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Foreword 

The maintenance of cooperation is the central topic linking the two themes 
of this thesis. Chapters 2 and 3 deal with how cheats interacting with tag-
based cooperative public-goods systems effect diversity. Chapters 4 and 5 
deal with ecological aspects of cooperation; how patterns of resource 
availability simultaneously alter both the cost of cooperation and the 
population dynamics. Chapter 1 will introduce to the reader the 
fundamental concepts of social evolution before providing a broader 
general background to each chapter. 

Abstract 

Explaining why cooperation exists despite the persistent advantage of 
cheats has been the focus of much theoretical and empirical attention in 
biology. Using the bacterium Pseudomonas aeruginosa as a model system for 
the evolution of cooperation, I investigate two distinct phenomena which 
may develop our understanding of how cooperation is maintained; 1) tag-
based cooperation and diversity; and 2) environmental heterogeneity.  

The first investigates how diversity in cooperative systems may be a 
response to the selective pressure exerted by cheating, and how cheats may 
then regulate communities to maintain diversity: I demonstrate that in 
competition, tag-based cooperation is able to evade parasitism, provided 
the public-good is only accessible to producer strains, i.e., the cheat 
possesses the “wrong” tag. I also demonstrate that cheats can have a 
marked influence on diversity: In a community of two producer strains with 
different tags, if a third cheater strain is introduced, it will drive both its 
own producer and itself extinct. I do not find that the presence of cheats 
maintains diversity in either structured or unstructured environments, and 
discuss the possible causes of this. 

In the second topic of this thesis, I investigate the effect of environmental 
heterogeneity in resource availability, through space and time, on the 
evolution of cooperation. Environmental heterogeneity is a ubiquitous 
feature of natural landscapes, yet its effect on the evolution of cooperation 
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has not been extensively studied. I demonstrate that resource availability 
heterogeneity, in both time and space, acts to maintain cooperation at 
higher levels than homogeneous environments of the same total resource 
value. This effect is due to the covariance between productivity and the cost 
of cooperation: high resource availability periods and spaces are highly 
productive, and also incur a relatively lower cost of cooperation.   
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1 Introduction 

1.1 Social evolution theory 
When organisms interact, and fitness consequences ensue, social evolution 

theory provides a paradigm with which to explore the biological causes and 

consequences of these interactions. In the simplest consideration, an 

interaction between two organisms - an actor and a recipient - there are 

four possible fitness consequences; 1) mutualism; a fitness benefit for both 

actor and recipient, 2) altruism; a fitness cost for the actor and benefit for 

the recipient, 3) selfishness/parasitism; a fitness benefit for the actor and 

cost for the recipient, 4) spite; a fitness cost for both actor and recipient.  

Conceptually, behaviours resulting in fitness benefit for the actor are easy 

to understand in the light of evolution; individuals performing such 

behaviours are simply increasing their own replication frequency. Altruism 

and spite, however, being costly to the actor, require a different 

appreciation of the evolutionary maximand. For altruism to evolve, this 

maximand cannot be individual fitness, as by definition altruism is costly to 

the individual. Hamilton (1964) proposed that rather than simply 

maximizing personal fitness, evolution would favour genes maximizing 

their total frequency regardless of the organism in which they were found; 

this is the “inclusive fitness” approach to understanding adaptation.   
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Kin selection is the most easily illustrated example of inclusive fitness, as 

cooperation between family group members is perhaps the most readily 

observable altruistic behaviour. Kin groups share genes, by definition, so it 

is no surprise that social behaviours arise here. The evolutionary biologist 

J.B.S. Haldane, is said to have first outlined the notion verbally:  

“I would gladly lay down my life for two brothers or eight cousins” 

But the work of Hamilton in 1964 is where greatest recognition of the idea 

is bestowed. We now refer to “Hamilton’s rule”, which states that the cost 

an actor is willing to incur in performing a social action will be weighed 

against the benefits it brings to the recipient and the probability of their 

shared genes. Expressed algebraically, a behaviour will be selectively 

favoured if rb – c > 0, where r is the relatedness, c is the costs incurred to 

the actor, and b is the benefit to the recipient. 

1.2 The greenbeard effect  
Inclusive fitness requires that actors are somehow able to direct their 

cooperative behaviour towards individuals sharing their genes. One way this 

can be achieved is if dispersal is limited: Provided social interactions are 

locally limited, interacting individuals then necessarily share genes by 

descent (Hamilton, 1964; Lehmann & Keller, 2006). Other solutions to the 

problem of shared-gene discrimination rely on some form of recognition 
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mechanism. Individuals may learn to recognise a location that predictably 

contains kin, or a phenotype matched to known kin (Blaustein, 1983). 

Alternatively, the recognition may be based on a genetic system, of which 

there are two, both dubbed by Dawkins: The first is based on self-referent 

phenotypic matching (Mateo & Johnston, 2000), called “the armpit effect” 

(Dawkins, 1982), in which an individual evaluates relatedness by comparing 

their own phenotype to that of a conspecific (i.e., by assessing the degree of 

similarity in each other’s armpit odour), and then directing behaviour 

according to the degree of similarity. The second is a distilled form of this 

idea, originally proposed by Hamilton (1964), in which tags are used as a 

form of genetic identification. Known as the “greenbeard effect” (Dawkins, 

1976), an individual gene, or tightly linked cluster of genes, encodes three 

functions: 1) a phenotype (e.g., a green beard); 2) recognition of that 

phenotype in other organisms and; 3) directing of cooperative behaviour 

towards those organisms, thus increasing the frequency of the gene. 

Chapters 2 and 3 explore greenbeard-type public-goods cooperation. 

Specifically, the diversity that such systems display, and the causes and 

consequences of this diversity.  

Hamilton’s tag-based cooperation concept (the greenbeard effect) was 

introduced as just that – a hypothetical concept – not thought necessarily to 

exist. Alleged barriers to the real-world existence of greenbeard genes 

included the burden of complexity required of one gene encoding three 
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functions; collapse of the system through the evolution of non-cooperative 

“false beards” – individuals possessing the phenotype, receiving the 

cooperative behaviour, but not themselves behaving cooperatively; and 

simply that the gene would be so successful to render it fixed within a 

population and thus unnoticeable (Dawkins, 1982; Blaustein, 1983).  

Naturally then, greenbeard genes were discovered. The first being in the 

imported red fire ant, Solenopsis invicta, by Keller & Ross (1998). In multiple 

queen colonies, it was noticed that all egg-laying queens were Bb 

heterozygous at the Gp-9 locus. Homozygous bb queens were intrinsically 

inviable, whilst BB homozygous queens were killed, predominantly by 

heterozygous, Bb, workers, who used an olfactory que to identify the Gp-9-

linked phenotype. Gp-9b was acting according to the greenbeard effect. In 

the language of social evolution, inclusive fitness is maximised through 

spite as an indirect fitness benefit is garnered through increased resource 

availability for Gp-9b queens.   

Other real-world examples of the greenbeard effect illustrate different ways 

in which greenbeards can operate. These can be broadly broken-down into 

helping and harming greenbeards (Gardner & West, 2010). In the case of 

the red fire ant, the greenbeard is harming, as the inclusive fitness benefits 

are secured by executing a competitor.  
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Harming greenbeards get their inclusive fitness benefits through elimination 

of competition, with harm conferred exclusively to non-bearers. An 

example from the microbial world; bacteriocin production is a harming 

greenbeard: These anti-competitor toxins, produced by many 

microorganisms, are secreted into the environment, encountering bearers 

and non-bearers alike. Encoded in tight linkage with the toxin is a gene that 

deactivates the it, rendering bearers immune (Riley & Wertz, 2002).     

Helping greenbeards include expression of the csA cell adhesion gene in the 

social amoeba Dictyostelium discoideum (Queller et al., 2003): A slime-mould 

that propagates via the formation of cell aggregations known as “fruiting 

bodies”, which require the expression of an adhesion protein, coded by the 

gene csA.  In this example, individuals with csA adhere to each other more 

effectively than genetic knock-outs, which are left behind as the fruiting 

body develops.  

Cell-to-cell adhesion is also the mechanism behind which the yeast 

Saccharomyces cerevisiae appears to benefit from the greenbeard gene, FLO1 

(Smukalla et al., 2008). Here the greenbeard gene is involved in flocculation, 

a behaviour in which cells aggregate when under conditions of stress. The 

number of tandem repeats within the FLO1 gene correlates with the 

strength of flocculation, and exhibits a wide degree of variation (Smukalla et 

al., 2008). This may be the result of varying selective pressure in different 
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environments but could also be a consequence of social cheating. 

Foregoing the cost of expressing FLO1 with a high number of tandem 

repeats, cheats may yet retain the benefit of adhesion provided by 

conspecifics, making them social “green-bearded cheaters” (Brown & 

Buckling, 2008), also referred to as “false beards”. 

The ability of greenbeard systems to potentially generate and maintain 

diversity has been explored in a theoretical treatment of a helping 

greenbeard system: That of siderophore production in the bacterium 

Pseudomonas aeruginosa (Lee et al., 2012). As with most forms of life, bacteria 

require iron to grow (Andrews et al., 2003). When limited, bacteria secrete 

siderophores into their environments. Having a strong affinity for iron, 

these molecules are able to bind the nutrient from otherwise biologically 

unavailable sources, after which they are taken-up via a cognate receptor. In 

the case of P. aeruginosa, the siderophore is called “pyoverdine” and is 

structured of a chromoflurophore, which gives the molecule its 

characteristic fluorescent green colour and iron binding property, and an 

attached peptide chain (Wendenbaum et al., 1983; Demange et al., 1990).  

The function of the peptide chain is to mediate up-take via binding to the 

receptor, fpvA, which is encoded adjacent to the pyoverdine cluster 

(Merriman et al., 1995). There are three main classes of pyoverdine, 

designated types -I, -II, and -III, with uptake fairly restricted to type (Meyer, 

2000), though as with FLO1, the pyoverdine region exhibits a wide degree 
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of variation within and between types (Smith et al., 2005; Bodilis et al., 

2009). 

Phylogenetic studies have shown that the pyoverdine locus is under 

diversifying selection; the gene is present in all strains, but multiple alleles 

are maintained (Smith et al., 2005). The evolutionary reasons for this may be 

environmental variation, for example, environmental viscosity has been 

shown to correlate with siderophore diffusibility (Kümmerli et al., 2014). 

Alternatively, receptor diversity could be a resistance mechanism as, for 

example, the pyoverdine receptor, fpvAII, is an entry site for pyocin S3 (a 

bacteriocin) (Baysse et al., 1999).  

As with FLO1, an intriguing alternative explanation is whether the diversity 

exhibited at this locus results from the selective pressure exerted by false-

beard cheats. After the breakdown of greenbeard cooperation brought 

about by a false-beard cheat invasion, a novel beard colour would then be 

able to invade but would itself be susceptible to novel cheats. Hamilton 

recognised that this succession of events could lead to the continual 

generation of tag diversity (Hamilton, 1964). “Beard chromodynamics” has 

emerged as a field studying the interplay between different greenbeard 

systems and their cheats. Simulations have shown that rather than the 

continual generation of diversity, maintenance of cooperation is possible 
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even with small numbers of beard colours (Jansen & van Baalen, 2006; Lee 

et al., 2012).  

Such maintenance of cooperation is possible in patch-based landscapes as 

the fitness of each beard-colour/social strategy combination is negatively 

related to its frequency: High frequency of one beard colour means a large 

available niche for that same coloured “false beard”; whilst a high frequency 

of any one false-beard colour means a large available niche for an 

alternative coloured greenbeard (Lee et al., 2012).  

However, the maintenance of siderophore based cooperation is further 

complicated by the ability of siderophores in mixed populations to act 

simultaneously as helping and spiteful greenbeards: Iron bound in complex 

with one siderophore is unable to be dissociated by another, and in this way 

siderophore production can be used as a competitive trait (Niehus et al., 

2017). For example, in a competition between two P. aeruginosa strains 

producing two different pyoverdine types, one strain engaging in substantial 

overproduction of pyoverdine could, even in lieu of growth, rapidly saturate 

the environment with its own pyoverdine, rending it uninhabitable to a 

competitor. 

Specific hypothesis testing using empirical investigation of public-goods 

based greenbeard systems, particularly with respect to the maintenance of 
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cooperation and the generation of diversity discussed above, has been scant 

until recently (Inglis et al., 2016; Butaitė et al., 2017; Leinweber et al., 2017). 

Chapters 2 and 3 aim to expand our understanding of the real-world 

dynamics of tag-based cooperation by testing specific hypotheses regarding 

the interactions of two strains of P. aeruginosa producing two different 

pyoverdines and their corresponding, non-pyoverdine producing mutant 

cheats. 

1.3 Spatial and temporal heterogeneity 
Much of the work on cooperation, both empirical and theoretical, has 

focussed on the “rb” components of Hamilton’s inequality, i.e., the 

conditions under which relatedness favours cooperation, the fitness 

benefits it brings, and the interplay between the two. In experimental 

systems at least, the effects of variation in the cost of cooperation are an 

often overlooked, yet crucial factor in developing our understanding of 

social evolution. Chapters 4 and 5 explore how different environments 

incur different costs upon cooperative behaviour. Specifically, we explore 

how cooperation responds to environments with spatial (chapter 4) and 

temporal (chapter 5) heterogeneity in resource availability, which will alter 

both the cost of cooperation and the population productivity. 

Heterogeneity is a ubiquitous feature of natural landscapes which has been 

shown to influence population dynamics and community structure 
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(Waxman & Peck, 1999; Chesson, 2000; Maestre & Reynolds, 2006; Oliver 

et al., 2010; Blanquart & Gandon, 2011; Eilts et al., 2011; Chisholm et al., 

2014). The “geographic mosaic theory of coevolution” provides a useful 

framework to conceptualise how heterogeneity can effect populations 

(Thompson, 1999, 2005). This concept considers an environmental 

landscape as a mosaic, made up of patches, within which species interact 

and between which species migrate. Studies of coevolving hosts and 

parasites have shown that variation in productivity in spatially 

heterogeneous landscapes leads to “hotspots” of coevolution (Forde et al., 

2004; Vogwill et al., 2009): Whilst productivity within patches may alter the 

velocity, or possibly even trajectory of coevolution, migration between 

patches of different productivity can provide an asymmetry, homogenising 

the metapopulation in favour of the dynamic of the highest productivity 

patches.  

