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Abstract

The whole thesis contains 10 chapters. Chapter 1 is the introductory chapter of my thesis and the main contributions
are presented in Chapter 2 through to Chapter 9. Chapter 10 is the conclusion chapter. These chapters are motivated

by applications to new and existing problems in finance, health care, sports and telecommunications.

In recent years, there has been a surge in applications of generalized hyperbolic distributions in finance. Chapter
|Z| provides a review of generalized hyperbolic and related distributions, including related programming packages. A

real data application is presented which compares some of the distributions reviewed.

Chapter @ and Chapter @ derive conditions for stochastic, hazard rate, likelihood ratio, reversed hazard rate,
increasing convex and mean residual life orderings of Pareto distributed variables and Weibull distributed variables,

respectively. A real data application of the conditions is presented in each chapter.

Motivated by Lee and Cha [The American Statistician 69 (2015) 221-230], Chapter [5]introduces seven new families
of discrete bivariate distributions. We reanalyze the football data in Lee and Cha (2015) and show that some of the

newly proposed distributions provide better fits than the two families proposed by Lee and Cha (2015).

Chapter [6] derives the distribution of amplitude, its moments and the distribution of phase for thirty four flexible
bivariate distributions. The results in part extend those given in Coluccia [IEEE Communications Letters, 17, 2013,

2364-2367].

Motivated by Schoenecker and Luginbuhl [IEEE Signal Processing Letters, 23, 2016, 644-647], Chapterm studies
the characteristic function of products of two independent random variables. One follows the standard normal distri-
bution and the other follows one of forty other continuous distributions. In this chapter, we give explicit expressions

for the characteristic function of products, and some of the results are verified by simulations.

Cossette, Marceau and Perreault [Insurance: Mathematics and Economics, 64, 2015, 214-224] derived formulas for
aggregation and capital allocation based on risks following two bivariate exponential distributions. Chapter [8] derives
formulas for aggregation and capital allocation for thirty-three commonly known families of bivariate distributions.

This collection of formulas could be a useful reference for financial risk management.

Chapter@derives expressions for the kth moment of the dependent random sum using copulas. It also extends Mao
and Zhao[IMA Journal of Management Mathematics, 25, 2014, 421-433]’s results to the case where the components
of the sum are not identically distributed. The practical usefulness of the results in terms of computational time and

computational accuracy is demonstrated by simulation.
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Chapter 1

Introduction

1.1 Aims

This thesis presents a combination of selected works which I have contributed to the field of distribution
theory during my PhD studies over the past three years. The format of the main chapters presented

are either papers which are published or papers which are currently under review for refereed journals.

The aims of each chapter are as follows:

e To provide a review of the univariate Generalized Hyperbolic distribution and its relatives;

e To study the smallest Pareto order statistics of two sets of independent but non-identical

random variables with different scale and shape parameters;

e To study the smallest Weibull order statistics of two sets of independent but non-identical

random variables with different scale and shape parameters;

e To construct new classes of discrete bivariate distributions to be applied to new and existing

problems;
e To derive the distributions of amplitude and phase for bivariate distributions;
e To derive the characteristic function of products of two independent random variables;
e To derive aggregation and capital allocation formulas for bivariate distributions;

e To derive the moments of dependent random sums using copulas.

14



CHAPTER 1. INTRODUCTION 15

1.2 Motivations and contributions

Chapter 2: A review of Generalized Hyperbolic distributions In recent years, the General-
ized Hyperbolic(GH) distribution has not only attracted increasing interest in academic research,
but also been widely applied to a number of practical areas. Thus, we feel that it is necessary to
provide a review of the GH distribution and its relatives. A review of related programming packages
is also provided. We expect that this review can be a source of reference for academic researchers

and further encourage a number of applications.

Chapter 3: Comparisons of smallest order statistics from Pareto distributions with
different scale and shape parameters The work in this chapter is motivated by Torrado (2015).
Smallest order statistics have been widely discussed and investigated in both academic research and
industrial practice. Nowadays, Pareto distributions have been the most popular models applied in
the area of finance and economics. We feel it is needed to produce and work on the smallest Pareto
order statistics. In this chapter, we mainly consider three of the most popular Pareto distributions:
the Pareto distribution of type I, the Pareto distribution of type II, and the Pareto distribution of
type IV. A real data application is also presented as an example of the practical use of the smallest

Pareto order statistics.

Chapter 4: Comparisons of smallest order statistics from Weibull distributions with
different scale and shape parameters This chapter is closely related to the previous chapter.
We use the same approach but apply it to the Weibull distributed random variables. In this chapter,
we consider the standard Weibull distribution and a lower truncated Weibull distribution. The
results presented are different from and are more general than those in Torrado (2015). A real data

application is also presented as an example of the practical use of the smallest Weibull order statistics.

Chapter 5: New classes of discrete bivariate distributions with application to foot-
ball data Dependent random quantities in a wide range of areas have been modelled through the
application of bivariate/multivariate distributions. However, there has been relatively little research
on the development of discrete bivariate/multivariate distributions. Motivated by Lee and Cha
(2015), given three independent discrete random variables, e.g. Uy, Uz and Us, we apply possible
combinations of common mathematical operators to these three variables and generate seven new
classes of discrete bivariate distributions. A case study is also presented using the same data set
as that in Lee and Cha (2015). It turns out that some of the newly proposed distributions provide
better fits than models contributed by Lee and Cha (2015).
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Chapter 6: Distributions of amplitude and phase for bivariate distribution Discussions
on the distributions of the amplitude (R) and the phase (©) arise in many areas of the IEEE literature.
In this chapter, we derive the marginal distribution of the amplitude (R), its moments and the
marginal distribution of the phase (0) for a wide range of bivariate distributions. These include eleven
bivariate normal distributions, eight bivariate t distributions, five bivariate Laplace distributions,
two bivariate hyperbolic distributions, two bivariate Gumbel distributions, one bivariate logistic
distribution and five other bivariate distributions. We expect that the details given in this chapter
could be a useful reference for the IEEE community and encourage researchers to apply more

non-normal distributions to real problems.

Chapter 7: On characteristic functions of products of two random variables Many
variables in the real world can be subject to the normal distribution, so for a set of normally
distributed random variables (U), it can be composed of its mean value (p) plus the product of
its standard deviation (o) and a set of standard normal random variables (X), i.e. U =pu+o - X.
However, in the real world, the mean (u) and the standard deviation (o) are often themselves random
variables. Under these circumstances, each variable (U;) itself involves a product of two random
variables, e.g. o; - X;. Motivated by Schoenecker and Luginbuhl (2016), in this chapter, we derive
explicit expressions for the characteristic function of products of two random variables. One follows
the standard normal distribution and the other follows one of forty-five other distributions. We
expect that the details given in this chapter could be a source of reference for academic researchers

and encourage further research on the theory of related functions.

Chapter 8: Aggregation and capital allocation formulas for bivariate distributions
Results related to the sum of dependent risks have been of interest in both academic research and
industrial practice. In recent years, several closed-form expressions for the distribution of aggregate
risks, its Tail Value-at-Risk (TVaR) and TVaR based allocations have been widely developed.
Motivated by Cossette et al. (2015), in this chapter, we derive the aggregation and capital allocation

formulas for a comprehensive collection of bivariate distributions.

Chapter 9: The moments of dependent random sums using copulas The work in this
chapter is motivated by Mao and Zhao (2013). We extend their work by giving a general form
for the kth moment of dependent random sums using copulas. In terms of copulas, we also use a
more flexible one proposed by Nadarajah (2015). Moreover, a further extension is briefly discussed
considering both the claim amounts (X) and the time-intervals between occurrences (W) being
independently but non-identically distributed. A simulation is preformed in order to illustrate the

computational efficiency of the derived expressions in this chapter.



Chapter 2

Generalized hyperbolic

distributions

2.1 Introduction

The Generalized Hyperbolic (GH) distribution was introduced by Barndorff-Nielsen (1977) in a study
of Aeolian sand deposits. The GH distribution contains many known distributions as limiting or
particular cases. These include the hyperbolic (Bagnold, 1941), normal inverse Gaussian (Blaesild,
1977), GH skew Student’s ¢t (Aas and Haf, 2006), variance gamma (Madan and Seneta, 1990),
generalized inverse Gaussian (due to Georges Henri Halphen), Student’s ¢ (Gosset, 1908) and
normal (de Moivre, 1738; Gauss, 1809) distributions. The GH distribution has attracted widespread

theoretical interest in recent years. It has also been generalized by many authors in recent years.

The GH distribution is defined as a normal mean-variance mixture symmetric model with the
generalized inverse Gaussian (GIG) distribution as its mixing distribution. It has a property called
‘semi-heavy tail’ because its log-density forms a hyperbola rather than a parabola. The tail decays
slower than that of the Gaussian distribution, but lighter than the non-Gaussian distribution which
exhibits extremely heavy tail behavior. So, compared with the Gaussian distribution, the GH
distribution provides the probability of fitting the observations with skewness and heavy tails. As
a matter of fact, in recent years, the GH distribution has been more and has become more widely
used in modeling the distribution of skewed and/or heavy tailed observations from a variety of areas,

especially in the area of finance.

17



CHAPTER 2. GENERALIZED HYPERBOLIC DISTRIBUTIONS 18

Applications of the GH distribution include a number of areas. In recent years, however, the GH
distribution has been the first choice to model a variety of financial data. Such applications have
included: models for circulatory transit times in pharmacokinetics (Weiss, 1984); modeling neural
activity (Iyengar and Liao, 1997); pricing options on dividend paying instruments (Weron, 1999);
cloud/aerosol particle size distribution (Alexandrov and Lacis, 2000); models for Brazilian asset
returns (Fajardo and Farias, 2002); European and Asian option pricing (Predota, 2005); analysis
of the log-return series of the Chinese stock prices (Li and Wu, 2007); models for energy efficient
neurons (Berger et al., 2011); models for roller-coaster failure rates (Gupta and Viles, 2011); models
for daily returns of the PSI20 (Rege and de Menezes, 2012); value at risk estimation for the South
African mining index (Huang et al., 2014); modeling electricity price returns (Nwobi, 2014); models
for equity returns (Socgnia and Wilcox, 2014); empirical analysis of Bucharest stock exchange (Baciu,

2015); evaluating risk in gold prices (Chinhamu et al., 2015).

Because of the increasing interest in terms of methodology and applications, we feel it is timely
to provide a review of the GH distribution and its relatives. We review in Section [2.2] the GH
distribution and over twenty related distributions, including the GH skew Student’s ¢, mixture of GH,
geometric GH, generalized generalized inverse Gaussian, logarithmic generalized inverse Gaussian, Vo
hypergeometric generalized inverse Gaussian, confluent hypergeometric generalized inverse Gaussian,
Nakagami generalized inverse Gaussian, generalized Nakagami generalized inverse Gaussian, extended
generalized inverse Gaussian, exponential reciprocal generalized inverse Gaussian, gamma generalized
inverse Gaussian and exponentiated generalized inverse Gaussian distributions. For each distribution,
we give expressions for the probability density function (pdf), the cumulative distribution function
(cdf), moments and moment generating function (mgf). These details are not given for trivial

particular cases.

A real data application comparing some of the reviewed distributions is discussed in Section [2.3].

Some known software for the GH and related distributions are summarized in Section [2.4]

In this chapter, we have reviewed only univariate GH and related distributions. A future work is

to review bivariate, multivariate, complex variate and matrix variate GH distributions.

2.2 The collection

Here, we provide a list of known distributions related to the GH distribution. The list is by no

means complete, but we believe we have covered the most important and popular classes of GH
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distributions.

2.2.1 Generalized hyperbolic distribution

Barndorff-Nielsen (1977, 1978) introduced the GH distribution. Its pdf is

[ME

fa@) = CVE+@—n? Ky (/@ = w?) )

for —co <z <00, —00 <A< 00, —00 < <00, —00 < f§<00,d>0and —oo < pu < oo, where C

is the normalizing constant given by

€= VaT =5/ [Vara 19K, (3 = 72)

and K, (-) denotes the modified Bessel function of the third kind and with index v. Furthermore,
d>0and |fl<aif A>0;d>0and |S|l<aif A=0;d>0and | |[<aif A <0. fisan

asymmetry parameter, § is a scale parameter and u is a location parameter.

~1/2
Other parameterizations exist for the GH distribution: £ = (1 +0+y/a2 — 52) and x = &6/«
n=20ya?— 2 and p=f/a.

Because the GH distribution is a normal mean-variance mixture symmetric model with the
GIG distribution as its mixing distribution, the random variable can be generated by the following

algorithms:

1. simulate a random variable Y ~ GIG(\, x,¢) = GIG(\, 02, a? — 3?);
2. simulate a standard normal random variable N;

3. return X = pu+ BY + VY N.
The mean and variance of the GH distribution are

B OBKx11(57)
B =n+ YK (67)

and

Var(X) = 6K x11(57) + B26% [Kxy2(67)  K3i1(07)
YEAGY) 2% L Ky KXy |
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respectively, where v = v/a? — 82. The mgf of the GH distribution is

el Ky (5y/a? = (B+)%)

M(t) = 02— (B+ :E)Q],\/z K\ (67)

Barndorff-Nielsen and Stelzer (2004) derived the nth central moment of the GH distribution as

20515752051 gm S 2K BT (k + [n/2] + 3)

E{(X - = — K /o (@),
[( M) ] \/7?K)\ (7)a>\+[7w kzo ak(2k+m)' Ak+[ /2]( )

where p is the mean, @ = da, B = 63, ¥ = §v, and m = k mod 2. Scott et al. (2008) derived the

alternative form

n nl 20—n
BIX—p= 3 (n— e)!(gg UL
=[]

e

where W is a generalized inverse Gaussian random variable with parameters ), 62 and o — 32.

2.2.2 Hyperbolic distribution

The hyperbolic (HP) distribution is the particular case of the GH distribution for A = 1. Therefore,
suppose Y is a random variable following the GIG distribution with parameters (A = 1, x,¢), the

hyperbolic distributed random variable, Z, can be generated as
(Z|Y) ~ N(u+BY,Y),
where —oo < < oo and —o0 < p < 00.

2.2.3 Log hyperbolic distribution

The log hyperbolic (LH) distribution has the specified density function proposed by Bhatia et al.

(1988) in the study of liquid sprays. Its pdf is specified by

flx) = %exp [—a\/52 +(Inz—p)2+ B(nz —p)
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for x > 0. Its nth raw moment is

n np a? — 32 K (5\/m)
E(X")=e m K1<5m)

provided o >| 8+ n |.

The empirical studies in Bhatia et al. (1988) showed the LH distribution provided a superior fit to
the observed data and suggested further application which required the detailed information about
the droplet size variation throughout the spray. The LH distribution has been discussed in many
applications on geophysics (Christiansen and Hartmann,1988; Wyrwoll and Smyth 1988; Sutherland
and Lee, 1994; Bartholdy et al., 2007).

2.2.4 Normal inverse Gaussian distribution

The normal inverse Gaussian (NIG) distribution was introduced by Barndoff-Nielson (1997) in
the studies of observations from turbulence and from finance. It is the particular case of the
GH distribution for A = —1/2. Suppose a random variable z follows the inverse Gaussian (IG)
distribution with parameter v and §. Random variable Y is said to follow the NIG distribution if

Y|z~ N(u+ Bz, 2) for —oo < 8 < 0o and —oo < p < 0.

The NIG distribution can fit the distribution with skewness and heavy tails. Moreover, it
converges to the Cauthy distribution, which exhibits extremely heavy tails, with o approaching zero.
It can be more adequate to fit the distribution of considerably heavier tails than that of the GH
distribution. Recently, many empirical studies have suggested that the NIG distribution provides
an adequate fit to the financial data (Eriksson et al.,2009; Stentoft, 2008; Karlis and Lillestél, 2004;
Karlis, 2002; Venter and de Jongh, 2002).

2.2.5 Variance gamma distribution

The variance gamma (hereafter VG) distribution is the particular case of the GH distribution for
0 = 0, which is obtained from the normal with mixing of scale parameter. It was first introduced
by Madan and Seneta (1990) with an application to modeling asset returns and option pricing.
Generalizations of the VG distribution are given in Zaks and Korolev (2013) and Krolev et al. (2015).
The VG distribution has been widely applied to the area of finance. Such applications include:
modeling returns for the Dow-Jones Industrial Average data (Hurst et al., 1997); modeling returns

and pricing options on S&P’s 500 Index (Madan, Carr and Chang, 1998); pricing Asian, lookback
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and barrier options (Avramidis and L’Ecuyer, 2006).

2.2.6 Generalized inverse Gaussian distribution

The generalized inverse Gaussian (hereafter GIG) distribution is the limiting case of the GH distribu-

tion for ad? — x, @ — 8= ¥ and p = 0. Its pdf is

A/2
flz) = %1)‘1 exp {; (¢x + z)} .

Lemonte et al. (2011) introduced the reparameterization w = x/2 and n = 1)/2, so the pdf becomes
fz) = Cz* 'exp {— (nx + wx_l)} ,

where the normalizing constant is C' = C(\,w,n) = (n/w)*?/ {2K, (2,/7w) }. The corresponding

cdf, mgf and nth moment are

F(z) =1-Cn T (A na;nw),

A2 Ky (2+4/(n—tw
M(t):<nit> I<(>\(2\/T)Tu) )

and

w>"/2 Ky (270)
Ky (2ymw)

e = (]

respectively, where

F(a,x;b)z/ o le=t=% dt.

The quantiles can be computed by the inserse of cumulative distribution function.

Since the GH distribution is a mixture with the GIG distribution as the mixing model, there has
been a lot of research providing a comparison between the GH distribution and the GIG distribution.
Some of the references have been listed in Section 2.1. A collection of particular or transformation

cases of the GIG is also discussed in this chapter.
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2.2.7 Student’s ¢ distribution

The Student’s t distribution with v degrees of freedom is the particular symmetric and heavy tailed
case of the GH distribution for A = —v/2,a =0, = 0, and § = /v. The student’s t distribution

converges to the normal distribution as v > 30 .

