the hardware 

(7.3.1), software (7.3.3) and electrical (7.3.2) elements required for the design and 

development of an automated stage, permitting motorised and semi-autonomous 

transmission Raman mapping. Section 7.4 explores the theory and implementation of a 

dielectric bandpass filter, or “photon diode”, incorporated into the experiments using purpose-

designed and 3D printed instrument holders. The concentration of NPs (NPs/mL) for 

experimental use was adjusted and monitored in relation to previous biocompatibility dose 

studies, ensuring the viability of in vivo transferability is upheld, explored in Section 7.5. The 

summarisation of all sections is followed up in Section 7.6. 

7.2 Deep Raman Spectroscopy – Transmission Set-Up 

The system used for transmission Raman spectroscopy of large, turbid samples consisted of 

optics from Thorlabs (Newton, New Jersey, USA), a spectrometer from Kaiser Optical 

Systems (Ann Arbor, Michigan, USA), and a CCD detector array from Andor (Belfast, UK).  
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Unlike the micro-Raman, the initial optical set-up is completely open, allowing adjustments 

and versatility in sample orientation and measurement. This initial zone is depicted in Figure 

7.1. 
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A monochromatic, 830 nm laser (Innovative Photonic Solutions), with ~300 mW sample 

illumination power, is used. To supress spectral deviation, laser line filters (FL830-10, 

Thorlabs) ensures a wavelength centred illumination source, collimated to 25 mm. 

Focal lenses direct the light through the sample and to the holographic notch filter removing 

Rayleigh scattering. The inelastically scattered light is focused to a fibre optic collection bundle, 

configured in a “round to linear” formation. This increases the coupling efficiency to the 

spectrometer allowing a high throughput of light, retaining resolution whilst gaining sensitivity 

and SNR.  

The spectrometer and CCD set-up is depicted in Figure 7.2. The linear collection fibre bundle 

is orientated to match alignment with the 100 µm entrance slit, positioned after a second 

holographic notch filter, removing any stray elastically scattered light which may have entered 

the system. 

 

Figure 7.2: Kaiser Optical Systems HoloSpec ƒ/1.8i Spectrometer and Andor iDus 420 CCD – the 

collected light passes through the holographic notch filter, removing Rayleigh scattering; an entrance 

slit collimates the beam; a holographic grating disperses the Raman signal directly onto the CCD 

array. 
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A transmissive holographic grating is used to efficiently disperse the wavelengths of light. 

Spectrometer efficiency is very high. Comprised of a low f-number (1.8), with high etendue, 

a large fraction of the collected light can be measured. The CCD array is comprised of 1024 

x 256 pixels, sized 26 x 26 µm, and is thermoelectrically cooled to -75°C. Deep deletion 

permits a high quantum efficiency, whereby the likelihood of photon to photoelectron 

production is at a peak of 95%. 

Prior to single-point measurements or mapping, the system is calibrated using the characteristic 

spectral peaks of pure aspirin (acetylsalicylic acid). The intensity of the laser at both the 

immediate illumination point and sample illumination point was collected using a power meter, 

PM100D, Thorlabs (New Jersey, USA), with a 400 – 1700 nm, 500 mW, silicone photodiode 

power sensor, S121C, Thorlabs (New Jersey, USA). The data was logged for quality assurance 

purposes.  

An infrared conversion viewer, IRV2, Laser2000 (Cambridgeshire, UK), was used for 

necessary optical realignment and through the deep Raman experiments to ensure laser 

position upon the turbid samples. 

7.3 Stage Set-Up and Automation 

7.3.1 Hardware – Optomechanical Stage Set-Up 

To map the AuNPs positioned within the phantoms required the design of an x,y movement 

motorised stage (Standa, Lithuania)  with an adaptable sample holder attachment for versatility. 

Prior to purchase, the required optomechanical components (Thorlabs, New Jersey, USA) 

were mapped out using SolidWorks, as in Figure 7.3, to ensure workability within the optical 

constraints of the deep Raman set-up. 
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Figure 7.3: Solidworks curated, digitally planned stage design schematic of the motorised stage 

(Standa, Lithuania), in light grey, configured to an x,z movement range utilising angled brackets 

(Thorlabs, New Jersey, USA); other optomechanical components (Thorlabs) were used in the 

creation of the adaptable sample platform. The design is laid out as if upon the optical table. 

 

 

After physical stage set-up, the mechanisation of external CCD triggering in response to stage 

movement was required. This would allow automated Raman mapping, requiring only the 

computerised set-up prior to Raman measurement.  

7.3.2 Electrical Hardware – 5V Pulse Amplifier 

Getting the stage to “speak” to the CCD required some electronics and circuitry building. 

Using a multimeter, the voltage of the initial pulse from the stage registered at 3.29V. To trigger 

a spectral capture response, the CCD required a pulse of ~5V. Hence, an n-p-n transistor 

diode, consisting of silicon doped with boron/aluminium (p-type) sandwiched between 

arsenic/phosphorus doped silicon (n-type) was used. Triggering the gate with the initial stage 

pulse enabled the higher potential difference (4.84 V) applied to the terminals of the transistor 

to be applied to the external CCD trigger. The circuit design in principal and actuality is seen 

in Figure 7.4. 
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When connected to three AA batteries, forming 4.84V, and a 470Ω resistor, creating 

impedance strong enough to protect the transistor and circuitry, a pulse amplification strong 

enough to trigger the CCD was garnered. After initial circuit testing using a breadboard with 

LED output substitutes, the components, cables and battery pack were soldered to a copper 

circuit board. The configuration for the D-sub 9 pin stage connector was soldered to the 

synchronisation output (8) and ground (9) pins. A 3D printed box housing the circuit and 

battery pack was designed and manufactured, encapsulating the circuitry with the female SMB 

and D-sub 9 pin able to freely connect to the CCD and motorised stage, respectively. 

  

Figure 7.4: Top image: circuit design of the 5V pulse amplifier. The npn transistor connects to 4.84V 

from 3 AA batteries, with a resistor, R, of 470Ω was used for impedance. Bottom image: the 

completed pulse amplifier circuit within the 3D printed box with a hinge and magnetic closing 

mechanism. The electronic components were soldered onto a copper circuit board. A battery pack 

was used to keep the AA batteries together. Once the connector cables were soldered, a dab of 

hot glue was applied for longevity. 
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7.3.3 Software – Andor SOLIS and Matlab Programming 

Mapping of the desired area under specific acquisition measures were parameters required to 

be adjustable for flexible use of the automated stage. Internal programming within the Andor 

SOLIS for Spectroscopy software and an outward Graphical User Interface (GUI) MATLAB 

program were developed to define the measurement and stage movement specifications 

respectively. An example of the two programs can be seen in Figure 7.5.  

  

Figure 7.5: An example of the MATLAB GUI program and internal Andor SOLIS program for kinetic 

mapping from an external start trigger source. 

 

 

The MATLAB program observes the translation range limits of the motorised stage. When the 

stage is positioned at the uppermost distal point of the desired map area, the button “Set 

Corner 1” is pressed. The lowermost point in diagonal relation is manually translated to where 

“Set Corner 2” is pressed, applying the blue line-raster within the GUI map area under the set 
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horizontal and vertical step size. The red circle defines the current position of the stage, with 

the estimated mapping time length and number of scanning points detailed below. 

The acquisition parameters, measurement time, number of accumulations and auto-save file 

names, are defined within the main Andor software. The curated internal program defines the 

trigger as an external source [SetTriggerMode(6)] and ensures the acquisition is run under the 

kinetic scan mode [SetAcquisitionMode(3)]. The kinetic scan mode required the pulse amplifier 

start signal to be used to begin the scan, rather than at every scan point. This reduced the 

amount of electrical noise within the system, increasing the sensitivity and hence SNR of the 

collected spectra.  

The number of scanning points, plus one, is entered within the run counter ensuring the whole 

of the map scan points are saved. The “Time of acquisition” within the GUI is adjusted with 

extra 1 second time length to ensure the measurement is complete prior to stage movement.  

7.4 Photon Diode 

7.4.1 Background and Theory 

 

Figure 7.6: Diagrammatic of the dielectric bandpass filter, or photon diode, in transmission against a 

turbid sample. As seen, photons rarely pass back through the unidirectional mirror which retransmits 

most Raman photons to the detector. 

 

Illumination point 

Photon Diode 

Turbid 
Sample 

To the 
Detector 

Re-transmitted 
Raman Photons 



 

144 

 

The use of a dielectric bandpass filter, or photon diode, enables light which has been 

backscattered at an acute angle to the laser source to be reflected back into the system.
276–278

 

This increases the number of interacting light photons and hence the potential for Raman signal 

to be collected. 

A 25-mm photon diode centred at 830 nm with a bandwidth of 3.2 nm, Max Laser Line Filter 

LL01-830-25, Semrock (New York, USA) was placed over the laser beam deposition area on 

the sample. The filter has a transmission at 830 nm of >90%.
265

 If the angle of incidence 

changes, the wavelength of light possible to pass through the filter is shifted, as seen in Figure 

7.7. Keeping the photon diode perpendicular to the optical axis is important in enabling 

maximum laser transmission and off axis backscattered reflection. 

 

Figure 7.7: A graph to show the importance of the photon diode remaining perpendicular to optical 

axis: transmission versus wavelength for normal and oblique incidence, whereby the wavelength 

shifts with a change in angle.
265

 

 

 

Minimal air-gap interface between the phantom and photon diode is another key aspect. The 

majority of laser photon losses occur at the air-sample interface, which increases with highly 

scattering samples.
277

 As such, positioning the photon diode with a minimal air-gap interface 

to the optical phantom reduces unwarranted photon loss, increasing the effectiveness of the 

technique.  
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7.4.2 3D Printed Photon Diode Holders  

As discussed, the key factors in ensuring optimal photon diode use include a constant 

perpendicular angle to the optical axis, and a very minimal air-gap interface. To ensure both 

factors were consistently met for individual point spectra and mapping purposes, photon diode 

holders were designed in Autodesk Inventor and manufactured using the MakerBot and Form 

2 3D printers.  

The point measurement photon diode holder was designed to securely slide onto the base 

component of the motorised stage arm. This was then locked into place on the underside of 

the platform base using two sets of nuts and bolts, as seen in Figure 7.8. The motorised stage 

was configured to an x,y formation, allowing the focal length to be adjusted depending on the 

phantom thickness. 

 

Figure 7.8: Left image: The point-measurement photon diode holder designed in Autodesk 

Inventor. The gully slot measures 4 mm in depth, safely securing the photon diode; Right image: 

The 3D printed holder slid into place on the x,z motorised stage arm and secured with two sets of 

nuts and bolts. 

 

 

As shown in Figure 7.9, levelling of the holder platform was ensured using a bidirectional spirit 

level, and the 90° position of the photon diode checked with a metal rule. This design did not 

require any extra fixings to hold the photon diode at a constant perpendicular angle.  
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On the other hand, the mapping photon diode holder was required to remain in a fixed 

position within the optical axis, without interference of motorised stage movement. Hence, 

the model was designed to affix atop an optomechanical post using a screw within a counter 

bored hole. This eliminated illumination path interference. The optical post was secured to 

the optical rail between the two focusing lenses, affront the breast phantom. 

 

Figure 7.10: Left image: The mapping photon diode holder designed in Autodesk Inventor. A 

counter bore was designed to accommodate the cap head of the screw into the optical post. The 

25 x 3.5 mm recess encompasses three sides of the photon diode, allowing a minimal air gap 

phantom interface; Right image: The 3D printed holder with photon diode secured to the optical 

post, in line with the illumination path. Extra blu-tack pieces were used to ensure stability. 

 

Figure 7.9: Left image: bidirectional spirit level confirming the stage platform is balanced; Right image: 

the photon diode positioned within the slot – the solid metal rule confirms the 90° angle of the 

photon diode. The x,y motorised stage allows the 60 mm focal length to be adjusted dependent on 

phantom thickness. 
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The Autodesk Inventor design and complete set-up, including the breast phantom with a mid-

centrally located NMR tube, is seen in Figure 7.10 and Figure 7.11.  

Respective 3D printers were used due to the difference in the nature of the additive material. 

The MakerBot printer, used in the creation of the single point measurement PD holder, utilises 

Fused Deposition Modelling (FDM) whereby a heated plastic filament is extruded, building 

upon the previous additive layer. 

 

 

The mechanical properties of this macro layered structure provide a surface by which the 

photon diode can be inserted into a gully and “gripped” by the material, requiring no extra 

supportive features. Comparatively, the Form2 3D printer, for the mapping PD holder, 

operates using vat photopolymerisation. This method creates micro layers of hardened plastic 

via a UV laser projecting upon the photosensitive, liquid polymer resin. This technique 

provides a smooth surface finish to the build, decreasing the drag of the material across the 

 

Figure 7.11: Transmission Raman set-up of the morphologically representative breast phantom 

including the photon diode. Left image: Two metal arms, clamped to hold the phantom in 

position, fixed to the x,z stage allows the full range of movement for photon diode enhanced 

mapping to occur; Right image: A top-down view including an NMR tube within the middle breast 

phantom hole. Each phantom is adjusted to adhere to the 60 mm focal length. 
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phantom interface. Blu-tack was required against the back of the photon diode, seen in Figure 

7.10, required to maintain the 90° angle between the laser and phantom interface. 

7.4.3 Optical Phantom Power Meter Plots with Photon Diode 

The efficiency of the photon diode against the two TiO2/PDMS phantom types of skin and 

breast tissue, seen in Figure 7.12. 

 

 

 

  

Figure 7.12: A graph to show the logarithmic, power meter intensities of the breast and skin 

phantoms, with and without a photon diode, measured in transmission; and a table to show the 

percentage change of light intensity produced with a photon diode present. The standard laser 

intensity at the sample illumination point, 300 mW, was selected. 

     Light Transmission Increase with Photon Diode (%) 

                        Width (mm) 

Phantom Type 
1.5 10 20 30 40 

Breast Tissue N/A 61.26 80.65 258.61 236.80 

Skin Tissue 152.85 132.68 588.68 1438.60 1778.62 
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As previously discussed, at each thickness four measurements were logged, averaged, and 

divided by the laser power at the illumination point (300 mW) to calculate the logarithmic 

value (𝐼/𝐼𝑂) for each phantom, up to a 40 mm thickness. The boundaries of the grey shaded 

areas at each point represent the maximum and minimum values recorded. Overall, the 

variation in sample measurement decreases for both the skin and breast phantoms with 

photon diode use, with an increase in light transmission by up to 2 orders of magnitude.  

7.5 AuNP Inclusions and Dose Biocompatibility 

The optical phantom design required accessible and dispensable vessels for containment and 

positional flexibility, with the added benefit of storage ease. As such, borosilicate glass NMR 

tubes, ColorSpec NMR tubes (ø5 mm × 177.8 mm), Sigma Aldrich (Missouri, USA), were 

selected for use. 

The photoluminescent nature of the 1 mm combined wall thickness of borosilicate glass, 

alongside quartz (a standard Raman neutral material commonly used), stainless steel (used to 

analyse the drop dried nanoparticles under micro-Raman), and the Raman spectrum of an 

Eppendorf tube, is seen in Figure 7.13.  

Figure 7.13: Photoluminescent and Raman (Eppendorf) spectrum of four sample holder materials – 

stainless steel slide was used in Chapter 6 for the micro-Raman testing of the AuNPs. 
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The ideal material for encasing the NPs for the following experiments would be quartz. 

Despite this, quartz is an impractical material comparative to the economic and replaceable 

nature of borosilicate glass NMR tubes. The pre-processing techniques used to reduce the 

spectral contribution of the NMR tube photoluminescence, increasing the SNR of the AuNPs, 

is discussed in Chapter 9, Section 8.2. 

The ability to garner a Raman signal of the AuNPs at large depths required consideration as to 

the ideal NPs/mL concentration, with nanoparticle dose presenting as the biocompatible 

limiting factor.  

Mouse model toxicology studies of PEGylated AuNPs delivered at an ~4 mg/kg dose 

confirmed little to no adverse growth effects, with accumulation and acute inflammation mainly 

sited within the liver.
176,178

  

 

Figure 7.14: In vitro to in vivo extrapolation and species extrapolation of doses and toxicity of gold 

nanoparticles. Blue and red lines represent model-predicted maximum concentrations of gold 

nanoparticles in the liver and blood, respectively, of humans after intravenous injection (0.001–100 

mg/kg). The dashed arrows point to where liver toxicity (0.01 mg/kg) was observed in rats (blue); 

in vitro cytotoxicity (13 μg/ml) of primary human dermal fibroblasts (purple); and haemolysis (50 

μg/ml) of red blood cells (orange). The solid arrows point to the model-predicted human equivalent 

dose (HED) associated with the reported in vitro cytotoxicity (HED = 1 mg/kg), haemolysis (HED 

= 5 mg/kg) and in vivo toxicity (HED = 0.005 mg/kg). Adapted from
167
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Due to the similarity in liver to body weight ratio, the results from rats and pigs is considered 

to have a greater transferability to humans.  As such, dose models and the related toxicological 

effects adapted from the review by Lin et al have been selected as reference for the study. 