This asymmetry depends entirely upon the mode of migration. If a fixed 

fraction of each patch within the mosaic is allowed to migrate, then indeed 

the metapopulation will become over-represented by individuals from the 

patches of highest productivity. This is a form of “hard selection” 

(Christiansen, 1975; Wallace, 1975): The number of migrants from each 

patch that form the next generation is a function of the number of 

individuals within the patch. This is opposed to “soft selection”, in which 

an equal number of migrants from each patch would form the next 
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generation. Where an effect of selection covaries with productivity, under 

hard selection the makeup of the metapopulation is skewed towards the 

selective effect in highly productive patches. 

Resource availability drives population productivity. Resource availability 

can also affect other aspects of biology, from evolutionary diversification 

(Hall & Colegrave, 2007), to host/parasite interactions (Westra et al., 2015), 

the position of partners in the mutualism parasitism spectrum (Boza & 

Scheuring, 2004; Bull & Harcombe, 2009; Hom & Murray, 2014; Hoek et 

al., 2016), and patterns of species diversity (Eadie & Keast, 1984; Zhou et 

al., 2002; Eilts et al., 2011).  

Cooperative behaviour is also affected by the level of resource availability 

(Brockhurst et al., 2008, 2010; Xavier et al., 2011). The reason for this 

relationship is likely due to the pay-out from the metabolic trade-off 

between investment in growth and investment in cooperation, providing 

diminishing returns on growth and favouring cooperation as resource 

availability increases. Chapter 4 aims to study the link between productivity 

and investment in cooperation in populations experiencing heterogeneous 

resource availability. Specifically, we transfer populations of P. aeruginosa 

over evolutionary time-scales (~40 two-day transfers) through either 

spatially homogeneous or heterogeneous environments with respect to 
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resource availability, measuring the per capita investment in cooperation 

along the way.  

Heterogeneity can also vary with respect to time. The majority of previous 

research in this area has focussed again on the relationship between 

heterogeneity and species diversity, with not much attention on the effect 

of temporal heterogeneity on the evolution of cooperation. Studies that 

have looked at cooperation to date, have found that temporal heterogeneity 

correlates with increased levels of cooperation. For example, a greater 

number of bird species are cooperative breeders in heterogeneous 

environments (Rubenstein & Lovette, 2007; Jetz & Rubenstein, 2011). The 

mechanism underlying this pattern is unknown. Rubenstein & Lovette 

(2007) posit that individuals reared in favourable periods behave 

cooperatively in periods of low resource availability, as non-cooperative 

breeding in harsh periods is likely to fail. Cockburn & Russell (2011) 

identify that this may be a population dynamic effect, due to the additional 

accumulation of offspring during favourable conditions.  

Further contributing to the over-representation of cooperation in variable 

environments, alternating harsh and favourable conditions can create 

bottlenecks in populations, increasing relatedness, which, referring back to 

Hamilton’s rule, also favours cooperation (Brockhurst, 2007).  
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An extension of the work on spatial heterogeneity, the effect of temporal 

variation on the evolution of cooperation is the subject of chapter 5. 

Specifically, we transfer populations of P.aeruginosa through environments 

that vary with respect to resource availability through time, following the 

fitness of wild-type cooperators relative to pyoverdine knock-out cheats 

along the way. 

1.4 The model system Pseudomonas 
aeruginosa 

P. aeruginosa is a rod-shaped gram-negative member of the class 

gammaproteobacteria. Having an unusually large number of genes in its 

genome, P. aeruginosa is a versatile species, able to grow in a wide variety of 

environments (Woolverton et al., 2016). P. aeruginosa is a species of interest 

as opportunistic human pathogen, infecting burns victims, 

immunocompromised patients, and cystic fibrosis sufferers, in which 

chronic infection of the lung is of particular concern (Bodey et al., 1983).  

Iron is crucial for the survival of almost all life (Andrews et al., 2003). In 

iron-limited environments, microbes secrete siderophores; iron-scavenging 

molecules that diffuse into the environment, bind otherwise biologically 

unavailable iron, and are subsequently taken-up by any bacteria with the 

cognate receptor. P.aeruginosa, like other members of its genus, producers a 

green-yellow fluorescent siderophore called “pyoverdine”. As described in 
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the previous section, a fluorophore at the centre of the molecule gives 

pyoverdine the characteristic pigmentation and iron binding property, 

whilst an attached peptide chain is involved in receptor binding and uptake 

(Wendenbaum et al., 1983; Demange et al., 1990). 

As a secreted siderophore will diffuse away from the individual producing 

it, a direct benefit from production cannot be guaranteed. Pyoverdine 

production has been shown to incur a metabolic cost, which becomes a 

relative fitness cost when producers are grown in competition with 

mutants, who forego pyoverdine production but retain the receptor (West 

& Buckling, 2003). See figure 1. 

 

Figure 1. Secreted siderophores (yellow) can be taken up by any cell with the cognate 

receptor (blue). Non-producers (grey) incur no cost of production and will outgrow 

producers (green). (Reproduced from Ghoul et al., (2017)). 

Pyoverdine production can therefore be considered a social trait, and as 

such has been extensively and successfully employed as a model organism 
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in study of the evolution of public-goods based cooperation (West & 

Buckling, 2003; Harrison et al., 2006; Kümmerli et al., 2009, 2014; Lee et al., 

2012; Zhang & Rainey, 2013; Inglis et al., 2014; Butaitė et al., 2017; 

Leinweber et al., 2017). 

Understanding the ecology and evolution of public-goods based 

cooperation using the P.aeruginosa model is not only fascinating in its own 

right, but potentially useful for developing novel therapy (Foster, 2005), as 

pyoverdine production is a known virulence factor (Meyer et al., 1996; 

Takase et al., 2000; Harrison et al., 2006) 
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2 Cheat-mediated evolution of siderophore 
diversity in Pseudomonas aeruginosa 

2.1 Abstract 
Cooperation can be maintained if cooperative behaviours are preferentially 

directed towards other cooperative individuals. Tag-based cooperation 

(greenbeards) – where cooperation benefits individuals with the same tag as 

the actor - is one way to achieve this. Tag-based cooperation can be 

exploited by individuals who maintain the specific tag but don’t cooperate, 

and selection to escape this exploitation can result in the evolution of tag 

diversity. We tested key predictions crucial for the evolution of cheat-

mediated tag diversity using the production of iron-scavenging pyoverdine 

by the opportunistic pathogen, Pseduomonas aeruginosa as a model system. 

Using two strains that produce different pyoverdine and their respective 

cheats, we show that cheats outcompete their homologous pyoverdine 

producer, but are outcompeted by the heterologous producer. Moreover, 

co-inoculating two types of pyoverdine producer and one type of 

pyoverdine cheat resulted in the pyoverdine type whose cheat was not 

present having a large fitness advantage, and often reaching fixation. 

However, when all pyoverdine producers and cheats were co-inoculated, 

both types of pyoverdine producers were outcompeted. These data are 
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consistent with theory suggesting that cheats can maintain tag diversity 

under metapopulation dynamics, where not all cooperating and cheating tag 

combinations are present in all patches simultaneously, but that tag-based 

cooperation will be lost in well-mixed populations, regardless of tag 

diversity. 

Keywords: cooperation; cheating; public-goods; Greenbeard effect 

2.2 Introduction  
Cooperation, where an individual pays a cost to benefit others, can be 

evolutionary unstable because non-cooperative organisms can exploit 

cooperators. Cooperation can however be maintained if the benefits of 

cooperation can be directed towards other co-operators, and this can occur 

in two ways.   First, when cooperative interactions occur more frequently 

between genealogical kin, as a result of either limited dispersal and/or kin 

recognition (Hamilton, 1964; Lehmann & Keller, 2006; West et al., 2007).  

Second, when a single gene complex encodes a tag and a behaviour to help 

individuals with that tag (“greenbeard genes”) (Hamilton 1964, Dawkins, 

1976; Biernaskie et al., 2011, 2013); or more generally if helping and 

interaction with individuals with same helping genes are encoded together 

(Gardner & West 2010). While originally thought to be very rare, recent 

years have uncovered more and more examples of both helping and 

harming greenbeard genes (the latter encoding harming behaviour towards 
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individuals without the greenbeard (Gardner & West 2010; Biernaskie et al 

2013)), in organisms including lizards, fire ants, bacteria, yeast and amoeba 

(Keller & Ross, 1998; Queller et al., 2003; Sinervo et al., 2006; Inglis et al., 

2009; Smukalla et al., 2008).  

There is also growing evidence that in some organisms multiple “beard 

colours”, or tags, exist (Smukalla 2008; Bodilis et al., 2009).  Such diversity 

can theoretically be explained by the evolution of “falsebeards” - cheats that 

are able receive the benefits of directed cooperation without paying the cost 

(Jansen & van Baalen, 2006; Rousset & Roze, 2007; Lee et al., 2012) -  in 

spatially structured populations.  This is because a tag type that is not 

exploited will out-compete both the tag types that are exploited and their 

associated cheats within a patch; and population structure allows the 

combination of tag-types and their cheats that interact to vary in space and 

time. As such, different tag types will win out at different localities.  

Crucially, a tag-type is less likely to encounter its own cheat if that tag-type 

is rare in the population, and it is this negative frequency dependence that 

can then result in stable coexistence of multiple tag-types (Lee et al 2012). 

Note that if populations are well mixed, such that all tag-types and their 

respective cheats are present in all patches, the maintenance of tag-based 

cooperation is unlikely (Rousset & Roze 2007). This is because the 

advantage of being a rare tag-type with few cheats in a patch is offset by the 
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advantage of being a common tag type that necessarily receives more 

helping behaviour. 

Here we experimentally determine whether the presence of cheats can 

explain the maintenance of tag diversity in a potential multi-beard colour 

system: pyoverdine production in the bacterium Pseudomonas aeruginosa. 

Pyoverdine is costly to make (Griffin et al 2004) and pyoverdine-iron 

complexes can be used by any cells with an appropriate receptor (Hohnadel 

& Meyer, 1988; Cornelis et al., 1989; Smith et al., 2005),  hence pyoverdine 

can be a cooperative trait and producers can be invaded by cheats (West & 

Buckling, 2003; Griffin et al., 2004; Harrison et al., 2006; Buckling et al., 

2007; Harrison & Buckling, 2009). Three types of pyoverdine and receptor 

pairs have been described to date (Cornelis et al., 1989; Meyer et al., 1997; 

De Vos et al., 2001; Bodilis et al., 2009), and cross-feeding, binding, and 

uptake assays suggest that pyoverdine-mediated iron transport is relatively 

specific to the pyoverdine-receptor combination (Hohnadel & Meyer, 1988; 

Cornelis et al., 1989), although a generalist receptor can also be present. We 

determine whether the within-patch competitive outcomes required for 

cheat-mediated maintenance of tag diversity hold for pyoverdine diversity, 

namely: 1) Tag-based cooperators are outcompeted by their tag-specific 

cheats, but outcompete cheats associated with a different tag; and 2) A 

specific cooperator tag type without cheats will outcompete other 

cooperator tag types and their associated cheats.  Finally, we test the 
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prediction (3) that tag-based cooperation will be selected against when each 

tag cooperator type has its cheat present, regardless of tag diversity.  

2.3 Materials and methods 
2.3.1 Bacterial strains 

Pseudomonas aeruginosa strains PA01 and 59.20 produce siderophore types I 

and III respectively, each expressing a surface receptor cognate with the 

siderophore type produced (fpvAI in the case of PA01 and fpvAIII in the 

case of 59.20) (De Chial et al., 2003).  After 10-20 two-day transfers in iron-

limited casamino acid media (CAA) (see below), one non-siderophore 

producing mutant colony from each strain was picked based on loss of 

yellow-green pigmentation. As pyoverdine is a green, fluorescent 

siderophore, non-producing mutants (cheats) are demarcated from 

pyoverdine producing strains (cooperators) due to their colonies’ lack of 

pigmentation when grown on KB agar. Picked colonies were then grown in 

CAA, and from each 1mL was mixed with glycerol and frozen at -80˚C. 

The chrome azurol sulphate S (CAS) assay was used, as described in 

(Harrison & Buckling, 2007), to derive per capita iron chelator activates of 

pyoverdine producers and non-producers. The activity of each cheat was 

compared with the cooperator from which it was derived with a two-

sample t-test. 
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To unambiguously distinguish strains in pairwise competitions, both the 

PA01 cheat and 59.20 cooperator were transformed with the lacZ operon 

(following (Choi et al., 2006)). Briefly, to render bacteria electro-competent, 

populations were grown overnight in 6mL Luria-Bertani (LB) medium, 

harvested by centrifugation (2 min at 14,000 rpm), washed twice with room 

temperature 300mM sucrose, and resuspended in 100µL sucrose. For 

electroporation, 500ng of purified plasmid DNA was mixed with 100µL 

electrocompetant cells and transferred to a 2mm gap width electroporation 

cuvette (BioRad). A pulse of 2.5kV was applied to the cells, after which 

1mL of LB was used to wash the cells from the cuvette. This wash was then 

incubated for 1 hour at 37˚C, shaken at 180 r.p.m. 100µL of this final 

culture was plated onto an LB+Gm (30µg/mL) +X-gal (20µg/mL) plate. 

Colonies with the LacZ phenotype were blue on x-gal (20µg/mL final 

concentration) plates, and colony from each genetic background was 

selected for the experiment. Note that there was no detectable growth rate 

cost associated with insertion of the lacZ operon under the culture 

conditions described below. 