2.2.8 Normal distribution

The normal distribution is the particular symmetric case of the GH distribution for § — oo and
§/a — o2, which is consistent with the demonstration in 2.2.7. Moreover, the normal distribution is

a particular case of NIG(u,a, 3,0) distribution when 8= 0,6 = 02 - a and a — 0.

2.2.9 GH skew Student’s ¢ distribution

The GH skew Student’s ¢t (GHST) distribution is a limiting case of the GH distribution for A = —v//2
and o —| B ]. It is due to Aas and Haff (2006). Its pdf is

B 8V BV 2K 41y /9 (ﬂ\/ 02 + (z — M)Z) exp [B(x — )]

(v+1)/2
200-1/20(u/2) /7 [ /I F (&= 7]

f(z

The mean and variance are

Bé?
E(X)=p+ p—"
and
23254 52
VarlX) = =g T =2
respectively.

It is the only subclass, in our collection, of the GH family that has the property that one tail
characterizes polynomial, and the other exhibits exponential behavior. Because of its special tail
behavior, it has been used in measuring blood flow in the canine myocardium (Jones and Faddy,
2003); in portfolio optimization of the Dow Index (Hu and Kercheval, 2010); in forecasting expected
shortfall for the S&P 500 Index and commercial stocks (Zhu and Galbraith, 2011); in modeling daily
S&P 500 Index and TOPIX returns (Nakajima and Omori, 2012).
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2.2.10 Mixture of GH distributions

Browne and McNicholas (2015) studied mixtures of GH distributions specified by the pdf

N SV
flx) = C’Zwi\/éf + (z — w)* Ky, _1 (am/é? + (z — ,ui)2) ePile—na)
i=1

for —oo < & < 00, —00 < \; < 00, —00 < @y < 00, —00 < f3; < 00, —00 < §; < oo and —oo < p; < 00,
where C' is the normalizing constant and w; are weights. The expectation-maximization framework
was used to estimate the parameters.

In real data analysis, Browne and McNicolas (2015) illustrated the mixture of GH distribution
outperformed the mixture of skew-Gaussian distribution in clustering. Besides, the mixture of GH
model was also suggested for other statistical learning analysis, such as semi-supervised classification,

discriminant analysis, and density estimation.

2.2.11 Geometric GH distribution

Let h(t) = 1/(1 +t). Then the distribution specified by the characteristic function h (—In(t)),
where 1(t) is the characteristic function of the GH distribution, is referred to as the geometric GH

distribution, see Klebanov and Rachev (2015) for details.

Since the Geometric distribution has been widely applied in modeling the distribution of the number
of summands in random sums, the Geometric GH distribution is proposed for the further study on

the distributions of sums of random number of random variables.

2.2.12 Generalized generalized inverse Gaussian distribution

The Generalized GIG (hereafter GGIG) distribution was introduced by Shakil et al. (2010) by solving

the generalized Pearson differential equation. Its pdf is

)= (a)“”p "~ exp (—aa? — fa7)

B Ko/p (2\/@)

forx>0,a>0,8>0, —co<wv<ooandp>0.

The GGIG distribution has the characteristic of skewness to the right and exhibits most of the
properties of skewed distributions. Shakil et al.(2010) applied the proposed GGIG distribution to a
real problem in forestry in comparison with the performaces of the gamma, log-normal and inverse

Gaussian distributions,respectively. The result showed the GGIG distribution provided the best
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fit. Many of our reviewed distributions in this chapter are also the particular cases of the GGIG
distribution, which includes: the hyperbolic distribution for p = 1 and v = 1; the GIG distribution for
p = 1; the reciprocal inverse Gaussian distribution for p =1 and v = %; the hyperbola distribution
for p = 1 and v = 0; the generalized gamma distribution for a = (1/u)?, 8 = 0 and v = pk. The

corresponding cdf and nth moment are

o 1 = (DB vk,
F( ) - 2(0&,@)1)/2]3 Kv/p (2\/0[7[3) ];0 A 7( )

and

(BN Kroy (2V0B)
ro=(3) TR

respectively, where ~y(a, z) denotes the incomplete gamma function. The quantiles can be computed

by the inverse of cumulative distribution function.

2.2.13 Logarithmic generalized inverse Gaussian distribution

Knowing that the shape of the GIG density function is rather similar to that of the log-normal
distribution. In order to approaching ‘normality’, Sichel et al. (1997) introduced the logarithmic

generalized inverse Gaussian (hereafter LGIG) distribution. Its pdf is

fz) = exp (ax — bcosh x)

for —oco <z < 00, —00 < a < oo and b > 0. The mgf is

Kot (b)

M) = Ka(l§> |

It is suggested for the application on modeling the distribution of automobile insurance claims due
to disaster damage, or on modeling the logarithmic distribution of single ore values. Such ores can

be as oil, gas and gold, whose formation has a hydrothermal character.

2.2.14 ¥, hypergeometric generalized inverse Gaussian distribution

Inspired by the gamma, Weibull and inverse Gaussian distributions, which are all the combinations of

the power function and the exponential function, Saboor et al. (2014) introduced ¥y hypergeometric
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generalized inverse Gaussian distribution (hereafter PHGIG). Its pdf is

_ 1 m—1 D2 b b+l o«
f(CU) = [(@bp1p2,a) (m)x exp (—p1x — ?) U, (a, 57 72 ) _;7 —x)

forx >0, —co<m < oo, p; >0,ps >0, m=#0,a#0and b # 0, where

Us(asb;cx,y) = Z Z m

and

m/2 % % (a);ik (—oz\/pl/pz)7 (pz/p1)k/2
(a,b,p1,p2,@) m) = ZQ
pesrrcin <2 (22) 22 ), (5, A

Kj_g—m (2/P1D2)

where (0), =00 +1)--- (0 + k — 1) denotes the ascending factorial. The mgf and the nth moment

are
2p5* (pr — )™ S (Wit [_a p;;tr [pfit]k/z
MO = Tamnmam S o, o (Vo)
and
B = ),
respectively.

A real case study on modeling the distribution of 100 observed breaking stress of carbon fibres
(in Gba) showed that the PHGIG distribution provided an adequate fit. Further applications are

suggested in physical and biological series.

2.2.15 Confluent hypergeometric generalized inverse Gaussian distribu-

tion

Saboor et al. (2015) introduced another case of the combination of the power function and the
exponential function, which is the confluent hypergeometric generalized inverse Gaussian distribution

(hereafter CHGIG). Its pdf is

f(x) = C(a,b,p1,p2,a) ™ exp (*plx - %) 1F1(A; b —ax)
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forz >0, m>0,p; >0,ps >0, >0, A# 0 and b # 0, where

1F1abx i

Jj=0 J J'
denotes the confluent hypergeometric function. The first two moments are

C (m + 17a7b7p17p27a)

E(X)=
( ) C(maaabvp17p27a)
and
E(X2) _ C(m+27aab»P1aP2,C¥).
C(m’a7b7p17p27a)
The mgf is

i—m 4

I'(b) S (p1 — 1) P2 ~2,2 0%
)\) ; 1! G3’3 pp—t

L—m, 1=\ —m+i+l

0,1—-m,1—b,—m —1

1—-m,1—X\

_ T i(ﬁl—t)iﬂ; G“ paar
N = il 0,1 —m,1—b,—m—i

provided that p; >t and ps > 0, where C = C (m, a, b, p1, p2, @) and

o B .
(CH = — 27 %ds

denotes the Meijer G function, i = v/—1 is the complex unit and L denotes an integration path, see
Section 9.3 in Gradshteyn and Ryzhik (2000) for a description of this path.

The CHGIG distribution is shown to outperform the gamma, ESGamma, generalized gamma and
the generalized inverse Gaussian distributions in modeling the ‘Ball-bearing’ data set. Details of the

data set can be found at http://homepage.tudelft.nl/n9d04/occ/510/0c_510.html.

2.2.16 Nakagami generalized inverse Gaussian distribution

Both Nakagami distribution and generalized Nakagami distribution have shown their excellent

performances on fitting the distribution of ultrasound echo envelope compared with the previously
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widely used Rayleigh model in Shankar (2001). In order to better describe ultrasonic tissues’ heavy tail
behavior, and motivated by the success of Nakagami-inverse Gaussian distribution (NIGD) (Agrawal,
2006), Agrawal and Karmeshu (2006) introduced the Nakagami generalized inverse Gaussian (hereafter
NGIG) distribution. Its pdf is

1
Ky_m (9 AN+ 2m332)>

_ Qmmem—l 92 ()\ + le'z)
fa) = 07T (m) K, (1/0) [ )

] (v—m)/2

for x > 0,60 >0 and A > 0. Its nth raw moment is

6 )"/2 T (m+2) Kyrn()0)

Bx") = ( Tm) Ky (M6)

for n > 1.

2.2.17 Generalized Nakagami generalized inverse Gaussian distribution

Following the previous work contributed by Agrawal and Karmeshu (2006), Gupta and Karmeshu
(2015) introduced the generalized Nakagami generalized inverse Gaussian (hereafter GNGIG) distri-
bution. Its pdf is

f()

—m)/2
2,Umm$2mv—1 92 ()\+ 2mx2v) (n )/ 1
Ky

= 9T (m) K, (\/0) By gV me%))

forz >0, A>0,6>0and —co <n < oo. Its nth raw moment is

0 ) U (m+ 2) Kz (M0)

BX") = (m D) Ky(70)

for n > 1.

2.2.18 Extended generalized inverse Gaussian distribution

The extended generalized inverse Gaussian (hereafter, EXGIG) distribution is generated from the
generalized inverse Gaussian distribution as a power transformation in J¢rgensen (1982). Thus,
if X ~ GIG(\,0,7), Y = XY? with @ > 0, then Y ~ EGIG()\,8,7,6). The pdf of the EXGIG
distribution due to Silva et al. (2006) is

A
f(z) = (l) 0 o1 exp _% (82270 4 +22%)
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forz >0, —co< A<o0,d >0,7>0and @ > 0. Its nth raw moment is

n/0 Kxiz(70)

BX") = (%) Kx(79)

The EXGIG distribution has many well-known particular cases, such as generalized gamma distribu-
tion, Weibull distribution, truncated normal distribution. Details can be found in Appendix A, Silva

et al. (2006).

2.2.19 Exponential reciprocal generalized inverse Gaussian distribution

Gomez-Déniz et al. (2015) introduced the exponential reciprocal generalized inverse Gaussian
(hereafter, ERGIG) distribution. Suppose Y GIG(7,4,v), and Z = 1/Y, which follows the reciprocal
of the inverse Gaussian distribution (hereafter, RGIG) (v, d,v). X is said to follow the exponential-
reciprocal generalized inverse Gaussian distribution (hereafter, ERGIG) (v, 9, ), if f(z) x exp(z/z).
Its pdf is

fay =2 v\ Ko (3v20 4 7?)
T3 \Vart 2 K, (37)

forz >0, —oo < v <00,y >0and éd > 0. The corresponding cdf and first two moments are

P = (1) b/ )

) K, (67)

and
Y Ky 1 (07)
B =57%, (07)

respectively. The quantiles can be computed by the inverse of cumulative distribution function.

2.2.20 Gamma generalized inverse Gaussian distribution

Goémez-Déniz et al. (2013) introduced a new class of distribution, the gamma generalized inverse

Gaussian (hereafter GAGIG) distribution, which is the mixture of gamma distribution and the
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generalized inverse Gaussian distribution. Its pdf is

(xma( v ) Kapr (/)

IO =@ \r2ez) KW

forz >0, —co < A < o0, a >0, u>0and ¢ >0, where pu; = p/v/ (¥ + 2u2x). Its first two

moments are

_a K1 (Y/u)
) = R /)

and

E(x?) - @ Kaa ($/p)  a Kna(d/p)

p2 KN (/) o K (/)

Because of the possibility of measuring risk heterogeneity, the GAGIG distribution is considered
competitive to the log-normal, gamma, inverse Gaussian, Frechet, Weibull and other widely used

distributions in modeling the insurance claim amount caused by the natural disaster.

2.2.21 Exponentiated generalized inverse Gaussian distribution

Lemonte and Cordeiro (2011) introduced the exponentiated generalized inverse Gaussian (EGIG)

distribution. Let G denote the cdf of a GIG distribution, that is

G(z) =1 - Cn~ T (A, n; nw)

for x > 0 with C as defined in Section The EGIG distribution is defined by the cdf

F(z) = GP(z)

for x > 0 and 8 > 0. The corresponding pdf is

f(a) =BG (2)g()

for x > 0, where g denotes the pdf of the GIG distribution. Therefore, the GIG distribution is a
particular case of the EGIG distribution when 8 = 1. If w = 0, the EGIG distribution is referred to
as the exponentiated gamma distribution (hereafter EGamma) (Nadarajah and Kotz 2006). It is

obvious that the EGIG distribution can be applied to a wide range of scenarios compared with the
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GIG distribution. The nth moment and the mgf of the EGIG distribution are

o (0SS Kt (2¢/70)
P )_(n> JZO 7 Ky (2y/70)

and

o= (52" 5

respectively, where

p; = BUJC()H w, 77)/0()‘ + j7 w, 77)

and v; are determined by

o0

1= F@)" " = vl

=0

The quantiles can be computed by the inverse of cumulative distribution function.

2.3 Real data application

Here, we compare the performances of some of the GH related distributions in Section using a real
data set. The data we use are S&P / IFC (Standard & Poor’s / International Finance Corporation)
global daily price indices in United States dollars for South Africa. The data cover the period from
the 1st of January 1996 to the 31st of October 2008. The data were obtained from the database
Datastream. Following common practice, daily log returns were computed as first order differences of

logarithms of daily price indices.

We fitted the following distributions: the five-parameter GH distribution, the four-parameter
HP distribution, the four-parameter NIG distribution, the four-parameter VG distribution, the
three-parameter GIG distribution, the four-parameter GHST distribution, the four-parameter GGIG
distribution, the five-parameter PHGIG distribution, the five-parameter CHGIG distribution, the
five-parameter GNGIG distribution, the four-parameter EGIG distribution and the four-parameter
GAGIG distribution. Each distribution was fitted by the method of maximum likelihood. Table

gives the log-likelihood values, values of the Akaike Information Criterion (AIC), values of the
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Bayesian Information Criterion (BIC) and p-values based on the Kolmogorov-Smirnov statistic. The
AIC is due to Akaike (1974). The BIC is due to Schwarz (1978). The smaller the values of these
criteria the better the fit. For more discussion on these criteria, see Burnham and Anderson (2004)

and Fang (2011).

We can see that the five-parameter GH distribution gives the smallest AIC, smallest BIC and
the largest p-value, which is greater than 0.05. That is to say, we can not reject the Null hypothesis
of the Kolmogorov test at the 5% level of significance. The Null hypothesis is that the sample is
drawn from the reference distribution. So, the GH distribution gives the best fit to the data. The GH
distribution provides significantly better fits than all of its limiting and particular cases, including
the HP, NIG, VG, GIG and GHST distributions. The GGIG distribution gives the largest AIC and
the smallest p-value. The PHGIG distribution gives the largest BIC. So, these two distributions
may be thought to give the worst fits. At the five percent level of significance, the GH, CHGIG and

GNGIG distributions give adequate fits.

2.4 Computer software

Software for the GH and related distributions are widely available. Some software available from the

R package (R Development Core Team, 2016) are:

e the package ghyp due to David Luethi and Wolfgang Breymann. According to the authors,
the package provides “Detailed functionality for working with the univariate and multivariate
Generalized Hyperbolic distribution and its special cases (Hyperbolic (hyp), Normal Inverse
Gaussian (NIG), Variance Gamma (VG), skewed Student-t and Gaussian distributions).
Especially, it contains fitting procedures, an AIC-based model selection routine, and functions
for the computation of density, quantile, probability, random variates, expected shortfall and
some portfolio optimization and plotting routines as well as the likelihood ratio test. In

addition, it contains the Generalized Inverse Gaussian distribution”.

e the package GeneralizedHyperbolic due to David Scott. According to the author, the package
provides “functions for the hyperbolic and related distributions. Density, distribution and
quantile functions and random number generation are provided for the hyperbolic distribution,
the generalized hyperbolic distribution, the generalized inverse Gaussian distribution and the
skew-Laplace distribution. Additional functionality is provided for the hyperbolic distribution,

normal inverse Gaussian distribution and generalized inverse Gaussian distribution, including
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fitting of these distributions to data. Linear models with hyperbolic errors may be fitted using

hyperblmFit”.

e the package HyperbolicDist due to David Scott. The package provides a collection of functions

for working with the hyperbolic and related distributions.

For the hyperbolic distribution functions, the package provides “the density function, distribu-
tion function, quantiles, random number generation and fitting the hyperbolic distribution to
data (hyperbFit). The function hyperbChangePars will interchange parameter values between
different parameterisations. The mean, variance, skewness, kurtosis and mode of a given
hyperbolic distribution are given by hyperbMean, hyperbVar, hyperbSkew, hyperbKurt, and
hyperbMode respectively. For assessing the fit of the hyperbolic distribution to a set of data,
the log-histogram is useful. Q-Q and P-P plots are also provided for assessing the fit of a
hyperbolic distribution. A Cramer-von-Mises test of the goodness of fit of data to a hyperbolic
distribution is given by hyperbCvMTest. S3 print, plot and summary methods are provided

for the output of hyperbFit”.

For the generalized hyperbolic distribution functions, the package provides “the density
function, distribution function, quantiles, and for random number generation. The function
ghypChangePars will interchange parameter values between different parameterisations. The
mean, variance, and mode of a given generalized hyperbolic distribution are given by ghypMean,
ghypVar, ghypSkew, ghypKurt, and ghypMode respectively. Q-Q and P-P plots are also

provided for assessing the fit of a generalized hyperbolic distribution”.