The known toxicological effects from both in vivo and in vitro experimental work of rats and 

human cells, and computational pig models, have been plotted to the human equivalent dose 

(HED), seen in Figure 7.14.
167

 

Hence, it is generally considered that a low, safe AuNP HED model is ~0.01 mg/Kg. The 

average female body weight within the UK, at time of writing, is 70.2 Kg, relating to an AuNP 

dose of 0.702 mg. The concentration of the 80 nm AuNPs is 0.052 mg/mL. After depth testing 

for a sufficient enhanced Raman signal at a low acquisition time (10 seconds), the AuNP 

concentration of 0.156 mg/mL, or a dose of 0.156 mg/g, was found to be ideal. This is 

equivalent to 2.91 x 10
10

 NPs in 1.2 mL, after centrifugal concentration from 3 mL. This 

concentration of AuNPs is representative of the mg/mL dose required within the area the of 

the breast tumour.  

Tumours of an ellipsoid geometry which lie between the T1/T2 classification of early breast 

cancer (≤2.5 cm) have been found to have a volume between 1.257 – 5.12 cm
3

.
279–282

 Under 

the assumption that tumour tissue density lies closer to that of muscle (1.057 g/cm
3

)
283

 than 

adipose tissue (0.9 g/cm
3

)
284,285

, the mass of a stage T1/T2 tumour is approximately 1.328 – 

5.412 g. Therefore, 0.207 – 0.844 mg of AuNPs of the 0.702 mg HED would be required 

to accumulate within the tumour. Remaining on the conservative end of tumour volume and 

considering a high percentage of AuNP uptake, the experimental dose selected is sufficiently 

biocompatible. 
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7.6 Summary 

Several features of the experimental design set-up required for depth analysis of the three RR-

AuNPs have been outlined. 

Success with the optomechanical design and automation of the translated x,y motorised stage 

put several skill sets to use – hardware, software and electronic circuitry were all required in 

the completion of the project. Automation of the mapping process allowed a rapid and efficient 

workflow, enabling a diversification and increase in the possible work load one could undertake 

– an unavailable luxury prior to the design and implementation of the pulse amplifier and GUI 

mapping system. This automated design may be taken as a protocol for future mapping 

systems within open optical set-ups. 

The benefit of photon diode use lies within the preservation of laser photons within the 

system, increasing the likelihood of Raman photon creation and hence transmission to the 

collection system and the CCD. The purpose designed 3D printed PD holders were 

manufactured with two key factors in mind – the need for a constant perpendicular angle to 

the optical axis, and a minimal air-gap-interface. The design of the singular point measurements 

successfully meets both criteria. The technicalities introduced with mapping (requirement of a 

fixed position isolated from stage movement; the moving phantom interface whilst mapping; 

staying in-line with the optical axis whilst avoiding unwanted interaction with the stage) 

presented a challenge. The trade off in material properties allowed the interface to smoothly 

traverse but hindered the security and fixed angle of the PD. This was countered with the use 

of fixing agents; however, a more robust design/solution could have been found. 

Another possibility which could have been explored, especially with the morphologically 

representative phantom, would have been the use of a fully encasing uni-directional mirror.
276

 



SESORS of Breast Phantoms: Experimental Design 

153 

 

This approach could eliminate photon losses from the system, apart from at the transmission 

exit point. This would be an interesting idea to pursue in future works. 

Optimising the RR-AuNP concentration (NP/mL) required consideration of a biocompatible, 

low dose model, whilst garnering an enhanced Raman signal at depth. These measures were 

met with a tumour specific dose of 2.91 x 10
10

 NPs in 3 mL, equating to a maximal dose of 

0.012 mg/Kg, remaining within the remit of a low HED model.  

Replaceable RR-AuNP inclusions were implemented with the use of borosilicate glass NMR 

tubes. The photoluminescent contribution to the spectrum of these NMR tubes can be 

eliminated, along with cosmic rays and inherent background noise, using pre- and post-

processing techniques. This improves the SNR, “amplifying” the inherent RR-AuNP signal. The 

techniques applied for this purpose, and the resulting analysis of the experimental findings, are 

discussed in the next Chapter. 
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8. SESORS of Breast Phantoms: 
Results and Analysis 

8.1 Introduction 

Following on from the experimental design set-up from the previous Chapter, the analysis of 

results is discussed here forth.  

Section 8.2 details the pre- and post-processing techniques used across the data, and the 

importance of such methods in the analysis of both point spectra and maps. The first depth 

profiling experimental results using semi-infinite breast phantoms of increasing thickness and a 

consistent AuNP inclusion step size depth is explored in Section 8.3. Section 8.4 follows on 

from this with the use of the morphologically representative breast phantom in a 

mammographically compressed state – the depth position of three 2-NT-AuNP inclusions is 

evaluated. The discussions and conclusions, Section 8.5, assesses the capabilities of un-

targeting reporter NPs, concluding on future works necessary to develop a targeted probe for 

deep Raman applications.  

8.2 Data Analysis: Pre- and Post-Processing Techniques 

All data analysis was completed using MATLAB R2014b, The Mathworks Inc. (Massachussetts, 

USA) with occasional graphs plotted in Excel, Microsoft (New Mexico, USA). All PCA was 

completed using the research group developed MATLAB programming and GUI. 

Single-point micro and deep Raman measurements are pre-processed using subtraction and 

baseline removal techniques, the advantages of which can be seen in Figure 8.1. The phantom 

spectrum undergoes subtraction from the AuNP inclusion measurement, allowing the spectral 

features of the RR-AuNPs within the NMR tube to remain. The photoluminescence garnered 

from the NMR tube, discussed in Chapter 8, Section 7.5, is then removed using the baseline 

subtraction. This technique uses a polynomial fit below the spectral line to remove the 
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background noise and photoluminescence, allowing the underlying RR-AuNP spectral features 

to feature more predominantly. 

 

 

When determining the objective signal to noise ratio (SNR) of a peak intensity of a Raman 

band, the following equation can be used: 

𝑆  
𝑆𝑁𝑅 = 

𝜎𝑦 
    (29) 

 

 

Figure 8.1: 3 mL concentrated 2-NT AuNPs within NMR tube, within 10 mm breast phantom pre-

processing techniques. Top Left: the standard 10 mm breast tissue phantom spectra; Top Right: 10 

mm breast tissue phantom with 2-NT AuNP in NMR tube occlusion; Bottom Left: the breast tissue 

phantom subtracted spectrum – the photoluminescence from NMR tube within the can be seen, 

with the polynomial baseline subtraction represented by the pink dashed line; Bottom Right: 

subtracted and baselined spectrum – the photoluminescent contribution is significantly reduced.  The 

acquisition for each measurement was 2 seconds at 5 accumulations. 
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whereby the average peak height above the baseline, 𝑆 , is divided by the standard deviation 

of the peak height, 𝜎𝑦. The SNR is most accurately calculated by acquiring several iterations 

of the sample spectrum for the average single peak height.
117

 

Maps were pre-processed prior to multivariate analysis using a combination of a set 

wavenumber range, cosmic ray removal, vector normalisation and mean centring.
286

  By 

applying a set wavenumber range, this reduces the size of the data set of further analysis, 

effectively streamlining the spectra to the wavenumber range of interest.  Cosmic ray removal 

is a required technique in reducing the variance of the resulting uncharacteristic spectral spikes 

from the eponymous phenomenon. A 3x3 mask median filter is applied to “smooth” the peaks 

to the averaged neighbouring pixels. A limitation to this technique is the resulting loss of spatial 

resolution. Vector normalisation reduces the effects of sample sourced variation, such as 

photon path length differences or intensity fluctuations. The normalised data is then mean 

centred, calculating the mean intensity of each wavenumber within the sample spectra and 

subtracting the difference away, placing all wavenumbers around the zero point. 

Post-processing in the form of Principal Component Analysis (PCA), a multivariate analysis 

technique, is then performed on the collected maps. PCA improves the SNR of a data set by 

reducing the dimensionality of the interrelated variables into their principal components (PC). 

A such, the first PC is the largest variant change within the data set, the second PC is the next 

largest change in variance, uncorrelated to the previous, and so on.
287

 Each PC has a 

corresponding spectral loading, detailing the spectral origin of the variance, and false colour 

map, which plots the regional differentiation between the corresponding (bio)molecules.
288

 

8.3 Depth Profiling – Semi-Infinite Breast Phantom  

Acquisition parameters for the signle-point transmission Raman measurements were set at the 

parameters of 2 seconds and 5 accumulations, with a sample illumination intensity of 300 mW. 
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Initial point measurements of the 2-NT, 4-ATP and 4-MBA within the 10 mm breast phantom 

NMR tube inclusion are plotted in Figure 8.2. The inherent intensity of each reporter is 

displayed along each individual spectrum. 

 

Figure 8.2: Subtracted and Raman baselined spectra of the three Raman reporter AuNPs, 2-NT 

(top), 4-ATP (mid) and 4-MBA (bot), within the single 10 mm breast tissue phantom block. The 

signal intensities plotted across each spectrum is plotted in relation to the colour bar. The acquisition 

for each measurement was 2 seconds at 5 accumulations. 

 

The key characteristic peaks of each reporter are still present – with the C = O stretch (1710 

cm
-1

) of 4-MBA present to further distinguish it from the 4-ATP spectrum.  

Three phantom thicknesses were considered: 23, 28 and 33 mm. The position of the first 

inclusion was set at 6.5 mm – one 1.5 mm skin phantom layer and the 10 mm inclusion breast 

phantom section – increasing at a step size of 5 mm. The resulting spectra at the three (23 

mm phantom thickness), four (28 mm) and five (33 mm) depth positions are plotted in the 

3D graphs below. The relative peak height value of the characteristic peaks was collected using 

the Measure Peak MATLAB function, see Appendix for the code, and annotated upon each 

plot, with the resulting depth intensity profile line-plotted in black across the spectra.  
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Figure 8.3: Raman spectra of 2-NT (top), 4-ATP (mid) and 4-MBA (bot) AuNPs within 23 mm of 

breast phantom at 5 mm intervals towards the detector. Signal intensity of the spectral peaks is 

plotted in relation to the colour bar. The signal intensity depth profile of characteristic peaks 

determined by the relative peak height is line mapped. 
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At 23 mm, Figure 8.3, the depth intensity profiles for each of the RR-AuNPs vary in 

characteristic peak ratio. The depth profiles of the higher wavenumbers (1380, 1589 and 1587 

cm
-1

) differ for each of the RR-AuNPs – the greatest signal intensity is at full depth for the 2-

NT, mid-depth for 4-ATP and least depth for the 4-MBA. Conversely, the low wavenumber 

peaks (1066, 1081 and 1079 cm
-1

) having comparatively lower overall signal intensity, all gain 

in intensity with depth progression.  

At the 28 mm phantom thickness, Figure 8.4, the lower wavenumber intensity profiles remain 

consistent as before. The greater wavenumber intensity profile, however, forms a elongated 

“U” shape, whereby the signal intensity at the front-mid position (11.5 mm depth) sits at the 

lowest most point. This  signal intensity profile is similar to the findings of Vardaki et al in which 

the transition of Trans-Stilbene (TS) through an Intralipid phantom presented a higher Raman 

intensity at the foremost and distal positions of the TS, with a decreased signal across the 

middle of the phantom.
289

 The position at 21.5 mm garners the greatest signal intensity for the 

2-NT and 4-ATP; the 4-MBA, however, has a loss of intensity at this point, aligning back to 

the standard characteristic peak ratio, as seen in Figure 8.2. 

At a depth of 28 mm, the signal from 4-ATP and 4-MBA decreases dramatically. The increased 

Raman signal achieved from the 2-NT RR-AuNPs allowed depth measurements up to 33 mm, 

hindered by a reduction in SNR. 
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Figure 8.4: Raman spectra of 2-NT (top), 4-ATP (mid) and 4-MBA (bot) AuNPs within 28 mm of 

breast phantom at 5 mm intervals towards the detector. Signal intensity of the spectral peaks is 

plotted in relation to the colour bar. The signal intensity depth profile of characteristic peaks 

determined by the relative peak height is line mapped. 
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Figure 8.5: Raman signal profile of 2-NT AuNPs within 33 mm of breast phantom at 5 mm intervals 

towards the detector. Signal intensity of the spectral peaks is plotted in relation to the colour bar. 

The signal intensity depth profile of characteristic peaks determined by the relative peak height is line 

mapped. 

 

 

The 2-NT signal intensity profiles, Figure 8.5, remains consistent to both the “U” shaped profile 

in the high wavenumber region and development of the lower wavenumber intensity at a 

greater depth within the 33 mm semi-infinite phantom. 

For each of the reporters, the peak of a higher Raman shift (≥1380 cm
-1

) garned an increased 

overall signal intensity comparative to the lower shifted, characteristic peak. The lower Raman 

shift peaks (1066, 1081 and 1078 cm
-1

) gained signal intensity as the inclusion depth profile 

increased, moving closer towards the detector. 

The relative peak position of the Raman reporter AuNPs in relation to the inherent breast 

phantom signal is seen in Figure 8.6. 
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Figure 8.6: Raman spectra of the inherent phantom signal, with the exploded area of interest also 

containing the subtracted and baselined Raman reporters from within the 10 mm phantom. The 

main characteristic peaks for 2-NT, 4-ATP and 4-MBA are highlighted with an ‘X’ of the 

corresponding colour. 

 

 

The lower Raman shifted characteristic peaks of all reporters, and higher shift peaks for the 4-

ATP and 4-MBA are positioned upon a “blank space” area of the spectrum, having minimal 

influence from the inherent Sylgard phantom Raman peaks. The 2-NT peak at 1380 cm
-1

 lies 

directly on the shoulder of the Sylgard peak at 1410 cm
-1

, casuing a level of intereference by 

increasing the overall intnesity and hence peak height. This, along with the intrinsically larger 

Raman cross-section, leads to the 2-NT signal collection at greater depths comparative to the 

4-ATP and 4-MBA reporters. 

The difference in peak height ratio across all of the reporters is made light when analysing the 

position of the characteristic peaks upon the Sylgard absorption spectrum. Conversion of peak 

values from Raman shift (cm
-1

) to wavelength (nm) from the total wavenumbers (10248) is 

described in Equation (29), using 1066 cm
-1

 as an example: 

 

12048 − 1066 =  10982 

1

10982
 ×  107 = 910.58 𝑛𝑚  

(29) 
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The results for each of the reporter characteristic peaks are plotted in Figure 8.7. 

 

 

The reporter peaks 1066 – 1081 cm
-1

 lie directly upon the absorption peak of the Sylgard, 

causing the signal intensity ratio comparative to the higher wavenumber peaks to be reduced 

when positioned at the lowest depth profile (6.5 mm). The greater absorption of photons 

creates a brevity of AuNP Raman photon contribution at the wavenumber range between 

800 – 1200 cm
-1

 and hence a greater Raman signal from the Sylgard. The Raman photon 

contribution increases at a greater depth as the scattered photons are able to interact with the 

reporter AuNPs and be available for collection.  

With the depth profile knowledge relating to each of the Raman reporter peaks and the relative 

intensity of each of them, the 2-NT was selected for depth mapping analysis within the 

morphologically representative breast phantoms. 

 

Figure 8.7: Absorbance spectra of the plain Sylgard with the characteristic peaks of the three Raman 

reporters (2-NT, 4-ATP and 4-MBA) plotted and labelled with the corresponding wavenumber 

upon the graph. The illumination wavelength of 830 nm is highlighted with a red dotted line. 
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8.4 Depth Mapping Analysis – Morphological Breast Phantom 

For each breast phantom, the maps were measured at a sample illumination intensity of 300 

mW under the acquisition parameters of 4.5 seconds with 4 accumulations, totalling 18 

seconds. A step size of 0.9 mm both horizontally and vertically was set.  

A visualisation of the mapped area upon the laser-phantom interface is seen in Figure 8.8. 

 

Figure 8.8: Autodesk Inventor modelled 25 mm breast phantom. The mapped area and central 

crosshair is outlined in black. Left to right/front to back ordering of the NMR tube inclusions are 

highlighted, with the path of illumination also shown (red arrow). 