We used colony PCR in in conjunction with the LacZ phenotype to 

distinguish strains in 3- and 4-way competition experiments. Populations 

were plated onto KB agar containing 30µg/mL X-Gal and incubated 

overnight at 37˚C. Colonies from these plates were picked into 75µL Milli-

Q H20. 1µL of this was used as template for a PCR: GoTaq Green Master 
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Mix (Fisher) containing 0.25µM of each forward and reverse primers for 

PA01 and 59.20 ferripyoverdine genes FpvAI and FpvAIII (De Chial et al., 

2003), respectively. The thermocycler was run with the following 

parameters: 96˚C for 10 minutes, followed by 35 cycles of 95˚C for 30 

seconds, 55˚C for 30 seconds, and 72˚C for 30 seconds, with a final 

extension of 7 minutes at 72˚C. Two distinct bands, corresponding to each 

strain, were observable following electrophoresis (1.2% agarose in TAE, 35 

minutes at 120V).  

2.3.2 Culture conditions 

Six replicate cultures were established from a single colony of each of the 

four strains. These starting cultures were grown overnight at 37˚C in 30mL 

glass universal tubes containing 6mL (KB) on a 180 r.pm. orbital shaker. 

1mL of each culture was centrifuged at 13,000 r.p.m. for 5 minutes at room 

temperature, then suspended in 1mL of M9 salts (70 g Na2HPO4•7H2O, 30 

g KH2PO4, 5 g NaCl, 10 g NH4Cl). Suspensions were diluted in M9 salts to 

OD 600nm 0.2 (~10^8 cfu.mL-1). Strains were then combined as 

appropriate for the specific experiment and treatment, described below and 

60µL from each mix was inoculated into 6mL of casamino acids (CAA) 

media (5g casamino acids, 1.18g K2HPO4•3H2O, 0.25g MgSO4•7H2O, 1L 

H2O), supplemented with 100µg/mL human apotransferrin (sigma, 

Gillingham, UK), an iron chelator, and 20mM NaHCO3 (sodium 
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bicarbonate), required for iron chelator activity (Meyer et al., 1996). 

Cultures were plated immediately after inoculation and incubated at 37˚C in 

static, 30mL glass universal tubes. Every 24 hours, cultures were plated and 

1% transferred into new iron-limited CAA media, for 6 transfers, or until a 

strain was no longer detectable.  

2.3.3 1. Monoculture growth.  

Each strain was grown as a monoculture, and Malthusian parameters ((m = 

ln(final density/starting density) (Lenski et al., 1991)) of cooperators and 

corresponding cheats compared using t-tests. 

2.3.4 2.. Cheat specificity.  

To investigate the performance of cheats in the background of either the 

strain from which they were derived (their homologous strain), or the 

alternative siderophore-type producer (their heterologous strain), four two-

way competition treatments were setup competing each cooperator strain 

against each cheat. The relative fitness (W) of the focal competitor in each 

competition was calculated from the ratio of each strain’s 24 hour 

Malthusian growth parameter (m) averaged through time. Fitness 

differences between competitors were determined by carrying out 1 sample 

t-tests. 
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2.3.5 3. Three-way competitions.  

To determine if being cheat free allows one co-operator strain to 

outcompete both the other cooperator strain and its associated cheat, we 

competed both cooperators with one or other of the cheats. The relative 

fitness (W) of the non-exploited cooperator was determined with respect to 

growth of the total competitor population, and analysed as above.  

2.3.6 4. Four-way competitions 

To test whether the presence of cheats affected the diversity of cooperator 

types when competing directly, we determined the frequency of each type 

when all four strains were competing and when only the two producing 

strains were competing. This experiment was replicated in two blocks 

because of high-within treatment variation. We estimated diversity as the 

proportion of the rarest strain background (i.e. summing the density PAO1 

and its cheats and 59:20 and its cheats in the 4-way competition 

experiments) which was used as the response variable in a linear mixed 

model, with treatment (with or without cheats present), time, experimental 

block, and the treatment by time interaction fitted as explanatory variables, 

and replicate as a random factor nested within treatment.  

2.4 Results 
2.4.1 Growth cost of cheats in monoculture 
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Both cooperators had a greater growth rate that their respective cheats 

(PAO1: t10 = 7.089, p < 0.0001; 59.20: t10 = 2.457, p = 0.0378) as 

monocultures, demonstrating a growth rate cost of the non-pyoverdine 

producing mutants under iron-limited conditions. 

2.4.2 Per capita iron chelator activity of cheats and cooperators 

Significant differences in iron chelator activity were found between PA01 

cooperator and PA01 cheat (t10=14.038, p<0.0001), and between 59.20 

cooperator and 59.20 cheat (t10=10.664, p<0.0001)). 

 

Figure 1. Results of CAS assay showing per capita iron chelator activities of PA01 WT 

(cooperator), PA01 cheat, 59.20 WT (cooperator), and 59.20 cheat. Error bars show 

mean ±SEM. 
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2.4.3 Growth rates with and without lacZ operon 

There was no detectable growth rate cost associated with insertion of the 

lacZ operon under the culture conditions described below (59.20, with and 

without LacZ, T10 = 1.314 p = 0.218; PA01, with and without LacZ, T10 = 

1.153, p = 0.276, 

 

Figure 2. Malthusian parameters of strains 59.20 and PA01 with and without the LacZ 

marker inserted. Error bars show mean ±SEM. 

2.4.4 Cheat specificity 

In two-way competition, the PA01 cheat had a higher fitness than PAO1 

cooperator (Figure 1; t5 =74.538, p < 0.001) and a lower fitness than the 

59.20 cooperator (t5 = -12.86, p < 0.001). Similarly, the 59.20 cheat had a 

higher fitness than 59.20 cooperator (t5 = 9.676, p < 0.001) and a lower 

fitness than PAO1 cooperator (t5 = -8.419, p < 0.001). At the final time 
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point, cooperators in all six replicate populations from both homologous 

competitions had been eliminated, whilst in heterologous competitions 

cheats had been eliminated from 6/6 replicates in the case of PA01 cheat vs 

59.20 cooperator, and 5/6 in the case of 59.20 cheat vs PA01 cooperator. 

These results indicate that cheats were only cheats with respect to their 

homologous cooperator.  

 

Figure 3. Cheat frequency over time. Cheats dominate the population in the presence 

of the homologous cooperator from which they were derived (blues), and are eliminated 

from the population when in competition with a heterologous cooperator (greens). 

Light blue and light green show 59.20 cheat in the presence of 59.20 cooperator and 

PA01 cooperator, respectively. Dark blue and dark green show PA01 cheat in the 

presence of PA01 cooperator and 59.20 cooperator, respectively.  

Figure	1.	
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2.4.5 Cooperators with no cheats outcompeted cooperator-cheat 

combinations 

The PAO1 cooperator outcompeted the combination of cooperator and 

cheat 59.20 (Figure 2; t-test, t5 = 3.087, p = 0.027), and went to fixation in 

1/6 replicates.  The 59.20 cooperator outcompeted the combination of 

PAO1 cooperator and its cheat (Figure 2; t-test, t5 = 7.50, p < 0.001), going 

to fixation in 6/6 replicates. These results show that the absence of a cheat 

allows a cooperator strain to outcompete other cooperator-cheat 

combinations.  
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Figure 4. A) Frequency of strains in three-way competitions. The outcome of 

competition between two cooperating strains is strongly influenced by the type of cheat 

also present in the population. The frequency of PA01cooperator is shown in dark blue, 

59.20 cooperator in dark green, with PA01 and 59.20 cheats in light blue and light green. 

B) relative fitness (Malthusian parameter of focal species relative to the Malthusian 

parameter of the combination of the other competitors) averaged over time of all strains 

in the two three-way competitions.  
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2.4.6 Cheats did not promote within-patch coexistence of siderophore 

types 

The presence of cheats had no effect on the mean proportion of the rarer 

siderophore type in a population (Figure 3; treatment: F1,21 = 0.4582, p 

=0.506). Diversity decreased through time in both treatments (time: F1,142 = 

59.576, p < 0.001), with PA01 the dominant strain in all replicates, but we 

did not observe competitive exclusion in most cases.  

 

Figure 5. Mean lowest proportion of strain over time. Cooperators and cheats of the 

same strain type in the “With Cheat” treatments were summed, and the proportions of 

each strain were calculated for both treatments. The lowest proportion in each replicate 

was taken as a crude measure of diversity. Dashed line represents populations without 

cheats, solid line represents populations with cheats. Error bars show mean ±SEM. 
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2.5 Discussion 
Here, we determine whether cheats can potentially maintain the diversity of 

P. aeruginosa pyoverdine “greenbeard” alleles from competition experiments 

between two types of pyoverdine producer and their respective cheats. 

Cheats were able to out-compete their homologous cooperators, but 

cooperators were able to out-compete the heterologous cheats. Moreover, 

when multiple tag types and cheats are present in a patch, tags without 

cheats outcompete other strains. Our data suggest that cheating may play an 

important role in maintaining tag diversity and cooperation (Smith et al., 

2005; Rousset & Roze, 2007; Lee et al., 2012) under the assumption of a 

metapopulation structure, where not all combination of tag types and 

cooperator/cheat strategies are present in every patch. Such population 

structure is probable in nature, given bacterial patterns of dispersal (Bell, 

2010), and that cheats can readily arise by mutation in public goods traits 

(Griffin et al., 2004; Harrison et al., 2006; Ross-gillespie et al., 2007; 

Brockhurst et al., 2008, 2010; Köhler et al., 2009; Biernaskie et al., 2013).  

We did not find evidence that presence of cheats acts to maintain tag 

diversity within single patches. This result is consistent with theory that 

suggests in the absence of sufficient population structure tag diversity will 

be eroded (Rousset & Roze, 2007). Our microcosms were spatially 

structured (they were left static), but any resultant negative frequency 

dependence was presumably insufficient to overcome the positive 
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frequency dependent selection associated with tag types (more of one 

siderophore means greater iron availability for that type), or the intrinsic 

differences in growth rates between the cooperator strains.  

In contrast to our work, recent research has also shown that diversity can 

be maintained within patches by a single cheat: a so called “loner effect”. A 

dynamic polymorphism of two cooperators with different tags and a single 

cheat was maintained due to higher costs of cooperation of the non-

exploited “loner” strain (Inglis et al., 2016): cheats outcompeted their 

cooperator strain; the loner strain outcompeted the cheat, and the better 

cooperator outcompeted the loner strain. The strains used in this 

experiment are similar to the ones used in the upper panel of figure 2, with 

a PA01 cooperator/cheat pair, and a type-III siderophore producer; the 

same type produced by our 59.20 cooperator. The difference between the 

results probably reflects the relative fitness of cooperators which in our case 

did not have appropriate values for the loner effect to occur.  

Certain strains of P. aeruginosa, particularly type-II pyoverdine producers, are 

able to take-up type-I pyoverdines (De Vos et al., 2001) through a second 

receptor for type-I pyoverdine, Fpv-B (Ghysels et al., 2004), whilst receptors 

of type-III pyoverdine can recognize pyoverdine type-II (Ghysels et al., 

2004). Why the ability to take-up all of a competitor’s pyoverdines (“multi-

beard”) is not a ubiquitous trait is unclear, but one evolutionary constraint 
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acting on this “multi-bearded” phenotype may be increased susceptibility to 

bacteriocins. Pyocin S3, a bacteriocin of P. aeruginosa, uses pyoverdine type-

II as its receptor (Baysse et al., 1999), whilst pyocin S2 kills strains via FpvA 

receptor type-I (Denayer et al., 2007). The functional link between pyocins 

and pyoverdines in the form of the receptor raises the possibility that the 

cooperative greenbeard system based around pyoverdines has driven the 

evolution of pyocin diversity. 

Diversity of helping tags are present in other microbial systems, and it is 

possible that cheating plays a role in their evolutionary maintenance. For 

example, flocculation – a stress-resistance aggregation phenotype – in 

Saccharomyces cerevisiae is encoded by the highly variable FLO1 gene with 

individuals not expressing the gene excluded from the aggregate (Smukalla 

et al., 2008; Brown & Buckling 2008). Cheating may also play a role in the 

maintenance of diversity of harming tags. For example, Escherichia coli 

produce a diversity of colicins, a plasmid encoded bacteriocin which kills 

non-plasmid carrying individuals (James et al., 1996), with positive selection 

acting at the colicin and immunity loci (Riley, 1993). Immune, but non-

colicin producing mutants can invade colicin producers, but are 

outcompeted by sensitive non-producer (Kerr et al 2002), suggesting that 

immune, colicin non-producing, greenbeard cheats may also have imposed 

selection for diversity in colicins (Pagie & Hogeweg, 1999; Biernaskie et al 

2013).  
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3 Greenbeard diversity and spatial structure 

3.1 Abstract 
Public-goods based cooperation is abound in nature, especially in 

microorganisms, which secrete into the environment products that many 

individuals can take up. Explaining the prevalence of these types of 

behaviours given that cheating confers a growth advantage has been the 

focus of much theoretical and empirical work. Tag-based cooperation, also 

known as the greenbeard effect, occurs when the cooperative actor and 

recipient share a tag, which is used as a cue to direct cooperative behaviour. 

Cheats can arise; individuals that display the tag but perform no 

metabolically-costly cooperative behaviour. The diversity of such systems 

may play a role in maintaining the general behaviour: Whenever cheats 

dominate, an alternative tag system has an advantage. As with cooperation 

in general, tag based cooperation requires spatial structure to be maintained. 

By limiting dispersal and the diffusion of the public-good, spatial structure 

benefits cooperators, and the benefit to rare cooperators is even greater. 

Using two strains of the siderophore producing bacterium, Pseudomonas 

aeruginosa, producing two different siderophore types, we test whether 

spatial structure and the presence of cheats induces the negative frequency 

dependence required of systems that maintain diversity. Contrary to our 
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predictions, we found that one strain consistently dominated the other, 

possibly because it uses its siderophore as a competitive trait. 