For the generalized inverse Gaussian distribution functions, the package provides “the density
function, distribution function, quantiles, and for random number generation. The function
gigChangePars will interchange parameter values between different parameterisations. The
mean, variance, skewness, kurtosis and mode of a given generalized inverse Gaussian distribution
are given by gigMean, gigVar, gigSkew, gigKurt and gigMode respectively. Q-Q and P-P plots

are also provided for assessing the fit of a generalized inverse Gaussian distribution”.

e the package frmga due to Thanh T. Tran. According to the author, the package comprises
of “R and C++ functions which deal with issues relating to financial risk management and
quantitative analysis by applying uni- and multi-variate generalized hyperbolic and related
distributions. These issues are approached from both directions: analytical (i.e., deriving
and programming analytic formulae) and numerical. Note that the latter appears to be the
only approach currently used in practice because of the intractability of these families of

distributions, which is caused by the presence of the modified Bessel function of the third kind
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BesselK K\ (z), in their density functions. In this package, the naming of special functions and
their related functions (e.g., BesselK and incomplete BesselK functions) follows the convention

used in the R package gsl”.

e the package VarianceGamma due to David Scott and Christine Yang Dong. According to
the authors, the package provides “functions for the variance gamma distributions. Density,
distribution and quantile functions. Functions for random number generation and fitting of
the variance gamma to data. Also, functions for computing moments of the variance gamma
distribution of any order about any location. In addition, there are functions for checking the
validity of parameters and to interchange different sets of parameterizatons for the variance

gamma distribution”.

o the package SkewHyperbolic due to David Scott. According to the author, the package provides
“a collection of functions for working with the skew hyperbolic Student t-distribution. Functions
are provided for the density function (dskewhyp), distribution function (pskewhyp), quantiles
(gskewhyp) and random number generation (rskewhyp). There are functions that fit the
distribution to data (skewhypFit). The mean, variance, skewness, kurtosis and mode can
be found using the functions skewhypMean, skewhypVar, skewhypSkew, skewhypKurt and
skewhypMode respectively, and there is also a function to calculate moments of any order
skewhypMom. To assess goodness of fit, there are functions to generate a Q-Q plot (qgskewhyp)
and a P-P plot (ppskewhyp). S3 methods print, plot and summary are provided for the output

of skwewhypFit”.

e the package GlIGrvg due to Josef Leydold and Wolfgang Hormann. According to the authors,
the package provides “Generator and density function for the Generalized Inverse Gaussian

(GIG) distribution”.

e the package SkewHyperbolic due to David Scott and Fiona Grimson. According to the authors,
the package provides “functions for the density function, distribution function, quantiles and
random number generation for the skew hyperbolic t-distribution. There are also functions
that fit the distribution to data. There are functions for the mean, variance, skewness, kurtosis
and mode of a given distribution and to calculate moments of any order about any centre. To

assess goodness of fit, there are functions to generate a Q-Q plot, a P-P plot and a tail plot”.

e the package MixGHD due to Cristina Tortora, Ryan P. Browne, Brian C. Franczak, and Paul
D. McNicholas. According to the authors, the package carries out “model-based clustering,

classification and discriminant analysis using five different models. The models are all based
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on the generalized hyperbolic distribution. The first model ‘MGHD’ is the classical mixture of
generalized hyperbolic distributions. The ‘MGHFA’ is the mixture of generalized hyperbolic
factor analyzers for high dimensional data sets. The ‘MSGHD’, mixture of multiple scaled
generalized hyperbolic distributions. The ‘cMSGHD’ is a ‘MSGHD’ with convex contour plots.
The ‘MCGHD’, mixture of coalesced generalized hyperbolic distributions is a new more flexible

model”.

e the package QRM due to Bernhard Pfaff, Marius Hofert, Alexander McNeil, and Scott Ulmann.
Among other roles, the package “computes values of density and random numbers for uni-
and multivariate Generalized Hyperbolic distribution in new QRM parameterization (chi, psi,
gamma) and in standard parametrization (alpha, beta, delta)” and “updates estimates of

mixing parameters in EM estimation of generalized hyperbolic”.

e the package QRMIib due to Alexander McNeil and Scott Ulmann. Among other roles, the
package “computes values of density and random numbers for uni- and multivariate Generalized
Hyperbolic distribution in new QRM parameterization (chi, psi, gamma)” and “calculates

moments of univariate generalized inverse Gaussian (GIG) distribution”.
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Distribution InL  AIC BIC p-value

GH 227.2 -444.4 -413.8 0.086
HP 220.1 -432.2 -407.7 0.039
NIG 219.9 -431.8 -407.3 0.031
VG 219.7 -431.4 -406.9 0.030
GIG 218.9 -431.8 -413.4 0.031
GHST 220.3 -432.6 -408.1 0.040
GGIG 219.0 -430.0 -405.5 0.001
PHGIG 221.7 -433.4 -402.8 0.044
CHGIG 221.8 -433.6 -403.0 0.064
GNGIG 222.8 -435.6 -405.0 0.073
GAGIG 219.2 -430.4 -405.9 0.012
EGIG 219.1 -430.2 -405.7 0.003

Table 2.1: Fitted distributions.
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Chapter 3

Smallest Pareto order statistics

3.1 Introduction

Let X1, Xs,..., X, be independent but non-identical random variables from one population and let
X1.n = min (X1, Xo,...,X,,). Let Y1,Y5,...,Y, be independent but non-identical random variables
from another population and let Y7., = min(Y7,Y5,...,Y,). There has been little work on the
stochastic comparison of Xi., and Yi.,. The work that we are aware of are: Khaledi and Kochar
(2006), Fang and Tang (2014), Li and Li (2015) and Torrado (2015). Balakrishnan and Zhao (2013)

provide an excellent review of other known work.

Beyond statistical theory, smallest order statistics arise in many applied areas. Some recent
applications have included: empirical studies of price dispersion on the Internet (Warin and Leiter,
2012); utility maximization frameworks for fair and efficient multicasting in multicarrier wireless
cellular networks (Liu et al., 2013); degradation pattern prediction of a polymer electrolyte membrane

fuel cell stack (Bae et al., 2014).

The aim of this chapter is to study orderings between X;.,, and Y7., when X1, X5,..., X, are
independent but non-identical Pareto random variables from one population and Y7,Y5s,...,Y,, are

independent but non-identical Pareto random variables from another population.

Pareto distributions are the most popular models in finance, economics and related areas. Pareto
distributions are known as the mixtures of exponential distributions with Gamma mixing weights.
They are commonly used to model random variables like income, risk and prices as they often exhibit

heavy tails. Areas where Pareto random variables arise include: measures of the sales quantities in
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analysing the competition between Amazon and BarnesandNoble(Chevalier and Goolsbee, 2003);
Ruin theory and reinsurance pricing (Morales, 2005; Cai et. al., 2017; Grahovac, 2018); the VaR and
CVaR-based optimization in insurance contract ( Asimit et al., 2017); bias reduction in estimation
for automobile insurance portfolio (Beirlant, 2018). Often comparison of the smallest Pareto order
statistics has practical appeal in the area of insurance, as the insurer would like the claim to be
as small as possible. Suppose X1, Xa,...,X,, are insurance claims made over a fixed period by
a population with one characteristic (e.g., females) and Y7,Ys,...,Y,, are insurance claims made
over the same fixed period by a population with another characteristic (e.g., males). Then Xj.,
and Y7., are the smallest insurance claims made and it makes sense to compare them to see which

characteristic is associated with smaller claims. We shall return to this example in Section

We consider three of the most popular Pareto distributions: the Pareto distribution of type I, the
Pareto distribution of type II and the Pareto distribution of type IV. We also briefly discuss results

for the Feller Pareto and discrete Pareto distributions.

A Pareto random variable of type I with shape parameter a and scale parameter b denoted by

PI(a,b) has the probability density, cumulative distribution and hazard rate functions specified by

and

respectively, for x > b > 0 and a > 0.

A Pareto random variable of type II with shape parameter a and scale parameter b denoted by

PII(a,b) has the probability density, cumulative distribution and hazard rate functions specified by

=5 (+3) "

SRS
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and

respectively, for x > 0, a > 0 and b > 0.

A Pareto random variable of type IV with shape parameters a, b and scale parameter ¢ denoted by
PIV(a,b,c) has the probability density, cumulative distribution and hazard rate functions specified
by

and

respectively, for x > 0, a > 0, b > 0 and ¢ > 0.

Let F; and f; denote the survival and probability density functions of X;. Let G; and g; denote
the survival and probability density functions of Y;. Then the survival and probability density

functions of Xj.,, are

and

fin(z) =

Hfi(ﬂf)

=1

respectively. Similarly, the survival and probability density functions of Y7., are

Giin(2) = H@(%)
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and

gl:n(x) =

g

i()

i=1

Q)

respectively.

The orderings that we consider are: Xj., is smaller than Y., in stochastic order denoted by
X1 <st Yin if Frn(2) < Grap(2) for all x; Xy, is smaller than Y., in hazard rate order denoted
by X1.n <nr Yii if fron(2)/Frn(2) > g1.0(2)/G1on () for all z; X7, is smaller than Y7, in reversed
hazard rate order denoted by Xi., <, Y1., if f1.n(z)/ [1 — Flm(x)] < g1n(x)/ [1 — élm(x)} for all
x; X1, is smaller than Y7., in likelihood ratio order denoted by Xi., <jr Y1.n if g1.n(2)/ f1.n(2) is
increasing in x for all x for which the ratio is well defined; Xj., is smaller than Y., in increasing

o0 (o ]
convex order denoted by X1., <icx Y1un if/ Fi(z)dr < / G1.n(z)dz for all t; Xy, is smaller
t t
than Y7., in mean residual life order denoted by Xi., <mm Yi., if / 2 frn(2)de/F1.,(t) <
t

/ 2g1.n(7)dz /G 1., (t) for all t > 0. Further details of these orderings can be found in Shaked and
¢
Shanthikumar (2007).

In this chapter, we derive if and only if conditions for stochastic, hazard rate, likelihood ratio,
reversed hazard rate, increasing convex and mean residual life orderings of X;.,, and Y7.,,. Section (3.2
gives the results when Xj.,, is a minimum of independent Pareto type I random variables and Y7.,, is
a minimum of another set of independent Pareto type I random variables with different shape and
scale parameters. Section [3.3] gives the results when X, is a minimum of independent Pareto type
II random variables and Y7., is a minimum of another set of independent Pareto type II random
variables with different shape and scale parameters. Section [3.4] gives the results when Xi., is a
minimum of independent Pareto type IV random variables and Y7., is a minimum of another set of
independent Pareto type IV random variables with different shape and scale parameters. Section
presents an application to insurance claims data. Section [3.6 gives further results on stochastic

orderings, discussion and future work.

3.2 Results for the smallest of Pareto type I random vari-

ables

Let X; ~ PI(a;,b;), i = 1,2,...,n be independent Pareto type I random variables. Let Y; ~

PI(¢;,d;), i =1,2,...,nbeindependent Pareto type I random variables. Let X;.,, = min (X1, Xa,..., X,)
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and Y1., = min (Y1, Ys,...,Y,). Note that

and

fim(z) = <: C;) lﬁl (Z)a] (3.2)

for & > max (by,ba,...,by), b; > 0 and a; > 0. Similarly,
G =TT (2)
() = 1;[1 T (3.3)
and
n & n - —c;
grn(x) = <Z ) [H <d> ] (3.4)
iz T i=1 v
for z > max (dy,ds,...,d,) >0, d; >0 and ¢; > 0.

As noted, X;., and Y., are defined over different domains. Any comparison of these random
variables should be over a common domain. In our results, we take the common domain of Xj.,, and
Yi., as (e,00), where e = max (max (b1, ba, . .., b,) , max ((il, day. .., dnT)L) Throughout this section,
weleta=a;+as+ - +an, c=ci+co+- - +cp, a:Hb‘;"’, ﬁ:dei, X0 = (ﬂ/a)l/(cfa) and

i=1 i=1
yo = {Ba—1)/ lafe— .

Theorem [3.2.1] gives an if and only if condition for stochastic ordering of Xj.,, and Y7.,. Theorem
gives an if and only if condition for hazard rate ordering. Theorem gives an if and only if
condition for likelihood ratio ordering. Theorem [3.2.4] gives an if and only if condition for reversed

hazard rate ordering. Theorem [3.2.5| gives an if and only if condition for increasing convex ordering.

Theorem [3.2.6] gives an if and only if condition for mean residual life ordering.

Theorem 3.2.1. X;., < Y1., if and only if either c=a and B/a > 1 or ¢ < a and xg < e.

Proof: By (3.1) and (3.3),
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for all x > e if and only if either ¢ = a and

S e
Y
—_

or c < a and xg < e < x. The result follows. [

Theorem 3.2.2. X;., <p, Y1., if and only if a > c.

Proof: By (3.1) to (3.4),

The result follows. O

Theorem 3.2.3. Xi., <; Y1., if and only if a > c.

Proof: By (3.2) and (3.4)),

fl:n(-r) P ac
gl:n(x) CB.

The result follows. O

Theorem 3.2.4. X1., <, Y1., if and only if either ¢ < a and h(e) <0 or c=a and a < 3, where
h(z) = aax® — cfx®* + (¢ — a)af.

Proof: By (3.1) to (3.4),

fin(z)/ [1 — Flm(x)] _ aqxt™® (1 — ﬁx_c)
g1n(2)/ [1 = Grn ()] B (1—az™®)

<1

Let h(z) = acx® — ¢Bz* + (¢ — a)af. The above inequality function holds if and only if h(z) < 0 for
all x > e.

If ¢ = a, the condition can be simplified to a < 3.

If ¢ < a, we take the first and the second derivative of 2(x) and obtain h'(z) = acaz®' — acBz®?,
B (z) = acx® 2 [a(c — 1)z~ — B(a — 1)]. Note that b’ (z0) = 0 and k" (x0) = aczd 2B(c — a) < 0
when ¢ < a. So, the h' (z¢) = 0 is the maximum value of h'(z). Thus, h(z) is a non-increasing

function. Because e < x for all x, once h(e) <0, h(z) <0 for all z, thus X7.,, <,p, Y1.,,. O

Theorem 3.2.5. Suppose a > 1 and ¢ > 1. Then X1., <icz Y1.n if and only if either ¢ = a and

B>aorc<aandyy <e.
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Proof: By (3.1) and (3.3)),

and

/ooélm(x)dmz p e,
¢

c—1
Note that -25¢1=% < -£-41=¢ if and only if either c=a and 8> aorc < a and yp < e. O

Theorem 3.2.6. Suppose a > 1 and ¢ > 1. Then X1., <pmri Y1 if and only if ¢ < a.
Proof: By (B1) to (3),

/OO Zf1.n(z)dx
t

at
Fron(t) Ca-—1

and

o0
/t xg1.n(2)dz "

61:n(t) - Cc— 1

Note that at/(a — 1) < ct/(c—1) if and only if ¢ < a. O

We can observe the following from Theorems to i) the hazard rate and likelihood ratio
orderings are equivalent; ii) if ¢ > 1 and ¢ > 1 then the hazard rate, likelihood ratio and mean residual
life orderings are equivalent; iii) the stochastic ordering implies hazard rate and likelihood ratio
orderings; iv) the reversed hazard rate ordering implies hazard rate and likelihood ratio orderings; v)

if @ > 1 and ¢ > 1 then increasing convex ordering implies mean residual life ordering.

3.3 Results for the smallest of Pareto type II random vari-

ables

Note that the Pareto distribution with type II is also known as the Lomax distribution. Let X; ~
PII(a;,b;),i=1,2,...,n be independent Pareto type II random variables. Let Y; ~ PII (¢;, d;),

i =1,2,...,n be independent Pareto type II random variables. Let X;., = min (X1, Xa,...,X,)
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and Y1., = min (Y1, Ys,...,Y,). Note that

I1 (1 + ;”) ] : (3.6)

and

forx >0,a; >0,b; >0, ¢; >0and d; > 0.

Theorem [3.3.1] gives an if and only if condition for stochastic ordering when b; = d; = constant
for all i. Theorem [3:3:2] gives an if and only if condition for hazard rate ordering when b; = d; =
constant for all . Theorem [3.3.3| gives an if and only if condition for likelihood ratio ordering when
b; = d; = constant for all . Theorem gives an if and only if condition for reversed hazard
rate ordering when b; = d; = constant for all ¢. Theorem [3.3.5| gives an if and only if condition for
increasing convex ordering when b; = d; = constant for all 7. Theorem gives an if and only if
condition for mean residual life ordering when b; = d; = constant for all i. Theorem [3:3.7] gives a
condition for stochastic ordering when a; = ¢; = constant for all 7. Theorem [3.3.8| gives a condition
for hazard rate ordering when a; = ¢; = constant for all 4.

n n
Theorem 3.3.1. Suppose b; = d; = ¢ for all i. Then X1., <st Y1.n if and only ifZai > Zci.

i=1 i=1

Proof: By (3.5) and (3.7),

Flm(l’) . ( c >Z?1 arZ?Zl ci
Gin(z) \z+c :

The result follows. O

Theorem 3.3.2. Suppose b; = d; = ¢ for all i. Then X1., <pr Y1.n if and only ifZai > Zci,
i=1 i=1
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Proof: By (3.5) to (3.8),

The result follows. O

Theorem 3.3.3. Suppose b; = d; = ¢ for all i. Then X1., <; Y1.,, if and only zfz a; > Z G-

i=1 i=1

Proof: By (4.2)) and (4.4)),

fin(®) = c

gl:n(x) n
Ci

n
n n
) i=1 ai_Eizl Ci

x+c

The result follows. O

45

n n
Theorem 3.3.4. Suppose b; = d; = ¢ for all i. Then X1., <,n Y1.n if and only z'fZai > Zci.

=1 =1

Proof: By (8.3) to (33),

frnle)/ [ = Fral@)] _
9n()/ [ =Crn@] g (2 )"

This can be rewritten as

for

Note that we can write
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where

Note also that
q(0)=—a (% + 1) log? (% + 1) < 0.