 

Initially, measurement of the 1066 cm
-1

 and 1380 cm
-1

 relative peak height using the Measure 

Peak MATLAB function was undertaken to provide an intensity depth profile across each of 

the breast phantom thicknesses. The results for the two characeristic peaks are shown in 

Figure 8.9. 
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Illumination 
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Figure 8.9: Two graphs to show the peak area intensity of the 2-NT characteristic peaks at 1380 

cm
-1

 (top graph) and 1066 cm
-1

 (bottom). The generalised area of the three NMR tube positions 

within the breast phantoms, front, mid-centre and back, is highlighted in orange. 

 

 

At a lateral distance of ≥6.4 mm from the first, front-left 2-NT AuNPs, no spectral contribution 

arises from the peak at 1066 cm
-1

. Spectral contribution from the peak at 1380 cm
-1

 is seen 

from the starting position of the map, at a distance of 8.1 mm. This, once again, is due to the 

peak position upon the shoulder of the 1410 cm
-1

 PDMS peak granting perceived 

enhancement. 
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The overall intensity profile shape of both characteristic peaks are in agreeance with the 

previously defined profiles visualised within the semi-infinite phantom point-measurements. 

PCA was utilised across all three depth maps to further analyse the intensity ratio of the 1066 

and 1380 cm
-1

 2-NT peaks at increasing depths. All maps were pre-processed with a set 

wavenumber range, cosmic ray removal and mean centering. 

 

Figure 8.10: 25 mm Breast Phantom, principal component 3 map and loading: The red pixels 

corresponds to the ring symmetric stretch at 1066 cm
-1

 of 2-NT, the blue pixels correspond to the 

ring symmetric stretch at 1380 cm
-1

 and 1620 cm
-1 

of the 2-NT – all three are highlighted in orange. 

The PDMS peak at 1410 cm
-1

 is highlighted in green, with the NMR tube photoluminescent 

contribution in blue. The positioning of the AuNPs are signposted in grey above and below the 

pseudo-colour map. Pre-processing: wavenumber range, median filtering and mean centring. 

 

Figure 8.11: 27.5 mm Breast Phantom, principal component 3 map and loading: The red peaks 

correspond to the ring symmetric stretch at 1380 cm
-1

 and 1620 cm
-1 

of the 2-NT, the blue peak 

corresponds to the ring symmetric stretch at 1066 cm
-1

 of 2-NT – all three are highlighted in orange. 

The PDMS peak at 1410 cm
-1

 is highlighted in green, with the NMR tube photoluminescent 

contribution in blue. The positioning of the AuNPs are signposted in grey above and below the 

pseudo-colour map. Pre-processing: wavenumber range, median filtering and mean centring. 
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Figure 8.12: 30 mm Breast Phantom, principal component 3 map and loading: The red peaks 

correspond to the ring symmetric stretch at 1380 cm
-1

 and 1620 cm
-1 

of the 2-NT, the blue peak 

corresponds to the ring symmetric stretch at 1066 cm
-1

 of 2-NT – all three are highlighted in orange. 

The PDMS peak at 1410 cm
-1

 is highlighted in green, with the NMR tube photoluminescent 

contribution in blue. The positioning of the AuNPs are signposted in grey above and below the 

pseudo-colour map. Pre-processing: wavenumber range, median filtering and mean centring. 

 

 

For each map, the third principal component displayed the 1066:1380 cm
-1

 intensity ratio 

difference, highlighted upon the spectral loadings in orange, along with the 1620 cm
-1

 peak. It 

can be seen that the influence of the Sylgard peak at 1410 cm
-1

, highlighted in green, becomes 

more pronounced with an increase in breast phantom thickness. Conversely, the residual 

photoluminescence of the NMR tube, highlighted in blue, reduces in contribution.  

AuNP positioning, left to right increasing in depth location, is highlighted in grey above and 

below the map axes. The regional differentation change displayed within the psuedo-colour 

maps switches peak dependance with an increase in phantom thickness. Within the 25 mm 

phantom, the 1066 cm
-1 

peak intensity becomes dominant at the distal location. Little 

differentiation, however, can be made between the frontal and mid-centrally located AuNPs 

intensity at 1380 cm
-1

. At 27.5 mm, reliance on both peaks occurs: the 1066 cm
-1 

peak again 

becomes dominant at complete depth, but a decrease in the intensity of the 1380 cm
-1

 

between the frontally and mid-positioned AuNPs is identifiable. The 30 mm phantom is no 

longer 1066 cm
-1

 peak dependent, with the 1380 cm
-1

 peak showing overall dominance. This 

follows the previously outlined depth intensity profiles of both peaks at a large depth. 
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8.5 Discussion and Conclusions 

The depth intensity profiles of the higher wavenumber characteristic peaks from three RR-

AuNP, generated from both the 28mm and 33 mm single-point depth measurements and 

mapping experiments, are in agreeance with the findings from Vardaki at el.
278

   

Incursions to the intensity of the lower wavenumber peaks was due to the inherent absorption 

properties of the PDMS, minimising Raman photon collection until the depth position of the 

RR-AuNPs reached a minimal detector distance. It could be argued that the laser wavelength 

selection, in terms of the relative absorption trendline, could be adjusted from 830 nm to 808 

nm. Changing the wavelength, in accordance with the biological NIR window in Figure 3.8, 

allows the illumination and Raman transmission photons greater access into and from the 

system for collection, respectively. 

Within the morphologically representative breast phantoms, determination of the position of 

the 2-NT AuNPs at depth relied on the ratio of the relative peak height intensities of the 

characteristic peaks (1066 and 1380 cm
-1

). Principal component analysis found that at a greater 

phantom thickness, the perception of RR-AuNP depth relied more heavily on the higher 

wavenumber peak (1380 cm
-1

), unaffected by the absorption profile. Singular RR-AuNP use, 

in combination with mammographic imaging, has been shown as a plausible concept.   

Multiplexed depth analysis within the morphologically representative breast phantom could 

not be perceived, due to the vast difference in intensities between the RR-AuNPs. Introducing 

a ratio of RR-AuNPs dependent on the signal intensity they produced would allow the 

multiplexed visualisation. Possible RR-AuNP configurations could be developed such as 

inclusion positioning combinations, or ternary colloid solutions mixed at selective ratios as 

studied by Jaebum Choo’s group.
290,291

 This required a repeat of the intensity depth profiles to 
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determine the required RR-AuNP concentration ratios, and further breast phantom 

manufacturing – future work to be covered.  

The development of morphologically and optically representative turbid phantoms is an area 

of research within the Raman community which requires further exploration. The use of 

mouse models is not wholly representative of human tissue in terms of both optical properties 

and the pharmacokinetics of AuNPs. As such, greater consideration into the use of optically 

layered turbid phantoms, with AuNP use adhering to a low dose model, must be made in 

future Raman spectroscopic works where human tissue is unavailable. 

As discussed previously, the concentration of RR-AuNPs selected for experimental study falls 

under the remit of a low dose model. This however, would require the whole dose to 

accumulate within the volume of the tumour – an impossibility due to the vast clearance 

mechanisms within the body and recent findings that a median of 0.7% of the administered 

dose arrives at the desired, solid tumour destination.
308

 Current contrast-based imaging, such 

as iodine for CT or barium in fluoroscopy, relies on the overall highlighting of vasculature or 

tissues to identify the abnormalities lying within the regions. This type of contrast use, despite 

increasing the visibility of disease, is non-specific. With NP use, the ability to target the specific 

disease site owes itself to further therapeutic options, such as drug delivery or photothermal 

ablation.
152,206,309

  

As such, improvement upon the RR-AuNP design could be made in terms of the presence of 

active targeting ligands on the colloid surface. Hence, this was possibility was explored within 

the next Chapter. Additionally, consideration into the relative colloidal heating at these depths 

is explored to determine the utility of the NP probes as diagnostic agents.  
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9. Breast Microcalcification Targeting 
Gold Nanoparticles 

9.1 Introduction 

The affinity of the 2-NT-PEG-alendronate functionalised AuNPs to hydroxyapatite (HAP) is 

quantified within this Chapter.  

In Section 9.2 the structural and biochemical features of the collagen scaffold of explored under 

dry and saturated conditions. The inclusion of the AuNPs within the collagen scaffold is seen 

in Section 9.3. Quantification of the effectiveness of the non-targeting and active-targeting 

AuNPs is explored using micro-Raman mapping and principal component analysis techniques 

within Section 9.4. The use of multivariate analysis is a necessary tool in the determination of 

whether selective binding of the targeted NPs to the hydroxyapatite truly occurs.  

Section 9.5 considers the targeting AuNPs at depth, and their effectiveness as a diagnostic tool 

in relation to the colloidal heating effect. Finally, the discussions and conclusions Section 9.6 

summaries the findings of this study. 

9.2 Collagen Scaffold Impregnated with Hydroxyapatite 

The measuring and analysis of the targeting NPs binding to HAP confirms the success of the 

NP labelling and design. Crystalline hydroxyapatite is soluble, making it difficult to quantify 

binding affinity within a colloidal solution. Hence Hydroxycoll, a HAP infused collagen which 

retains form once saturated, was used. 

The material is produced using homogenised fibrillar collagen blended with 5 µM 

hydroxyapatite crystals, which consequently undergoes lyophilisation to create a scaffold-like 

structure.
292

 The scaffold consists of holes up to 100 µM in diameter, seen in Figure 9.1, 

allowing permeation of the targeted NPs through the structure. 
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Figure 9.1: A scanning electron microscopy (SEM) image showing the pore size and structure of the 

Hydroxycoll material.
293

 

 

 

Initially, single-point Raman spectra of the scaffold, both dry and saturated in DI water, were 

collected. This established the biochemical signature of the material as a bulk and gain 

understanding of how the structure of the collagen changes under the two conditions. Two, 

small 10 x 20 mm sections of the Hydroxycoll was sectioned using a cutting mat and scalpel. 

One remained dry whilst the other was saturated in de-ionised water. Eight Raman 

measurements using the 830nm laser at 100% power for 5 seconds over three accumulations 

were measured and equated into single mean spectra for each series.  

The main peaks of interest, annotated in Figure 9.2, highlight the signal intensity change 

between the HAP phosphate (−𝑃𝑂4
 3−

) and collagen structures as the material transitions from 

a dry to a hydrated state.  

In the dehydrated state, peaks at 667 cm
-1

, 1243cm
-1

, 1343 cm
-1

, 1667 cm
-1

 and the range 

over 1437-145 cm
-1

 relate to the 𝐶–𝑆 stretching of cystine, amide III, −𝐶𝐻2 and −𝐶𝐻3 

symmetic stretch, amide I, and −𝐶𝐻2 deformation within the collagen, respectively. The 

shoulder peak at 920 cm
-1

 is assigned to the 𝐶–𝐶 stretch of the collagen proline ring. Hydrating 

the scaffold causes a significant change in the collagen structure: breaks in cystine and proline 

ring structures increases the concentration of 𝐶–𝑆 and −𝐶𝐻2 within the material. −𝑃𝑂4
 3−
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symmetric stretching peaks at 589 cm
-1

 and 960 cm
-1

 increase in intensity as the HAP becomes 

exposed. 

 

 

The nature of the HAP in relation to carbonate substitution was explored further. The ratio 

between the phosphate (−𝑃𝑂4
  3−

) symmetric stretch peaks at 960 cm
-1

 and 1046 cm
-1

, and 

carbonate (−𝐶𝑂3
  2−

) ions −𝐶𝑂 in-plane stretch at 1070 cm
-1

 determines the level of B-type 

substitution. This can be clinically applied to distinguish the degree of malignancy – a lesser B-

type substitution, or high carbonate level, is associated with benign lesions.
49,294

  A pure HAP 

crystal within the scaffold was micro-Raman point measured at 100% laser power for three 

seconds, seen in Figure 9.3:.  

 

Figure 9.2: Mean Raman spectra of the HAP impregnated collagen scaffolds under dry (blue) and 

wet (green) conditions. Specific peak assignments have been highlighted for clarity.  
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Figure 9.3: Raman spectrum of a pure HAP crystal within the dry collagen scaffold. The symmetric 

stretching phosphate peaks at 960 cm
-1

 and 1045 cm
-1

, and the in-plane stretching of the −𝑪𝑶 

within the carbonate ions at 1074 cm
-1

 have been labelled. The ratio of between the two groups of 

peaks confirms an elevated level of B-type substitution. 

 

 

Comparative to study by Kerssens et al, the intensity ratio of the carbonate peak to phosphate 

peaks within the HAP spectra mimics a 1.24% / 2.92% substitution level.
49

 This is 

representative of a high B-type substitution level, equivalent to a prolific cancerous lesion, 

making the Hydroxycoll a suitable representative material for breast cancer microcalcifications 

within malignant tissue. 

Next, a dry, 10 x 20 mm Hydroxycoll section was micro-Raman mapped to verify pore size 

and distribution of HAP throughout the collagen matrix. Due to the tiered, interlinking nature 

of the scaffold, surface montages collected of the scaffold, as seen in Figure 9.4, could not 

remain in complete focus. The highlighted area settled in focus across a complete scaffold 

pore, so was selected for Raman mapping. This smaller, highlighted image has been rotated 

to reflect the analysed colour maps below. 

960 cm
-1

 (−𝑃𝑂4
 3− symmetric stretch) 

1045 cm
-1

 (−𝑃𝑂4
 3− symmetric stretch) 

1074 cm
-1

 (−𝐶𝑂 in-plane stretch) 
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 Figure 9.4: A surface montage of the dry Hydroxycoll at 50X magnification – the exploded, rotated, 

section highlights the area selected to be Raman mapped. 

 

 

The mapping parameters consisted of 50X magnification, using the Streamline 830 nm laser 

at a 140 mW sample illumination intensity, with an imaging time of 30 seconds per step at a 5 

µm step size. The resulting maps highlighting the peak area intensity of the collagen at 667 cm
-

1

, and at 960 cm
-1

 for HAP, is displayed in Figure 9.5. 

 

Figure 9.5: Colour maps of peak area intensities to show the distribution of: collagen (left image), 

identified by the selected peak at 667 cm
-1

, 𝑪 − 𝑺 cysteine symmetric stretch; and HAP within the 

collagen structure (right image), identified by the selected peak at 960 cm
-1

, −𝑷𝑶𝟒
   𝟑−

 symmetric 

stretch. Pre-processing: Wavenumber range and median filter for cosmic ray removal. 

 

 

As seen, the HAP distribution was inclusive, but uneven, within the collagen, appearing to 

clump in junction areas of the scaffold. In a saturated state, however, internally bound HAP 
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becomes more available at the surface – a crucial factor to consider when analysing the binding 

patterns of the targeting colloid. 

9.3 Collagen Scaffold Colloid Introduction 

Prior to the introduction of the NPs to the collagen scaffold, NP/mL concentrations of targeting 

and non-targeting NP batches were required to be consistent. Beer-Lambert Law can be used 

to define the absorptivity of known, and unknown, concentrations of colloids.  First, known 

dilutions of bare AuNPs were measured using the UV/Vis spectrometer and plotted as a graph. 

A DI water blank set the zero-zero mark. The known standard concentration of NPs was 2.64 

x 10
-4

 M, hence a half and half dilution with DI water leads to ~1.32 x 10
-4

 M. Dilutions were 

further halved until a 1:16 ratio was reached. 

Figure 9.6: A graph to show the maximum absorbance peak value versus the known concentration 

of a NP dilution series. 

 

 

Beer’s Law is defined by the equation:  

 𝐴 =  𝜀 𝑙 𝑐 (30) 
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whereby 𝐴 is the maximum absorbance defined by the molar absorptivity, 𝜀, the light path 

length in cm, 𝑙, and the concentration of the solution in mol dm
-3

, 𝑐. To gain the molar 

absorptivity value, part of the equation can be rearranged to: 

 𝜀 =  
𝑐

𝑙
 (31) 

 

Taking the equation of the line in Figure 9.6, the absorbance value can be said to be: 

 𝐴 =  0.5532𝑐 + 0.0125 (32) 

  

where the concentration, c, is now the known value of 0.5532. The cuvette width, path length 

is a constant value of 1.25 cm. Hence, ε was calculated to a value of 4425.6 M
-1

 cm
-1

. The 

known maximum absorbance values of the labelled NPs were then calculated using Beer’s 

Law and the values gathered from this initial concentration sampling method. The results are 

plotted in the graph in Figure 9.6. 

Figure 9.7: A graph to show the maximum absorbance peak value versus the known concentration 

of labelled NPs, found using Beer-Lambert Law. 
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It can be seen from the equation of the line in Figure 9.6 that a negligible amount of deviation 

has occurred from the initial results. This is down to several factors: the UV/Vis graph in Figure 

5.18 shows asymmetry between the shape of the labelled and bare NP LSPR peak – variation 

of results is to be expected when measuring modified samples.  