3.2 Introduction 
Cooperation based upon the greenbeard effect, where a gene or linked 

groups of genes, produces a phenotype, recognises that phenotype in 

others, and directs cooperative behaviour towards those individuals, is 

susceptible to cheating by false-beard individuals who display the 

phenotype but perform none of the cooperative behaviours. Novel 

phenotypes and associated recognition and directing of behaviour can 

rescue cooperation, but themselves are susceptible to novel cheats 

(Hamilton, 1964; Dawkins, 1976). “Beard chromodynamics”, a field 

studying the interactions of different greenbeard phenotypes and their 

cheats, has proposed that cheats can regulate the frequency of greenbeard 

cooperators: An environment with a highly frequent greenbeard cooperator 

will select for its corresponding false-beard cheat, which in turn selects for 

an alternative greenbeard, and so on (Lee et al., 2012). Using siderophore 

production in Pseudomonas aeruginosa as a model for cooperation, with 

different greenbeard phenotypes provided by different siderophore types, 

we have shown that the premise of the model is empirically grounded: 

Greenbeards are susceptible to their own cheats, and out-grow non-

matching cheats. Furthermore, we have shown that in three-way 

competition, a greenbeard can outcompete another greenbeard, with the 
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winner entirely dependent on which cheat-type is present. In unstructured 

environments, we failed to see cheat-regulation of greenbeards, however – 

diversity was lost when both cooperators were present with both cheats. 

Here we aim to test whether the addition of spatial structure provides the 

necessary conditions for cheats to act as regulators of diversity. 

By spatially segregating environments, viscosity creates niche heterogeneity. 

Viscous environments may be expected to support a greater diversity of 

species, following the competitive exclusion principle (Gause, 1934; Hardin, 

1960). Theory suggests this may be the case: By localising the ecological 

processes of dispersal and between-organism interaction, viscosity can 

maintain diversity (Durrett & Levin, 1997; Pagie & Hogeweg, 1999b). 

Empirical demonstrations give the same result (Rainey & Travisano, 1998; 

Rainey et al., 2000; Habets et al., 2006), though the nature of the between-

organism interaction should be taken into consideration, for example, as 

viscosity limits the ability for cross-feeding, such an interaction results in 

decreased diversity in viscous environments (Saxer et al., 2009). 

For diversity to be maintained in mixed populations each constituent 

organism must be most fit when rare (Levene, 1953; Rainey & Travisano, 

1998; Friesen et al., 2004). In the absence of spatial structure, greenbeard 

diversity may be lost due to positive frequency dependence: A higher 

frequency of one greenbeard type in the population increases the frequency 
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of beneficial encounters for that type, leading to further increase in 

frequency of that type, as so on to fixation. When public goods are globally 

distributed, rare cooperators have no advantage, as cheat frequencies vary 

in direct proportion to cooperator frequencies, and the competition 

becomes equivalent to that of one cooperator-type vs another, in which 

positive frequency dependence destroys diversity. As theoretical work has 

shown, the system fails to meet the requirement of negative frequency 

dependence, due to the lack of spatial structure (Rousset & Roze, 2007). It 

is worth noting that even in the absence of positive frequency dependence, 

with no negative frequency mechanism to maintain diversity, drift would 

also result in loss of diversity, even if diversity was not already lost due to 

between-strain intrinsic growth differences.  

The addition of structure to the environment will limit the diffusion of the 

public good, decreasing the opportunity for cheating, increasing the 

localisation of kin, i.e., increasing the direct and indirect fitness benefits of 

cooperation (Kümmerli et al., 2009). Spatial structure decreases the chance 

that a cheat encounters the public good, and when rare this effect is more 

pronounced; rare regions in which cooperation is high are less likely to be 

encountered than common regions. With proportionally less cheating upon 

rare cooperators, negative frequency dependence is possible, and hence the 

maintenance of diversity.  
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To test this, we setup competition experiments in spatially structured 

environments, with two strains of Pseudomonas aeruginosa, PA01 and 59.20, 

producing two different siderophore types (I and III, respectively). Iron is 

essential for the growth of most organisms (Andrews et al., 2003). In iron 

limited environments, bacteria secrete siderophores, which have a high 

affinity for iron. Uptake of the siderophore-iron complex is mediated via 

receptor binding, with different siderophores having a degree of specificity 

to their cognate receptors (Meyer et al., 1997). Production of the 

siderophore incurs a metabolic cost, which becomes a relative fitness cost 

when in competition against a mutant non-producer. Hence, the 

production of siderophores can be considered a public-good, and as such 

has become an extensively used tool for the study of social evolution. We 

have previously shown that in pair-wise competition, cheats dominate 

strains producing the siderophore for which they possess the receptor, yet 

are themselves dominated by strains producing the alternative siderophore. 

Diversity was not maintained in that system, so we wanted to test whether 

the addition of spatial structure would alter this outcome. We first 

compared monoculture growth and investment in cooperation in soil 

microcosms, and then confirmed that in soil environments, shaking the 

culture reduces the per-capita iron-chelator activity when cheat are in 

competition with their corresponding cooperators. We finally test whether 

the combination of the presence of cheats and population structure (static 
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soil microcosms) is sufficient to maintain a diversity in the system. We also 

conducted competitions on agar plates: Here we compared the fitness of 

each cooperator when rare, in populations with and without cheats. In 

neither environment did we find a maintenance of diversity, possibly due to 

siderophores acting in competition with each other.   

3.3 Methods 
3.3.1 Greenbeards on plates 

3.3.1.1 Bacterial strains 

Non-siderophore producing mutants were generated from Pseudomonas 

aeruginosa strains PA01, a type one siderophore producer, and 59.20, a type 

III siderophore producer. 

In order to differentiate between the 59.20 cooperator/cheat and PA01 

cooperator/cheat, PA01 WT (cooperator) and PA01 Cheat strains were 

both transformed with the LacZ operon according to the protocol 

described in (Choi et al., 2006). When plated on KB agar supplemented with 

X-Gal at a final concentration of 50 µg/mL, colonies of PA01 are then 

discernible from those of 59.20 by their LacZ phenotype. After 

transformation, six colonies of each strain were picked and grown 

overnight in KB and stored at -80˚C in 50% vol./vol. glycerol. 

Experimental populations were derived each from six colonies from streaks 
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of PA01 and 59.20 cooperators and cheats were picked and grown 

overnight in Casamino acids media (CAA) CAA:5g casamino acids, 1.18 g 

K2HPO4•3H2O, 0.25 g MgSO4•7H2O in 1 L H2O).  

3.3.1.2 Negative frequency dependence 

The underlying mechanism by which a diversity of cooperator types is 

maintained by the presence of cheats in the population is negative 

frequency dependence: A cooperator strain must be fittest when rare, and 

this should occur only in presence of cheats. We tested this by setting up 

six treatment groups with the following mixes of strains: PA01 cooperator 

at 1% with 59.20 cooperator at 99%, and vice versa; PA01 cooperator and 

PA01 cheat each at 1%, with 59.20 cooperator and 59.20 cheat each at 

49%, and vice versa. Total cell numbers in each mix were low (~1,000 

cells/mL) to allow spatial segregation of strains. To see whether diversity 

would be maintained to a higher level in the presence of cheats, we also 

setup two additional treatments with strains at equal frequencies: PA01 

cooperator with 59.20 cooperator at 50% each; PA01 cooperator, PA01 

cheat, 59.20 cooperator and 59.20 cheat each at 25%. Our previous 

experiments looking at cooperator diversity with and without cheats were 

undertaken in static, liquid media, and had shown that diversity in these 

environments was lost, possibly due to global distribution of the public-

good failing to confer an advantage to a rare cooperator. Here, to 
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understand whether either spatial structure alone, or spatial structure in 

conjunction with the presence of cheats was sufficient to maintain 

cooperator diversity, we inoculated these mixes on to iron-limited CAA 

hard-agar plates (a 10 cm petri-dish containing 25mL iron-limited CAA 

supplemented with 12 g/L agarose agar) in an iron-limited CAA soft-agar 

overlay (2.9 mL iron-limited CAA supplemented with 6 g/L agarose agar, 

and 100 µL of the relevant inoculum). Before addition of the inoculum and 

apo-transferrin, soft-agar was allowed to cool to 45˚C in a water bath. Six 

replicates of each treatment were inoculated and plates were then sealed 

with Parafilm, inverted and incubated at 37˚C. After six days the developed 

bacterial lawns were rinsed off with a 10 mL volume of M9 salts and 

collected for plating. Inocula and final time-point samples were plated on 

KB agar supplemented with X-gal at a final concentration of 50 µg/mL. 

One-sample t-tests against a hypothesised mean of 1 (equal fitness between 

competitors) were used to examine rare competitor fitness. Change in the 

exponent of Shannon entropy was used to compare diversity in the 

treatments setup at equal frequency. This was calculated as exp(H1) – 

exp(H0) where H0 and H1 are the Shannon entropies at the time of inoculum 

and the end of the experiment, respectively. The Shannon entropy was 

calculated 𝐻 = ∑ 𝑝% ∙ ln 𝑝%)
%*+  where pi is the proportion of individuals 

belonging to the ith species. The exponent H gives a measure of “effective 

number of species” (MacArthur .R, 1965).     
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3.3.2 Greenbeards in soil 

3.3.2.1 Bacterial strains 

As in the “strains” description in “Greenbeards on plates” the four strains 

used in this experiment were PA01 WT (cooperator) LacZ, PA01 cheat 

Lacz, 59.20 WT (cooperator), and 59.20 cheat. Strains were picked from 

streaks of -80˚C glycerol  

3.3.2.2 Culture media 

All the described experiments were undertaken in “soil microcosms”: 6 g of 

compost (John Innes no. 2), was aliquoted into 30mL glass universal tubes 

and autoclaved. To avoid potential experimental contamination from 

surviving fungal spores, these microcosms were autoclaved again after 2 

days standing at room temperature. 5mL of Milli-Q water was added to 

each microcosm prior to inoculation.  

3.3.2.3 Competition experiments 

3.3.2.3.1 Cooperation in structured and unstructured environments 

By limiting dispersal and thereby grouping populations of kin, cooperators 

in static soil microcosm are expected to have higher fitness than shaken, 

which should result in higher per capita iron chelator activity in static 
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conditions. To test this, we setup competitions between cheats and their 

corresponding cooperators (PA01 cooperator and PA01 cheat at 50% each, 

and 59.20 cooperator and 59.20 cheat at 50% each), as well as competitions 

between all four previously mentioned genotypes, in six replicate soil 

microcosms, in shaken (180 r.p.m.) and static conditions. 60 µL of each 

population was transferred each week for six weeks. Populations were 

plated after inoculation, at the third transfer, and the final transfer, on KB 

agar with   X-Gal. Per capita iron chelator activity was estimated after the 

final transfer by use of the CAS assay following the methods described 

above. 

3.3.2.3.2 Diversity in structured environments 

Structure in the population limits the dispersal of siderophores, hindering 

cheat parasitism. In a competition between two cooperators and their 

cheats, diminishing returns on parasitism may favour rare cooperators, 

allowing them to recover in frequency. To test whether greater diversity was 

present in static compared with shaken conditions, six replicate microcosms 

were inoculated according to four treatment groups; cooperators alone in 

static and shaken conditions, and cooperators with cheats in either static or 

shaken (180 r.p.m.) conditions. 60 µL of each population was transferred 

each week for six weeks. Populations were plated after inoculation, at the 
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third transfer, and the final transfer, on KB agar with X-Gal. Diversity was 

estimated by scoring colonies for their LacZ phenotype.  

3.3.2.4 Monocultures 

3.3.2.4.1 Growth 

In order to provide a baseline for growth in soil and per capita iron chelator 

activity for comparison with competition experiments, six replicate soil 

microcosms inoculated with 60µL overnight culture of each strain were 

grown in monoculture in shaken (180 r.p.m) and static conditions at 37˚C. 

Each week, for six weeks, 1% of each population was transferred into a 

fresh soil microcosm. Populations were plated after inoculation, at the third 

transfer, and at the end of the experiment. Malthusian parameters of each 

monoculture, estimated at the third and sixth weeks, were compared in a 

fully-factored REML in JMP v.13 with the factors strain (PA01 and 59.20), 

population structure (shaken and static), and social strategy (cooperate or 

cheat), with ‘transfer period’ and ‘replicate’ modelled as random factors, 

with the latter a repeated measure nested within ‘strain’. After model 

simplification, LSMeans test slices were used to investigate differences 

within interaction effects. 
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3.3.2.5 Cooperation 

The CAS assay was used to determine per capita iron chelator activity at the 

end of the experiment. Briefly, 20µL of each replicate culture was 

inoculated into two pseudo-replicate wells of a 96-well plate containing 

180µL of iron-limited CAA (CAA supplemented with 100µg/mL human 

apo-transferrin and 20mM NaHCO3, which is required for iron-chelator 

activity (both from Sigma)). Iron chelator activities were compared using a 

GLM in Jmp v.13, with the factors strain (PA01 and 59.20), population 

structure (shaken and static), and social strategy (cooperate or cheat). 

3.4 Results 
3.4.1 Greenbeards on plates 

3.4.1.1 Negative frequency dependence 

For diversity to be maintained, the rare strain must always have a higher 

relative fitness than the common strain, i.e., have a fitness, relative to that 

of its competitor, greater than 1. We had hypothesised that the negative 

fitness impact of cheating would be greater on common cooperator/cheat 

pairs than rare cooperator/cheat pairs due to their spatial segregation. 

When rare, strain 59.20 had a relative fitness no different to 1, both in the 

presence and absence of cheats (one-sample t-test against a hypothesised 

mean of 1; cheats present, t5 = -1.135, P = 0.308; cheats absent, t5 = -2.252, 
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P = 0.074). Strain PA01 had a higher fitness when rare both in the presence 

and absence of cheats (one-sample t-test against a hypothesised mean of 1; 

cheats present, t5 = 2.616, P = 0.047; cheats absent t5 = 8.551, P = 0.0004). 