Since ¢(0) = 0, this implies g(ar) < 0 for all a > 0, so h'(a) > 0 for all & > 0. Hence the result. [

Theorem 3.3.5. Suppose b; = d; = ¢ for all i, Zai > 1 and Zci > 1. Then X1.y <iczx Y1n if
i=1 i=1
and only z‘fZaZ— > ch-,
i=1 i=1

Proof: By (3.5) and (3.7)),

and

00 1-3"" e
— t i=1
¢ Zci -1
i=1

The ordering holds if and only if

n

ZCLZ'—].
S i=1

t S eimi a4 ‘
(1 + ) .
C

Zcifl

i=1

for all £ > 0. This holds if and only if » _a; > ¢;. O

i=1 i=1

Theorem 3.3.6. Suppose b; = d; = ¢ for all 7, Zai > 1 and Zci > 1. Then X1.p <t Y1iun if

i=1 i=1
n n
and only z'fZai > Zci.
i=1 i=1
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Proof: By (3.5) to (3.8),

/ xfln(x)dm tZai—Fc
t =1

Fl:n(t) B °

Zai—l

i=1

and

/ :cgl;n(x)dx tzlci +c
t i=

Ginlt) &

Zci—l

=1

The ordering holds if and only if
c (ZCZ - Z%‘) <t (Zai - Z%)
i=1 i=1 i=1 i=1

for all ¢ > 0. This holds if and only if » "a; > > ¢;. O

i=1 i=1

Theorem 3.3.7. Suppose a; = ¢; = ¢ for all i. Then X1., <g Y1.n if b; < d; for alli.

Proof: By (3.5) and (3.7)),

The result follows. O

Theorem 3.3.8. Suppose a; = ¢; = ¢ for all i. Then X1., <pr Y1.n if b; < d; for alli.

Proof: By (3.5) to (3.8),

fl:n(z)/Fl:n(‘r)

gl:n(x)/Glrn(x)

«
I
—

INgE
K

— | +|~
S

-
8
+
S

s
Il
-
5

The result follows. O

We can observe the following from Theorems to i) if b; = d; for all 7 then the

stochastic, hazard rate, likelihood ratio and reversed hazard rate orderings are equivalent; ii) if
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n n

b; = d; = c for all 1, Zai > 1 and Zci > 1 then the stochastic, hazard rate, likelihood ratio,
i=1 i=1

reversed hazard rate, mean residual life and increasing convex orderings are equivalent; iii) if a; = ¢;

for all ¢ then the stochastic and hazard rate orderings are equivalent.

3.4 Results for the smallest of Pareto type IV random vari-

ables

Let X; ~ PIV (a,v,0), i = 1,2,...,n be independent Pareto type IV random variables. Let
Y; ~ PIV (a,b,c), i = 1,2,...,n be independent Pareto type IV random variables. Let Xi., =
min (X, Xo,...,X,,) and Y1, = min (Y1, Y5, ...,Y,). Note that

Frn(2) = [1 + (Z)] o (3.9)
frn(z) = ;?:i [1 + (j)l} o zv (3.10)

Grn(z) = [1 + (i)i] - (3.11)

and

rn(2) = {1+ (f)i]nalxi—l (3.12)

bes
forx >0,a>0,6>0,¢>0,aa>0,v>0and o > 0.

Theorem [3.4.1] gives an if and only if condition for stochastic ordering when a = . Theorem
[3:4:2) gives an if and only if condition for hazard rate ordering when a = o and b = ~. Theorem [3.4.3]

gives an if and only if condition for likelihood ratio ordering when a = o and b = .

Theorem 3.4.1. Suppose a = . Then Xq., <g Yi., if and only if y =0 and ¢ > o.

Proof: By (3.9) and (3.11)),

Fl:n(x) < 61:n(x)
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for all > 0 if and only if

for all z > 0 if and only if

forallz >0ifand onlyif y=band c > 0. O

Theorem 3.4.2. Suppose a =« and b =y. Then X1.,, <pr Y1.n if and only if ¢ > o.

Proof: By (39) to (3.12),

for all z > 0 if and only if

for all x > 0 if and only if

forall z > 0 if and only if c > 0. O

Theorem 3.4.3. Suppose a =« and b =. Then X1., <ir Y1.n if and only if ¢ > o.

Proof: By (3.14)) and (3.16]), we can write

c

gl:n(ﬂf) o\ —ne/y < /v 01/7)—na—1

- ol/v 4 21/

This is an increasing function of x for all x > 0 if and only if ¢ > 0. O

3.5 Real data application

Here, we illustrate the results of Sections [3.2] and [3.3| using a real data set. The data is on automobile

insurance claims from a large midwestern (US) property and casualty insurer for private passenger
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automobile insurance. The data has several variables, but the ones we use here are: i) the amount
paid to settle and close a claim in United States dollars; ii) gender (male or female); iii) state (coded
as a number between 1 and 12). More details of the data can be found in the R contributed package

insuranceData (R Development Core Team, 2016).

The insurer would like the claim to be as small as possible. We ask the questions: is the minimum
claim smaller for female operators than for male operators? Is it the other way around? To answer
these questions, we take X;, Xo,..., X12 as denoting the claims for female operators for the twelve
states. We take Y1,Ys,..., Y7o as denoting the claims for male operators for the twelve states. The

aim is to see how Xj.15 and Y7.12 are ordered.

It is reasonable to assume that X, Xs,..., X1 are independent random variables since they
correspond to different states. Likewise for Y7,Y5,...,Y12. We suppose X; has the Pareto type I
distribution with parameters (a;, b;) and Y; has the Pareto type I distribution with parameters (¢;, d;)
for i =1,2,...,12. The maximum likelihood estimates of these parameters are shown in Table
Also given in this table are p-values based on the Kolmogorov test for goodness of fit of the Pareto
type I distribution. These p-values show that the Pareto type I distribution provides reasonable
fit. However, because the parameters are estimated instead of taking true values, the Kolmogorov
test may be generating a conservative p-value. To address this issue, we can use Fisher’s method.
It assumes that —2 Zle In (p;) ~ X3, where p; is the p-value for the i'" hypothesis test. Here, in
our application, k = 24, —2 Zle In (p;) = 80.218. The statistic is only slightly smaller than the
critical value 81.075 (= x7%g), which indicates that we fail to reject all of the null hypotheses. That
is, the Pareto type I distribution provides resonable fit. An alternative method for goodness-of-fit
can be the Stephen’s half-sample method (Stephens et. al., 1978). It mainly estimates the unkown
parameters using half of the sample and test the goodness-of-fit based on the difference between
the estimated cumulative distribution function and the empirical distribution function. As further
evidence, probability plots of the fits are shown in Figures and These results are expected

since Pareto distributions are popular models for insurance claims.

Given the parameter estimates in Table we have € = max( bAl, 5;, cen 171\2, dAl, dAg, e C?l\g
n

) =129.18,@ = Gy +G3+- - +a12 = 3.890338, ¢ = G +& -+ +E13 = 3.746099, & = [ [ b = 2950607,
=1

A)l/(afa — 82.82813, §p = {B(a— 1) /[6 (@ —1)]

= f[c/l\A — 1560400, 75 = (/B
=1

58.08202 and h(e) = —2.548012 x 10'3. The standard deviations of the maximum likelihood

}1/(&&) _

estimates are presented in Table By the definition of the Pareto distribution of type I, the

scale parameter (i.e. b, d) should be smaller than or equal to the minimum of the fitted data. For
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the purpose of obtaining the maximum likelihood estimation, we let the scale parameter equal to
the minimumof the corresponding dataset directly. We use the Bootstrap method to approximate
the standard deviation of the estimated scale parameter (i.e. b or c?) of each dataset. However,
the Bootstrap performs poorly when the sample size is small. The standard errors of €, @, ¢, Ty,
7o and h/(?) were computed as 11.9, 0.122, 0.042, 5.65, 5.43 and 1.276 x 106, respectively. The
corresponding confidence intervals are (117.28,141.08), (3.769,4.012), (3.704, 3.788), (77.178, 88.478),

. ,63. , (—2. X , —2. X .
52.652,63.512 2.5480121 x 10'3. —2.5480118 x 1013

After accounting for the standard errors and calculating the confidence interval for each of the
estimate, conclusions can be drawn as ¢ < @ and Zg < €. So, Theorem shows that the minimum
claim for female operators is stochastically less than the minimum claim for male operators. Since
¢ < @, Theorem shows that the minimum claim for female operators is less than the minimum
claim for male operators with respect to hazard rate order. Since ¢ < @, Theorem shows that the
minimum claim for female operators is less than the minimum claim for male operators with respect
to likelihood ratio order. After accounting for the standard errors and calculating the confidence
interval for each of the estimate, conclusions can be drawn as ¢ < @ and h/(?) < 0. So, Theorem
shows that the minimum claim for female operators is less than the minimum claim for male
operators with respect to reversed hazard rate order. After accounting for the standard errors and
calculating the confidence interval for each of the estimate, conclusions can be drawn asa > 1, ¢ > 1,
¢ < aand gy < e. So, Theorem shows that the minimum claim for female operators is less
than the minimum claim for male operators with respect to increasing convex order. Since a > 1,
¢> 1 and ¢ < @, Theorem shows that the minimum claim for female operators is less than the

minimum claim for male operators with respect to mean residual life order.

The established orderings between Xj.10 and Y7.12 are confirmed by the plots of the ratio of
survival functions, the ratio of probability density functions, the ratio of hazard rate functions, the
ratio of reversed hazard rate functions, the ratio of cumulative survival functions and the ratio of

mean residual life functions shown in Figure [3.3

We also fitted the Pareto type II distribution to the data on X;, Xo,..., X312 and Y7,Y5, ..., Y1o.
The results in Section [3.3| are however limited to the cases b; = d; = constant for all i or a; = ¢; =
constant for all i. A likelihood ratio test of b; = d; = constant for all 7 or a; = ¢; = constant for all i

based on the fitted estimates was not accepted.
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Gender State Sample size Parameter estimates(s.d.) p-value for
Kolmogorov test
F 1 51 ay = 0.2897983 (0.041), by = 25 (8.58) 0.143
F 2 435 az = 0.2161304 (0.010), by = 10 (8.81) 0.250
F 3 134 az = 0.4179904 (0.036), by = 91 (8.32) 0.207
F 4 235 as = 0.2673118 (0.017), by =21 (1.49) 0.284
F 5 239 as = 0.3327483 (0.021), bs = 61 (9.90) 0.235
F 6 115 ag = 0.3266533 (0.030), b = 50 (9.75) 0.130
F 7 117 ay = 0.4726428 (0.044), by =125 (9.60) 0.069
F 8 94 ag = 0.2464126 (0.025), bs = 25 (21.02) 0.183
F 9 76 ag = 0.3926721 (0.045), by = 73 (10.96) 0.282
F 10 46 ajo = 0.4126978 (0.061), b/l?) =175 (20.17) 0.112
F 11 820 a1 = 0.2487056 (0.009), b/l\l =18 (2.29) 0.063
F 12 215 a2 = 0.2665744 (0.018), b12 =25 (2.40) 0.143
M 1 115 & = 0.2765855 (0.026), di = 26 (14.46)  0.243
M 2 687 ¢3 = 0.2949511 (0.011), dy = 35 (0.80) 0.390
M 3 214 ¢z = 0.3333928 (0.023), ds = 45 (4.71) 0.192
M 4 431 ¢y = 0.2891588 (0.014), dy =32 (2.51) 0.272
M 5 383 & = 0.3371954 (0.017), ds = 65 (4.06) 0.284
M 6 154 & = 0.2761947 (0.022), dg = 26 (8.19)  0.184
M 7 159 ¢r = 0.3135779 (0.025), d7 = 50 (20.3) 0.251
M 8 153 ¢s = 0.4271482 (0.035), ds =129 (11.86) 0.182
M 9 132 ¢o = 0.3177517 (0.028), Ag =55 (1.61) 0.286
M 10 123 &0 = 0.3510437 (0.032), dio = 60 (24.61) 0.114
M 11 1360 é11 = 0.2145939 (0.006), diy =10 (1.97)  0.267
M 12 276 ¢12 = 0.3145054 (0.019), d1z = 50 (5.18)  0.160

Table 3.1: Sample sizes, parameter estimates( standard deviation ), and p-values based on
the Kolmogorov test.
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Figure 3.1: Probability plots of the fits of the Pareto type I distribution for claims made by
female operators from the 12 states.
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Figure 3.2: Probability plots of the fits of the Pareto type I distribution for claims made by
male operators from the 12 states.
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3.6 Discussion and future work

Sections [3:2] to [3:4] have only considered orderings between minimums of Pareto random variables.
One may be also interested in the orderings between maximums of Pareto random variables. We
now give results on orderings between X,,.,, and Y,,.,, when X, X, ..., X,, are independent PI(a,b)

random variables and Y7,Ys,...,Y,, are independent PI(c,d) random variables. Note that

Fon(z) = [1 - (gg)_ar (3.13)

(3.14)

Grin(y) = {1 - (g)_} (3.15)

and

c—1

Inn(y) = {1 - (Z)] o mfl%c (3.16)

forx>b>0,y>d>0,a>0and c>0. Let e = max(b, d).

Theorem [3.6.1] gives an if and only if condition for stochastic ordering of X,,.,, and Y,,.,. Theorem
[3.6.2] gives a condition for reversed hazard rate ordering. Theorem [3.6.3gives a condition for likelihood

ratio ordering.

Theorem 3.6.1. Suppose d > b, Xy, <st Yn.n if and only if e~ < d°b™% and ¢ < a.

Proof: By (3.13)) and (3.15)),

for all x > e if and only if
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for all > e if and only if

for all x > e if and only if
xC*a S b*adc

for all x > e. Hence, the result. O

Theorem 3.6.2. Supposeb > d, Xp.r, <pp Yo ifc < a, (c—a)(e/d)*+a <0 and (ed ¢ —1)/(e*b ™ —1) <
c/a.

Proof: By (3.13) to (3.16),

for all x > e if and only if

naxr ncxr

for all x > e if and only if

for all z > e. Let

Its first derivative can be written as

/ b= 1 [(c —a)d “2°+ a] — cd x!
w (1[,’) = (xabia — 1)2

Note that w' (z) <O0forallz >eif (c—a)d x4 a <0 for all x > e. The latter holds if ¢ < a and

(c —a)(e/d)® + a < 0. Hence, the result. O

Theorem 3.6.3. X,,., <; Yy if c < a and ad™ e~ < cb™°.
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Proof: By (3.14)) and (3.16]),

fnm(x) ab™ ., (b‘a — x‘“)nl

Inon () T edre v d—¢—x—¢

Let

Its first derivative can be written as

, (C _ a)‘r—a—c—l + x—c—l (ad—cmc—a _ Cb—a)
w (.’E) = (dic — xfc)Q

Note that w/(x) <Oforall x> eif c < aand ad °z°~®* < cb™? for all x > e. Hence, the result. O

The Pareto density function is non-log-concave, however its cumulative distribution function is
concave. An ordering related to log concavity is the proportional likelihood ordering due to Ramos
Romero and Sordo Diaz (2001). We write X1.,, <pir Y1. if g1:n(A2)/ f1:n(2) is an increasing function

of x for all possible x and 0 < A < 1.

Suppose X; ~ PI (a;,b;), 7 =1,2,...,n are independent Pareto type I random variables and
Y; ~ PI (¢;,d;), i =1,2,...,n are also independent Pareto type I random variables. Theorem m
gives an if and only if condition for proportional likelihood ratio ordering of X;., and Yi.,.

Theorem 3.6.4. Xi., <, Y., if and only ifZai > Zci.
i=1 i=1

Proof: By (3.2) and (3.4)),

)\1+Z;L=1 ci <i ai) f[ bl(_li
=1 =1
e
i=1 i=1

EACIRN > WP >

gl:n()‘x)

The result follows. O

Suppose now X; ~ PII (a;,b;),i=1,2,...,n are independent Pareto type II random variables
and Y; ~ PII (¢;,d;), i=1,2,...,n are also independent Pareto type II random variables. Theorem
gives a condition for proportional likelihood ratio ordering of X7., and Y7.,.

Theorem 3.6.5. Suppose b; = d; = c for all i. Then X1., <pir Y1iin zfz a; > Z G-
i=1 i=1
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Proof: By (4.2) and (4.4), we can write

n
CZ?:1 Ci*z;z':1 a; < g Ci)
1=1

gl:n()\x) _ 1 W(l‘)

fl:n(x) "
a;

where
w(z) = Az +¢) "1 i (g 4 ) TR 0

The derivative of logw(z) is

=1

dlogw(x) A - 1 =
=- 1 : 1 ap
dx )\as+c< +;c>+x+c< +Za>

This derivative is positive if and only if
(Zai - ch> Ar >c(A—1)+c¢ (AZCZ- - Zai> ,
i=1 i=1 i=1 i=1

n n
which holds since A < 1 and Z a; > Z c;. O
i=1 i=1
An interesting study is orderings between X1.,, and Y7., when X; and Y; are Feller Pareto random

variables (Johnson et al., 1994, equation (20.4)) with

10 =5 1 GV -G

and

forx >0,a>0,b>0,p>0and ¢ >0, where B(p,q) and I,(p,q) denote the beta function and

incomplete beta function ratio defined by

1
B(p,q)=/ 1 — 1) at
0
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and

1 xr
= p=1(1 _ a1
I.(p,q) Bod) /O (1 —t)T dt,

respectively, for 0 < x <1, p > 0 and ¢ > 0.

The study will require finding conditions like the following holding

oy @0} < T g 60}
Uegeyy @9} < {Tagayy @)
for all x > 0. Hence, properties of the incomplete beta function ratio will be needed for the study.

However, Feller Pareto random variables can be represented as the ratio of two independent
gamma random variables. It may be easier to study orderings of Feller Pareto random variables

using this fact. We suggest this as a possible future work.

Another interesting study is orderings between X7.,, and Y7., when X; and Y; are discrete Pareto
random variables. There are several discrete Pareto distributions. One of the simplest discrete Pareto

distribution is the zeta distribution with

and
() (£
m=1 m=x+1

forz =1,2,... and a > 1. The study will require finding conditions like the following holding

() (Z0) = (5) (20)

for all x = 1,2,.... We suggest this as another possible future work.