From the results garnered, the labelled NPs were diluted to the known bare NP constant 

molar value of 2.64 x 10
-4

 for consistent experimentation.  

 

 

 

Figure 9.8: Targeted and non-targeted nanoparticle impregnation within collagen scaffold sections: 

(a) 0.5 mL NPs and hydrated 10 x 20 mm collagen sections prepared; (b) – (e) collagen placed and 

rotated in NPs for 5 minutes, progression over time seen; (f) remaining water/colloid – a slight 

difference of colour can be seen between the two solutions. 
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The introduction of targeting and non-targeting NPs to the Hydroxycoll began with the 

sectioning of the scaffold into regular 10 x 20 mm pieces. Two pieces were fully saturated, 

lightly drained of excess water and placed individually into 0.5 mL of 2-NT-PEG and 2-NT-

PEG-BP colloids. To gain an even coverage, the scaffold pieces were rotated every minute for 

five minutes, shown in Figure 9.8. The scaffolds were removed from the colloid solution, 

washed three times in excess DI water, and stored in a layer of cling film to preserve saturation. 

The remainder colloid solution was stored in Eppendorf tubes to be later analysed with UV/Vis.  

9.4 Micro-Raman Mapping and Analysis 

The Micro-Raman InVia, as described in Section 5.3 was used for single-point and mapped 

measurements. Single-point acquisition parameters were set at a sample illumination intensity 

of 70 mW, at 2 seconds and 5 acquisitions. The targeting and non-targeting colloid infused 

scaffolds were surface montaged and mapped using the 50x magnification, using the Streamline 

830 nm laser at 140 mW sample illumination power. An imaging time of 30 seconds per step 

at a 5 µm step size was selected. The pre- and post-processing techniques as established in 

Chapter 9, Section 8.2 were used again for this Chapter.  

Initial point spectra of the Hydroxycoll sections saturated with the respective targeting and 

non-targeting nanoparticles were taken, as seen in Figure 9.9. The spectra were normalised 

to the 960 cm
-1

 HAP peak to succinctly compare the spectra, reducing the relative intensities 

from differences in photon depth collection and scattering contributions.  The 2-NT-PEG 

colloid adsorbed section had a minimal 2-NT spectral contribution, with the collagen scaffold 

most prominent. By comparison, the contribution from the 2-NT reporter was greatly 

enhanced on the 2-NT-PEG-BP adsorbed collagen scaffold spectrum, Figure 9.9.  
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Mapping the saturated scaffolds caused several difficulties, as seen in Figure 9.10. The tiered 

nature of the scaffold had previously caused focussing issues; the drying rate of the wet scaffold, 

increased by laser heating during mapping, added an additional factor.  

 

 

 

With a focus drop off, signal intensity similarly fell, requiring a high laser power to compensate. 

However, high laser intensity caused burning artefacts to the scaffold when focussed to a 

cluster of NPs, heating them to very high temperatures. Irregularity in focus and difficulties in 

selecting an appropriate laser power resulted in many unfocused or burnt mapping attempts. 

  

Figure 9.9: Point spectra of the surface of a 10 x 20 mm Hydroxycoll section adsorbed with 0.5 mL 

2-NT-PEG AuNPs (left spectra) and 0.5 mL 2-NT-PEG-BP AuNPs (right spectra), normalised to 

the main HAP peak at 960 cm
-1

 (−𝑷𝑶𝟒
   −𝟑

).  

 

Figure 9.10: Surface montaged area before and after Raman mapping, mapped area highlighted by 

the red boxes. Post-mapping, the scaffold was refocused at the origin – a shift in the y and z axis of 

approximately 20 µm in both directions had occurred. 
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9.4.1 Non-Targeting 2-NT-PEG NPs 

 

 

Figure 9.11 shows the intensity map about the 960 cm
-1

 peak area, −𝑃𝑂4
   −3

, of the 2-NT-

PEG saturated collagen scaffold. Three, averaged spectral areas of interest have also been 

extracted from the map.  

The maps three distinct areas can be categorised into two groups – the first solely highlighting 

the HAP-collagen scaffold structure in spectrum 2; and the second displaying the 2-NT spectral 

 

Figure 9.11: peak area @960 cm
-1

. Highlighted areas #1 and #3 relating to the 2-NT-PEG signal; 

#2 is the pure HAP signal which remains free of 2-NT spectral peaks. Colour changes to annotation 

boxes and numbers on map for clarity only.  The characteristic 2-NT peaks within the PC1 spectrum 

are highlighted in orange, whilst the −𝑷𝑶𝟒
   −𝟑

 peak at 960 cm
-1

 is highlighted in purple. 
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contribution in number 1 and 3. Both areas 1 and 3 contain inherent collagen scaffold spectral 

contribution. These areas show no strong overlap between the −𝑃𝑂4
   −3

 and non-targeting 

AuNPs, made more apparent in the PCA map in Figure 9.12. 

 

Figure 9.12: PCA map and loading confirming non-selective clustering of 2-NT-PEG AuNPs. The 

characteristic 2-NT peaks within the PC1 spectrum are highlighted in orange, whilst the −𝑷𝑶𝟒
   −𝟑

 

peak at 960 cm
-1

 is highlighted in purple. Pre-processing: Wavenumber range, vector normalised, 

mean centred. 

 

 

The clustered nature of the two NP areas can be attributed to aggregation occurring during 

drying. 

9.4.2 Targeting 2-NT-PEG-BP NPs 

By comparison, the alendronate functionalised targeting AuNPs show a strong affinity to the 

−𝑃𝑂4
   −3

 within the collagen scaffold. Visualised by the peak area maps in Figure 9.13, map A 

for the −𝑃𝑂4
 −3

 960 cm
-1

 peak area and, B and C the signature 2-NT peaks at 1066 cm
-1

 and 

1380 cm
-1

 respectively. A section of the complete scaffold pore is well visualised in map A, 

with the cluster of 2-NT signal occurring along the scaffold path highly resembling the clumped 

distribution nature of the HAP, as seen in Figure 9.5. 
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Figure 9.13: Targeting AuNPs on collagen scaffold colour map: (A) peak area at 960 cm
-1

 (B) peak 

area at 1066 cm
-1

 (C) peak area at 1380 cm
-1

. 

 

 

From map A, six distinct areas of interest were extracted, with the area averaged spectra 

displayed in  

Figure 9.14. The 2-NT spectrum is present in each of the interest areas to varying degrees of 

intensity. Section 1 displays the greatest intensity, possibly due to this area having a 

topographically elevated position comparative to the well-defined scaffold pore, gaining a 

smaller z length to the objective and hence greater focus. Section 5, of the greatest HAP 

intensity, has contains a large collagen scaffold spectral contribution in addition to the signature 

2-NT peaks. This confirms the presence of incompletely functionalised targeting AuNPs, 

whereby the functionalised area containing the Raman reporter binds to the HAP, allowing 

the bare gold surface to interact with the collagen scaffold. 

For full confirmation of active targeting with PCA, further maps were explored. 

A 

B C 
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Figure 9.14: Targeting AuNPs on collagen scaffold colour map, peak area 960 cm
-1

. Six distinct areas 

of interest are outlined on the map, with the averaged spectra (1-6) plotted below. The characteristic 

2-NT peaks are highlighted in orange, whilst the −𝑷𝑶𝟒
   𝟑−

 peak at 960 cm
-1

 is highlighted in purple. 
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Figure 9.15 displays the intensity maps of a new pore area, map A for the −𝑃𝑂4
   −3

 960 cm
-1

 

peak area and, B and C the signature 2-NT peaks at 1066 cm
-1

 and 1380 cm
-1

 respectively. 

Once again, the clustered nature of the HAP is visualised, alongside the seemingly targeted 

agreeance of the signature 2-NT peaks. 

 

Figure 9.15: (A) peak area @ 960 cm
-1

 (B) peak area @ 1066 cm
-1

 (C) peak area @ 1380 cm
-1

  

 

 

Once again, areas of interest were extracted with the area averaged spectra displayed in Figure 

9.16. 

A 

B C 
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Figure 9.16: Targeting AuNPs on collagen scaffold colour map, peak area 960 cm
-1

. Six distinct areas 

of interest are outlined on the map, with the averaged spectra (1-6) plotted below. Colour changes 

to boxes and numbers on map only for contrast/clarity. The characteristic 2-NT peaks are highlighted 

in orange, whilst the −𝑷𝑶𝟒
   −𝟑

 peak at 960 cm
-1

 is highlighted in purple. 
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All six averaged spectra confirm a presence of 2-NT. From post-processing, the second 

principal component map and spectra is displayed in Figure 9.17, with the areas of interest 

from Figure 9.16 transposed onto the map.  

 

 

Within the PC2 map, areas of interest 2 and 3, despite the 1060 cm
-1

 and 1380 cm
-1

 peak 

area signal intensity, shows a variance more greatly aligned to the HAP spectrum. As such, this 

initial map was sectioned to include areas 2 and 3 for further analysis. Figure 9.18 and Figure 

9.19 displays the third and twelfth principal component colour maps and spectral loadings of 

the sectioned area, respectively.  

 

Figure 9.17:  The areas of interest from Figure 9.16 have been transposed. On the PC2 spectrum, 

the characteristic 2-NT peaks are highlighted in orange, whilst the −𝑷𝑶𝟒
   −𝟑

 peak at 960 cm
-1

 is 

highlighted in purple. Pre-processing: vector normalisation and mean centring; post-processing: 

principal component analysis.  Grey pixels = cosmic ray 
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In principal component analysis three, the two variable components within Figure 9.18  loading 

are the positive 2-NT spectrum, with the 1060 cm
-1

 and 1380 cm
-1

 peaks clearly defined. The 

negative peaks correspond to the −𝐶𝐻2,−𝐶𝐻3 twisting, wagging, and/or bending modes at 

1308 cm
-1

, and −𝐶𝐻2 deformation at 1425 cm
-1 

within the collagen scaffold. 

The presence of the −𝐶𝐻2,−𝐶𝐻3 vibrational modes is typical to the saturated state of the 

collagen scaffold; however, scaffold enhancement can only be due to the interaction between 

a bare AuNP surface. In relation to the PC3 map, this is specific to area of interest 3, with area 

2 holding a predominantly 2-NT saturated spectral area. 

 

 

Figure 9.18:  Principal component 3: colour map and loading of map resection for areas of interest 

2 and 3. Red pixels correspond to 2-NT, blue pixels correspond to the −𝑪𝑯𝟐, −𝑪𝑯𝟑 twisting, 

wagging, and/or bending at 1308 cm
-1

, and deformation at 1425 cm
-1

 within the collagen scaffold.  

On the PC3 spectrum, the characteristic 2-NT peaks are highlighted in orange, whilst the 

−𝑪𝑯𝟐, −𝑪𝑯𝟑 peaks and are highlighted in purple.  Pre-processing wavenumber range, mean 

centring. Grey pixel = cosmic ray 

2 

3 
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Figure 9.19: Principal component 12: map and loading of map resection for areas of interest 2 and 

3. Red pixels are the 960 cm
-1

 HAP, and the blue pixels correspond to 2-NT. On the PC12 

spectrum, the characteristic 2-NT peaks are highlighted in orange, the −𝑷𝑶𝟒
   −𝟑

 peak at 960 cm
-1

 

is highlighted in purple, and the −𝑷𝑶𝟒
   −𝟑

 peak at 1045 cm
-1

 and −𝑪𝑶 symmetric stretch at 1074 

cm
-1

 highlighted in blue.  Pre-processing wavenumber range, mean centring. Grey pixel = cosmic 

ray. 

 

 

The twelfth principal component, pseudocolour map and spectral loading pictured above in 

Figure 9.19, presents the three main HAP peaks alongside the 2-NT characteristic peaks with 

the spectrum as a whole. The main distinctive HAP peak at 960 cm
-1

 is highlighted in purple, 

with the −𝑃𝑂4
   −3

 peak at 1045 cm
-1

 and −𝐶𝑂 symmetric stretch at 1074 cm
-1

 highlighted in 

blue. Once again, the 2-NT peaks are displayed in orange, at 1067 cm
-1

 and 1379 cm
-1

. Due 

to the spectral resolution of the InVia of ~2 cm
-1

, this was not considered as a peak shift.  

The presence of both the HAP and 2-NT peaks within the same spectral loading quantitively 

confirms the active targeting of the nanoparticles.  
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Further to micro-Raman mapping, the remaining colloidal solution post collagen scaffold 

introduction was analysed against the starting colloidal concentration.  Using UV/Visible 

measurements and Beer Lambert Law, this determined the relative uptake for each set of 

colloids. 

 

Figure 9.20:  Beer-Lambert Law used to plot maximum absorbance at 546 nm against 

concentration; a bar graph to show the concentration of NPs remaining in solution, shown in the 

photo inset, with the uptake percentage added above each bar. 
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As seen within the insert photo in Figure 9.20, a slight colour difference between the targeting 

and non-targeting colloidal remains could be seen. The absorptivity defined concentration of 

the targeting NPs showed a 7.72% increase in collagen scaffold uptake compared to non-

targeting. The sponge-like nature of the scaffold is a factor to consider in the overall colloidal 

uptake.  

9.5 Colloid Heating 

Measurement of the 2-NT-PEG NPs at depth within the block breast phantoms was 

unsuccessful. The relative number of 2-NT molecules on the colloid surface of the pure RR-

AuNPs in comparison to the successfully functionalised 2-NT-PEG AuNPs is at a ratio of 33:1, 

or 81,855 molecules per AuNP to 2,474 molecules, respectively. As a point of interest, the 

2-NT-PEG AuNPs were synthesised with 58,978 PEG molecules per NP. As such, the dose 

of functionalised NPs required for extrinsic SERS at depth would be far out of the possible 

biocompatible range. 

 

 

Figure 9.21: A graph to show the temperature change, in Celsius, of the functionalised nanoparticles 

(2.91 x 10
10

 NPs) outside of and within different phantom thicknesses. DI water was selected as the 

control. The overall change in temperature for each has been labelled next to the corresponding 

line. 
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Despite this, the diagnostic quality in terms of relative 2-NT-PEG AuNP heating, and hence 

unwarranted heat transfer to surrounding tissue, was considered. Figure 9.21 shows the 

temperate change over two minutes of solely the AuNPs (2.91 x 10
10

 NPs in 1.2 mL), and 

the AuNPs within 10 mm of breast phantom, and 13 mm of breast and skin phantom. DI 

water was selected as the control. To preserve the functionality of the NP probes, the 

measurement outside of the phantom was cut short after a temperature of 30°C was reached. 

The dramatic decrease in 2-NT-PEG AuNP temperature from the 10 to 13 mm phantom is 

due to the MFP of the phantom (0.1 mm) leading to mostly scattering, reducing the light flux 

reaching the extended colloidal position. The change in light intensity (mW) from the laser 

interface (𝐼) to the colloid location (𝐼𝑂) is determined using the following equation: 

 𝐼𝑂 =  𝐼𝑒−(𝜇𝑠+𝜇𝑎)𝑥 (33) 

 

whereby the intrinsic scattering and absorption coefficients (𝜇𝑠 and 𝜇𝑎) are multiplied by the 

overall change of material thickness in mm (𝑥). The 𝜇𝑠 of the breast and skin phantoms are 

taken from the supplied literature results and calculated, from the known anisotropy of TiO2 

(0.93), to be 8.05 cm
-1

 and 13.91 cm
-1

 respectively. The 𝜇𝑎 of both phantoms is set at 0.05 

cm
-1

. 

Hence, the change in laser intensity from the interface (300 mW) to the colloid position within 

the 10 mm phantom is described as follows: 

 

𝐼𝑐𝑜𝑙𝑙𝑜𝑖𝑑 = 300𝑒−(8.05+0.05)0.5 

𝐼𝑐𝑜𝑙𝑙𝑜𝑖𝑑 = 5.23 𝑚𝑊                 
(34) 

 

The light intensity change on the optical axis from interface to collection through the 13 mm 

phantom is detailed in the exploded view in Figure 9.22. 
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Figure 9.22: Exploded view of the 13 mm breast and skin phantom with a 2-NT-PEG AuNP NMR 

tube inclusion. The calculated intensity of light after each phantom layer, and at the colloidal position, 

is depicted above the phantom illustration. The logarithmic light intensity graph across the phantom 

at 0.1 mm intervals, the mean free path of the phantom, is also plotted, with the colloid position 

highlighted with a red dashed line. 