Together, these data indicate that diversity will always be lost in these 

competitions: PA01 will outcompete 59.20 regardless of whether it is rare 

or common, and regardless of whether cheats are present or absent. See 

figure 1. 

 

Figure 1. Relative fitness of rare cooperator strains. The horizontal line at 1 indicates 

equal fitness of the rare and common strain (W = 1). Error bars show mean and ±SEM. 

When at equal initial frequency, diversity was lost in all populations, with 

and without cheats. Since initial diversity was near the maximum possible, 

this is to be expected. However, no difference in diversity loss was seen 

between populations with and without cheats (two-sample t-test; t10 = -
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1.625, P = 0.143); the presence of cheats was insufficient to maintain 

diversity, even in this structured media. See figure 2. 

 

Figure 2. Loss of diversity in treatments with equal initial frequency of strains PA01 

and 59.20, with and without cheats. Bars show mean with ±SEM.  

3.4.2 Greenbeards in soil 

3.4.2.1 Competition experiments 

3.4.2.1.1 Cooperation in structured and unstructured environments 

In competitions between cooperators and their respective cheats, per capita 

iron chelator activity was higher in static environments than shaken (F1,20 = 

75.089, P<0.0001). Within the competitions in shaken environments, there 

was no difference between the populations with respect to per capita iron 

chelator activity (F1,20 = 0.166, P = 0.689). In static environments, however, 
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iron chelator activity in the competition between PA01 cooperator and 

PA01 cheat was higher than in the competition between 59.20 cooperator 

and 59.20 cheat (F1,20 = 40.413, P < 0.0001). See figure 3. 

 

Figure 3. Per capita iron chelator activity of populations from competitions between 

cooperators and their respective cheats in shaken and static soil microcosms. Data 

points show the average of two technical replicates. Bars show mean with ±SEM. 

In competitions between the two cooperators, with and without their 

cheats, in shaken environments, the population level iron chelator activity 

was significantly higher in competitions without cheats (F1,20 = 149.011, P < 

0.0001). In static environments cheat presence or absence did not alter per 

capita chelator activity (F1,20 = 0.166, P = 0.688). However, static 

environments with cheats had significantly higher per capita iron chelator 
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activity than shaken environments with cheats (F1,20 = 146.382, P < 0.0001). 

Per capita iron chelator activity in treatments without cheats was no 

different in shaken and static environments (F1,20 = 0.266, P = 0.612). See 

figure 4 

 

Figure 4. Per capita iron chelator activity of populations from competitions between 

either just two cooperators, or two cooperators together with two cheats, in shaken and 

static soil microcosms. Data points show the average of two technical replicates. Bars 

show mean and ±SEM.  

Diversity in structured and unstructured environments 

In competitions between the two cooperators, with and without cheats, 

diversity decreased through time in all populations (F1,47 = 146.393, P < 
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0.000, P = 0.995), nor any effect of the presence of cheats acting differently 

in shaking or static environments (F1,44 = 0.003, P = 0.957). Population 

structure alone had no effect on diversity (F1,21 = 0.109, P = 0.745), 

regardless of the presence of cheats (F1,20 = 0.068, P = 0.979), and neither 

did the presence of cheats have any effect by itself (F1,22 = 0.128, P = 

0.724). See figure 5. 

 

Figure 5. Diversity, shown as PA01 proportion of population, with and without cheats 

in shaken and static soil microcosms. Bars show mean with ±SEM.  
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3.4.2.2.1 Growth 
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= 3.007, P = 0.0902); yet increased the growth of PA01 (F1,42 = 6.852, P = 

0.0123). PA01 also grew better in both shaken and static environments than 

59.20 (shaken, F1,42 = 105.213, P < 0.0001; static, F1,42 = 34.877, P < 

0.0001). Such differences were not also influenced by social strategy (‘strain’ 

by ‘population structure’ by ‘social strategy’ interaction F1,40 = 0.308, P = 

0.539), and nor did social strategy alone effect growth differently depending 

on the whether the tubes were shaken or static (‘social strategy’ by 

‘population structure’ interaction, F1,41 = 1.266, P = 0.271). Whilst cheats of 

both strains had lower growth than their cognate cooperators (59.20, F1,42 = 

270.534, P < 0.0001; PA01, F1,42 = 49.614, P < 0.001), the magnitude of the 

difference in growth between cooperators and their cheats was greater in 

59.20 than in PA01 (‘social strategy’ by ‘strain’ interaction, F1,42 = 44.219, P 

< 0.0001). PA01 cooperator grew better than 59.20 cooperator (F1,42 = 

11.421, P = 0.0016), and PA01 cheat grew better than 59.20 cheat (F1,42 = 

163.421, P < 0.0001), though 59.20 cooperator also grew better than PA01 

cheat (F1,42 = 13.427, P <0.0001). See figure 6. 
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Figure 6. Malthusian parameter of each monoculture in shaken and static soil 

microcosms. Bars show mean with ±SEM. 

3.4.2.2.2 Cooperation 

Per capita iron chelator activity was higher in cooperators than cheats (F1,44 

= 228.228, P < 0.0001). Whilst there was no difference between per capita 

iron chelator activity in cheats, (F1,44 = 1.533, P = 0.222), PA01 cooperator 

had higher per capita chelator activity than 59.20 cooperator (F1,44 = 36.040, 

P < 0.0001). Per capita chelator activity was not effected by shaking, (F1,43 = 

0.811, P = 0.373), shaking did not affect the strains in different ways 

(‘strain’ by ‘population structure’ interaction, F1,42 = 0.455, P 0.504), and 

nor did the social strategy affect strains differently in shaking conditions 

(‘strain’ by ‘populations structure’ by ‘social strategy’ interaction, F1,40 = 

0.577, P = 0.4521).  See figure 7. 
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Figure 7. Per capita iron chelator activity of each monoculture in shaken and static 

environments. Each data point represents the average of two technical replicates. Bars 

show mean with ±SEM. 

3.5 Discussion 
Theory suggests that by limiting the dispersal of cooperators and the 

diffusion of the public good, cheats would reduce the fitness of rare 

cooperators to a lesser degree than common cooperators, providing the 

negative frequency dependence required for the maintenance of diversity. 

In both soil and in semi-solid, iron-limited agar environments, diversity was 

lost regardless of the presence of cheats. Each strain is required to increase 

in frequency from rare in order for diversity to be maintained. In solid agar 

environments, no relative fitness advantage was conferred to one of the 

rare strains despite the presence of cheats.  
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Treatments in which PA01 competed against 59.20 consistently 

demonstrated a vast fitness advantage for PA01, regardless of the presence 

or absence of cheats. In monoculture, Malthusian parameters showed that 

in soil conditions, PA01 had a higher growth-rate than 59.20. Per-capita 

iron chelator activity of this strain was significantly higher than 59.20. 

Viscous environments have been shown to promote cooperation 

(Kümmerli et al., 2009), though by reducing diffusion of siderophore, a 

producer also gains more direct benefit from production. The cooperator 

producing the greatest amount of siderophore per capita stands to gain the 

most fitness as viscosity increases, as whilst the direct cost to benefit ratio 

decreases with viscosity, the indirect benefit to cheat ratio increases with 

viscosity by grouping kin together with the public-good. This could explain 

why PA01, which produces a greater amount of siderophore per capita than 

59.20, dominated the competitions.  

This effect could be further exacerbated by competition between 

siderophores for iron. Once bound, the siderophore retains iron in the 

complex, rending it unavailable to another siderophore (Boukhalfa & 

Crumbliss, 2002; Hider & Kong, 2010). Substantial overproduction by a 

competitor producing one siderophore type could render an environment 

uninhabitable to a strain able to take-up only an alternative siderophore 

type, essentially using siderophore production as a competitive trait. 

Siderophore production as a competitive trait has recently received some 
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theoretical attention (Niehus et al., 2017). In structured populations, kin are 

closer in space than non-kin. Use of public-goods production as a 

competitive trait therefore requires an excess of production such that it 

spreads beyond the region in which kin are located, and into the region in 

which competitors are located. Depending on initial densities, a rare 

competitor could effectively secure much of the available niche with a 

substantially greater metabolic investment in siderophore production. In 

our experiments, the competitor producing the greatest amount of 

siderophore per capita was PA01. When this strain was common, there was 

no detectable diversity after six days in viscous environments, yet when 

rare, diversity increased in treatments both with and without cheats. This 

substantial overproduction of siderophore may explain why PA01 was able 

to increase from rare, even in the absence of cheats, and dominated 

competition experiments when it was common. 

Inter- and intra- patch dynamics have been shown in simulation to sustain a 

diversity of cooperators only when cheats are present (Lee et al., 2012). Our 

previous work in non-structured environments corroborates this finding. 

Whilst the same cooperator type in our previous work dominated the 

population when only cooperators were competing, the lack of viscosity 

meant that cheats were able to successfully invade a population of their 

cognate type, yet were unable to invade a population of alternative 

siderophore-type producers. Environments in which populations are 
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structured by patches differ from structure through viscosity. Although the 

distribution of siderophores in both is locally limited, intra-patch viscosity is 

zero, reducing the direct and indirect benefits of siderophore production 

and increasing the likelihood of cheat domination, and hence cheat 

regulation of strain frequencies in the meta-population. Theoretical 

exploration of beard chromodynamics in patches could easily incorporate 

the effect of siderophore use as a competitive trait. One could imagine that 

provided only proximal migration was allowed, with a favourable initial 

pattern of strains, succession could proceed such that cheats continually 

“clear a path” for cooperators of an alternative type, and diversity could be 

maintained in such a system, despite the superior competitive advantage of 

one cooperator over another. Any degree of random distal migration, 

however, and the system should collapse in favour of the more competitive 

cooperator and the cognate cheat.    

Overall, we did not see any effect of population structure on the diversity 

of greenbeard cooperators. Our results suggest that one competitor is far 

superior to the other, and that structure, rather than increasing diversity, 

may bias the competition in favour of the competitor investing the greatest 

amount in public-good per capita. This could be due to a combination of 

the increase direct and indirect benefit a cooperator gains when in 

structured populations, together with the ability of siderophores to act as a 

competitive trait, limiting the ability of the other competitor to secure iron 
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and hence grow. Deepening our understanding of the biology of 

siderophore production in P. aeruginosa, which is a common pathogen in 

hospitals, infecting cystic fibrosis patients, burns victims, and other 

immunocompromised patients, may aid us in developing treatments and 

improving patient outcomes.  
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of public-goods cooperation 
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4.1 Abstract 
Heterogeneity in resources is a ubiquitous feature of natural landscapes 

affecting many aspects of biology. However, the effect of environmental 

heterogeneity on the evolution of cooperation has been less well studied. 

Here, using a mixture of theory and experiments measuring siderophore 

production by the bacterium Pseudomonas aeruginosa as a model for public-

goods based cooperation, we show that cooperation in metapopulations 

that were spatially heterogeneous in terms of resources can be maintained 

at a higher level than in homogeneous metapopulations of the same average 

resource value. The results can be explained by a positive covariance 

between fitness of cooperators, population size and resource availability, 

which allowed cooperators to have a disproportionate advantage within the 

heterogeneous metapopulations. These results suggest that natural 

environmental variation may help to maintain cooperation  

Key words 
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4.2 Introduction 
The amount of resource available in an environment plays a key role in the 

evolution of cooperation. Higher resource availability can favour increased 

cooperation by reducing the marginal costs associated with the behaviour 

(Brockhurst et al., 2008; Xavier et al., 2011; Connelly et al., 2017), likely due 

to a trade-off between growth and investment in cooperation (Foster, 

2004). Despite the clear importance of resource availability in determining 

the evolution of cooperation, we currently lack an understanding of the 

importance of a ubiquitous feature of natural environments: Environments 

are heterogeneous. It is well established that environmental and genetic 

heterogeneity in a geographic landscape will alter the (co)evolutionary 

trajectory of the populations therein (Thompson, 1999, 2005; Vogwill et al., 

2009). Here, we investigate the impact of resource heterogeneity on the 

evolution of social interactions in the opportunistic bacterial pathogen 

Pseudomonas aeruginosa. 

One general effect of resource heterogeneity on cooperation likely stems 

from the positive covariance between cooperation and density: High 

resource availability patches support more individuals and these individuals 

are more likely to be cooperators (Brockhurst et al., 2008). Where the 
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magnitude of dispersal acting to redistribute genotypes across the 

geographic mosaic is in proportion to the population size of a patch, 

cooperation may be maintained to a higher degree in heterogeneous 

environments. This mechanism relies on “hard selection” (Wallace, 1968, 

1975; Christiansen, 1975); patches producing a greater number of 

individuals contribute a greater number of progeny to the meta-population, 

as opposed to a “soft selection” in which each patch would contribute 

equally.  

Cooperation based around the production of public goods is ubiquitous in 

microorganisms, usually in the form of a product secreted into the 

environment, the benefit from which may be received by any local 

organism. Siderophores are one such example. Iron is necessary for the 

growth and survival of almost all life on earth (Andrews et al., 2003), and in 

iron limited conditions many microorganisms will secrete siderophores into 

the environment. These molecules have a high affinity for iron, and once 

bound to it can be taken-up by the microorganism usually via receptor 

binding. Pyoverdine, the siderophore produced by certain Pseudomonas 

species, has been extensively studied in the context of social evolution 

(Brockhurst et al., 2006; Harrison et al., 2006; Buckling et al., 2007; Harrison 

& Buckling, 2007; Ross-gillespie et al., 2007; Köhler et al., 2009; Kümmerli et 

al., 2010; Harrison, 2013; Julou et al., 2013; Zhang & Rainey, 2013). As the 

individual bacterium producing the pyoverdine compound is not necessarily 



76 

the one taking it up, production can be considered a cooperative public 

good. Non-pyoverdine producing mutants readily evolve in the lab, and in 

iron limited conditions these increase in frequency beyond their wild-type 

counterparts and can be considered social cheats (West & Buckling, 2003).  