Chapter 4

Smallest Weibull order statistics

4.1 Introduction

Let X1, Xs,..., X, be independent but non-identical random variables from one population and let
X1.n = min (X1, Xo,...,X,,). Let Y1,Y5,...,Y, be independent but non-identical random variables
from another population and let Y7., = min(Y7,Y5,...,Y,). There has been little work on the
stochastic comparison of Xi., and Yi.,. The work that we are aware of are: Khaledi and Kochar
(2006), Fang and Tang (2014), Li and Li (2015) and Torrado (2015). Balakrishnan and Zhao (2013)

provide an excellent review of other known work.

The aim of this chapter is to study orderings between X;., and Y7., when X7, X5,..., X,, are
independent but non-identical Weibull random variables from one population and Y7,Y5,...,Y, are
independent but non-identical Weibull random variables from another population. The results here

are different from and are more general than those in Torrado (2015).

Weibull distributions are the most popular models for lifetime data (Murthy et al., 2003). Often
comparison of the smallest order statistics has practical appeal in lifetime modeling. Suppose
X1, X, ..., X, are survival times of patients from a population with one characteristic (e.g., females)
and Y1, Ys,...,Y,, are survival times of patients from a population with another characteristic (e.g.,
males). Then Xj., and Y;., are the smallest survival times and it makes sense to compare them to
see which characteristic is associated with smaller survival times. We shall return to this example in

Section [4.5]

‘We consider two Weibull distributions: the standard Weibull distribution and a lower truncated

61
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Weibull distribution.

A Weibull random variable with shape parameter o and scale parameter A denoted by W (a, A)

has the probability density, cumulative distribution and hazard rate functions specified by

f(2) = artze—lemO0)"

Fz) =1—e 7,

and

respectively, for z > 0, a > 0 and A > 0.

A lower truncated Weibull random variable with shape parameter o and scale parameter A
denoted by LTW («, \) has the probability density, cumulative distribution and hazard rate functions

specified by

f(l') _ O[)\axoz—lel—()\w)a7

F(z)=1— =07

and

respectively, for x > 1/X, a > 0 and A > 0.

Let F; and f; denote the survival and probability density functions of X;. Let G; and g; denote
the survival and probability density functions of Y;. Then the survival and probability density

functions of Xj.,, are

me:HEw
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and

respectively. Similarly, the survival and probability density functions of Y., are
n
Grn(z) = [[ Gi(x)
i=1

and

respectively.

The orderings that we consider are: Xj., is smaller than Y., in stochastic order denoted by
X1 <st Yin if F1.0(2) < Gy (2) for all z; X1, is smaller than Y., in hazard rate order denoted by
Xt <nr Yion if f1o0(2)/F1.0(2) > g1.0(2)/G1. () for all z; X7.,, is smaller than Y7, in likelihood
ratio order denoted by X1., <i Y1.p, if g1.n(2)/ f1.n() is increasing in z for all x for which the ratio

is well defined. Further details of these orderings can be found in Shaked and Shanthikumar (2007).

In this chapter, we derive if and only if conditions for stochastic, hazard rate and likelihood ratio
orderings of Xj., and Y7.,. Section gives the results when Xj., is a minimum of independent
Weibull random variables and Y7., is a minimum of an another set of independent Weibull random
variables with different shape and scale parameters. Section @ gives the results when Xj., is a
minimum of independent lower truncated Weibull random variables and Y7., is a minimum of an
another set of independent lower truncated Weibull random variables with different shape and scale
parameters. Some technical lemmas needed for the results in Sections [£:3] and [4-4] are derived in

Section Section presents an application to survival times data.

4.2 Technical lemmas

The proofs of the results in Section [£.3] and [£.4 need the following lemmas.
Lemma 4.2.1. Let

_ PaP 4 Qa1
"~ Rz + Sz®
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fore>0,p>0,¢>0,r>0,s>0,P>0,Q >0, R>0 and S > 0 real numbers. Then g(z) > w

for all x if one of the following conditions holds

(i) p>r,q>s,p>s, q>rand g(0) > w,

(i) p<r,q<s,p<s,qg<r and g(co) > w.

Proof: The first derivative of g(z) can be expressed as

gl(x) _ PR(p— )2t + QR(q — r)a® ! 4 PS(p — s)aPtet + QS(q — s)at T
(Ra™ + Sxs)* :
Ifp>r,q>s p>sandg>rthen g (z) >0 for all z > 0, and so g(x) > w for all z > 0 if and

only if g(0) > w. If p<r,g<s,p<sandq<r then g (z) <0 for all z > 0, and so g(x) > w for

all x > 0 if and only if g(co) > w. The proof is complete. O
Lemma 4.2.2. Let

(z) = Px?P + Qx1
g\t = RaxP + Sx4

forz>0,p>0,¢>0,P>0,Q >0, R>0 and S > 0 real numbers. Then g(x) > w for all x if

and only if one of the following conditions holds

(i) P> QR/S and Q > wS,

(ii)) P < QR/S and P > wR.
Proof: We can rewrite g(z) as

B Q P-RQ/S
9(z) = S " R+ Spi—p’

If g > pand P> QR/S then g(z) is a decreasing function and so g(x) > w for all x > 0 if and only
if g(oo) =Q/S > w. If ¢ <pand P> QR/S then g(z) is an increasing function and so g(x) > w for
all z > 0 if and only if g(0) = Q/S > w. If ¢ > p and P < QR/S then g(x) is an increasing function
and so g(x) > w for all z > 0 if and only if g(0) = P/R > w. If ¢ < p and P < QR/S then g(x) is
a decreasing function and so g(x) > w for all > 0 if and only if g(co) = P/R > w. The proof is

complete. [

Lemma 4.2.3. Let

_ PaP 4+ Qa
" RzxP + Sxd
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forx>0,p>0,¢>0,P>0,Q>0, R>0 and S > 0 real numbers. Then g(x) is a decreasing

function of x if and only if one of the following conditions holds

(i) p=1q,
(ii) p>q and P < QR/S,

(i) p < q and P> QR/S.
Proof: We can rewrite g(z) as

Q P-RQ/S

9@ =Gt Ry Sae

If p = ¢ then g(z) is a constant. If p > ¢ then g(z) is a decreasing function if and only if P < QR/S.

If p < ¢ then g(x) is a decreasing function if and only if P > QR/S. The proof is complete. [

Lemma 4.2.4. Let

_ PaP 4 Qaf

9(w) = Ram™ + Sxs

fora >c>0,p>0,¢>0,r>0,s>0,P>0,Q >0, R>0andS > 0 real numbers. Then

g(x) > w for all x if one of the following conditions holds

(i) p>r,q>s,p>s,q>r and g(c) > w,

(ii) p<r,qg<s,p<s,q<r and g(co) > w.

Proof: The first derivative of g(z) can be expressed as

. PR(p—r)a?*" £ QR(g — r)a™ ! + PS(p — 5)a?"! + QS(g — s)att!
g (l‘) = : P) .
(Ra™ 4 Sx®)

Ifp>r,q>s p>sand ¢ >rthen g (z) >0 for all 2 > ¢, and so g(z) > w for all z > ¢ if and
only if g(c¢) > w. pr<r,q<s7p<s,q<rtheng/(x)<0f01" all > ¢, and so g(x) > w for all

2 > ¢ if and only if g(co) > w. The proof is complete. [

Lemma 4.2.5. Let

Pzx?P + Qx?

9(w) = RaP + Sx4

fore>c>0,p>0,¢>0,P>0,Q >0, R>0 and S > 0 real numbers. Then g(z) > w for all x

if and only if one of the following conditions holds
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(i) ¢=p, P>QR/S and Q/S > w,
(i) q < p, P> QR/S and g(c) > w,
(ii) ¢ >p, P<QR/S and g(c) > w,

(iv) g <p, P<QR/S and P/R > w.

Proof: We can rewrite g(z) as

Q  P-RQ/S
9@ = G+ Rigpr

If g > p and P > QR/S then g(z) is a decreasing function and so g(z) > w for all > ¢ if and only
if g(oo) =Q/S > w. If ¢ <pand P > QR/S then g(x) is an increasing function and so g(z) > w
for all z > ¢ if and only if g(¢) > w. If ¢ > p and P < QR/S then g(x) is an increasing function and
so g(x) > w for all > ¢ if and only if g(c) > w. If ¢ < p and P < QR/S then g(z) is a decreasing

function and so g(z) > w for all > ¢ if and only if g(co) = P/R > w. The proof is complete. [
Lemma 4.2.6. Let

PaP + Qz1?

9(z) = RaxP + Sx4

fore>e¢>0,p>0,¢>0,P>0,Q >0, R>0 and S > 0 real numbers. Then g(x) is a decreasing
function of x if and only if one of the following conditions holds

(Z) p=4q,

(i) p>q and P < QR/S,

(#ii) p < q and P> QR/S.

Proof: We can rewrite g(z) as

Q P-RQ/S
g(x):§ R4 Szxa—p’

If p = g then g(x) is a constant. If p > ¢ then g(z) is a decreasing function if and only if P < QR/S.

If p < g then g(z) is a decreasing function if and only if P > QR/S. The proof is complete. [
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4.3 Results for the smallest of Weibull random variables

Let X; ~ W (e, \;), i =1,2,...,n be independent Weibull random variables. Let Y; ~ W (5;, 6;),
i =1,2,...,n be independent Weibull random variables. Let X;., = min (X7, X5,...,X,,) and
Y1., = min (Y7,Y5,...,Y,). Note that

Fi.,(z) =exp l— ()\zx)a] , (4.1)
i=1

frn(z) = 27! [Z Q; (Azfﬂ)a] exp [ ()\zﬁﬂ)a] ; (4.2)
i=1 =

i=1

Gi.n(z) = exp l— Z (91-33)61'] (4.3)

i=1
and
n n
Grn(z) =271 lz Bi (Hix)ﬁi] exp l— Z (Hix)ﬁi] (4.4)
i=1 i=1
forx>0,a;>0,8,>0,\ >0and6; > 0.

Theorems and give if and only if conditions for the stochastic ordering. Theorems
[4:32] and [£.3.7] give if and only if conditions for the hazard rate ordering. Theorem [£.3.3] gives an
if and only if condition for the likelihood ratio ordering. Theorem gives a condition for the
stochastic ordering. Theorem gives a condition for the likelihood ratio ordering. Thenorem

(03

4.3.8| gives a condition for the hazard rate ordering. Throughout this section, we let A = Z)\Z ,

i=1
n P n 14 n
B=Y 02 A=Y A" Ay= Y M2 Bi=) 0 and Bo= > 0
=1 =1

i=p+1 =1 i=p+1

Theorem 4.3.1. Suppose a; = 5; = « for all i. Then X1., <g Y1.n if and only if A > B.

Proof: By l) and 1 , X1.n <4 Y1., if and only if e~A2% < e=B2% for all 2. Hence the result.
O

Theorem 4.3.2. Suppose a; = 3; = « for all i. Then X1., <pr Y1.n if and only if A > B.

Proof: By (4.1)-(4.4), X1., <u, Yi., if and only if aAz®~1 > aBx*~! for all . Hence the result.
O
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Theorem 4.3.3. Suppose a; = B; = « for all i. Then X1., <;» Y1.,, if and only if A > B.

Proof: By |j and , X1.n <ir Y1. if and only if ana_le_Bxa/ [aAwa_le_A“a] is an

increasing function of x. Hence the result. [

Theorem 4.3.4. Suppose a; = ;i = a1, i =1,2,...,pando; =3; =z, i =p+1,p+2,...,n.

Then X1., <st Y1.n if and only if one of the following conditions holds:

(i) Ay > A3B1/Bs and Ay > Bo,

(ZZ) Al < AQBl/BQ and Ay > Bj.

Proof: By (4.1) and (4.3), X;., <s Y1., if and only if

Al.’ﬂal + AQ.’ﬂOQ
Buo™ + B Y 2!

for all . The result follows by Lemma 4.2.2. [

Theorem 4.3.5. X1., < Yi., if one of the following conditions holds:
(Z) aq Z ﬂ17 Q2 Z 527 (€3] Z 527 Qo 2 51 and g(o) Z 1;
(ii) ay < Br, az < B2, oy < Pa, az < B1 and g(oo) > 1,

where g(z) = (Ajz®* 4+ Aga°?) / (BizP + BozP?).

Proof: By (4.1) and (4.3)), X;1., <5 Y1., if and only if g(x) > 1 for all z. The result follows by
Lemma 4.2.1. O

Theorem 4.3.6. Suppose a; = ;= a1, i =1,2,...,pando; =f; =as, i =p+1,p+2,...,n.
Then X1., <ir Y1.n if one of the following conditions holds:

(Z) a1 = g, B1 S A1 and BQ S AQ,

(i) a1 > ag, Ay < AyB1/By, B1 < Ay and By < Ay,

(ZZZ) o < (o, A > AQBl/BQ, B1 < A; and By < A,.

Proof: By (4.2) and (4.4)), we can write

frm(x) A1z g g2 ! o o
g1:n () N a1Biz“ 7 4+ ap Byt exp (B — Ay) 2™ + (By — Az) 2]

= g(x)exp[(B1 — A1)zt 4+ (Bg — Ag) 2%?]
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say. By Lemma 4.2.3, g(z) is a decreasing function of x if and only if one of the following conditions
holds
(1) a1 = O,
(11) a1 > o and Ay < AgBl/BQ,
(111) a1 < ap and Ay > A2B1/B2.

exp [(By — A1) 2% + (By — Ay) 2] is a decreasing function of z if By < A; and By < A,. Hence

the result. O

Theorem 4.3.7. Suppose a; = 3; =a1,i=1,2,....pand a; = f; =az,i=p+1,p+2,...,n.
Then X1.n <pr Y1.n if and only if one of the following conditions holds:

(Z) Al Z AQBl/BQ and A2 Z BQ,

(ZZ) Al < A2B1/B2 and Ay > Bj.

Proof: By (4.1)-(4.4)), we can write

flzn(aj)/Fl:n(.r) _ a1A1xa1—1 + 042A2xa271 = g(x)
91n(2) [Crn(®) a1 Bra™ T+ an By

say. X1., <pr Y1., if and only if g(x) > 1 for all 2. The result follows by Lemma 4.2.2. O

Theorem 4.3.8. X1., <p. Y1., if one of the following conditions holds:

(i) a1 > P1, a > Ba, a1 > Pa, g > 1 and g(0) > 1,

(it) a1 < B, az < P2, g < B2, ag < By and g(oo) > 1,

where g(x) = (0 A1z® ™! + ap A2 ™1 / (B1 Bz 71 + BoBoaP2 7).

Proof: By (4.1)-(4.4), X1.,, <pr Y1., if and only if g(z) > 1 for all z. The result follows by Lemma
421. 0O

4.4 Results for the smallest of lower truncated Weibull ran-

dom variables

Let X; ~ LTW (o, \;), i = 1,2,...,n be independent lower truncated Weibull random variables.
Let Y; ~ LTW (f;,6;), i = 1,2,...,n be independent lower truncated Weibull random variables. Let
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X1, =min (X7, Xo,...,X,,) and Y1, = min (Y1, Ys,...,Y,). Note that

F1..(7) = exp (4.5)

n— Z (Nix)™

=1

and

fim(z) =27t lz o (/\ia:)o”] exp [n - Z (/\ia:)o”] (4.6)

i=1
for > 1/Amin, @; > 0 and A; > 0, where Ay, = min (A1, Ag, ..., A,). Similarly,

n

Gin(z) = exp ln - Z (Oix)ﬁi] (4.7)

i=1

and

K2

grn(z) =271 [Z Bi (Hia:)ﬁi] exp ln - (Ozx)@] (4.8)

n
=1
for > 1/0min, Bi > 0 and 0; > 0, where 6,,;, = min (61,0s,...,0,).

As noted above, X;., and Yi., are defined over different domains. Any comparison of these
random variables should be over a common domain. We take the common domain of X;.,, and Y7.,
as (¢, 00), where ¢ = max (1/Amin, 1/0min)-

Theorems and [£.4.4] give if and only if conditions for the stochastic ordering. Theorems
and give if and only if conditions for the hazard rate ordering. Theorem gives an

if and only if condition for the likelihood ratio ordering. Theorem gives a condition for the

stochastic ordering. Theorem [£.4.6] gives a condition for the likelihood ratio ordering. Theorem

n
4.4.8| gives a condition for the hazard rate ordering. Throughout this section, we let A = Z)\f‘,

i=1
n p n P n
B=>Y 02 Ay =Y A" Ay= Y A2 Bi=) 0] and By= > 0
i=1 i=1

i=p+1 i=1 i=p+1

Theorem 4.4.1. Suppose a; = B; = « for all i. Then X1.,, <s¢ Y1.n if and only if A > B.

Proof: Similar to the proof of Theorem O

Theorem 4.4.2. Suppose a; = 3; = « for all i. Then X1., <pr Y1.n if and only if A > B.

Proof: Similar to the proof of Theorem [£:3.2] O

Theorem 4.4.3. Suppose o; = 5; = « for all i. Then X1., <ir Y1.n if and only if A > B.
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Proof: Similar to the proof of Theorem [4.3.3] O
Theorem 4.4.4. Suppose a; = 3; = a1, i =1,2,....panda; = f; =az,i=p+1,p+2,...,n.
Then X1., <st Y1.n if and only if one of the following conditions holds:

(i) s > a1, Ay > A3B1/Bs and As > B,

(i1) ag < a1, Ay > AsB1 /By and g(c) > 1,

(iti) oo > oy, Ay < AaB1/Bs and g(c) > 1,

(iv) ag < ap, A1 < AgBl/Bg and Ay > By,
where g(z) = (A1z* + Agz®?) / (B1z** + Baz®?).
Proof: By (4.5) and (4.7)), X1.,, <st Y1.p, if and only if g(z) > 1 for all z > ¢. The result follows by
Lemma 4.2.5. O

Theorem 4.4.5. X1., < Yi1., if one of the following conditions holds:

(i) ar > B1, az > P2, a1 > Pa, ag > Py and g(c) > 1,

(1) a1 < Pi, ag < B2, a1 < B2, ax < 1 and g(oc0) > 1,
where g(x) = (A1z® + Apz°?) / (B1aP' + ByxP?).
Proof: By and (4.7), X1.n <o Y1.n if and only if g(x) > 1 for all z > ¢. The result follows by
Lemma 4.2.4. O
Theorem 4.4.6. Suppose a; = 3; = a1, 1 =1,2,....panda; = f; = a2, i=p+1,p+2,...,n.
Then X1., <i Y1.n if one of the following conditions holds:

(i) a1 = ag, By < Ay and By < A,,

(ii) a1 > ag, A1 < AsB1/Bs, By < Ay and By < As,

(’LZZ) o < o9, A > AgBl/BQ, B; < A; and By < A,.