 

 

Overall, a 4.586 mW difference in light intensity between the two phantom thicknesses is 

founded, clarifying the large drop-off in colloidal heating. From an initial illumination of 300 

mW, only 1.4 x 10
-3

 mW transmissions through the phantom to the detector. Extrapolated to 

the 30 mm morphological breast phantom, the intensity is further reduced to 1.45 x 10
-9

 mW. 

9.6 Discussion and Conclusions 

The 2-NT-PEG-Bisphonate labelled AuNPs have been shown the actively target the 

hydroxyapatite biomolecules which present at elevated levels within breast microcalcifications 

signalling malignancy, especially within cases of DCIS. The absence of HAP binding with the 2-

NT-PEG AuNPs leads to the conclusion that the affinity of the 2-NT-PEGNP AuNPs is due to 

the present alendronate moiety. 

The synthesis of the 2-NT-PEG-BP requires adjusting, with an increased ratio of 2-NT : PEG 

molecules required, for the NPs to be considered for SESORS. This would require further 

experimentation of the synthesis recipe to garner an increased RR signal whilst maintaining a 

brush-like PEG formation.  
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A complete remodel of the NP design could increase their effectiveness at depth. For example, 

the use of multi-layered, nanomatryoshka AuNPs would: increase the enhancement 

capabilities of the RR, with the additional remit for multiplexed imaging; allow full surface PEG 

coverage for increased biocompatibility; and introduce a possible photothermal aspect to the 

NP probes.
295,296

 This would vastly improve the functionality of the targeting AuNPs, a 

possibility to be explored within future works. 

Micro-Raman mapping proved difficult in terms of laser power adjustments to reduce the 

evaporation speed of the collagen scaffold and likelihood of AuNP burning. The use of a low 

lines/mm grating to visualise the Stokes scattering would quantification of the level of 

temperature increase reached. This would give verification of the thermo-therapeutic 

capabilities of the targeting AuNPs if used in conjunction with a Raman probe, for example. 

The active targeting molecule alendronate is non-specific to solely breast microcalcifications, 

binding to areas of osteoporosis and metastases within bone. This could be useful in 

ascertaining if the breast tumour has metastasised to the bone, with the nanoparticles providing 

excellent contrast for further x-ray imaging. The multi-faceted capabilities of these AuNPs 

within both Raman and X-ray imaging aligns them as a truly clinically viable, diagnostic probe. 
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10. Discussions, Conclusions and Future 
Work 

The main focus of this thesis has been: 

1. Nanoparticle design for diagnostic use in considering Raman signal, functionality and 

biocompatibility, in the selection of 80 nm gold nanospheres and the use of PEG.  

2. The use of turbid, multi-layered optical phantoms as a tissue representative. 

3. Demonstrating the first use of SESORS in anatomical tissue phantoms for breast 

imaging 

4. SESORS imaging development including protocols for an automated mapping system 

5. Exploring the translation requirements for the transmission Raman spectroscopy 

technique within the current practice of mammography, aiming to streamline the 

diagnostic pathway 

Discussions 

Prior to nanoparticle testing, a careful balance in attaining the maximum Raman signal possible 

within the remit of biocompatibility was required.  

Initially the material, size and shape were considered. The identification of gold as an inert 

material with low cytotoxicity deemed it more favourable than silver, despite a reduced 

localised surface plasmon resonance 𝜆𝑚𝑎𝑥.
109,115

 AuNP size and shape selection considered 

the LSPR peak position, with a red-shift occurring with the increase of size.
121,122,226

 In focussing 

on the production of a diagnostic tool, the selection of the nanosphere shape, over the 

increased photothermal potential of the nanorods or nanoshells,
141,142,145

 was made. The 

enhanced plasmonic effects produced by larger Au nanospheres makes them preferable for 

biomedical applications, whereby the selected 830 nm illumination wavelength lies within the 
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NIR biological window.
146–148

 The adsorption affinity of Raman reporters upon the surface of 

AuNPs ≤50 nm was also noted in the size selection process.
110,139,140

 Finally, the evaluation of 

the pharmacokinetics of AuNPs (≤8 nm undergoing glomerular filtration and >100 nm 

accumulating within the Kupffer cells of the liver)
176,177,179,180,297–300

 and the favourable enhanced 

permeability and retention effect of NPs between 10 – 100 nm,
201,209,210

 gold nanospheres 80 

nm in size were selected.  

To create a consistent, analytical SERS probe, the AuNPs employed need a high level of 

uniformity, being monodisperse in nature.
109,115

 The certainty of this within the on-site 

synthesised AuNPs could not be guaranteed and, as such, commercially purchased, citrate-

capped AuNPs were selected for use. 2-NT, 4-MBA and 4-ATP were selected as Raman 

reporters, known to have effective gold-thiolate and acetamido nitrogen binding mechanisms, 

and for previous use within NP biocompatibility studies.
110,120,206,228–230

 The low levels of colloid 

heating at depth confirmed the diagnostic potential of these AuNPs. To further explore 

biocompatibility Polyethylene Glycol, as a known stealth or “cloaking” agent, 
200,201

 was 

introduced in ratio with the 2-NT RR. This combination was explored to study the effect on 

signal at depth, which was founded to be unobtainable.  

Further development of the 2-NT-PEG AuNPs lead to an additional functionalisation with a 

bisphosphonate, alendronate. Bisphosphonates have a high affinity for the bone mineral 

hydroxyapatite, found to be present within Type II, −𝑃𝑂4
  3−

 B-type substitution breast 

microcalcifications, most commonly associated with neoplasms.
49,50

 Current literature from 

Cole et al has shown the successful binding of PEG-alendronate functionalised AuNPs to 

microcalcifications and bone tumours, which then act as an X-ray contrast agent within 

mammography or CT imaging.
59,231,232

 The current method used in confirming the successful 

functionalisation and selective binding of these PEG-BP AuNPs is through the micro-CT 

imaging of in vitro and in vivo mouse models. 
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The application of the 2-NT, PEG and BP created a biocompatible, actively targeting and 

Raman sensitive AuNP probe – a novel combination. Consideration into the chain length of 

the PEG, resolved at 2000 Da,
232

 and the positioning of the targeting moiety, decided upon 

placement at the distal end of the PEG,
233–235

 was undertaken. TEM imaging confirmed the 

carbodiimide chemistry undertaken to adjoin the alendronate molecule had affected the gold 

surface, although this could not confirm the success of functionalisation. As such, a HAP infused 

collagen scaffold, Hydroxycoll, was obtained through a Material Transfer Agreement, see 

Appendix, and saturated with both the targeting and non-targeting PEGylated NPs. Micro-

Raman maps, post-processed using Principal Component Analysis, quantified and confirmed 

(the absence of the 2-NT-PEG AuNPs in binding to the HAP) the combined presence of the 

2-NT and HAP spectral features with the 2-NT-PEG-BP AuNPs. concluding that the BP 

molecule had undergone successful binding to the PEG distal end. Evaluation of the remaining 

colloidal solution using Beer-Lambert Law further solidified the binding mechanism at work, 

with the remaining concentration of the 2-NT-PEG AuNPs 7.72% greater. This synthesis 

success opens the door to further consideration into the use of RR-PEG-BP functionalised 

AuNPs within a combined transmission Raman spectroscopy – mammographic imaging 

system, especially for patients with dense breast tissue. 

Requiring the NPs to remain within the biocompatible remit and the laser wavelength within 

the NIR range limited the level of SERS enhancement which could have been experimentally 

produced. As such, the transmission depths achieved within this thesis remained biologically 

relevant. In relation to the average compressed breast thickness of ~50 mm in the UK, over 

half of the population would not be sufficiently catered for under the current RR AuNP design 

and laser wavelength. As such, further modifications to both areas would need to be 

undertaken, blue-shifting the laser wavelength further into the centre of the NIR biological 

window and adjusting the NP size to RR ratio. 
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The use of turbid phantoms within Raman applications is a poorly explored area, with 

homogeneous Intralipid often selected for simple phantom work.
250

 Having a short working 

life-span and inability to form realistic complexity, liquid phantoms are fast being replaced with 

stable, solid phantoms of polydimethylsiloxane. These can be cast to the required shape with 

an adjustable quantity of scattering and absorption agents added.
249,252

 With this, an 

introduction of multiple-tissue layers, with varying optical properties, is viable, enhancing the 

realism of the phantoms. One such example of this is the use of spin-coating to simulate the 

epithelial tissue layers of the skin and bladder.
272,275

 Here, the creation of both breast and skin 

tissue phantoms through pour-casting into 3-D printed moulds was explored and tested. As 

discussed previously, the use of double integrating spheres would enable the measurement of 

the absorption and scattering coefficients of the phantom materials. This, however, required 

a sophisticated Monte Carlo photon migration model to provide the coefficients following back 

projection of the integrating sphere measurements on carefully prepared thin samples. In its 

place, care was taken to use protocols found within the literature to adjust the mg/mL 

concentration of titanium dioxide to PDMS, providing an appropriate set of optical properties 

relevant to post-menopausal breast and skin tissue.   

To efficiently analyse the breast phantoms within the transmission Raman set-up, a new 

mapping system was required. The design and implementation of the automated mapping 

system required several skill sets – optomechanical hardware construction, MATLAB and 

Andor software programming knowledge, and npn transistor electronic circuitry building. This 

delivered an efficient and rapid automation protocol. The main advantages of this system 

included an increase in workload capacity, and the production of highly specific and large data 

sets for further analytical “manipulation”. Further and continued use of this automated set-up 

across institutions would cement the protocol as a highly effective solution for mapping 

purposes within numerous, open-optics settings. 
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Conclusions 

The main aims of this thesis were to: confirm the use of turbid, multi-layered optical phantoms 

as viable tissue representatives; design and functionalise diagnostic gold nanoparticles with 

biocompatibility in mind; and demonstrate the potential for the incorporation of a SESORS 

transmission Raman spectroscopy technique within the current mammographic system, 

identifying the labelled AuNPs at varying depths. 

The ability to produce, and reliably replicate, phantoms of both breast and skin tissue was 

founded. The use of high-temperature 3D printed moulds, designed in semi-infinite and 

morphologically representative ways, successfully enabled consistent phantom production. In 

adjusting the concentration of TiO2 to satisfy the reduced scattering optical properties of post-

menopausal breast and skin tissue, multi-layered phantoms could be realised.  

It was concluded that within the remit of a low human equivalent dose, three Raman-reporter 

labelled AuNPs could be distinguished within ≤33 mm turbid phantoms. Under 

mammographic compression the average of breast thickness of women in the UK is ~50 mm, 

however this is further reduced with the use of spot compression on areas of interest.
87

 As 

such, this proof-of-concept phantom size is within the range of applicability, although an 

increased thickness would translate to a larger portion of the population. The Raman signal 

intensities obtained from the 4-MBA and 4-ATP were markedly lower than that of the 2-NT, 

owing to its affinity to and compact orientation upon the AuNP surface. The relative depth 

signal profile of each NP probe within the sample was also established, and found to be in 

agreement with the findings from Vardaki at el.
278

 Spectral interferences obtained from the 

inherent absorption and characteristic Raman peaks of the phantom material affected the RR 

peak height ratios between the high and low wavenumbers. As such, system adjustments 

concerning the preferable laser wavelength, working around the inherent material properties 
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whilst ensuring the illumination and collection photon remain within the NIR window, must 

be made. 

The functionalised 2-NT-PEG-BP AuNPs were confirmed to be actively targeting, with the 

present alendronate moiety having a high affinity to the HAP present within the Hydroxycoll 

collagen scaffold. This clearly demonstrates the successful creation of an AuNP probe with 

novel functionalisation. The multi-faceted capabilities of the 2-NT-PEG-BP AuNPs for both 

Raman and X-ray imaging, albeit requiring further exploration in design and biocompatibility, 

aligns them as a potentially clinically viable, diagnostic probe. Clearly the application of such a 

nanoparticle requires much greater safety analysis, considered in the Future Work sub-section 

of this chapter. 

The integration of new techniques within the clinical setting requires a high level of diagnostic 

accuracy. A critical appraisal of current diagnostic techniques versus SESORS is as follows: 

- MRI is a sought-after technique, providing highly sensitive images for diagnosis, 

although it comes at a large cost with extended waiting times. The use of gadolinium contrast 

is successful in increasing hydrogen relaxation times, providing enhanced clarity of lesions, 

however the agent is inherently toxic causing kidney tissue scarring. 

- Mammography provides the gold standard of imaging; it is however an inaccurate 

technique for patients with dense breasts, lacks specificity in defining microcalcifications, and 

requires ionising x-radiation. However, the use of Digital Breast Tomosynthesis is improving 

the sensitivity of cancer diagnosis. 

- Ultrasound is a non-ionising technique, providing rapid imaging for patients with dense 

breasts, with new advances into the use of higher frequency probes (~60 MHz) to detect 

microcalcifications which cannot be visualised within the standard frequency range. Biopsy, 
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taken under local or general anaesthetic, is still required to definitively determine the type of 

microcalcification, HAP or calcium oxalate prevalent. 

- Histopathology as the gold standard for micro-level tissue interpretation is gaining 

inter-practitioner accuracy, yet the required biopsies necessitate anaesthesia with possible 

repeat procedures essential if x-ray imaged microcalcifications are not represented within the 

specimen. 

SESORS, working with extrinsic SERS AuNPs has a consistent characteristic Raman spectrum, 

uninfluenced by the biochemical signatures of the surrounding tissues, with multiplexed 

imaging capabilities using non-ionising spectroscopy. This however, is reliant on several 

concerns. The surface chemistry of the gold-Raman reporter bond must be impervious, and 

fully label the complete AuNP surface. At a in vivo level, the EPR effect must alone accumulate 

a high concentration of low dosed AuNPs within the malignant tissues, relying on minimal 

Mononuclear Phagocyte System clearance. Further biocompatibility using PEG and active 

targeting functionalisation requires more in-depth study to determine the success of signal 

recovery at depth. 

This work has highlighted the need to focus on employing techniques which can be easily 

translated to the current diagnostic workflow. By employing transmission Raman and designing 

the breast phantom as if under mammographic compression, this enables detailed testing and 

device development to assist the easier translation of the technique as an adjunct for 

mammography. Incorporation of novel spectroscopic techniques within clinical diagnostic 

methods, as opposed to replacing them, propagates the likely acceptance into clinical practice. 

Furthermore, this would lessen the impact on current diagnostic pathways, reducing patient 

result wait times between several techniques and hence shortening disease development.
64

 

Other considerations crucial to evaluate for the translation of new techniques to future, 
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clinically minded work include: health economics (Is the expense of the technique 

unaffordable? Would it be manageable or cost effective on a specific clinical pathway, such as 

familial breast cancer patients?); diagnostic accuracy (Does the SESORS technique provide 

highly sensitive and specific results, and is a skilled professional required to translate them?); 

and, in the actuation of the technique, medical device ergonomics and safety, for both 

practitioner and patient. 

Future Work 

The work of this thesis is a step on the pathway to the use of gold nanoparticles in medical 

diagnostics, with particular focus on SESORS. The next steps that should be considered to 

develop, test and translate this approach would be as follows. 

Nanoparticle Development 

The configuration of the AuNPs into novel designs such as those found in a multi-layered 

nanomatryoshka should be considered.
295,296

 This would create the possibility of a more 

theranostically minded probe, applicable as both a diagnostic (inner AuNP) and photo-thermal 

therapeutic (Au shell) probe. Ultimately, this would eliminate the concerns surrounding the 

ratio between Raman-reporter:PEG molecules, increasing Raman signal intensity and the 

brush-like PEG conformation for biocompatibility simultaneously. Furthermore, the encasing 

of RR would allow the exploration of multiplexed imaging of cytotoxic reporters, such as 

malachite green isothiocyanate or crystal violet, as known reporter molecules with large 

Raman cross-sections. This may bring about the possibility for multiplexed depth analysis.  

The exploration of colloid heating could then be analysed with the thermo-therapeutic 

capabilities in mind. Within the micro-Raman system, the addition of a notch filter could enable 

the measurement of both the Stokes and anti-Stokes lines, enabling direct quantification of the 

temperature increase at the NP surface level. 
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Returning to the current AuNP designs, the dose model used within this thesis was based 

upon the low Human Equivalent Dose from studies using rat and pig animal models.
166,167,176

 

As such, the biocompatible nature of the functionalised AuNPs could be further explored. For 

example, introducing the AuNPs within a metastatic breast cell 3D model, using the 

Hydroxycoll collagen scaffold as a support network. This would be the first step towards 

determining the pharmacokinetics of the AuNPs within malignant breast tissue, and hence the 

relative levels of biocompatibility. 

Looking further forward, the clinical translation of gold nanoparticles requires an experimental 

testing and trail-based pathway, such as the one seen in Figure 10.1. 