Here we investigate how heterogeneity in resource availability affects levels 

of cooperation. We first develop an analytical theory, exploring the 

importance of hard and soft selection under the assumption of a linear 

relationships between cooperation and resource availability. While recent 

theory showed that heterogeneity in resource availability increased 

cooperation through numerical simulation, the mechanisms underlying 

these results are unclear (Kun & Dieckmann, 2013). After establishing that 

there was a roughly linear relationship between resource availability and 

cooperation in terms of pyoverdine production by the bacterium P. 

aeruginosa, experimental evolution of this organism provided empirical 

support for the key theoretical prediction that heterogeneity in resource 

availability can promote cooperation under conditions of hard selection. 

Finally, the results of competition experiments between isogenic pyoverdine 

cooperators and cheats strongly suggest that siderophore production - and 

not a linked trait – was a key target of selection during experimental 

evolution. 
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4.3 Methods  
4.3.1 Theory  

Both the methods of and results from theory work were carried out by 

Andy Gardner. 

4.3.1.1 Single population 

Assume that bacterial growth comprises a basic rate, proportional to both 

resource availability and siderophore availability, and an accelerating growth 

cost of investment into siderophore production. Specifically, r = Ry-x2, 

where R is the availability of resources (the same value being experienced 

by all cells in the population), y is the availability of siderophore (being the 

average siderophore production of the focal cell’s neighbours, which varies 

from cell to cell) and x is the cell’s own investment into siderophore 

production (which varies from cell to cell). These assumptions mean that 

the relative cost of producing siderophores decreases with increasing 

resource availability (Brockhurst et al., 2008) 

A focal cell’s fitness may then be written as wR = exp(Ry-x2) and the average 

fitness of all cells in the population may be written as wR = exp(Rz-z2), on 

the simplifying assumption of vanishingly little variation in siderophore 

production. Accordingly, relative fitness may be defined as 𝑊- = 	𝑤- 𝑤-0000⁄  

and the criterion for natural selection to favour an increase in siderophore 
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production in this population is 234
25

 |x=y=z > 0. From the chain rule, 234
25

 

|x=y=z  = 634
65

 |x=y=z  + 634
27

 |x=y=z  ´ 27
25

|x=y=z = Rr-2z, where r = 27
25

|x=y=z is 

the average relatedness between a given cell and those cells that make use 

of its siderophores. The stable level of siderophore production z* therefore 

satisfies Rr-2z* = 0, i.e. z* = Rr/2. 

4.3.1.2 Metapopulation  

Now consider a metapopulation in which each constituent population may 

have a different level of resource availability. Assuming that resource 

availability varies continuously, the probability density of populations 

having resource availability R may be denoted pR, satisfying ∫ 𝑝-𝑑𝑅 =
-;<5
-;%=

1. Natural selection favours an increase in siderophore production across 

the whole metapopulation if ∫ 𝑐- 𝑊- 𝑑𝑥⁄ |-;<5
-;%= x=y=z dR > 0, where cR is the 

proportion of the ancestry of future generations that is contributed by 

populations with resource availability R. 

4.3.2 Experiment 

4.3.2.1 Bacterial strains 

P. aeruginosa strain PA01, a wild-type, siderophore producing strain, was 

used as a social cooperator (referred to as PA01 WT cooperator). A 
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siderophore knock-out strain, PA01∆pvd∆pchEF (Ghysels et al., 2004), 

marked with LacZ (using the plasmids and protocol described in (Choi et al., 

2006)) was used as a social cheat (referred to as PA01 LacZ cheat). 

Replicates were inoculated with overnight cultures grown each from single 

colonies, picked from streaks of glycerol freezer stocks.  

4.3.2.2 Single population competition experiments  

Three medias containing different levels of resource were made: “High”, a 

1:4 dilution of casamino acids medium (CAA:5g casamino acids, 1.18 g 

K2HPO4•3H2O, 0.25 g MgSO4•7H2O in 1 L H2O) in M9 salts (M9 salts: 

12.8 g Na2HPO4.7H2O, 3 g KH2PO4, 0.5 g NaCl, 1 g NH4Cl, in 1 L 

Millipore H2O); “Low” a 1:16 dilution of CAA in M9 salts; and 

“Intermediate” a 1:1 mix of “High” and “Low” medias. To render all 

environments iron-limited, all medias were supplemented with 100 µg/mL 

human apo-transferrin (an iron chelator) and sodium bicarbonate at a final 

concentration of 20 mM (necessary for iron chelator activity (Meyer et al., 

1996)). Overnight cultures of PA01 WT cooperator and PA01 lacZ cheat 

grown at 37˚C, shaking at 180 r.p.m., in “Intermediate” culture medium, 

were diluted to OD600 ~0.1 in M9 salts, and 30µL of each was inoculated 

into 12 replicates of each of the resource medias. Populations were plated 

both at the beginning of the experiment, and after 24 hours on KB agar 

with X-Gal (Kings B medium (10 g glycerol, 20 g proteose peptone No.4, 
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1.5 g MgSO4, 1.5 g K2HPO4, in 1L Millipore H2O) supplemented with 12g 

bacteriological agar and X-Gal at a final concentration of 50 µg/mL). 

Colonies were enumerated according to their LacZ phenotype, and the 

relative fitness (W) of the cooperative social strategy was estimated by 

taking the ratio of strain’s Malthusian parameters (m) (the natural log of a 

strain’s final density over its starting density). Fitness estimates were 

compared using a one-way ANOVA and post-hoc Tukey-HSD. Cooperator 

fitness in the intermediate group was tested using a one-sample t-test 

against the mean of the high and low groups to see whether the relationship 

between fitness and resource availability was roughly linear. Cooperator 

fitness in each group was compared to a hypothesised mean of 1 to see 

whether cooperation had declined in all groups.  

4.3.2.3 Experimental evolution in heterogeneous and homogenous metapopulations 

Two treatment groups, corresponding to the heterogeneous and 

homogeneous environments, consisted each of 12 replicate pairs of 

microcosms, the heterogeneous treatments containing 12 high- and 12 low-

resource availability environments, and the homogeneous treatment 

containing 12 pairs of intermediate resource availability environments. 

“High”, “Low”, and “Intermediate” resource availability medias were 

created as described previously. 6mL of the relevant media was aliquoted 

into 30mL glass microcosms. Each microcosm was inoculated with 60µL of 
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PA01 WT cooperator from overnight culture in homogeneous treatment 

media. Every 48 hours, the matched-pair high- and low-resource cultures in 

the heterogeneous treatment were mixed, as were the paired cultures in the 

homogeneous treatment. These mixes were transferred into new media 

according to treatment. Every 20 transfers a glycerol stock was taken and 

stored at -80˚C for later assay of population-level iron chelator activity. 

4.3.2.3.1 Per capita iron chelator activity assay  

60µL of thawed glycerol stock was inoculated into iron-limited CAA 

medium and grown overnight at 37˚C shaking at 180 r.p.m. From this 1mL 

of culture was centrifuged at 14,000 rpm in a benchtop microcentrifuge. 

The iron chelator activity in the supernatant was determined using the 

chrome azurol S (CAS) assay described in (Schwyn & Neilands, 1987): 

100µL of supernatant from centrifuged culture was mixed with 100 µL of 

CAS solution in a 96 well plate, and incubated for 1 hour in the dark at 

room temperature. Per capita iron chelator activity is given by: 1-

(Ai/Aref)/Density i, where Ai is the absorbance of the ith sample at 

630nm, and Aref is the absorbance at 630nm of a reference CAS reaction 

carried out on the media in which the culture was grown. Density is the 

sample absorbance at 600nm. To ensure the absorbance at 600nm was 

measured in the linear range, a 1 in 10 dilution of the sample was used to 

estimate culture density.  
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JMP v.9 was used to model log transformed per capita iron chelator activity 

as the response in a fully factorial REML design with the effects 

“treatment” (homogeneous or heterogeneous) and “time” (transfer 

number, modelled as a continuous variable), with replicate as a random 

factor nested within treatment. Post-hoc LS means contrasts were carried 

out to compare levels of cooperation at the different time points.  

 

4.3.2.4 Competition experiments in heterogeneous and homogenous metapopulations 

The initial setup of this experiment regarding homogeneous and 

heterogeneous treatments and replicates was identical to that of the 

evolution experiment. Here, however, the 12 microcosms in each treatment 

were inoculated with 30µl of PA01 WT cooperator and 30µL of PA01 lacZ 

cheat from overnight culture in homogeneous treatment media. All 

replicates were plated after inoculation on KB agar with X-Gal. Forty-eight 

hours post inoculation (h.p.i.), the paired cultures were mixed with each 

other and transferred to fresh media according to the same regime as the 

evolution experiment. At 96 h.p.i all cultures were plated on KB agar with 

X-Gal. Cooperator fitness estimates (W) were calculated as in the single 

population competition experiment and were then compared with a t-test in 

JMP v.9. 



83 

4.4 Results 
4.4.1 Theory 

The analytical model describes a situation in which the cost of cooperation 

is low in high resource availability environments, and high in low resource 

availability environments. Under hard selection, the productivity of a 

population directly determines how many individuals that population will 

contribute to the next generation. Under soft selection, the productivity of 

a population is independent of the contribution.  

4.4.1.1 Soft selection 

In the context of soft selection, all populations contribute the same ancestry 

to future generations, such that cR = pR. Accordingly, òRmin
Rmax cR 

dWR/dx|x=y=z dR = òRmin
Rmax pR (Rr-2z) dR = `Rr-2z, and hence z* = `Rr/2, 

where R is the average availability of resources across the metapopulation. 

In other words, heterogeneity in resource availability has no impact on the 

level of competition (Figure 1) 

4.4.1.2 Hard selection 

In the context of hard selection, each population contributes ancestry to 

future generations in proportion to its overall growth, such that cR = pR 

`wR/`w, where `w = òRmin
Rmax pR wR dR is the average of fitness across the 
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metapopulation. Accordingly, òRmin
Rmax cR dWR/dx|x=y=z dR = òRmin

Rmax 

exp((R-z)z)(Rr-2z)dR ≈ exp((`R-z)z)(`Rr-2z) – ½( exp((`R-z)z)z(2z2-

r(2+`Rz)))s2
R and hence z* ≈ (Rr/2)(1+(rs2R/2)).	That is, variation in 

resource availability across the metapopulation (s2R >0) favours a greater 

degree of cooperation (higher z*) owing to those populations in which 

cooperation is most favoured contributing more ancestry to future 

generations (Figure 1). 
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Figure 1. Heterogeneity in resource availability has no effect on levels of cooperation 

under soft selection (blue). Under hard selection, heterogeneity in resource availability 

supports higher levels of cooperation (orange). Other quantities: average resource 

availability `R = 0.5, relatedness r = 1. 

4.4.1.3 Non-linearity between cooperation and resource availability  

For simplicity, the model assumes a linear relationship between resource 

availability and cooperation. If this assumption is relaxed, heterogeneity in 

resource availability can both promote or inhibit cooperation under hard 

selection depending whether cooperation is an accelerating or decelerating 

function of resource availability, respectively. 
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4.4.2 Experiment 

4.4.2.1 Single population competition experiments  

We first established the approximate relationship between resource 

availability and short-term levels of cooperation. The amount of resource 

had a significant effect on P. aeruginosa siderophore cooperator fitness (F2,33 

= 20.51, P < 0.0001) when in competition with cheats: Cooperators had 

higher relative fitness in high resource availability media than in both 

intermediate (Tukey’s HSD, P = 0.0158), and low resource availability 

medias (Tukey’s HSD, P < 0.0001), and cooperators in intermediate 

resource availability media had higher fitness than in low resources 

availability media (Tukey’s HSD, P = 0.0043).  

Cooperator fitness in intermediate resource availability environments was 

not different to that of the mean of cooperator fitness in high and low 

resource availability medias, indicating that the relationship between 

resource availability and cost of cooperation was roughly linear, (one-

sample t-test against a hypothesised mean of 0.881, t11 = 0.4202, P = 

0.6824).  

Cooperator fitness in each treatment was significantly lower than that of 

cheats (one-sample t-tests against a hypothesised mean of 1; high resource 

availability, t11 = -5.033, P = 0.0012; intermediate resource availability, t11 = 
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-8.122, P < 0.0001; low resource availability t11 = - 8.411, P < 0.0001). See 

figure 2.  

 

Figure 2. Fitness of cooperators relative to cheats in the three medias over 24 hours of 

growth. Bars show mean and ±SEM. 

4.4.2.2 Experimental evolution in heterogeneous and homogenous metapopulations 

Cooperation was maintained to a higher degree in heterogeneous than 

homogeneous environments (F1,22 = 45.565, P<.0001) when initially 

isogenic wildtype (cooperating) populations were evolved for approximately 

40 transfers (~200 generations). In both treatments cooperation decreased 

over the course of the experiment (F1,46 = 121.035, P<.0001), but the rate 

of decrease in cooperation was greater in homogeneous treatments (F = 

4.480, P = 0.040). Post-hoc tests revealed that there was no difference in 
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per capita iron chelator activity at the start of the experiment (F1,58.32 = 

0.240, P = 0.626) but that at transfers 20 and 40 there were higher levels of 

cooperation in the heterogeneous treatments (F1,22 = 45.565, P < 0.001, and 

F1,58.32 = 19.641, P < 0.001, respectively). See figure 3. 

 

Figure 3. Per capita iron chelator activity across transfers by spatial heterogeneity and 

homogeneity. Bars show mean and ±SEM. 

4.4.2.3 Competition experiments in heterogeneous and homogenous metapopulations 

To confirm a causal link between siderophore production and relative 

fitness under heterogeneous versus homogenous resource availability 
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experiment. We found that wild-type siderophore-producing cooperators 

had higher fitness when in heterogeneous environments than in 

homogeneous (t-test, t22 = -2.426, P = 0.0239). See figure 4. 

 

Figure 4. Fitness of cooperators relative to cheats in spatial homogeneity and 

heterogeneity after four transfers. Bars show mean and ±SEM. 