Proof: By (4.6) and (4.8)), we can write

Jin(x) Az 4 g Az o o
91:n () - a1 B1z® ! + agBoz®2 ! exp [(B1 — A1) 2™ + (B2 — Az) 2]

= g(z)exp[(B1 — A1)z + (B2 — A2) 2]

say. By Lemma 4.2.6, g(z) is a decreasing function of z if and only if one of the following conditions

holds
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(l) a1 = Q9,
(11) a1 > ag and A1 < AgBl/BQ,
(ill) a3 < ag and A) > A3By/Bs.

exp [(By — A1) 2%t + (By — Ay) 2] is a decreasing function of = if By < A; and By < Ay. Hence

the result. O

Theorem 4.4.7. Suppose a; = 3; = a1, i=1,2,....panda; = f; =az,i=p+1,p+2,...,n.
Then X1.n <pr Y1.n if and only if one of the following conditions holds:

(i) g > a1, Ay > AsB1 /By and Ay > Bs,
(1i) as < ay, Ay > AsB1/Bs and g(c) > 1,
(iti) oo > ar, A1 < AaB1/Bs and g(c) > 1,
(iv) ag < ay, Ay < AsB1/By and A; > By,

where g(z) = (alAlxal_l + (1214233&2_1) / (06131330‘1_1 + 04232%0‘2_1).

Proof: By (4.5)-(4.8), X1., <pr Y1., if and only if g(x) > 1 for all > ¢. The result follows by
Lemma 4.2.5. O

Theorem 4.4.8. X1., <p. Y1., if one of the following conditions holds:
(i) a1 > P1, ag > PBa, oy > B2, ag > Py and g(c) > 1,
(it) a1 < B, as < P2, g < B2, ap < B1 and g(oo) > 1,

where g(z) = (a1 4121 + azAoa®21) / (B Bya =1 + By BaaP ).

Proof: By (4.5)-(4.8), X1., <pr Y1., if and only if g(x) > 1 for all > ¢. The result follows by
Lemma 4.2.4. O

4.5 Real data application

Here, we illustrate the results of Section using a real data set. The data are from one of the first
successful trials of adjuvant chemotherapy for colon cancer. The data has several variables, but the
ones we use here are: i) days until recurrence or death; ii) number of lymph nodes with detectable

cancer (a number from 1 to 10); iii) time from surgery to registration (O=short, 1=long). We shall
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refer to days until recurrence or death as the time. We shall refer to patients with short time from
surgery to registration as short-time patients. We shall refer to patients with long time from surgery
to registration as long-time patients. More details of the data can be found in the R contributed

package survival (R Development Core Team, 2015).

Note that, the total sample size is 1858, among which there are 36 missing values and 4 patients
with no lymph node. There are 1720 patients with the number of lymph nodes ranging from 1 to 10
in either short-time or long-time group. There are also 98 patients having the number of lymph nodes
within the region of [11, 33]. However, they are too disperse to construct the sufficient paired-sample
( at least 5 samples in both short-time and long-time group) for the particular number of lymph
nodes. Thus, we are going to focus on the 1720 patients who have less or equal to 10 lymph nodes in

our study.

The medical doctor would like to avoid having a small time to recurrence or a small time to
death. We ask the questions: is the minimum time smaller for short-term patients than for long-term
patients? Is it the other way around? To answer these questions, we take X7, X5, ..., X9 as denoting
the times for short-term patients with the number of lymph nodes with detectable cancer ranging
from 1 to 10. We take Y7,Y5,..., Y7o as denoting the times for long-term patients with the number
of lymph nodes with detectable cancer ranging from 1 to 10. The aim is to see how X;.1¢p and Y7.19

are ordered.

It is reasonable to assume that X, Xs,..., X19 are independent random variables since they
correspond to different numbers of lymph nodes with detectable cancer. Likewise for Y7, Y5, ..., Yiq.
We suppose X; has the Weibull distribution with parameters («;,A;) and Y; has the Weibull
distribution with parameters (5;,6;) for i =1,2,...,10.

The log-likelihood function of the X; and Y; are
L1; : logL(x;) =n;log(ay) + a;n;logA; + (a; — 1) Z log(z;) — Z(/\i:z,-j)ai
j=1

j=1

and

L2; : log L(y;) = milog(Bi) + Bimilog 0 + (B — 1) Y log(yi;) — > (Biyi;)™
J=1 j=1

where, n; and m; are the sample sizes of X; and Y; respectively.

The maximum likelihood estimates of these parameters are shown in Table Also given in

this table are p-values of the Kolmogorov test for goodness of fit of the Weibull distribution. These
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Time Nodes Size Parameter estimates(s.d.) p-value for
Kolmogorov Test

0 1 418 a1 = 2.180(0.091), Ar = 0.000487(2.00E-13) ~ 0.111
0 2 256 @ = 2.091(0.114), A = 0.000496(2.00E-13)  0.385
0 3 186 @3 = 1.807(0.111), Az = 0.000571(2.00E-13)  0.637
0 4 128 @3 = 1.377(0.101), Aq = 0.000592(2.00E-13 ) 0.783
0 5 68 @ = 1.145(0.110), A5 = 0.000827(2.00E-13) ~ 0.171
0 6 56 G = 1.215(0.125), Ag = 0.000751( 2.00E-13 )  0.051
0 7 60 @ = 1.250(0.127), A7 = 0.000792(2.00E-13)  0.327
0 8 36 as = 0.976(0.122), As = 0.00113(2.00E-13)  0.388
0 9 32 @y = 1.120(0.029), Ag = 0.000778(2.00E-13)  0.569
0 10 18 @i = 1.092(0.208), Ao = 0.000811(2.00E-13)  0.063
1 1 130 B, = 1.940(0.146), 6; = 0.000489(2.00E-13)  0.549
1 2 132 B, = 1.437(0.104), 6> = 0.000580(2.00E-13)  0.283
1 3 64 B3 =1.753(0.186), 63 = 0.000599(2.00E-13)  0.057
1 4 40 By =1.083(0.133), 6, = 0.000858(2.00E-13)  0.218
1 5 24 5 =1.110(0.162), A5 = 0.00114(2.00E-13) 0.980
1 6 30 B = 1.026(0.145), 6 = 0.000853(2.00E-13)  0.078
1 7 16 37 = 1.248(0.250), 6 = 0.000770(2.00E-13)  0.258
1 8 10 fBs = 1.071(0.251), fs = 0.000958(2.00E-13)  0.482
1 9 8 By =0.973(0.288), Gy = 0.000758(2.00E-13)  0.880
1 10 8  Bo = 1.718(0.447), B1 = 0.00217(0.00035)  0.972

Table 4.1: Sample sizes, parameter estimates with standard deviation, and p-values of the
Kolmogorov test.

p-values show that the Weibull distribution provides reasonable fit. As metioned in the previous
chapter, because the parameters are estimated instead of taking true values, the Kolmogorov test
may be generating a conservative p-value. To address this issue, we can use Fisher’s method. It
assumes that —2 Zle In (p;) ~ X3, where p; is the p-value for the i'" hypothesis test. Here, in our
application, k£ = 20, —2 Zle In (p;) = 50.09. The statistic is much smaller than the critical value
70.618 (= x%y), which indicates that we fail to reject all the null hypotheses. That is, the Weibull
distribution provides resonable fit. An alternative method for goodness-of-fit can be the Stephen’s
half-sample method (Stephens et. al., 1978). As further evidence, probability plots of the fits are
shown in Figures and These results are expected since Weibull distributions are popular

models for lifetime data.
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Figure 4.1: Probability plots of the fits of the Weibull distribution for survival times for
short-time patients for the 10 different values of the number of lymph nodes with detectable

cancer.
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Figure 4.2: Probability plots of the fits of the Weibull distribution for survival times for
long-time patients for the 10 different values of the number of lymph nodes with detectable
cancer.
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Suppose that «; = B; = « for all 4, the log-likelihood function for X and Y can be written as

10 74 N4
L3 : logL(x,y)= Z nilog(a) + an;log A; + (a — 1) Zlog(mij) - Z()\ixij)a
i=1 =1 =1
10 m; m;
+Y | milog(a) + am;log i + (a —1) Y log(yi) — Y (Biyis)*
i=1 =1 =1

The likelihood ratio test is a statistical tool for testing the goodness of fit of two models which
one (the null model) is a special case of the other (the alternative model). Here in our models, the
null hyperthesis is a; = 5; = «, while the alternative hyperthesis is «; # ;. By the definition of
likelihood ratio test, the statistic —2 (LS — Z}gl(Lli + L2i)) follows the x? distribution with the

degree of freedom v. Here, v = 1.

The likelihood ratio test of a; = 5; = « for all ¢ gave a p-value of 0.122. So, we can not reject the

null hyperthesis at the 5% level of ginificance. That is, a; = 8; = « for all i. Given the parameter

10 =N 10 ~
estimates in Table [4.1] we have A =" N =4.273 x 1074 and B = Zaﬁ — 6.410 x 10742,

i=1 i=1

Since A < B , Theorem shows that the minimum lifetime of short-time patients is stochasti-
cally greater than the minimum lifetime of long-term patients. Since A<B , Theorem shows
that the minimum lifetime of short-time patients is greater than the minimum lifetime of long-term
patients with respect to hazard rate order. Since A< §, Theorem m shows that the minimum
lifetime of short-time patients is greater than the minimum lifetime of long-term patients with respect

to likelihood ratio order.

The established orderings between Xj.19 and Y7.1¢ are confirmed by the plots of the ratio of
survival functions, the ratio of probability density functions and the ratio of hazard rate functions

shown in Figure 4.3

There are formal tests for checking orderings of variables in Anderson (1996) and Barrett and

Donald (2003).

Since the previous tests involve inverses of matrics, which may not be available under some
circumstance, our conditions (e.g. Theorems to 4.3.3) are easy to be applied. So, we suggest
that our method can be used as the first step to target the interest. Those formal tests then can be

used in the further study.
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Chapter 5

New discrete bivariate

distributions

5.1 Introduction

Dependent random quantities in a wide range of areas have been modelled through the application of
bivariate/multivariate distributions. Historically many continuous bivariate/multivariate distributions
have been developed and used, in particular the bivariate/multivariate exponential distribution and
various extensions of it. There has been relatively little research on the development of discrete
bivariate/multivariate distributions at least up until 2010. For instance, a Google Scholar search
identified only the following discrete bivariate/multivariate distributions for the period 2001-2009
(A collection of discrete bivariate/multivariate distributions developed before 2000 can be found
in Johnson et al. (1997)): discrete multivariate distributions with product-type dependence due
to Becker and Utev (2002); discrete multivariate distributions induced by an urn scheme due to
Nikulin et al. (2002); bivariate Poisson distributions due to Piperigou and Papageorgiou (2003);
discrete multivariate distributions based on generalized linear mixed models due to Tonda (2005); a
discrete multivariate distribution resulting from the law of small numbers due to Hoshino (2006);
the discrete bivariate generalized hypergeometric factorial moment distribution due to Kumar
(2007); conditionally specified discrete multivariate distributions due to Ip and Wang (2009). Only
five papers have appeared for the period 2003-2009! The number of papers proposing continuous

bivariate/multivariate distributions is several times larger.

79
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In recent years, the need for discrete bivariate/multivariate distributions has become increasingly
important in many applied areas: modeling of football matches (McHale and Scarf, 2007); modeling of
family size in beef cattle (Garrido et al., 2008); analysis of crime data (Miethe et al., 2008); modeling
of the dependence of goals scored by opposing teams in international soccer matches (McHale and
Scarf, 2011); risk assessment and fault detection using scarce data (Ahooyi et al., 2014); to mention
just a few. This has led to many discrete bivariate/multivariate distributions being developed since
2010: the discrete bivariate normal distribution due to Bairamov and Gultekin (2010); bivariate
compound Poisson distributions due to Ozel (2011a, 2011b, 2013); composite discrete bivariate
distributions due to Cacoullos and Papageorgiou (2012); the multivariate discrete Poisson-Lindley
distribution due to Gomez-Deniz et al. (2012); multivariate discrete distributions based on pair
copulas due to Panagiotelis et al. (2012); the discrete bivariate Linnik distribution due to Antony and
Jayakumar (2013); multivariate discrete distributions based on general copulas due to Nikoloulopoulos
(2013); the bivariate generalization of the noncentral negative binomial distribution due to Ong and
Ng (2013); discrete multivariate phase-type distributions due to He and Ren (2015); the composite

discrete bivariate distribution with uniform marginals due to Reilly and Sapkota (2015).

The most recent discrete bivariate distribution is due to Lee and Cha (2015). They constructed two
general classes of discrete bivariate distributions by applying the minimum and maximum operators to
independent discrete random variables. Let Uy, Us and Us be independent discrete random variables.
The distributions constructed in Lee and Cha (2015) are those of (X,Y) = (min (Uy, Us) , min (Us, Us))
and (X,Y) = (max (U1, Us) , max (Us, Us)). We shall refer to these distributions as Models C and D.
Model A shall refer to the joint distribution of the independent variables (X,Y) = (Uy, Uz). Model
B shall refer to the joint distribution of (X,Y) = (Uy + Us, U2 + Us) due to Holgate (1964).

Following the methodology in Lee and Cha (2015), we construct further discrete bivariate
distributions by applying possible combinations of common mathematical operators: addition (+),
multiplication (x), minimum (min) and maximum (max). It turns out that seven new discrete

bivariate distributions can be constructed these operators.

The seven discrete bivariate distributions and expressions for their probability mass function
(pmf), cumulative distribution function (cdf), product moments and moment generating functions
are given in Section The performance of the eighteen distributions versus Models A to D for the
football data in Lee and Cha (2015) is investigated in Section It turns out some of the newly

proposed distributions provide better fits than Models A to D.
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5.2 New distributions

Here, we introduce seven new discrete bivariate distributions, in addition to the two proposed
by Lee and Cha (2015). The seven distributions are motivated as joint distributions of: Model
1: X =U; +U; and Y = UyUs; Model 2: X = Uy + Uz and Y = min (U, Us); Model 3:
X =U; +Us and Y = max (Us,Us); Model 4: X = U;1U; and Y = UsUs; Model 5: X = U;Us
and Y = min (Us, Us); Model 6: X = U Uz and Y = max (Us,Us); Model 7: X = min (U, Us;)
and Y = max (U, Us). We suppose throughout this section that Uy, Uy and Us are independent
discrete random variables each defined on the set of all non-negative integers (zero and all positive
integers). We can note that Model 1 and Model 4 only allow for positive correlations. In Model 3
and Model 6, Y and X exhibit the causal relationship when Us > U,,. While in Model 2 and Model
5, Y and X exhibit the causal relationship when Us < Us,. This character can be applied for many
practical uses, e.g. length of hospital stay in days and cost in pounds. We denote the pmf of U; by
p; for i = 1,2,3. We denote the cdf of U; by P; for i = 1,2,3. We denote the mgf of U; by M, for
i =1,2,3. For each joint distribution of X and Y, we give derivations and expressions for the joint

pmf, joint cdf, product moments and joint moment generating function whenever possible.

Model 1 For X =U; + Uz and Y = UyUs,

p1(0)p3(0), if r = 07 Y= 07

x

Pr(X = 2,V = y) = p1(2)p3(0) +p2(0) Y pi(x — k)ps(k), ifz>0,y=0,
k=1

> pila — k)pa(y/k)ps(k), if >0,y >0,
k=1
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p1(0)p3(0), ifz=0,y=0,

x 7

Pi(@)ps(0) +p2(0) Y > pi(i — k)ps(k), ifz>0,y=0,
i=1 k=1

Pr(X <z,Y <y)=
p1(0)p3(0) +lP1(T/)P3(0)

+p2(0) > > pi(i — k)ps(k)
=1 k:l
+222p1(i—k)p2(j/k)p3(k), ifx>0,y>0,
i=1 j=1k=1
E(X™Y") = E((Uy+Us)" (U2Us)")
- E "Vuivm=i . ypur
GLEREE)
= > (T)E (U1) B (U3) B (U5"~17)
1=0

and

Elexp (sX +tY)]

E[exp (s (Ur + Us) + t (U2U3))]

= FElexp(s- Ui+ (s+t-Us)Us)

= Elexp(s-Uy) x exp ((s+t- Us) Us)]
= Elexp(s-Uy)]- Elexp((s+t-Us) Us)]

= Mi(s) > Ms(s +it)pa(i).
1=0

In particular, Cov (X,Y) = E (Us) Var (Us), which is always positive.