 

Figure 10.1: A proposed guideline strategy for nanoparticle delivery research.
308

 

 

In developing and adjusting the delivery efficiency of a NP, the use of mouse models is 

paramount in determining the circulation half-life and biocompatibility of the design. As 

previously discussed, the use of swine for the large animal model is considered more applicable 

for the transferability of NPs to a Human Equivalent Dose, and as such would be considered 

alongside dogs, rabbits and monkeys. 

Progressing to the clinical testing phase, consideration of patient suitability for the trial is of the 
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utmost importance. Initially, patients selected for trial must fit under the “inclusion criteria” 

based on life expectancy, including for other medical conditions, previous treatment received 

and general health.
319

 Patients with advanced cancers are recommended for trials involving 

new therapies or techniques, for example immunotherapy (the treatment of disease by 

inducing/enhancing/suppressing an immune response), due to the experimental nature of the 

therapy.
319-321

 FDA approval (US) – nanomedicines (liposomes and polymer micelles) and 

magnetic NPs for imaging in clinical phases; estimated 5% approval rate for oncology drugs, 

costing $1 billion total cost to make it through all 4 Phases.
301

 

Finally, the next steps in realistic phantom design for further development of the approach 

could be improved upon using the spin-coating technique in creating discrete layers of dermis, 

epidermis, adipose and glandular tissues.
272,275

 Furthermore, the addition of static occlusions 

within the phantoms, such as HAP with varying levels of carbonate substitution for a range of 

microcalcifications, could also be explored.  

Phantom Development 

The breast phantom within this study was adjusted to represent Caucasian, post-menopausal 

breast tissue. Altering the absorption properties of the skin layer, representing distinct levels of 

pigmentation, and scattering properties of the breast tissue, to be applicable for pre-

menopausal breast tissue, would increase phantom applicability across different races and 

patient demographics. 

Testing of other clinically transferrable Raman techniques could also be explored, such as with 

the needle probe method.
159,160

 Although a comparatively invasive technique in comparison 

to transmission Raman spectroscopy, this method would provide highly sensitive results in 

determining the presence of the targeted AuNPs. A change in phantom material selection, or 

silicone base to curing agent ratio, would lead to the close resemblance of the natural feel and 
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haptic feedback of breast. This would cover the optical, morphological and tactile properties 

of the breast to produce hyper realistic phantoms. Additionally, the needle probe has the 

capability of harnessing the photo-thermal potential of the nanospheres, attainable with a close 

illumination-to-AuNP working distance. 
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Quasi-Skin Templates 

Produced to scale on a full A3 page. 

 



 

214 

 

 

MATLAB Code 

Standa Stage Automation with Andor CCD Trigger 

function varargout = GUI_Louise_motor_and_camera_V13(varargin) 
% GUI_LOUISE_MOTOR_AND_CAMERA_V13 MATLAB code for 

GUI_Louise_motor_and_camera_V13.fig 
%      GUI_LOUISE_MOTOR_AND_CAMERA_V13, by itself, creates a new 

GUI_LOUISE_MOTOR_AND_CAMERA_V13 or raises the existing 
%      singleton*. 
% 
%      H = GUI_LOUISE_MOTOR_AND_CAMERA_V13 returns the handle to a new 

GUI_LOUISE_MOTOR_AND_CAMERA_V13 or the handle to 
%      the existing singleton*. 
% 
%      

GUI_LOUISE_MOTOR_AND_CAMERA_V13('CALLBACK',hObject,eventData,handles,.

..) calls the local 
%      function named CALLBACK in GUI_LOUISE_MOTOR_AND_CAMERA_V13.M 

with the given input arguments. 
% 
%      GUI_LOUISE_MOTOR_AND_CAMERA_V13('Property','Value',...) creates 

a new GUI_LOUISE_MOTOR_AND_CAMERA_V13 or raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before 

GUI_Louise_motor_and_camera_V13_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to 

GUI_Louise_motor_and_camera_V13_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help 

GUI_Louise_motor_and_camera_V13 

  
% Last Modified by GUIDE v2.5 30-Mar-2016 14:11:25 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', 

@GUI_Louise_motor_and_camera_V13_OpeningFcn, ... 
                   'gui_OutputFcn',  

@GUI_Louise_motor_and_camera_V13_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
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    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before GUI_Louise_motor_and_camera_V13 is made 

visible. 
function GUI_Louise_motor_and_camera_V13_OpeningFcn(hObject, 

eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to GUI_Louise_motor_and_camera_V13 

(see VARARGIN) 

  
    % Choose default command line output for 

GUI_Louise_motor_and_camera_V13 
    handles.output = hObject; 

  

  
    handles = initGUI(handles); 
    handles = loadConfig(handles); 

     
    enableGUI(handles , 'idle'); 

  
    handles = initMotors(handles); 
    if handles.MotorsOK == 0; 
        set(handles.txMotorStatus , 'ForegroundColor' , 'r' , 'String' 

, 'Motors not detected'); 
    end 

  

  

  
    % Update handles structure 
    guidata(hObject, handles); 

  
% UIWAIT makes GUI_Louise_motor_and_camera_V13 wait for user response 

(see UIRESUME) 
% uiwait(handles.GUI_Motor_and_camera); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = 

GUI_Louise_motor_and_camera_V13_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  

  

  
function handles = initGUI(handles) 
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    xlabel(handles.axesMain , '[mm]'); 
    ylabel(handles.axesMain , '[mm]'); 
%     set(handles.axesMain , 'XTick' , [] , 'YTick' , [] ); 

  
    handles.Corners.TopLeft     = []; 
    handles.Corners.BottomRight = []; 

  
    handles.hLinePath = []; 
    handles.hCurrentPoint = []; 
    handles.ScansDone = []; 

     
    handles.hScanTimer = []; 

     
    handles.lastSavePath = []; 

     
    % Prepare progress bar 
    axis(handles.axesProgress , [0 1 0 1]); 
    box(handles.axesProgress , 'off'); 
    set(handles.axesProgress , 'XColor' , 'w'  , 'YColor' , 'w') 

     
    handles.hProgressBar = rectangle('Parent' , handles.axesProgress , 

... 
        'Position' , [0 , 0 , 0.01 , 1] , 'FaceColor' , 'g' , 

'EdgeColor' , 'none'); 

     

     

     

     
function FileNotFound(FileName) 

  
    msgbox(['File not found : ' FileName] , 'modal') 

  

     
function handles = initMotors(handles) 

  
    scriptPath = fileparts(mfilename('fullpath')); 
    NecessaryFiles = {'ximc.h' , 'ximc.h' , 'libximc.dll' , 

'xiwrapper.dll' , 'libximc_thunk_pcwin64.dll' , 'ximcm.m'}; 

     
    handles.MotorsOK = 0; 
    handles.DEBUGMODE = true;   % If something goes wrong, continue as 

simulation 

     
    set(handles.txMotorStatus , 'ForegroundColor' , [204,204,0]/255 , 

'String' , 'Initializing motors...'); 

  

     
    % Check for necessary files 
    for k = 1 : length(NecessaryFiles) 
        if ~exist([scriptPath , '\' , NecessaryFiles{k}] , 'file') 
            FileNotFound(NecessaryFiles{k}) 
            return 
        end 
    end 

     

     

     
    % Load library 
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    [~,maxArraySize]=computer; 
    is64bit = maxArraySize > 2^31; 
    if not(libisloaded('libximc')) 
        disp('Loading library') 
            if ispc 
                if (is64bit) 
                        [notfound,warnings] = 

loadlibrary('libximc.dll', @ximcm); 
                else 
                        [notfound, warnings] = 

loadlibrary('libximc.dll', 'ximcm.h', 'addheader', 'ximc.h'); 
                end 
            elseif ismac 
                [notfound, warnings] = 

loadlibrary('libximc.framework/libximc', 'ximcm.h', 'mfilename', 

'ximcm.m', 'includepath', 

'libximc.framework/Versions/Current/Headers', 'addheader', 'ximc.h'); 
            elseif isunix 
                [notfound, warnings] = loadlibrary('libximc.so', 

'ximcm.h', 'addheader', 'ximc.h'); 
            end 
    end 

     

     
    % List all functions 
    % F = libfunctions('libximc','-full'); 
    % libfunctionsview('libximc'); 

  
    % Find devices (two motors) 
    device_names = ximc_enumerate_devices_wrap(0); 
    devices_count = size(device_names,2); 
    if devices_count == 0 
        waitfor(msgbox('No devices found - simulating movement' , 

'modal')); 
        return 
    end 

  
    if length(device_names) < 2 
        waitfor(msgbox('I could not find 2 motors connected to the 

computer!' , 'modal')) 
        return 
    elseif length(device_names) > 2 
        waitfor(msgbox('There is more than 2 motors connected to the 

computer!' , 'modal')) 
        return 
    end 

  
    handles.device_idUP = calllib('libximc','open_device', 

device_names{1,1}); 
    handles.device_idLR = calllib('libximc','open_device', 

device_names{1,2}); 

  

  
    handles.MotorState_UP = ximc_get_status(handles.device_idUP); 
    handles.MotorStat_LR  = ximc_get_status(handles.device_idLR); 

  

     

     

     

  
    % Get options for SYNCH OUT 
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    % t = struct('SyncOutFlags', 0, 'SyncOutPulseSteps', 0, 

'SyncOutPeriod', 0, 'Accuracy', 0); 
    % t_ptr = libpointer('sync_out_settings_calb_t', t); 
    sync_settings = struct('SyncOutFlags', 0, 'SyncOutPulseSteps', 0, 

'SyncOutPeriod', 0, 'Accuracy', 0, 'uAccuracy', 0); 
    [result, sync_settings] = 

calllib('libximc','get_sync_out_settings', handles.device_idUP, 

sync_settings); 

     

     
    % Specify options for SYNCH OUT and send to device 
    sync_settings.SyncOutFlags  = bin2dec('00101001');  % Synch 

enabled, on stop, motor steps/encoder pulses instead of milliseconds 
    sync_settings.SyncOutPeriod = 100;  % ms 
    sync_settings.Accuracy = 0;  % distance to the target position. As 

soon as the distance to 
                                 % target on approach is less than or 

equal to this distance  
                                 % a synchronizing pulse will be 

generated if "on stop" option is used. 

  
    result(1) = calllib('libximc','set_sync_out_settings', 

handles.device_idUP, sync_settings); 
    result(2) = calllib('libximc','set_sync_out_settings', 

handles.device_idLR, sync_settings); 

  
    if ~all(result == 0) 
        popupErrorMessage('Error writing motor setup'); 
        return 
    end 

  

     
    % External IO mode flags 
    % What I want: 00100001 (Enabled + synch when motor stop + 

duration in ms) 
    % SYNCOUT_ENABLED   0X01  // 00000001  // Synchronization out pin 

follows the synchronization logic, if set. 
    % SYNCOUT_STATE     0X02  // 00000010  // When output state is 

fixed by negative SYNCOUT_ENABLED flag, the pin state is in accordance 

with this flag state. 
    % SYNCOUT_INVERT    0X04  // 00000100  // Low level is active, if 

set, and high level is active otherwise 
    % SYNCOUT_IN_STEPS  0X08  // 00001000  // Use motor steps/encoder 

pulses instead of milliseconds for output pulse generation if the flag 

is set 
    % SYNCOUT_ONSTART   0X10  // 00010000  // Generate synchronization 

pulse when movement starts. 
    % SYNCOUT_ONSTOP    0X20  // 00100000  // Generate synchronization 

pulse when movement stops. 
    % SYNCOUT_ONPERIOD  0X40  // 01000000  // Generate synchronization 

pulse every SyncOutPeriod encoder pulses 
    % hexToBinaryVector('0x20') 

  

  
    % structs.sync_out_settings_t.members=struct('SyncOutFlags', 

'uint32', 'SyncOutPulseSteps', 'uint32', 'SyncOutPeriod', 'uint32', 

'Accuracy', 'uint32', 'uAccuracy', 'uint32'); 
    % sync_out_settings_t       Struct Reference 
    % unsigned int SyncOutFlags 
    % Flags of synchronization output. 
    %  
    % unsigned int SyncOutPulseSteps 
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    % This value specifies duration of output pulse. 
    %  
    % unsigned int SyncOutPeriod 
    % This value specifies number of encoder pulses or steps between 

two output synchronization pulses when SYNCOUT ONPERIOD is set. 
    %  
    % unsigned int Accuracy 
    % This is the neighborhood around the target coordinates, which is 

getting hit in the target position and the momentum 
    % generated by the stop 
    %  
    % unsigned int uAccuracy 
    % This is the neighborhood around the target coordinates in micro 

steps (only used with stepper motor) 

  

     
    handles.MotorsOK = 1; 
    handles.DEBUGMODE = false; 

     

    set(handles.txMotorStatus , 'ForegroundColor' , 'g' , 'String' , 

'Motors detected'); 

     

     

     

     

  

  
% --- Executes on button press in btSetCorner1. 
function btSetCorner1_Callback(hObject, eventdata, handles) 
% hObject    handle to btSetCorner1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

  
    if handles.DEBUGMODE  
        handles.Corners.TopLeft = step2mm([0 , 0]); 
        updateROIstatus(handles); 

         
    elseif handles.MotorsOK == 1 
        state_UP = ximc_get_status(handles.device_idUP); 
        state_LR = ximc_get_status(handles.device_idLR); 

  
        handles.Corners.TopLeft = step2mm([state_UP.CurPosition , 

state_LR.CurPosition]); 
    end 

  
    updateROIstatus(handles); 
    handles = parseInput(handles); 
    guidata(hObject , handles); 

  

     

     
% --- Executes on button press in btSetCorner2. 
function btSetCorner2_Callback(hObject, eventdata, handles) 
% hObject    handle to btSetCorner2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

     
    if handles.DEBUGMODE  
        handles.Corners.BottomRight = step2mm([-4700 , 0]); 



 

220 

 

        updateROIstatus(handles); 

  
    elseif handles.MotorsOK == 1 
        state_UP = ximc_get_status(handles.device_idUP); 
        state_LR = ximc_get_status(handles.device_idLR); 

  
        handles.Corners.BottomRight = step2mm([state_UP.CurPosition , 

state_LR.CurPosition]); 
    end 

     

     
    updateROIstatus(handles); 
    handles = parseInput(handles); 
    guidata(hObject , handles); 

  

         

     
function updateROIstatus(handles) 
    % Lights up the ROI indication in the status bar 

     
    if isempty(handles.Corners.TopLeft) && 

isempty(handles.Corners.BottomRight) 
        set(handles.txROIInitialized , 'ForegroundColor' , 'r' , 

'String' , 'ROI not initialized');     
    elseif xor(isempty(handles.Corners.TopLeft) , 

isempty(handles.Corners.BottomRight)) 
        set(handles.txROIInitialized , 'ForegroundColor' , 

[204,204,0]/255 , 'String' , 'One corner initialized'); 
    else 
        set(handles.txROIInitialized , 'ForegroundColor' , 'g' , 

'String' , 'ROI initialized');     
    end 

         

     

     
function x = step2mm(x) 
    % Transforms motor steps in mm 
    % 53942 steps = 100 mm 

  
    x = x / 53942 * 100; 

     

     
function x = mm2step(x)     
    % Transforms mm in motor steps  
    % 53942 steps = 100 mm 

  
    x = round(x * 53942 /100) ; 

  

  

  

     
function [handles , Nscans] = buildPath(handles) 

     
    Nscans = []; 

  
    [handles , inputOK] = checkInput(handles); 
    if inputOK ~= 1;   return;    end 
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    % Builds the motor paths from the input data 
    % Startij point 
    xpos0 = handles.Corners.TopLeft(1); 
    ypos0 = handles.Corners.TopLeft(2); 

     
    % Ending point 
    xlim = handles.Corners.BottomRight(1); 
    ylim = handles.Corners.BottomRight(2); 

     
    % Check if user indicated a single line 
    if xpos0 == xlim 
        button = questdlg('Are you trying to scan a single vertical 

line?','Single line scan alert','Yes','No','Cancel','Yes') ; 
        if strcmpi(button , 'No') || strcmpi(button , 'Cancel') 
            setappdata(handles.GUI_Motor_and_camera , 'MotorPath' , 

[]); 
            setappdata(handles.GUI_Motor_and_camera , 'ScansDone' , 

[]); 
            return 
        end 

         
        handles.StepSizeHorizontal = 0; 
        set(handles.txHorizontalStep , 'String' , '0'); 

         
    elseif ypos0 == ylim 
        button = questdlg('Are you trying to scan a single horizontal 

line?','Single line scan alert','Yes','No','Cancel','Yes') ; 
        if strcmpi(button , 'No') || strcmpi(button , 'Cancel') 
            setappdata(handles.GUI_Motor_and_camera , 'MotorPath' , 