4.5 Discussion 
Here we investigated the effect of heterogeneity in resource supply on the 

evolution of cooperation. We first confirmed the findings of previous work 

showing that resource availability alters the competitive environment 

favouring cooperation at higher resource availability in a roughly linear 

fashion (Brockhurst et al., 2008). We then developed an analytical model in 
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cooperation. Therefore, heterogeneity in resource availability was expected 

to lead to higher levels of cooperation. We demonstrated this by 

transferring populations of P. aeruginosa over evolutionary time scales and 

assaying their cooperative investment. Finally, to show that cooperation was 

the target of selection in our evolution experiment, rather than a linked 

trait, we ran a short-term competition between a wild-type cooperator and a 

knock-out cheat. Cooperator fitness was found to be higher in the 

heterogeneous environments. These findings may reveal an overlooked 

factor explaining the prevalence of cooperation in biology; where 

cooperation is less costly, populations are also more productive.  

The mechanism underpinning our theoretical and experimental results is 

the positive covariance between cooperation and productivity resulting 

from variation in resource availability: In a meta-population consisting of 

patches that vary in respect to their resource availability, high resource 

availability patches, containing a higher proportion of cooperators, will 

contribute a greater number of individuals to the next generation. These 

findings may be generalizable to any context in which hard selection is in 

operation and there is a linear relationship between resource availability and 

cooperation. The most likely scenario to consider in which this relationship 

ceases to be linear is when resource availability in all patches are so high as 

to no longer be the limiting factor regarding population size at dispersal, yet 

the cost of cooperation continues to decrease with a linear function (due to 
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differing growth-rate disparity between social strategies in different 

resource availability levels). No difference between heterogeneous and 

homogeneous environments would be predicted: Patch productivity would 

be identical, and only within-patch selection would be present. This 

scenario is akin to that of the prediction for soft selection as in our 

analytical model. Note that the covariance mechanism operating may still 

play an important role when there is a non-linear relationship between 

cooperation and resources levels, but its relative importance in determining 

net levels of cooperation in heterogeneous environments will be reduced. 

Fundamentally linked to heterogeneity, altering resource availability has 

been shown to affect many aspects of biology, including evolutionary 

diversification (Hall & Colegrave, 2007), patterns of species’ diversity 

(Eadie & Keast, 1984; Zhou et al., 2002; Horner-Devine et al., 2003) the 

nature of symbiotic interactions, (Boza & Scheuring, 2004; Bull & 

Harcombe, 2009; Hom & Murray, 2014; Hoek et al., 2016), and host 

parasite coevolution (Westra et al., 2015). Investigations of these effects in 

the context of heterogeneity in resource availability and hard selection may 

have much to reveal about their ecologies and distributions through the 

natural world. For example, environmental heterogeneity has been shown 

to influence population structure and dynamics (Shigesada et al., 1986; 

Chesson, 2000; Amarasekare, 2003), species’ dispersal across habitats 

(Dewhirst & Lutscher, 2009), population stability (Oliver et al., 2010), and 
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species diversity and coexistence (Chesson & Warner, 1981; Questad & 

Foster, 2008; Hortal et al., 2009; Brown et al., 2013). Heterogeneity with 

specific respect to resource availability has been similarly implicated in 

playing a crucial role in explaining patterns of diversity (Stevens & Carson, 

2002; Maestre & Reynolds, 2006; Eilts et al., 2011; Price et al., 2014; Yang et 

al., 2015). 

P. aeruginosa is an opportunistic human pathogen, particularly in nosocomial 

contexts, where it causes acute infection in immunocompromised and cystic 

fibrosis patients (Bodey et al., 1983). Cooperative traits such as siderophore 

production in P. aeruginosa are often linked with virulence (Meyer et al., 

1996; Takase et al., 2000; Harrison et al., 2006). Between patient 

transmission is akin to between-patch migration, and whether populations 

causing disease are under hard or soft selection will be determined by the 

mode of transmission which may differ depending on the nature of the 

infection. Cooperation, and hence virulence, may also be affected by 

heterogeneity in resource availability between different sites of infection 

within a host, and the levels of migration between these sites. Increasing 

our understanding of how hosts function as ecological spaces to affect 

disease virulence will aid in reducing disease emergence, severity, and 

potential spread.  
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availability increases levels of public 
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5.1 Abstract 
A universal feature of natural landscapes, affecting many aspects of biology, 

is that resource availability varies through time and space. The effect of 

temporal heterogeneity on the evolution of cooperation has not been well 

studied. Using siderophore production Pseudomonas aeruginosa as a model for 

public-goods based cooperation, we show that temporal heterogeneity in 

resource availability promotes higher levels of cooperation than in 

homogeneous environments of the same average resource availability. This 

finding can be explained by the positive covariance between cooperator 

fitness, population size, and resource availability; in high resource 

availability periods, population expansion is greatest, and the relative cost of 

cooperation is low. As a consequence, periods of high resource availability 

have a much greater impact than periods of low resource availability in 

driving co-operator dynamics.  These results suggest that natural temporal 
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variation in resource availability may play a role in the maintenance of 

cooperation. 

Key words 

Resource heterogeneity, cooperation, evolution, microorganisms  

5.2 Introduction 
Temporal variation in environments is thought to affect the prevalence of 

cooperation (Rubenstein & Lovette, 2007; Jetz & Rubenstein, 2011; 

Marshall et al., 2016), though the mechanism behind this effect remains 

unclear. Population dynamics may play an important role (Cockburn & 

Russell, 2011). For example, temporal variation causes bottlenecks in 

populations, which can promote cooperation through genetic structuring 

(Griffin et al., 2004; Brockhurst, 2007; Brockhurst et al., 2007). Despite 

heterogeneity being a ubiquitous feature of natural landscapes, relatively 

little consideration has been given to the role of variation in resource 

availability on the evolution of cooperation. We have previously shown that 

heterogeneity in resource availability in space can support cooperative 

behaviour. Here, we investigate the impact of temporal heterogeneity in 

resource availability on the distribution of social traits in the opportunistic 

bacterial pathogen, Pseudomonas aeruginosa. 
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The effect of resource availability on investment in social behaviours has 

received some attention (Foster, 2004; Brockhurst et al., 2008; Xavier et al., 

2011; Connelly et al., 2017): As the level of resource increases, so the 

marginal returns from growth are diminished and investment in cooperative 

behaviour becomes less costly (Foster, 2004). High resource availability also 

has the general effect of increasing population size. Considered at the level 

of the metapopulation, in a landscape with heterogeneous resource 

availability, the diminished cost of cooperation in environments with higher 

resource availability means that a greater number of individuals will have 

originated from patches in which cooperation is less costly. Where the 

make-up of patch founder populations reflects that of the metapopulation, 

i.e., patches are colonised under “hard selection” (Wallace, 1968; 

Christiansen, 1975), heterogeneity in resource availability is likely to 

maintain cooperative investment to a higher level than where resources are 

spread homogeneously. Put simply, a greater proportion of patch-founders 

will have originated in patches in which cooperation was less costly.  

We have previous explored the effect of spatial heterogeneity in resource 

availability on cooperation using a mix of theory and experiment. Our 

analytical theory showed that increasing resource availability, which has 

been shown experimentally to decrease the costs of cooperation in our 

previous work and elsewhere (Brockhurst et al., 2008), leads to higher levels 

of cooperation when populations are under hard selection. The model 
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compared the outcome for cooperation in populations under hard and soft 

selection: Hard selection allows the population dynamic effect to alter the 

level of cooperation, as a greater number of individuals in the 

metapopulation originate in high-resource availability regions, in which 

cooperation has a lower cost. In contrast, soft selection uses an equal 

number of individuals from each resource level to form the parental 

generation, allowing only within-patch dynamics to effect of the level of 

cooperation. We found experimental support for this theory, showing that 

populations with spatial heterogeneity in resource availability evolved a 

higher level of cooperation, which in a biological context translates to 

higher levels of siderophore production in the bacterium, Pseudomonas 

aeruginosa. Almost all forms of life need iron to grow (Andrews et al., 2003), 

and when iron is limited, microorganisms secrete siderophores into the 

environment. The siderophore forms a complex with iron, for which it has 

high affinity, after which it is taken-up by any cell bearing the cognate 

receptor. Siderophore production incurs a metabolic cost, which is avoided 

by mutant non-producers, who retain the receptor and hence the benefit of 

conspecific production; they are social cheats (West & Buckling, 2003). 

This system has been used extensively to study the evolution of public-

goods based cooperation (Harrison & Buckling, 2005; Harrison et al., 2006; 

Buckling et al., 2007; Brockhurst et al., 2008; Kümmerli et al., 2009; Racey et 

al., 2010; Harrison, 2013; Zhang & Rainey, 2013). Our analytical  
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The impact of temporal heterogeneity in resources is however less clear.  

However, based on our previous work it has the potential to increase 

cooperation in a similar way to spatial heterogeneity. Specifically, a high 

productivity period will dominate the dynamics of a low productivity 

period, due to more population turnover within the high productivity 

period, i.e., the “founder effect” from a high productivity patch migrating 

to a low productivity patch will exert a greater influence on the composition 

of the population than migration events from low productivity patches.  

However, there are of course caveats to this: 1) nonlinear costs, as 

mentioned in previous chapter. 2) if temporal variation is sufficiently low, 

selection will simply be driven by current patch and there will be 

fluctuations in cooperation through time.  

Here we investigate the effect of temporal heterogeneity in resource 

availability on investment in cooperation. We conducted a competition 

experiment between isogenic cooperators and cheats, and showed that 

temporal heterogeneity in resource supply does indeed produce the same 

general effect as that of spatial heterogeneity. Experiments were conducted 

in metapopulations, homogenous with respect to resource availability 

within time points, a condition critical for the maintenance of some 

cooperation, and crucial to allow us to compare these results with those of 

spatially varying resource availability in the previous chapter.  
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5.3 Methods 
5.3.1 Bacterial strains 

Glycerol stocks of Pseudomonas aeruginosa strain PA01 WT (cooperator), or 

PA01∆pvd∆pchEF (from now on referred to as PA01 lacZ cheat) (Ghysels 

et al., 2004), marked with LacZ (using the plasmids and protocol described 

in (Choi et al., 2006)) kept at -80C were streaked onto a KB plate, from 

which 12 colonies were picked each in to 6mL of “intermediate treatment” 

media and grown over night at 37˚C in 30mL glass microcosms, shaking at 

180 r.p.m. 30µL of each culture was inoculated into each replicate at the 

start of each experiment. 

5.3.2 Competition experiments 

Populations of a 50:50 mix of PA01 WT and PA01 lacZ cheat were 

transferred every two days through one of five different resource supply 

regimes: 1) “High” - four transfers through high-resource media); 2) “Low” 

- four transfers though through low-resource media; 3) “Intermediate” – 

four transfers through a 1:1 mix of “High” and “Low” media; 4) 

“High/Low” – four transfers through alternating “High” and “Low” 

media; 5) “Low/High” – as the previous treatment but with a reversed 

order of provisioning. Casamino acids media (CAA: 5g casamino acids, 1.18 
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g K2HPO4•3H2O, 0.25 g MgSO4•7H2O in 1 L H2O) was diluted 1:4 in M9 

salts (M9 salts: 12.8 g Na2HPO4.7H2O, 3 g KH2PO4, 0.5 g NaCl, 1 g 

NH4Cl, in 1 L Millipore H2O) to create the high-resource” media, then 

further diluted 1:4 to create the low-resource media. Media were 

supplemented with 100µg/mL human apo-transferrin (Sigma) (a strong 

iron chelator)) and 20mM NaHCO3 (sodium bicarbonate) (required for iron 

chelator activity). Within each treatment, six matched pairs of populations 

were pooled at the end of every two-day growth phase, creating a meta-

population from which 60µL was transferred into the relevant fresh media. 

All treatments were grown at 37˚C in 30mL glass microcosms, shaking at 

180 r.p.m. 

Populations were plated at the beginning of the experiment and at every 

transfer on KB agar (Kings B medium (10 g glycerol, 20 g proteose peptone 

No. 4, 1.5 g MgSO4, 1.5 g K2HPO4, in 1L Millipore H2O) supplemented 

with 12g bacteriological agar and X-Gal at a final concentration of 

50µg/mL). Colonies were enumerated by their LacZ phenotype and the 

relative fitness (W) of each social strategy was then calculated by taking the 

ratio of strains’ Malthusian parameters (m) (the natural log of a strain’s final 

density divided by its starting density).  

One-way t-tests with Bonferroni correction against were used to compare 

cooperator to cheat fitness within each level of resource availability. Fitness 
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estimates were modelled in a one-way ANOVA and Tukey’s HSD post-hoc 

contrasts were used to compare treatments.  

Fitness of cooperators in the temporally heterogeneous resource availability 

treatments were compared by first constructing a REML model with 

replicates as repeated measures, nested within the treatment, and then using 

LSMeans contrasts at each time point. 

The Malthusian parameter of populations in the heterogeneous resource 

availability treatments, estimated after growth in each resource level was 

modelled in a REML design, with each replicate as random factor, nested 

within the resource availability of growth phase from which the Malthusian 

parameter was estimated, with an additional factor describing the pattern of 

temporal heterogeneity (i.e., whether high-to-low-etc., or low-to-high-etc).  

5.4 Results 
Cooperator fitness was lower than that of cheats in all levels of resource 

availability (Bonferroni corrected one-way t-test against hypothesised mean 

of 1 for homogeneous, high availability, t6 = -5.036, P = 0.020; 

heterogeneous, high/low/high/low availability, t6 = -5.435, P = 0.0145; 

homogeneous, intermediate availability, t6 = -11.823, P < 0.0005; 

heterogeneous low/high/low/high availability, t6 = -5.661, P = 0.012; and 

homogeneous, low availability t6 = -15.858, P < 0.0005). See figure 1. 
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Resource availability had an effect on the fitness of cooperators in 

competition (F4,25 = 50.238, P < 0.0001). Cooperators in populations with 

high resource availability, temporally homogeneous environments were 

fitter than those with intermediate and low resource availability (Tukey’s 

HSD, P = 0.0003, and P < 0.0001, respectively), and cooperators in 

intermediate resource environments were fitter than those in low resource 

environments (P < 0.0001). See figure 1.  