Model 2 For X = U; 4+ Us and Y = min (Us, Us),

PriX=2,Y=y) = Pr(Ui+Us=2,Us=y|U; <Us)
+Pr (U +Us =2,Us =y | Uy >Us)
= Pr(U1+Us=2,U=y|y<Us;<z)

+Pr(Uy +Us=2,Us =y | Uz >y)

x

= pa(y) Y pile—k)ps(k) +pi(e — y)ps(y) [1 = Pa(y)]
k=y+1

82
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and

Pr(X <z,Y <y) = > pa() Y pili—k)ps(k)
=0 j=0 k=j+1
+ " Pi(z = j)ps(i) [1 - Pa(j)]
§=0

PriX=2Y=y) = Pr(Ui+Us=2Ux=y|Us>"Us)

+PI‘(U1+U3:I,U3:y|U2§U3)

min(z,y—1)

= pi(z —y)P(y)ps(y) + p2(y) p1(x — k)ps (k)
k=0
and
PrX <o,V <y) = DD [Pr(X =i,Y =)

i=0 j=0

y z oy min(s,j—1)
= Y Pz —H)P(ps(G) + DY p2(i) Y. pili — k)ps(k).
7=0 1=0 5=0 k=0

Model 4 For X = U U3 and Y = UyUs,

p1(0)p2(0) [1 — ps(0)] +ps(0), ifz=0,y=0,
p2(0) Y pa(a/k)ps(k), ifo>0,y=0,
k=1
Pr(X=2,Y=y) = .
p1(0) Y pa(y/k)ps(k), if 2 =0,y >0,
k=1
Zpl(m/k)pg(y/k)pg(k‘), ife>0,y>0,

k=1
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p1(0)p2(0) [1 — p3(0)] + p3(0)

k=11i=1

p1(0)p2(0) [1 — p3(0)] + p3(0)

Pr(Xng)YSy): +p1(0)zzp2(]/k)p3(k)’ 1fl‘:0,y>0,

k=1 j=1

p1(0)p2(0) [1 — p3(0)] + p3(0)

+p2(0) Z Zpl(i/k)PS(k)

k=11i=1

p1(0) 33 pai/k)ps (k)

k=1j=1

k=1i=1

E(X™Y™) = E[(U1U3)™ (UxU3)"]
= E[U1usUy T

= EBE(UME(Uy)E(U5T)
and

Elexp (sX +tY)] = FElexp (sU1Us + tUsU3)]
= Elexp (sU1Us) exp (tU2U3)]
= Elexp (sU1Us)] - E [exp (tU2Us)]

- Z M (s8) Mo (ti)ps ().

=0

In particular, Cov (X,Y) = E (Uy) E (Uz) Var (Us), which is always positive.

p1(0)p2(0) [1 — p3(0)] + p3(0), ifr=0,y=0,

+P2(0)22p1(i/k:)pg(k), ife>0,y=0,

+Zzpl(i/k) ZP2(j//f)P3(k), if x>0,y >0,
j=1
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Model 5 For X = U U3 and Y = min (Us, Us),

p1(0)p2(0) [1 — p3(0)] +p3(0), ifx=0,y=0,

pg(O)Zpl(x/k;)pg(k‘), ife>0,y=0,
k=1
Pr(X =z,Y =y) = q pi(0)p2(y) [L — Ps(y — 1)]
+p1(0)pa(y) [1 = P2 (y)], if £ =0,y >0,

pi(z/y) [1 = Pa(y — Dl ps(y)

oo

+p2(y) Y pa(w/k)ps(k),  ifz>0,y>0
k=y+1
and
p1(0)p2(0) [1 — p3(0)] + p3(0), ifr=0,y=0,

p1(0)p2(0) [1 — p3(0)] + p3(0)

+p2(0) Y 0 " pa(i/k)ps(k), ifx>0,y=0,
k=1 1=1

p1(0)p2(0) [1 — p3(0)] + p3(0)

+p1(0) > p2() [1 = P3(j = 1)]

(0) Y pali) 1= Pa()]. it =0,y >0,

Pr(X <z,Y <y) =

+p2(0) Z Zpl(l/k)iﬂzs(k)
k=1 1i1=1

+p1(0) S pa(G) [1 - P3G — 1))
j=1

+3 ) pa(i/§) [1 = Pa(j — 1)] ps(4)

i=1 j=1

+ZZP2(j) Z p1(i/k)p3(k), ifz>0,y>0.

i=1j=1 k=j+1
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Model 6 For X = U U3 and Y = max (Us, Us),

p2(0)p3(0), if z=0,y=0,

p1(0)p2(y) [P3(y) — P3(0)]

Pr(X =2,V =y) +p3(0)p2(y) +p1(0)P2(y — Lps(y), ifz=0,y>0,

y—1

p1(x/y)P2(y)ps(y) + p2(y Zm (z/k)ps(k), ifx>0,y>0

and

p2(0)p3(0), ifz=0,y=0,

p2(0)p3(0) + p1(0) Zm(]) [P3(j) — P3(0)]

)
+p3(0) [Pa(y) — P2(0)] + p1(0 Z (= Dps(j), ifz=0,y>0,

Pr(X <z,Y <y) y
p2(0)p3(0) + p1(0 sz — P3(0)]

+p3(0) [P2(y) — P2(0)] + p1(0 Z (G —1Dps(y

x
+ZZP1 (i/3)P2(5)p3(5)

i=1 j=1

£33 () S pali/Ems (), it >0, 5> 0.
k=1

i=1 j=1

Model 7 For X = min (U;,Us) and Y = max (Us, Us),
p1(x)Pa(x)ps(x) + [1 — Pi(z)] Pa(x)ps(x), if x =y,

Pr X =2,Y =y) = +[1— Pi(z— 1)]pa(z + 1)p3(z), ify=x+1,

p1(®)Pa(y)ps(y) + [1 — Pi(x — 1)] p2(y)ps(z)
+p1(2)pa2(y) [Ps(y) — P3(z — 1)], ify >x+2
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and
min(z,y) min(z,y)
PrX <z,Y <y) = >  p(i)Pli)ps(i) + (1 — Py(4)] Pa(i)ps(i)
i=0 i—
+ > p@Pa(i+ Dps(i+1)+ > [1—= Pi(i — 1] pa(i + 1)ps(i)
i=0,i+1<y i=0,i+1<y
+> 0> pili)Pa(h)ps(d)
i=0 j=i+2
+> 0> 1= Pu(i — )] pa(5)ps(i)
i=0 j=i+2
305 milipe) [PaG — 1) = Py + 1)].
i=0 j=i+2

5.3 Data application

Here, we reanalyze the data used in Lee and Cha (2015). The data are the scores of twenty six
football matches between ACF Fiorentina and Juventus over the period from 1996 to 2011. The
data are reproduced in Table where X = the number of goals scored by ACF Fiorentina and
Y = the number of goals scored by Juventus. Since this dataset spans 16 years, each team may be
expected to change substatially. This application is just done as an illustration of the practical use

of these newly proposed models. The football data what we use here can be found in Appendix [A]

Some summary statistics on X are: minimum = 0, first quartile = 1, median = 1, mean = 1.077,
third quartile = 1, maximum = 3, standard deviation = 0.935 and variance = 0.874. Some summary
statistics on Y are: minimum = 0, first quartile = 1, median = 1, mean = 1.385, third quartile = 2,
maximum = 3, standard deviation = 0.852 and variance = 0.726. The sample correlation coefficient

between X and Y is 0.413.

So, on average Juventus has scored more goals than ACF Fiorentina has. But the variability of
the number of goals scored by ACF Fiorentina is greater. The highest number of goals scored by

both teams are the same. The lowest number of goals scored by both teams are also the same.

Lee and Cha (2015) fitted Models A, B, C and D to the data. They also fitted the same models
to a transformed data with X replaced by 3 — X and Y replaced by 3 — Y. We shall refer to the
data in Table[A 1] as the football data. We shall refer to the transformed data as the transformed

football data.

We fitted Models A to D as well as Models 1 to 7 to both data sets. We took Uy, Us and Us to
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be independent Poisson random variables with parameters A1, Ay and A3, respectively. The method
of maximum likelihood was used for fitting of the models. The nlm function in the R software (R
Development Core Team, 2015) was used to maximize the likelihood functions. nlm was executed

with a wide range of initial values. nlm always converged and converged to a unique maximum.

Many of the fitted distributions are not nested. Discrimination among them was performed using;:

e the Akaike information criterion due to Akaike (1974) defined by
AIC =2k 21 L (8),

where L(.) is the likelihood function and © is the vector of all unknown parameters and k is

the number of all unknown parameters;

e the Bayesian information criterion due to Schwarz (1978) defined by
BIC = klnn — 2InL ((?)) ,

where L(.) is the likelihood function and n is the sample size.

The smaller the values of these criteria the better the fit. For more discussion on these criteria, see

Burnham and Anderson (2004) and Fang (2011).

The parameter estimates and the values of —In L, AIC, BIC are shown in Table for the
football data. The parameter estimates and the values of —In L, AIC, BIC are shown in Table
for the transformed football data. For the football data, the distinct values of (X,Y") are (1,2), (0,0),
(1,1), (0,1), (3,2), (3,3), (1,3), (1,0) and (3,0). The observed number of observations corresponding
to these values and the expected number under the fitted models in Table are shown in Table
For the transformed football data, the distinct observations are (2, 1), (3,3), (2,2), (3,2), (0,1),
(0,0), (2,0), (2,3) and (0,3). The observed number of observations corresponding to these values
and the expected number under the fitted models in Table [5.2] are shown in Table [5.4] Tables [5.3]

and also compute the chisquare goodness of fit statistics.

For the football data, Model 3 gives the smallest values for —In L, AIC and BIC. Model 1 gives
the second smallest values for —In L, AIC and BIC. Model D gives the third smallest values for
—1In L, AIC and BIC. Model 4 gives the largest values for —In L, AIC and BIC. The smallest, the
second smallest and the third smallest chisquare goodness of fit statistic value are given by Models 3,

C and D. The largest chisquare goodness of fit statistic value is given by Model 4.
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So, we can say that Model 3 is the best fitting model for the football data. It gives the smallest
values for —In L, AIC, BIC and the chisquare goodness of fit statistic. Model D is possibly the

second best fitting model in terms of the chisquare goodness of fit statistic.

For the transformed football data, Model C gives the smallest values for —In L, AIC and BIC.
Model D gives the second smallest values for —In L, AIC and BIC. Model B gives the third smallest
values for —In L, AIC and BIC. Model 1 gives the fourth smallest values for —In L, AIC and BIC.
Model 3 gives the fifth smallest values for —In L, AIC and BIC. But the numeric values of —In L,
AIC and BIC are very close among above five models. Model 4 gives the largest values for —In L,
AIC and BIC. The smallest, the second smallest and the third smallest chisquare goodness of fit
statistic values are given by Models 3, C and D. The largest chisquare goodness of fit statistic value

is given by Model 4.

So, we can say that Model C is the best fitting model for the transformed football data in terms of

—1In L, AIC and BIC. Model 3 is the best fitting model in terms of chisquare goodness of fit statistic.

Models 2, 5 and 7 could not be fitted to either of the two data sets. Model 2 could not be fitted
because it does not allow for observations, where X < Y. Model 5 could not be fitted because it
does not allow for observations, where X > 0, Y > 0 and X/(Y + k) is an integer for at least one

k=1,2,.... Model 7 could not be fitted because it does not allow for observations, where X > Y.

We should note that Model 3 is more tractable than Models C and D due to Lee and Cha (2015).
For instance, the joint pmf X and Y, the marginal pmf of X, the marginal pmf of Y, the mean of X,
the mean of Y and the mean of XY for Model 3 are

AR P

Pr(X =2Y = = A=A — A
r( x, Y) exp (A1 — A2 — A3) -yl g 2kl
min(z,y—1) Tk k
Y A A
M — Ao — Aa) 22 73
+exp (=1 2 3) y! g:o TR

o exp (—)\1 — )\3) (/\1 + )\3)I

z!

)
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=
9

a
@

M o A3 —InL AIC BIC
1.077 1.385 67.604 139.208 141.724
0.381 0.688 0.696 64.916 135.832 139.606
1.357 2.095 2.271 64.221 134.443 138.217
0.671 1.119 0.653 62.662 131.323 135.098
0.064 1.312 1.269 55.152 116.304 120.078
0.914 0.000 0.650 37.532 81.065 84.839
0.920 1.295 1.150 87.279 180.558 184.332
1.017 1.159 0.986 67.400 140.800 144.574

SO ww-gaowr

Table 5.1: Parameter estimates, log-likelihood values, AIC values and BIC values for the
distributions fitted to the football data.

=
S
o
e,

M S “InL AIC BIC
1.923 1.615 75.380 154777 157.294
0.668 0.360 1.255 70.466 146.933 150.707
2.918 2.067 2.713 69.020 144.039 147.813
1.625 1.051 1.100 69.735 145469 149.244
0.764 1.306 1.320 70.995 147.991 151.765
0.555 0.937 1.368 71.003 148.006 151.780
1.866 1.520 1.151 88.750 183.501 187.275
1.855 1.240 1.202 76.279 158.557 162.332

Ll e @ Jivel -2

Table 5.2: Parameter estimates, log-likelihood values, AIC values and BIC values for the
distributions fitted to the transformed football data.

(z,y) Obs Expected frequencies for the fitted models
A B C D 1 3 4 6
23 25 25 25 20 23 08 0.7
2.2 4.5 34 23 6.9 54 10.2 3.0
3.3 43 55 69 3.1 59 1.2 24
3.1 3.1 25 25 NA 31 1.3 59
04 0.6 04 0.2 0.1 0.8 0.1 0.1
0.2 0.6 04 0.7 0.8 0.6 0.3 0.6
1.1 0.8 1.0 09 09 1.7 03 0.3
24 17 1.3 1.5 28 5.0 1.0 NA
0.5 0.0 0.2 0.1 0.7 0.7 0.3 NA
32.538.422.321.629.618.4107.6 63.0
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=

—_ =
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Table 5.3: Observed frequencies, expected frequencies and chisquare goodness of fit statistics
for the distributions fitted to the football data.
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Pr(Y =y) exp (—A1 — A2 — A3) EOO )\9101/ )\g )\k
| |
—y)ly = K

L:y

oo min(z,y—1) )\x—k Ak

y
2 1 3
Foxp (A= e =) 372 Z @RI &

[e%e] )
E(XY) = exp(-X—A3) Y (\iy+y?) Zf
y=0 y! =0
0o oo min(z,y—1) o—k k
A" A5
) DITE T Dl i s
y*O Y2=0 k=0
E(X) =M+ A3,
and
E(Y) euAAmmAfw P
= X — —=
Y 1 2 3 ZZ x Z k!
y=0zx=y =0
[e%e] o] mln(x)y 1) Al_k Ak
1 3
+exp (=A 7 !Z Z EEIE
y=

respectively. These expressions can be used for example to compute the correlation coefficient between
X and Y for Model 3. Figures and show possible shapes of the contours of the correlation
coefficient. We can observe the following from the figures: the correlation increases as both A\; and
Ay decrease; the correlation decreases as both A1 and Ay increase; the correlation increases as Ay
decreases and A3 increases; the correlation decreases as A increases and A3 decreases; the correlation

increases as Ao decreases and A3 increases; the correlation decreases as Ay increases and A3 decreases.

Finally, we note that none of the best fitting models (including Models C and D due to Lee and
Cha (2015) and the proposed Model 3) provide adequate fits. The chisquare goodness of fit rejects
the null hypothesis at the five percent level. But Model 3 gives the smallest chisquare goodness of fit

statistic value for both the football and transformed football datasets.

The estimated mean of X, mean of Y, standard deviation of X, variance of X, standard deviation
of Y, variance of Y and the correlation coefficient between X and Y under Model 3 are 1.564, 0.650,
1.251, 1.564, 0.806, 0.650 and 0.645, respectively. These figures do not differ too greatly from the
sample values. A future work is to develop discrete bivariate distributions that may provide adequate

fits.
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(z,y) Obs Expected frequencies for the fitted models
A B C D 1 3 4 6
23 24 2.1 26 1.2 34 08 1.6
06 14 14 19 0.6 1.8 04 0.8
1.8 29 39 46 1.8 3.6 1.2 2.0
1.2 1.7 1.3 1.2 1.0 2.1 04 0.3
2 1.0 05 06 NA 12 05 3.8
08 2.7 1.9 0.6 3.2 3.7 88 23
1.4 0.6 1.0 0.8 2.6 2.0 0.9 NA
1.0 09 0.8 06 0.3 04 0.3 04
0.5 0.0 0.2 0.1 NA 0.2 0.3 1.3
42.567.726.2 30.760.7 17.3 133.995.1
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Table 5.4: Observed frequencies, expected frequencies and chisquare goodness of fit statistics
for the distributions fitted to the transformed football data.
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Figure 5.1: Contours of the correlation coefficient between X and Y versus A1 and Ao for
Model 3 and A3 = 0.650.
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Figure 5.2: Contours of the correlation coefficient between X and Y versus A\; and A3 for
Model 3 and \s = 4.856 x 1077
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Figure 5.3: Contours of the correlation coefficient between X and Y versus Ao and A3 for

Model 3 and A\; = 0.914.



Chapter 6

Amplitude and phase distributions

6.1 Introduction

Let (X,Y) be a random vector defined on the real space (—o0, +-00) x (—00, +00). Let R = VX2 + Y2
and © = arctan (Y/X). The distributions of R and © arise in many areas of the IEEE literature:
radar communications, positioning related applications, fading channels, etc. R is usually referred
to as the amplitude and © the phase. Some published examples in the IEEE literature where
the distributions of R and © arise directly are: analog data-transmission (Benedetto and Steila,
1977); radiation-pattern of an offset fed paraboloidal reflector antenna (Herben and Maanders, 1979);
microwave pulse generation (Brummer et al., 2011); photonic beamforming based on programmable
phase shifters (Yi et al., 2011); radiation characteristics of multimode concentric circular microstrip
patch antennas (Tran and Sharma, 2012); transmission schemes for Rayleigh block fading channels
(Chen and Ueng, 2013); broadband microwave photonic splitters (Li et al., 2014); performance of
transmit beamforming codebooks (Dowhuszko and Hamalainen, 2015); AC-AC converters (Zhang
and Ruan, 2015); modulation of ultrawideband monocycle pulses on a silicon photonic chip (Xu et

al., 2016).

Several papers have derived the distributions of R and ©: Aalo et al. (2007) and Dharmawansa
et al. (2009) derived the distributions of R and © when X and Y are correlated and non-identical
normal random variables with non-zero means; Yacoub (2010) derived the distributions of R and
© when X and Y are independent and identical Nakagami type random variables; Coluccia (2013)
derived the moments of R when X and Y are uncorrelated normal random variables with zero means

and unequal variances; and so on.