[]); 
            setappdata(handles.GUI_Motor_and_camera , 'ScansDone' , 

[]); 
            return 
        end 

         
        handles.StepSizeVertical = 0; 
        set(handles.txVerticalStep , 'String' , '0'); 
    else 

         
    end 

     
    % Steps 
    xstep = handles.StepSizeHorizontal; 
    ystep = handles.StepSizeVertical; 

  

     
    % Check if steps make sense 
    if (xstep == 0  &&  xpos0 ~= xlim)  ||  (ystep == 0  &&  ypos0 ~= 

ylim)  
        msgbox('You indicated a zero-size step, which is only valid 

for single line scans!','Wrong step size'); 
        setappdata(handles.GUI_Motor_and_camera , 'MotorPath' , []); 
        setappdata(handles.GUI_Motor_and_camera , 'ScansDone' , []); 
        return 
    end 

     

     
    % X and Y coordinates of all points 
    if xlim < xpos0 
        xstep = -xstep; 
    end 
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    if ylim < ypos0 
        ystep = -ystep; 
    end 

     

     
    X  = (xpos0 : xstep : xlim + xstep)'; 
    Y  = (ypos0 : ystep : ylim + ystep)'; 

     
    if isempty(X);   X = xpos0;   end 
    if isempty(Y);   Y = ypos0;   end 

     
    LX = length(X); 
    LY = length(Y); 
    Nscans = LX * LY; 

     
    % Assemble motor path 
    MotorPath = zeros(Nscans , 2); 
    for k = 1 : length(Y) 
        if mod(k,2) == 1 
            MotorPath((k-1)*LX+1 : k*LX , :) = [X , repmat(Y(k) , LX , 

1)]; 
        else 
            MotorPath((k-1)*LX+1 : k*LX , :) = [flipud(X) , 

repmat(Y(k) , LX , 1)]; 
        end 
    end 

     

     

     
    % Repeat acquisitions at each step if necessary 
    if handles.AcquisitionsPerStep > 1 
        X = MotorPath(: , 1)'; 
        Y = MotorPath(: , 2)'; 

         
        X = repmat(X , handles.AcquisitionsPerStep , 1); 
        Y = repmat(Y , handles.AcquisitionsPerStep , 1); 
        X = X(:); 
        Y = Y(:); 
        MotorPath = [X , Y]; 
    end 

  
    Nscans = size(MotorPath , 1); 
    setappdata(handles.GUI_Motor_and_camera , 'MotorPath' , 

MotorPath); 
    ScansDone = zeros(Nscans , 1); 
    setappdata(handles.GUI_Motor_and_camera , 'ScansDone' , 

ScansDone); 

  
    handles = updateGraph(handles) ; 

     

     

     

     
function handles = updateGraph(handles)     

     
    ScansDone = getappdata(handles.GUI_Motor_and_camera , 

'ScansDone'); 
    currentPoint = find(ScansDone , 1 , 'last'); 

  

     



Appendix 

223 

 

    MotorPath = getappdata(handles.GUI_Motor_and_camera , 

'MotorPath'); 

     
    if isempty(currentPoint);  currentPoint = 1;   end 

     
    if isempty(handles.hLinePath) 
        handles.hLinePath = plot(handles.axesMain, MotorPath(:,1) , 

MotorPath(:,2) , 'b-'); 
        hold(handles.axesMain , 'on'); 
        handles.hCurrentPoint = plot(handles.axesMain , 

MotorPath(currentPoint,1) ,... 
                                                        

MotorPath(currentPoint,2) , 'ro'); 
        grid(handles.axesMain , 'on'); 
    else 
        set(handles.hLinePath , 'XData' , MotorPath(:,1) , ... 
                                'YData' , MotorPath(:,2)) 
        set(handles.hCurrentPoint , 'XData' , 

MotorPath(currentPoint,1) , ... 
                                    'YData' , 

MotorPath(currentPoint,2)) 
    end 

     
    xstep = handles.StepSizeHorizontal; 
    ystep = handles.StepSizeVertical; 

     
    % change step size just for drawing 
    if xstep == 0; xstep = 1; end ;    if ystep == 0; ystep = 1; end 

     
    axis(handles.axesMain, [min(MotorPath(:,1)) - xstep*2 , ... 
                            max(MotorPath(:,1)) + xstep*2 , ... 
                            min(MotorPath(:,2)) - ystep*2 , ... 
                            max(MotorPath(:,2)) + ystep*2]); 

         
    xlabel(handles.axesMain , '[mm]'); 
    ylabel(handles.axesMain , '[mm]'); 

  

     

     

  
function txHorizontalStep_Callback(hObject, eventdata, handles) 
% hObject    handle to txHorizontalStep (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of txHorizontalStep as 

text 
%        str2double(get(hObject,'String')) returns contents of 

txHorizontalStep as a double 
    handles = parseInput(handles); 
    guidata(hObject , handles); 

  

  
% --- Executes during object creation, after setting all properties. 
function txHorizontalStep_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txHorizontalStep (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 
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% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function txVerticalStep_Callback(hObject, eventdata, handles) 
% hObject    handle to txVerticalStep (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of txVerticalStep as 

text 
%        str2double(get(hObject,'String')) returns contents of 

txVerticalStep as a double 
    handles = parseInput(handles); 
    guidata(hObject , handles); 

  

  
% --- Executes during object creation, after setting all properties. 
function txVerticalStep_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txVerticalStep (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function txAcquisitionTime_Callback(hObject, eventdata, handles) 
% hObject    handle to txAcquisitionTime (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of txAcquisitionTime 

as text 
%        str2double(get(hObject,'String')) returns contents of 

txAcquisitionTime as a double 
    handles = parseInput(handles); 
    guidata(hObject , handles); 

  

     

  
% --- Executes during object creation, after setting all properties. 
function txAcquisitionTime_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txAcquisitionTime (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in comboAcquisitionUnit. 
function comboAcquisitionUnit_Callback(hObject, eventdata, handles) 
% hObject    handle to comboAcquisitionUnit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: contents = cellstr(get(hObject,'String')) returns 

comboAcquisitionUnit contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 

comboAcquisitionUnit 

     
    handles = parseInput(handles); 
    guidata(hObject , handles); 

     

  
% --- Executes during object creation, after setting all properties. 
function comboAcquisitionUnit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to comboAcquisitionUnit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function [handles , inputOK]= checkInput(handles) 

  

  
    if isempty(handles.Corners.TopLeft) || 

isempty(handles.Corners.BottomRight) 
        inputOK = 'Please define a ROI'; 
        return 
    end 

     

    
    inputOK = 1; 

     

     

     

  
function handles = parseInput(handles) 

     

  

     
    handles.StepSizeHorizontal  = 

str2double(get(handles.txHorizontalStep , 'String')); 
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    handles.StepSizeVertical    = 

str2double(get(handles.txVerticalStep , 'String')); 
    handles.AcquisitionsPerStep = 

str2double(get(handles.txAcquisitionsPerStep , 'String')); 
    handles.AcquisitionTime     = 

str2double(get(handles.txAcquisitionTime , 'String')); 

     
    % Time in seconds 
    if get(handles.comboAcquisitionUnit , 'Value') == 2; 
        handles.AcquisitionTime = handles.AcquisitionTime * 60; 
    end 

  
    [handles , Nscans] = buildPath(handles); 

  
    setTimeRemaining(0 , Nscans , handles.AcquisitionTime, 

handles.txEstimatedTime); 

  

  

     
function popupErrorMessage(message) 

  
    waitfor(msgbox(message , 'modal')) 

        

     

     
function enableGUI(handles , option) 

  
switch option 
    case 'running' 
        set(handles.btSetCorner1 , 'Enable' , 'off'); 
        set(handles.btSetCorner2 , 'Enable' , 'off'); 

  
        set(handles.txHorizontalStep , 'Enable' , 'off'); 
        set(handles.txVerticalStep , 'Enable' , 'off'); 
        set(handles.txAcquisitionTime , 'Enable' , 'off'); 
        set(handles.txAcquisitionsPerStep , 'Enable' , 'off'); 
        set(handles.comboAcquisitionUnit , 'Enable' , 'off'); 

         
        set(handles.btStart , 'Enable' , 'off'); 
        set(handles.btGoToStep , 'Enable' , 'off');         
        set(handles.btReset , 'Enable' , 'off'); 
        set(handles.btStop , 'Enable' , 'on'); 

         
    case 'paused' 
        set(handles.btSetCorner1 , 'Enable' , 'off'); 
        set(handles.btSetCorner2 , 'Enable' , 'off'); 

  
        set(handles.txHorizontalStep , 'Enable' , 'off'); 
        set(handles.txVerticalStep , 'Enable' , 'off'); 
        set(handles.txAcquisitionTime , 'Enable' , 'off'); 
        set(handles.txAcquisitionsPerStep , 'Enable' , 'off'); 
        set(handles.comboAcquisitionUnit , 'Enable' , 'off'); 

         
        set(handles.btStart , 'Enable' , 'on'); 
        set(handles.btGoToStep , 'Enable' , 'on');         
        set(handles.btReset , 'Enable' , 'on'); 
        set(handles.btStop , 'Enable' , 'off'); 

         
    case 'idle' 
        set(handles.btSetCorner1 , 'Enable' , 'on'); 
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        set(handles.btSetCorner2 , 'Enable' , 'on'); 

  
        set(handles.txHorizontalStep , 'Enable' , 'on'); 
        set(handles.txVerticalStep , 'Enable' , 'on'); 
        set(handles.txAcquisitionTime , 'Enable' , 'on'); 
        set(handles.txAcquisitionsPerStep , 'Enable' , 'on'); 
        set(handles.comboAcquisitionUnit , 'Enable' , 'on'); 

         
        set(handles.btStart , 'Enable' , 'on'); 
        set(handles.btGoToStep , 'Enable' , 'on');         
        set(handles.btReset , 'Enable' , 'off'); 
        set(handles.btStop , 'Enable' , 'off'); 
    case 'finished' 

         
        set(handles.btSetCorner1 , 'Enable' , 'on'); 
        set(handles.btSetCorner2 , 'Enable' , 'on'); 

  
        set(handles.txHorizontalStep , 'Enable' , 'on'); 
        set(handles.txVerticalStep , 'Enable' , 'on'); 
        set(handles.txAcquisitionTime , 'Enable' , 'on'); 
        set(handles.txAcquisitionsPerStep , 'Enable' , 'on'); 
        set(handles.comboAcquisitionUnit , 'Enable' , 'on'); 

         
        set(handles.btStart , 'Enable' , 'on'); 
        set(handles.btGoToStep , 'Enable' , 'on');         
        set(handles.btReset , 'Enable' , 'on'); 
        set(handles.btStop , 'Enable' , 'off');         
end 

  

  

     

     
% --- Executes on button press in btStart. 
function btStart_Callback(hObject, eventdata, handles) 
% hObject    handle to btStart (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

  
    [handles , inputOK] = checkInput(handles); 

  
    % If some input is not valid, quit now 
    if ischar(inputOK);    popupErrorMessage(inputOK);     return;   

end 

     
    % The path of the motors have already been buildt. Retrieve the 

array  
    % to keep track of how many scans have been done 
    ScansDone = getappdata(handles.GUI_Motor_and_camera , 

'ScansDone'); 
    N = length(ScansDone); 

     
    % DETERMINE NEXT POSITION TO SCAN 
    nextPosition = find(ScansDone , 1 , 'last') + 1; 
    if isempty(nextPosition);   
        nextPosition = 1 ;     
    elseif nextPosition >= N 
        enableGUI(handles , 'paused'); 
        popupErrorMessage('The job was completed; please press Reset 

before starting a new one'); 
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        return 
    end 

     
    enableGUI(handles , 'running'); 
    % Move to next (first?) position and scan 
    result = moveAndScan(handles , nextPosition); 
    if result ~= 0;     
        enableGUI(handles , 'idle');    
        return;     
    end   % Quit if something went wrong 

     
    ScansDone(nextPosition) = 1; 
    setappdata(handles.GUI_Motor_and_camera , 'ScansDone' , 

ScansDone); 

     
    % Timer object 
    out = timerfind('Tag' , 'GUI_Motor_and_camera'); 
    handles.hScanTimer = timer('ExecutionMode' , 'fixedSpacing' , ... 
           'StartDelay' , handles.AcquisitionTime, 'Period' , 

handles.AcquisitionTime , ... 
           'TimerFcn' , @scanFinished , 'Tag' , 

'GUI_Motor_and_camera'); 

     

        
    setTimeRemaining(nextPosition , N , handles.hScanTimer.Period, 

handles.txEstimatedTime); 
    set(handles.hProgressBar , 'Position' , [0 , 0 , nextPosition / N 

, 1]); 

  
    guidata(hObject , handles); 

  
    start(handles.hScanTimer); 
    updateJobStatus(handles); 

     

     

     

     
function updateJobStatus(handles) 

  
    ScansDone = getappdata(handles.GUI_Motor_and_camera , 

'ScansDone'); 
    currentPosition = find(ScansDone , 1 , 'last'); 

     
    if isempty(currentPosition) 
        set(handles.txJobRunning , 'String' , 'Job not running' , 

'ForegroundColor' ,'r'); 
        set(handles.btStart , 'Enable' , 'on'); 
    elseif currentPosition < length(ScansDone)         
        if ~isempty(handles.hScanTimer) && isvalid(handles.hScanTimer) 

&& ... 
                strcmpi(handles.hScanTimer.Running , 'on') 

         
            set(handles.txJobRunning , 'String' , 'Job running' , 

'ForegroundColor' , [204,204,0]/255); 
            set(handles.btStart , 'Enable' , 'off'); 
        else 
            set(handles.txJobRunning , 'String' , 'Job paused' , 

'ForegroundColor' , 'r'); 
            set(handles.btStart , 'Enable' , 'on'); 
        end 
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    else 
        set(handles.txJobRunning , 'String' , 'Job done!' , 

'ForegroundColor' ,'g'); 
        set(handles.btStart , 'Enable' , 'on'); 
    end 

  

     

     

     
function   result = moveAndScan(handles , positionN) 

  
    % Move to step 
    result = moveToStepN(handles , positionN); 

        
    if result ~= 0 
        popupErrorMessage(['Could not move motors to position N. ' , 

num2str(positionN)]) 
    end 

     
    result = sendSynch(handles); 
     if result ~= 0 
        popupErrorMessage('Could not synch scan') 
    end 

           

     

     

     
function result = moveToPosition(handles, coordinates) 

  

     
    if handles.DEBUGMODE; 
        result = 0; 
        return 
    end 

     
    state_UP = ximc_get_status(handles.device_idUP); 
    state_LR = ximc_get_status(handles.device_idLR); 

     
    coordinates = mm2step(coordinates); 

     
    if state_UP.CurPosition == coordinates(1) && ... 
       state_LR.CurPosition == coordinates(2) 

         
        % Already in position 
        result = 0; 
        return 
    end 

     
    result(1) = calllib('libximc','command_move', handles.device_idUP, 

coordinates(1) , 0); 
    result(2) = calllib('libximc','command_move', handles.device_idLR, 

coordinates(2) , 0); 

  
    result = ~all(result == 0); 
    if result ~= 0 
        popupErrorMessage('Error when moving motors!'); 
        return 
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    end 

     

  

  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    calllib('libximc','command_wait_for_stop', handles.device_idUP, 

300); 
    calllib('libximc','command_wait_for_stop', handles.device_idLR, 

300); 

  

  

     

     

     

  
function result = moveToStepN(handles , nStep) 

  
    MotorPath = getappdata(handles.GUI_Motor_and_camera , 

'MotorPath'); 
    result    = moveToPosition(handles, MotorPath(nStep , :)); 

     

  

     

     

  

  

     
function handles = jobFinished(handles) 

  

  

  

  

  

  
function scanFinished(obj, event) 
    % One scan has finished 

     
    % Measure time required to move motors and send synch 
    tic 

     
    % Retrieve handles 
    h = findall(0,'Type','figure' , 'Tag' , 'GUI_Motor_and_camera'); 
    handles = guidata(h(1)); 

  

  
    ScansDone = getappdata(handles.GUI_Motor_and_camera , 

'ScansDone'); 

     

     
    % Determine NEXT POSITION TO SCAN 
    N = length(ScansDone); 
    nextPosition = find(ScansDone , 1 , 'last') + 1; 
    if isempty(nextPosition);   
        nextPosition = 1;     
    elseif nextPosition > N 
        stop(obj); 
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        delete(obj); 
        enableGUI(handles , 'finished'); 

         
        updateJobStatus(handles); 
        setTimeRemaining(nextPosition , N , obj.Period, 

handles.txEstimatedTime); 
        guidata(h(1) , handles); 
        return; 
    end 