 

Figure 1. Fitness of cooperators relative to cheats in homogeneous and heterogeneous 

resource availabilities. Dashed line at relative fitness of 1 shows where each competitor 

(cheat or cooperator) would have equal fitness. Bars show mean and ±SEM. 
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Cooperators in heterogeneous environments had a fitness greater than 

those in intermediate resource environments (Tukey’s HSD, P = 0.0210, 

and P < 0.0001, for low/high/low/high and high/low/high/low 

comparisons, respectively) and low resource environments (Tukey’s HSD, 

P < 0.0001 for both low/high/low/high and high/low/high/low 

comparisons), but no different to those in high resource environments 

Tukey’s HSD, P = 0.440, and P = 0.967, for low/high/low/high and 

high/low/high/low comparisons, respectively).  See figure 1. 

To determine the impact of the recent selective environment (i.e., whether 

the population had experienced high or low resource availability), we 

followed cooperation frequencies through time in the fluctuating events. 

Within the temporally heterogeneous treatments, cooperator fitness was 

higher at the first transfer in the populations that had experienced high 

resource availability than those that had experienced low, (F43.8 = 4.58, P = 

0.0379), but subsequent transfers showed no significant difference. See 

figure 2. 
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Figure 2. Fitness of cooperators relative to cheats at each time point in temporally 

heterogeneous resource availabilities. Dashed line at relative fitness of 1 shows where 

each competitor (cheat or cooperator) would have equal fitness. Bars show mean and 

±SEM 
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temporal heterogeneity (high/low/high/low, F1,20 = 317,585, P < 0.0001; 

low/high/low/high, F1,20 = 112.542, P < 0.0001), but the temporal pattern 

high/low/high/low had lower growth in low resource availabilities, and 

higher growth in high resource availabilities than the low/high/low/high 

pattern (high resource medias, F1,20 = 8.541, P = 0.008; low resource 

medias, F1,20 = 18.403, P = 0.0004)). See figure 3. 

 

Figure 3. Malthusian parameters from periods of growth in either high or low resource 

availabilities, showing the two temporally heterogeneous treatments. Data points show 

the average of each of two growth periods in each resource availability. Bars show mean 

and ±SEM 
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5.5 Discussion   
Here, I investigated the effect of temporal variation in the availability of 

resources on the outcome of competition between cooperators and cheats. 

Despite receiving the same total amount of resource over the course of the 

experiment, cooperators in populations transferred through heterogeneous 

resources availabilities had higher fitness than those transferred through 

homogeneous resources, regardless of the pattern of resource availability. 

Temporal variation in the environment has been identified as a factor that 

may be important in explaining the prevalence of cooperation in the natural 

world (Rubenstein & Lovette, 2007; Jetz & Rubenstein, 2011; Marshall et 

al., 2016). Our findings show that simple population dynamics may play a 

large role in explaining the phenomenon: Populations reproduce most in 

times of high resource availability, which correlate with times in which the 

cost of cooperative behaviour is comparatively low.  

Natural environments will vary both in terms of spatial and temporal 

resource availability. Taken together, our research shows that the effect of 

heterogeneity, spatial or temporal, will be to influence the distribution of 

genotypes at the metapopulation towards that favoured during the most 

productive times or in the most productive spaces. These results should be 

generalizable to any system in which hard selection is in operation and a 

relationship exists between change in a certain factor and population 

productivity. Resource availability has been shown to affect patterns of 
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diversity (Eadie & Keast, 1984; Kassen et al., 2000; Zhou et al., 2002; 

Horner-Devine et al., 2003; Hall & Colegrave, 2007), the relative costs of 

different immune strategies (Westra et al., 2015), and the nature of 

symbiotic interactions (Boza & Scheuring, 2004; Bull & Harcombe, 2009; 

Hom & Murray, 2014; Hoek et al., 2016). Re-examining these findings in 

the light of hard selection, with temporal and spatial environmental 

variation may offer great insight to our understanding of species’ ecologies 

and their distributions in the natural world. 

Solutions to the problem of cooperation - the persistent advantage of 

cheating - have been the focus of much empirical and theoretical work 

(Hamilton, 1964; Smith, 1964; Axelrod & Hamilton, 1981; Queller, 1985; 

Frank, 1995, 2003). In our experiments, cooperation at all resource levels 

decreased regardless of temporal variation in resource availability. This is 

somewhat to be expected, as the heterogeneous treatment did not increase 

cooperation beyond the level of that in the high resource availability, and 

the level of cooperation in wild-type PA01 is unlikely to be ideally suited to 

the novel experimental conditions the organism was exposed to. 

Nevertheless, the transition from high to low resources and back also 

bottlenecks the population; this has been shown to favour cooperation by 

increasing relatedness (Brockhurst, 2007). A long-term evolution 

experiment mirroring the configuration of the competition executed here 

may show the extent to which cooperation can be maintained. 
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This work extends a previous study of spatial heterogeneity in resource 

availability, which showed a similar effect of maintaining a level of 

cooperation higher than in homogeneous environments. Both temporal and 

spatial heterogeneity in resource availability are likely to be a common 

ecological occurrence in natural settings.  
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6 Discussion 
As individual chapters provide their own self-contained discussions, here I 

will summarise the main points and findings, before expanding on some of 

the emerging general issues they raise. 

Chapter 2: Cheat mediated evolution of siderophore diversity in 

Pseudomonas aeruginosa 

v P. aeruginosa strains producing different pyoverdine types can 

outcompete non-corresponding, non-producing mutants in a 

competition setting. This confirms that our model system respects 

one basic, underlying assumption of many theoretical models of tag-

based cooperation: That cheats exclusively parasitize their 

corresponding cooperator, and are outcompeted by non-

corresponding cooperator types. Prior cross-feeding experiments 

revealed a degree of exclusivity, but crucially lack the competition 

aspect we investigate here. 

v The outcome of three-way competitions was strongly predicted by 

the strategy and tag-types present: Competition between two wild-

types is heavily influenced by the additional presence of one cheat 

type. This indicates that social evolution may play a role in diversity 

in structured populations. 
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v In two-way competition between one pyoverdine producing type and 

another, one type always won, or at least dominated the population. 

The addition of cheats made no difference to diversity, which was 

always lost.  

Chapter 3: Greenbeards diversity and spatial structure 

v As expected, and as has been shown previously (Kümmerli et al., 

2009) addition of spatial structure in the form of static soil 

microcosms supported cooperation in pairwise cooperator/cheat 

competitions in both P. aeruginosa strains. 

v On agar plates, or in soil microcosms, static or shaken, and with or 

without cheats - the outcome of competition experiments was always 

the same: One strain consistently dominated. Preventing cheats from 

accessing pyoverdine in spatially structured environment might 

hinder the mechanism creating negative frequency dependence. 

v The dominant strain was also the strain that produced most iron 

chelator activity per capita – a measure of cooperation. This hints at 

pyoverdine being used as a competitive trait. 

Chapter 4: Resource heterogeneity and the evolution of public goods 

v Environmental heterogeneity is known to influence many biological 

processes. Perhaps the greatest attention in this area has been given 
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to the generation of diversity. Much less is known about the effect 

of environmental heterogeneity on the evolution of cooperation. 

v Different resource availabilities can affect certain biological 

processes. For example, cooperation is less costly when resources 

have high availability (Brockhurst et al., 2008). Crucially, resource 

levels also impact population growth and density. 

v We can link the two above effects: By distributing resources 

heterogeneously through a landscape and allowing hard selection to 

operate. 

v In this context, we show that spatially heterogeneous landscapes, 

with respect to resource availability, support higher levels of 

cooperation than homogeneous landscapes: Cooperation is less 

costly in the most productive patches, and migration enables these 

patches to dominate the metapopulation. 

Chapter 5: Temporal heterogeneity in resource availability increases 

levels of public goods investment in Pseudomonas aeruginosa 

v Environmental heterogeneity can occur through time as well as 

space. With respect to cooperation, the limited amount of research in 

this area has found that cooperation correlates with heterogeneous 

environments (Rubenstein & Lovette, 2007; Jetz & Rubenstein, 

2011), though the mechanism behind this is unknown. 
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v We experimentally demonstrate that temporal heterogeneity in 

resource availability supports higher levels of cooperation than 

temporally homogeneous landscapes. 

v We show that population expansion is greatest in periods of high 

resource availability, during which the costs of cooperation are 

lowest.  

v Periodic mortality coinciding with environmental change (i.e., during 

population transfer) creates population bottlenecks. Over time, 

bottlenecks are more severe in environments with heterogeneous 

resource availability, resulting in higher relatedness in heterogeneous 

environments, further supporting cooperation.  

General remarks on greenbeards and diversity 

Public-goods, private-goods? 

As the iron bound to pyoverdine is unable to be dislocated until uptake 

(Hider & Kong, 2010), and as uptake is restricted to social partners, 

production of one pyoverdine type can effectively be used to limit iron 

available for binding a competitor’s own pyoverdine (Niehus et al., 2017). 

The large differences in per capita iron chelator activity between 

monocultures of the two wild-type strains in the soil microcosm 

experiments hint that this concept – that of between-pyoverdine 
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competition – may explain why the expected diversity was lost in many 

treatments: In each of those cases, the wild-type investing the greatest 

amount in pyoverdine production dominated the competition. 

The cost of competitive pyoverdine production 

Cooperative pyoverdine production incurs a growth cost (West & Buckling, 

2003): Competitive over-production should incur a greater cost still, 

increasing susceptibility to cheats and the rapidity with which they can 

dominate a competition. Indeed, in chapter 2, figure 3 we see that the 

cheats of the over-productive strain, PA01, dominate their homologous 

cooperator more quickly than the cheats of 59.20 do theirs. In patched 

based population structure this effect may counteract to a degree the 

competitive advantage that the over-producer has in wild-type/wild-type 

interactions.  

Cheats as drivers of diversity? 

No diversity was maintained in the presence of cheats in either non-

spatially structured environments, or in static soil microcosms, or on agar 

plates. Although in chapter 2 we did see that the presence of one or other 

of the two cheats strongly influenced the outcome of competition between 

the two wild-types (to the disadvantage of the cheat-cooperator pair), for 

this to be effective in a natural setting a fairly constricted sequence of 



113 

events would be required: As the two competitors cannot initially coexist, 

for cheat-mediated ecological succession to operate, an initial monoculture 

would need to be invaded first by its own cheat type, and then by an 

alternative cooperator. Perhaps this scenario is feasible in certain ecological 

settings, though this is a question that remains to be answered. Given that 

the we have seen a consistent competitive advantage of one cooperator 

over another, the mutation rate and migration rate would need to be 

balanced in order for diversity to be maintained. 

The competitive interactions of many natural isolates of Pseudomonad species 

has recently been investigated (Butaitė et al., 2017).  Here, researchers found 

coexisting producers of different pyoverdine types, with different levels of 

pyoverdine expression, together with non-producing mutants, sometimes 

expressing multiple pyoverdine receptors. The outcome of within-

environmental sample pairwise competitions and cross-feeding assays 

suggest that cheats may play a role in maintaining diversity, though the 

complexity may be render experimental demonstration of any theoretical 

distillation of these population dynamics impossible: Before even other 

ecological factors are considered, the effect of competition between 

pyoverdine types, as well as the effect of pyocins (which target pyoverdine 

receptors) must also be controlled.   

General remarks on spatial and temporal resource heterogeneity 
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Hard selection 

That resource availability can change the selective pressures on organisms is 

well known (I give many examples in the discussion sections of chapters 4 

and 5). Resource availability also affects population productivity. The 

selection regime, i.e., whether hard or soft, will alter the distribution of 

genotypes in the metapopulation. Such dynamics have the potential to 

affect the evolution of many traits. 

Bottlenecks in temporally heterogeneous environments 

The productivity-resource relationship in temporally varying environments 

creates more severe population bottlenecks in heterogeneous environments. 

This has the effect of increasing relatedness. As we have shown, temporally 

heterogeneous environments also support cooperation via another 

population dynamic effect: Population expansion is greatest in high 

resource periods during which the cost of cooperation is lowest. In future 

experiments, the relative magnitude of these effects could be investigated 

with an additional factor, with levels prescribing bottleneck size. The effects 

may cancel out: With a greater fraction of each population transferred, 

migrant numbers after high-resource availability growth periods will be 

increasingly closer to the stationary phase density of low resource 

availability patches. This will increasingly limit the effect of selection in low-
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resource availability periods, where very little growth will occur, though it 

will also decrease relatedness, which disfavours cooperation (Brockhurst, 

2007).  

General remarks 

Whether in natural environments the evolution of diversity in tag-based 

cooperation is due to the effect of cheats remains an open question. Whilst 

the success of social evolutionary biology has in large part been due to an 

underpinning of conceptually simple and clear theory, complexity present in 

the natural world is often exposed as a hindrance when translating 

theoretical findings to laboratory models. Studies of pyoverdine production 

in natural communities would also be problematic due to their complexity, 

and the relative bluntness of potential experimental manipulation.  

Nonetheless, next generation sequencing techniques together with 

community-level perturbation may provide useful insight into the effects of 

social evolution in complex scenarios.  

Our findings with respect to the effect of temporal and spatial 

heterogeneity on cooperation give general predictions about the ecological 

conditions in which we should expect to find a greater prevalence of 

cooperative behaviour. Correlational studies, for example, Rubenstein & 

Lovette, (2007) and Jetz & Rubenstein, (2011) are supported by our work, 
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as we show, using both in theory and experimentation, why we might be 

expected to see such patterns. A more explicit focus on species’ population 

dynamics in these studies could reveal whether the predicted productivity 

relationship is in operation. 
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