     
    % Move to next position and scan 
    result = moveAndScan(handles , nextPosition); 

     

     
    if result ~= 0;    obj.stop;  return;    end   % Quit if something 

went wrong 

  
    % Output to microscope scanner right after movement 
    result = sendSynch(handles); 

     
    if result ~= 0;    obj.stop;  return;    end   % Quit if something 

went wrong 

     
    ScansDone(nextPosition) = 1; 
    setappdata(handles.GUI_Motor_and_camera , 'ScansDone' , 

ScansDone); 

     
    handles = updateGraph(handles); 

     
    set(handles.hProgressBar , 'Position' , [0 , 0 , min([0.01 , 

nextPosition / N]) , 1]); 

     
    ScanDuration = obj.Period + toc; 

     
    setTimeRemaining(nextPosition , N , ScanDuration, 

handles.txEstimatedTime); 

     

     

     

  
function result = sendSynch(handles)     

     
    if handles.DEBUGMODE; 
        result = 0; 
        return 
    end 

     

     
    % Read settings to automatically get the output structure 

sync_settings 
    sync_settings = struct('SyncOutFlags', 0, 'SyncOutPulseSteps', 0, 

'SyncOutPeriod', 0, 'Accuracy', 0, 'uAccuracy', 0); 
    [result, sync_settings] = 

calllib('libximc','get_sync_out_settings', handles.device_idUP, 

sync_settings); 

    
    % What I want: 00100001 (Enabled + synch when motor stop + 

duration in ms) 
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    % SYNCOUT_ENABLED   0X01  // 00000001  // Synchronization out pin 

follows the synchronization logic, if set. 
    % SYNCOUT_STATE     0X02  // 00000010  // When output state is 

fixed by negative SYNCOUT_ENABLED flag, the pin state is in accordance 

with this flag state. 
    % SYNCOUT_INVERT    0X04  // 00000100  // Low level is active, if 

set, and high level is active otherwise 
    % SYNCOUT_IN_STEPS  0X08  // 00001000  // Use motor steps/encoder 

pulses instead of milliseconds for output pulse generation if the flag 

is set 
    % SYNCOUT_ONSTART   0X10  // 00010000  // Generate synchronization 

pulse when movement starts. 
    % SYNCOUT_ONSTOP    0X20  // 00100000  // Generate synchronization 

pulse when movement stops. 
    % SYNCOUT_ONPERIOD  0X40  // 01000000  // Generate synchronization 

pulse every SyncOutPeriod encoder pulses 
    % hexToBinaryVector('0x20') 

  
    sync_settings.SyncOutFlags  = bin2dec('00101101');  % Synch 

enabled, on stop, motor steps/encoder pulses instead of milliseconds 
    sync_settings.SyncOutPeriod = 100;  % ms 
    sync_settings.Accuracy = 0;  % distance to the target position. As 

soon as the distance to 
                                 % target on approach is less than or 

equal to this distance  
                                 % a synchronizing pulse will be 

generated if "on stop" option is used. 

  
    result(1) = calllib('libximc','set_sync_out_settings', 

handles.device_idUP, sync_settings); 
    result(2) = calllib('libximc','set_sync_out_settings', 

handles.device_idLR, sync_settings); 

  
    if ~all(result == 0) 
        popupErrorMessage('Error writing motor setup'); 
        return 
    end 

     
    % Wait a little 
    pause(0.5) 

         
    % Switch it off 
    sync_settings.SyncOutFlags  = bin2dec('00000000');  % Synch 

disabled 

     

     
    result(1) = calllib('libximc','set_sync_out_settings', 

handles.device_idUP, sync_settings); 
    result(2) = calllib('libximc','set_sync_out_settings', 

handles.device_idLR, sync_settings); 

  
    result = ~all(result == 0); 

     
    if result 
        popupErrorMessage('Error writing motor setup'); 
        return 
    end 
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function setTimeRemaining(currentPosition , N , Period , h) 

  
    currentTimeRemaining = (N - currentPosition + 1) * Period; 

     
    if currentTimeRemaining <= 0 
        T = 'Job done!'; 
        set(h , 'String' , T); 
        return 

         
    elseif currentTimeRemaining < 60  % Seconds 
        currentTimeRemaining = round(currentTimeRemaining , 1); 
        T = ['Estimated time: ' num2str(currentTimeRemaining) ' s']; 

         
    elseif currentTimeRemaining < 60*60  % minutes 
        currentTimeRemaining = round(currentTimeRemaining / 60 , 1); 
        T = ['Estimated time: ' num2str(currentTimeRemaining) ' min']; 

     
    else   % Hours 
        currentTimeRemaining = currentTimeRemaining / 60 / 60; 

         
        T = ['Estimated time: ' num2str(floor(currentTimeRemaining)) 

'h ' ... 
            num2str(round(60 * (currentTimeRemaining - 

floor(currentTimeRemaining)))) 'min']; 
    end 

     
    T = {T ; ['Scanning N. ' num2str(currentPosition) '/' 

num2str(N)]}; 

     
    set(h , 'String' , T); 

     

     

  

     

  
% --- Executes on button press in btStop. 
function btStop_Callback(hObject, eventdata, handles) 
% hObject    handle to btStop (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    if ~isempty(handles.hScanTimer) 
        stop(handles.hScanTimer); 

  
        delete(handles.hScanTimer); 
        handles.hScanTimer = []; 
    end 

     
    enableGUI(handles , 'paused'); 
    updateJobStatus(handles); 
    guidata(hObject , handles); 

  

     

     
% --- Executes on button press in btReset. 
function btReset_Callback(hObject, eventdata, handles) 
% hObject    handle to btReset (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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    answer = questdlg('Are you sure you want to lose all scans?' , 

'Reset', 'Yes' , 'No' , 'Cancel' , 'Cancel'); 

  
    if ~strcmp(answer , 'Yes');    return;   end 

     
    % Reset number of scans done 
    ScansDone = getappdata(handles.GUI_Motor_and_camera , 

'ScansDone'); 
    ScansDone = ScansDone .*0; 
    setappdata(handles.GUI_Motor_and_camera , 'ScansDone' , 

ScansDone); 

     
    handles = updateGraph(handles); 

  

     
    % Stop timer if it was running 
    if ~isempty(handles.hScanTimer) && isvalid(handles.hScanTimer) 
        stop(handles.hScanTimer) 

  
        delete(handles.hScanTimer) 
        handles.hScanTimer = []; 
    end 

     
    updateJobStatus(handles); 
    enableGUI(handles , 'idle'); 
    guidata(hObject , handles); 

     

  

  
% --- Executes when user attempts to close GUI_Motor_and_camera. 
function GUI_Motor_and_camera_CloseRequestFcn(hObject, eventdata, 

handles) 
% hObject    handle to GUI_Motor_and_camera (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: delete(hObject) closes the figure 
% Close devices 

     
    if ~handles.DEBUGMODE 
        device_id_ptr = libpointer('int32Ptr', handles.device_idUP); 
        calllib('libximc','close_device', device_id_ptr); 
        device_id_ptr = libpointer('int32Ptr', handles.device_idLR); 
        calllib('libximc','close_device', device_id_ptr); 
    end 

  
    delete(hObject); 

  

  

  
function out = checkStrNumber(str) 

  

  
    out = all(ismember(str, '0123456789+-.')); 
    out = out && ~isnan(str2double(str)); 
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% --- Executes on button press in btGoToStep. 
function btGoToStep_Callback(hObject, eventdata, handles) 
% hObject    handle to btGoToStep (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

  
    ScansDone = getappdata(handles.GUI_Motor_and_camera , 

'ScansDone'); 
    N = length(ScansDone); 

     
    Nstep = inputdlg(['Enter step number [1 - ' num2str(N) ']:'] , 'Go 

to step #' , 1); 
    if isempty(Nstep);    return;    end 

     
    checkstr = checkStrNumber(Nstep{1}); 
    Nstep = str2double(Nstep{1}); 

  
    if checkstr ~= 1 || Nstep == 0 || Nstep > N || Nstep < 1;   
        msgbox(['Please enter a number between 1 and '  num2str(Nstep) 

' !']);    
        return;    
    end 

     

     
    ScansDone = ScansDone .* 0; 
    if Nstep > 1;  ScansDone(1 : Nstep - 1) = 1;   end 

     

     
    setappdata(handles.GUI_Motor_and_camera , 'ScansDone' , 

ScansDone); 

  
    updateROIstatus(handles); 
    handles = updateGraph(handles); 
    setTimeRemaining(Nstep , N , handles.AcquisitionTime, 

handles.txEstimatedTime); 
    set(handles.hProgressBar , 'Position' , [0 , 0 , (Nstep - 1) / N , 

1]); 

  

     
    enableGUI(handles , 'idle'); 
    % Move to next (first?) position and scan 

  

  
% -------------------------------------------------------------------- 
function uiSave_ClickedCallback(hObject, eventdata, handles) 
% hObject    handle to uiSave (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

  
    DefaultName = clock; 
    DefaultName = [num2str(DefaultName(1)) ' ' num2str(DefaultName(2)) 

' ' num2str(DefaultName(3))... 
               ' - ' num2str(DefaultName(4)) '_' 

num2str(DefaultName(5)) '.mat']; 

  

            
    if ~isempty(handles.lastSavePath) && exist(handles.lastSavePath , 

'file') 
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        cd(handles.lastSavePath); 
    end 

     

     
    [FileName,PathName] = uiputfile('*.mat','Save 

scan...',DefaultName); 

  
    if FileName == 0; 
        return 
    end 

  
    handles.lastSavePath = PathName; 
    writeConfig(handles)    

     

     
    ScansDone = getappdata(handles.GUI_Motor_and_camera , 

'ScansDone'); 
    MotorPath = getappdata(handles.GUI_Motor_and_camera , 

'MotorPath'); 

     
    StepSizeHorizontal_mm = handles.StepSizeHorizontal; 
    StepSizeVertical_mm   = handles.StepSizeVertical; 

     
    ScanTime_seconds = handles.AcquisitionTime; 

  
    save([PathName FileName] , 'ScansDone' , 'MotorPath' ,... 
        'StepSizeHorizontal_mm' , 'StepSizeVertical_mm' , 

'ScanTime_seconds'); 

     
    guidata(hObject , handles); 

  

     

     
function handles = loadConfig(handles) 

  
    configFile = [fileparts(mfilename('fullpath')) '\config_GUI.mat']; 
    if ~exist(configFile, 'file') 
        return; 
    end 

     
    load(configFile) 

     
    handles.lastSavePath = lastSavePath; 

     

     

  

  
function writeConfig(handles) 

     
    configFile = [fileparts(mfilename('fullpath')) '\config_GUI.mat']; 

  
    lastSavePath = handles.lastSavePath; 

  
    save(configFile , 'lastSavePath'); 

  

  
% --- Executes on button press in pushbutton7. 
function pushbutton7_Callback(hObject, eventdata, handles) 
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% hObject    handle to pushbutton7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

  

  
function txAcquisitionsPerStep_Callback(hObject, eventdata, handles) 
% hObject    handle to txAcquisitionsPerStep (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of 

txAcquisitionsPerStep as text 
%        str2double(get(hObject,'String')) returns contents of 

txAcquisitionsPerStep as a double 

     

  
    handles = parseInput(handles); 
    guidata(hObject , handles); 

  

     

     
% --- Executes during object creation, after setting all properties. 
function txAcquisitionsPerStep_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txAcquisitionsPerStep (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

 

Measure Peak 

function MeasurePeak_V01 
    if exist('\\isad.isadroot.ex.ac.uk\UOE\User\MATLAB' , 'file') 
        cd('\\isad.isadroot.ex.ac.uk\UOE\User\MATLAB') 
    end 
        cd('\\isad.isadroot.ex.ac.uk\UOE\User\MATLAB') 

     

     
    [FileName,PathName] = uigetfile('*.fig' , 'Open File' , 

'MultiSelect', 'on'); 
    %FileName = fullfile(PathName, FileName); 
    if iscell(FileName) 
        if FileName{1} == 0;  return;   end      

         

         
        for k = 1 : length(FileName) 
            openfig([PathName FileName{k}]); 
            set(gca,'ButtonDownFcn',@ButtonClicked); 
        end 
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    else 
        if FileName == 0;  return;   end 

         
        FileName = [PathName FileName]; 

  
        openfig(FileName); 
        set(gca,'ButtonDownFcn',@ButtonClicked); 

         
    end 

     

     
function ButtonClicked(hObject , eventdata) 
    disp('yay') 
    cp = get(gca,'CurrentPoint'); 
    cp = cp(1 , 1:2); 

     

        
    % Find the line in the figure 
    objLine = get(hObject,'Children');  
    objLine = findobj(objLine , 'Type' , 'line' ,'-

not','Tag','MeasurePeak');  
    XData   = get(objLine,'XData'); %get the x data 
    YData   = get(objLine,'YData'); %get the y data 

     

     
    % Find highest peak near the clicked point 
    where = XData > (cp(1) - 30) & XData <( cp(1) + 30); 

     
    % Smooth data to detect points 
    YData_smooth = moving_average2(YData,2); 

  
    % Remove points far away from click 
    YData_clicked = YData_smooth; 
    YData_clicked(~where) = NaN; 
    [PeakValue , posMax] = nanmax(YData_clicked); 

     
    % Keep the actual max value, not the smoothed one  
    YData_clicked = YData; 
    YData_clicked(~where) = NaN; 
    PeakValue = nanmax(YData_clicked); 

     
    % Show detected peak 
    hold(hObject , 'on'); 
    plot(hObject , XData(posMax) , PeakValue , 'ro' , 'Tag' , 

'MeasurePeak'); 

     

     
    % Now find a change of derivative sign before the peak... 
    plot(XData , YData_smooth , 'g-', 'Tag' , 'MeasurePeak'); 
    D = diff(YData_smooth); 
    posMin1 = find(D(1 : posMax - 1) < 0 , 1 , 'last'); 

     
    % ...And after the peak 
    posMin2 = find(D(posMax + 1 : end) > 0 , 1 , 'first') + posMax; 

     
    YValueBefore = YData(posMin1); 
    YValueAfter  = YData(posMin2); 

     
    % Peak difference from background 
    PeakMagnificence = PeakValue - mean([YValueBefore , YValueAfter]); 
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    % Plot the baseline just because 
    plot(XData([posMin1 , posMin2]) , [YValueBefore , YValueAfter] , 

'r-' , 'Tag', 'MeasurePeak') 
    plot(XData([posMin1 , posMin2]), YData([posMin1 , posMin2]) , 'ro' 

, 'Tag', 'MeasurePeak') 

     

     
    % Print the text 
    xtext = XData(posMin2); 
    ytext = mean([YValueBefore , YValueAfter]) + PeakMagnificence / 2; 
    t = {['Height = ' num2str(PeakMagnificence)] ;... 
         ['Absolute height = ' num2str(PeakValue)]  ;... 
         ['Foot values = ' num2str([YData([posMin1 , posMin2])])]}; 
    disp(t) 
    text(xtext , ytext , t , 'Tag', 'MeasurePeak') 
    %text(hObject , xtext , ytext , t , 'Tag', 'MeasurePeak'); 

     

     
    % Store result in workspace 
    W = evalin('base','whos'); 

     
    if any(ismember('Peak_Height',[W(:).name])) 
        Peak_Height = evalin('base' , 'Peak_Height'); 
    else 
        Peak_Height = []; 
    end 

     
    Peak_Height = [Peak_Height ; [PeakMagnificence , PeakValue , 

YData([posMin1 , posMin2])]]; 

     
    assignin('base' , 'Peak_Height' , Peak_Height); 

     

     

     
function [ signal ] = moving_average2( signal , points ) 
% 2-pass moving average filter 

  
    if points==1;   return;   end; 

  
    b = ones(1,points)/points; 
    L=length(signal); 

  

  
    BORDER=2*points; 

  

  
    if size(signal,1)~=1 
        signal=signal'; 
        signal=filter(b,1,[zeros(1,BORDER)+signal(1) signal 

zeros(1,BORDER)+signal(L)]); 
        signal=fliplr(filter(b,1,fliplr(signal))); 
        signal=signal(BORDER+1:length(signal)-BORDER); 
        signal=signal'; 
    else 
        signal=filter(b,1,[zeros(1,BORDER)+signal(1) signal 

zeros(1,BORDER)+signal(L)]); 
        signal=fliplr(filter(b,1,fliplr(signal))); 
        signal=signal(BORDER+1:length(signal)-BORDER); 
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    end 
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