95
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Almost all of the known papers have supposed X and Y are normally distributed. However, non-
normal distributions are becoming increasingly popular in the IEEE literature: hyperbolic distribution
in network modeling (Li and Manikopoulos, 2004); Laplace distribution in signal processing (Eltoft
et al., 2006); Cauchy distribution in segmentation of noisy colour images (Wan et al., 2011); Kotz
type distribution for multilook polarimetric radar data (Kersten and Anfinsen, 2012); Student’s
t distribution in medical image segmentation (Nguyen and Wu, 2012); logistic distribution for
networked video quality assessment (Zhang et al., 2013); Gumbel distribution for peak sidelobe
level for arrays of randomly placed antennas (Krishnamurthy et al., 2015); skew normal distribution
for statistical static timing analysis (Vijaykumar and Vasudevan, 2016); and so on. Also, we are
not aware of any paper giving expressions for moments of R when X and Y are correlated random

variables.

The aim of this chapter is to derive the distribution of R, its moments and the distribution of ©
for a wide range of bivariate distributions, including the correlated bivariate normal distribution.
We consider thirty four flexible bivariate distributions in total. These include eleven bivariate
normal distributions, eight bivariate ¢ distributions, five bivariate Laplace distributions, two bivariate
hyperbolic distributions, two bivariate Gumbel distributions, one bivariate logistic distribution and

five other bivariate distributions.

The contents of this chapter are organized as follows. Section [6.2] derives the distribution of R,
its moments and the distribution of © when X and Y are correlated normal random variables with
zero means and unequal variances. These results extend those given in Coluccia (2013). Section
derives the same when X and Y are correlated random variables following thirty three other
bivariate distributions. Details of the derivations are not given. They can be obtained from the
corresponding author. To the best of our knowledge, the derived expressions for the distribution of
R, its moments and the distribution of © are all new and original. Section discusses simulation

of R and © for the bivariate distributions considered.

It is hoped that the details given in Section [6.3| could be a useful reference for the IEEE com-
munity. They could also encourage researchers to apply more non-normal distributions to real

problems in the EEE. A future work is to extend the results in Section for multivariate distri-

butions, that is to derive the distributions of \/X12 + X3+ -+ X2and ( Xl/\/Xl2 + X5+ + X2,

)(2/\/)(12 F X34+ X2, Xp_l/\/Xlz + X2+ + X2 ) given a distribution for (X1, Xa, ..., X,),

p> 2.

The expressions given in Sections [6.2] and involve various special functions, including the
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gamma function defined by

I(a) = /000 t2 L exp(—t)dt

for @ > 0; the incomplete gamma function defined by

”y(&,m)z/ t2 L exp(—t)dt
0

for a > 0 and x > 0; the beta function defined by
(oo}
B(a,b) :/ t2 11 — ) tdt
0

for @ > 0 and b > 0; the error function defined by

erf(z) = % /Ol’ exp (—t%) dt

for x > 0; the complementary error function defined by

2 oo
erfe(x) = ﬁ/w exp (—t%) dt
for —oo < x < 4005 the parabolic cylinder function defined by

exp (—z%/4)

/ 2711+ 2t)VT_1 exp (—2”t) dt
0
for v < 0 and 22 > 0; the Euler number of order n defined by

Es, = (—1)"22"+1/ t?"sech(7t)dt;
0

the modified Bessel function of the first kind of order v defined by

o 1 T\ 2k+v
L (@) :kZ:OP(kJruH)k! (5) ;

97



CHAPTER 6. AMPLITUDE AND PHASE DISTRIBUTIONS 98

the modified Bessel function of the second kind of order v defined by

%(77”)[]4(;5)—[”(%)], itv ¢ Z,
Ky(z) =
IPE},K (), ifvez

the confluent hypergeometric function defined by

Pl = >

k=0

where (o) = a(a+1)--- (o + k — 1) denotes the ascending factorial; the Gauss hypergeometric

function defined by

i k
oF1 (o, B35 2) = ZM'L

' )
= (M k
the o Fy hypergeometric function defined by
o (@) (B 2
Fy(o, B;7,0:2) = ) =77
2 2( B Y ) kZ:O (V)k(é)k k!

the 4F» hypergeometric function defined by
1Fo(a,b, e, d;e, f;2) = i (a)k((b))k(C)Z(d)k i
the 4F3 hypergeometric function defined by
aF3(a,b,c.dse, f,g;2) = i BENGROL

and, the Appell function of the first kind defined by

0o oo )[Zkfz
(abcdzfzzz k-s-zk'f' .

k=0 £=0

These special functions are well known and well established in the mathematics literature. Some details
of their properties can be found in Prudnikov et al. (1986) and Gradshteyn and Ryzhik (2014). In-built
routines for computing them are widely available in packages like Maple, Matlab and Mathematica.

For example, the in-built routines in Mathematica for the stated special functions are: GAMMA[a]
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for the gamma function, GAMMA[a]-GAMMA[a,x] for the incomplete gamma function, Beta[a,b]
for the beta function, Erc[x] for the error function, Erfc[x] for the complementary error function,
ParabolicCylinderD[nu,x] for the parabolic cylinder function, EulerE[n] for the Euler number of order n,
Bessell[nu,x] for the modified Bessel function of the first kind of order v, BesselK[nu,x] for the modified
Bessel function of the second kind of order v, HypergeometriclF1[alpha,beta,z] for the confluent
hypergeometric function, Hypergeometric2F1[alpha,beta,gamma,z] for the Gauss hypergeometric
function, HypergeometricPFQ [{alpha,beta}, {gamma,delta}, z] for the 5 F» hypergeometric function,
HypergeometricPFQ [{a,b,c,d}, {e,f}, z] for the 4F5 hypergeometric function, HypergeometricPFQ
[{a,b,c,d}, {ef,g}, 2] for the 4 F3 hypergeometric function, AppellF1[a,b,c,d,z,xi] for the Appell function
of the first kind. Mathematica like other algebraic manipulation packages allows for arbitrary

precision, so the accuracy of computations is not an issue.

In-built routines for most of the stated special functions are also available in the freely available
R software (R Development Core Team, 2016): gamma(a) in the base package for the gamma
function, gamma(a)*pgamma(x,shape=a) in the base package for the incomplete gamma function,
beta(a,b) in the base package for the beta function, erf(x) in the contributed package NORMT3
for the error function, erfc(x) in the contributed package NORMT3 for the complementary error
function, bessell(x,nu) in the base package for the modified Bessel function of the first kind of order v,
besselK(x,nu) in the base package for the modified Bessel function of the second kind of order v, kum-
merM(z,alpha,beta) in the contributed package AsianOptions for the confluent hypergeometric function,
hypergeo(alpha,beta,gamma,z) in the contributed package hypergeo for the Gauss hypergeometric
function, genhypergeo(U=c(alpha,beta), L=c(gamma,beta), z) in the contributed package hypergeo
for the oF5 hypergeometric function, genhypergeo(U=c(a,b,c,d), L=c(e,f), z) in the contributed
package hypergeo for the 4F hypergeometric function, genhypergeo(U=c(a,b,c,d), L=c(e,f,g), z) in the
contributed package hypergeo for the 4F3 hypergeometric function, F1(a,b,c,d,z,xi) in the contributed

package tolerance for the Appell function of the first kind.

6.2 Bivariate normal case

Here, we derive the pdf of R, the pdf of © and E (RP) when (X,Y) has the bivariate normal pdf

1 2\ 2 y >2 vy
Y= — 77— &Xp|—| — ] — —2p—— 6.1
f@y) 2my/1 — p?0,0, P [ (mU) (O'y pax Oy (6.1)
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for —oo < & < 400, —00 <y < +00, 05 >0, 0y >0 and —1 < p < 1. We can write (6.1)) in the form
f(z,y) = Cexp (—az® — by — 2cay)

for —c0o <z < 400, —c0 <y < 400, a >0, b >0 and —oco < ¢ < 400, where C' denotes the

normalizing constant. The corresponding joint pdf of R and © can be expressed as

f(r,0) Crexp [—r? (asin® 0 + beos® § + 2csinf cos )]
= Crexp{—r®[a+ (b—a)cos® 6 + csin(20)] }
= Crexp {—r2 <a + b—Ta [1+ cos(20)] + csin(29)) }

2b+a_r2b—a
2

= Crexp {—r cos(26) — er? sin(29)} (6.2)

for r > 0 and 0 < 6 < 2x. Using the fact
/027T exp (zcosf + ysinf) do = 2l (\/m) 7
we obtain the pdf of R as
fr(r) =2rCrexp (—ar?) Iy (r*B)

for r > 0, where a = ‘%b, B=+72+c?and v = b_?“. A straightforward integration of 1) shows
that the pdf of © is

fo(0) = Cla+b+ (b—a)cos(20) + 2csin(20)] "

for 0 < § < 27. An application of equation (2.15.3.2) in Prudnikov et al. (1986, volume 2) shows

that the pth moment of R can be expressed as

_p_1n (P p, ., p 1.5

for p > 0. By the transformation formulas of the Gauss hypergeometric function, three equivalent

representation of (6.3) are

E (RP) = Cra

Wk
—
Q
N
|
=
\_l/\3
|
Wl
|
NIE]
—
/~
I3
+
—_
~——
N}
=
7N
i
S
+
|
iy
[
N———
=)
=
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~ 2 gy ihp (P p_p L1, P
E(RP) = Cra (o — B?) F(2+1>2F1<1+4, Tyl m (6.5)
and
B(R)=Cr(o? =% T (P 1),m (-2 Pty O (6.6)
2 1177 R a2

for p > 0. If p is a positive integer and a multiple of 4 then (6.4) and reduce to the elementary

forms
p/A_py (_p 1 2\ K
P _1l_p +
(RP) = Crnaz (a2_52) 3 2F(§+1)Z( 4)/6(]{:'24 Q)k (i)
k=0 ’
and
p/4 P p 1 2 k
_ 2 g\ 5-5 (P (-5 +3), p
E(R?) = Cr (o — ?) r(2+1)kz_0 - o)
respectively.

6.3 The collection

Here, we tabulate expressions for the pdf of R, the pdf of © and E (RP) when (X,Y") follows thirty
four flexible bivariate distributions. We also select the representative models and provide the details
of derivation in the Appendix B. Note that, for some distributions, the derivation of E (RP) was not

possible.

Bivariate normal distribution (Balakrishnan and Lai, 2009, Chapter 11) has the joint pdf specified
by

f(z,y) = Cexp (—az® — by® — 2cay)

for —oo <z < 400, —c0 <y < 400, a > 0, b > 0 and —oco < ¢ < 400, where C' denotes the

normalizing constant. For this distribution,

f(r,0) = Crexp |—ar? — b ; a cos(260)r? — csin(260)r?| |
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fr(r) = 27Crexp (far2) Iy (7’26) ,

fo(0) = Cla+b+ (b—a)cos(20) + 2csin(20)]
and

D D D 1 32
E R = C 51 (TZ 1) F - 1,= —:1;—
( 1 ) O 2 I + 21 + ) 1 + 21 v 9

forr>0,0§9§27randp>07wherea:“7+b,6:\/72+02and7:b*?“.

Bivariate normal distribution with non-zero means (Balakrishnan and Lai, 2009, Chapter

11) has the joint pdf specified by
flz,y) =Cexp (—ax2 — by? — 2cay — daw — ey)

for —co <z < 400, — 0 <y < 400,a>0,b>0, —00 <c< +oo,d>0and e > 0, where C

denotes the normalizing constant. For this distribution,

f(r,0) = Crexp [—ar? — ycos(20)r® — csin(20)r® — drsinf — er cos 6] ,

2m
fr(r) = Crexp (—ar?) / exp [—7 cos(20)r* — csin(20)r® — drsin 6 — er cos 6] do
0
and

fo(0) = Cla+b+ (b—a)cos(20) + 2csin(20)] "

(dsin 6 + ecos6)?
P g [a+b+ (b—a)cos(20) + 2¢sin(20)]

dsinf + ecosf
D_,
Va+b+ (b—a)cos(20) + 2csin(260)

forr>03nd0§9§27r,wherea:“7+band'y:b_Ta.
Conditionally specified bivariate normal distribution (Balakrishnan and Lai, 2009, equation

(6.8)) has the joint pdf specified by

2 4+ y? + cx2y2)
2

F(e,y) = Cexp (—
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for —oo < & < 400, —00 < y < 400 and —oo0 < ¢ < 400, where C' denotes the normalizing constant.

For this distribution,

f(r,0) = Crexp 5

Pt (ert/4) sin2(29)]

2\ —r4i
[r(r) =2Crexp (—2) Z ( sciz'!) B (;z—k ;) :

=0

10~ e ™ | ey P (o)

and

244! 2’ 2 2

b= (=) 11
E(RP) = 2'*5C (4C)B(i+>l‘<2i+p+1)
=0

forr>0,0<60 <27 andp>0.

Bivariate skew normal distribution (Balakrishnan and Lai, 2009, equation (7.17)) has the joint

pdf specified by

f(z,y) = 26(x)9p(y)® (ax + By)

for —oo <z < 400, —00 < y < 400, —00 < @ < 00 and —oo < f < 400, where ¢(-) and ®(-)

denote, respectively, the pdf and cdf of a standard normal random variable. For this distribution,

r

2
f(r,0) = —exp (—T2> O (arsinb + Brcosb),
T

1 asinf + [ cosf
—+
27‘1’\/1 + (asinf + B cos6)?
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and
E(rr) =251 (2 +1)

for r > 0,0 <60 <27 and p > 0. The given expression for fg(0) follows from ®(x) = % + %erf (%)

and by writing

fe(0)

Il I

— o S—
8 8

s 3=
@D @D

k) <

o) o
/T/T\
N"ﬁw M‘ﬁw

orf (arsinﬁ—i—ﬂrcos@)} i
V2

(_1"2> orf (arsin&—i—ﬁrcos@) dr
2 V2

1 1 [ 2 i
_ L1 rexp (_r) erf(ar&n@—l—ﬁrcosH) dr
V2

I
¥l
3
[=)

3

-

o)

]

o
/I\
| %
~_

QU

3

+
¥l
o\

3
<

o)

I

ho)

and applying equation (2.8.5.9) in Prudnikov et al. (1986, volume 2) to calculate the integral. The

derivation for fr(r) can be written as

2 2m
fr(r) = rexp<_T2)/ ® (arsinf + frcos ) db
T 0

Note that arsin@ + Brcosf = Rsin( + ¢), where R =r - \/a? + 32 and ¢ = tan~! g

fr(r) = ;exp<—7;> /Ozwcb(Rsm(ewﬁ)de.

As this is a integral with repect to 6 from 0 to 2, the element within ®(.), Rsin(f + ¢), can be

simplified as Rsin(6).

2
/ ® (Rsin6) do
0

|
|

oy = Lol
™ 2m

/ ® (Rsind) dt9—|—/ ® (Rsind) d@}
0 ™

/Wfb(Rsinﬁ) d6+/w(1>(—Rsin0) d&]

0 0
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The last equation is due to sin (6§ — 7) = —sind. Note the fact that ®(—z) =1 — ®(z).

2
r r
fr(r) - exp (—2
ﬁ
2

I
A=
¢)
"
hol
/’l\

Bivariate skew normal distribution (Arnold and Beaver, 2002, equation (6.5)) has the joint pdf

specified by

24,2
f(z,y) = Cexp (_x ;y >‘I>(a:c—|—by—|—cxy)

for —co <z < 400, —00 < y < 400, —00 < a < 400, —00 < b < 400 and —o0 < ¢ < +00, where C'

denotes the normalizing constant. For this distribution,

r? er?
f(r,0) =Crexp (—2> d (ar sin @ + br cos 0 + > sin(29)> ,

r? 2 cr?
fr(r) =Crexp (—2> / o (ar sin 6 + br cos 6 + > sin(20)> de
0
and
o 72 er?
fo(0) = C/ 7 exp (—2> o (ar sin @ + br cos 0 + - sin(29)) dr
0
forr >0and 0 <6 < 2.
Bivariate skew normal distribution (Arnold and Beaver, 2002, equation (4.11)) has the joint

pdf specified by

2 2
f(z,y) =Cexp (m ;y ><I>(a:17+by+c)

for —oco < & < 400, —00 < Yy < 400, —00 < a < 400, —00 < b < +00 and —oo < ¢ < 400, where C'

denotes the normalizing constant. For this distribution,

2
f(r,0) = Crexp <—T2) ® (arsinf + brcosb + c) ,
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2

2m
fR(r):CreXp<—T2)/ ® (arsin @ + brcosf + c) df
0

and

c C
fo(0) = 5 + Serf

(c)+C asin® + bcos
\/(asin9+b0089)2 +1

V2
orfe c(asind + bcosb)
\/2 (asin® + bcos)* + 2

C2

.eX —
P [ 2 (asinfd + beos ) + 2

forr >0and 0 <6 < 27.

Bivariate skew normal distribution (Arnold et al., 2002, equation (5.1)) has the joint pdf

specified by

x2+y2

f(x,y) = Cexp (— ><I>(a+bx+cy+dx2+ey2+fxy)

for —o0 < z < 400, —00 < Yy < 400, —00 < a < 400, —00 < b < 400, —00 < ¢ < 400,
—00 < d < 400, —00 < e < 400 and —oo < f < 400, where C' denotes the normalizing constant.

For this distribution,

2 2
f(r,0) =Crexp e a+brsinH—l—crcosQ+dr2sin29+er2coszt9+Lsin 20) |,
2 2

2 2m 2
fr(r) = Crexp (—2) / o (a +brsinf + crcos 6 + dr?sin® 0 + er? cos? 0 + % sin(29)> de
0

and

00 2 2
fo(0) = C/ T exp (—2) o (a + brsin @ + cr cos 6 4 dr?sin® 6 4 er? cos? 6 + % sin(29)> dr
0

forr >0and 0 <6 <27.
Bivariate skew normal distribution (Balakrishnan and Lai, 2009, page 525) has the joint pdf

specified by

22 + 2
2a2

o) = Coxp (=550 ) @ (o) o (30)

for —co <z < 400, —00 < Yy < 400, a >0, —00 < @ < 400 and —oco0 < < 400, where C' denotes
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the normalizing constant. For this distribution,

2

f(r,0) = Crexp (—222) @ (arsinf) & (Brcosh),

Ca? Calasind Ca®Bcost
fo(0) = 4 +
4\/a2a2 sin 6 + 1 4\/62a2 cos26 +1
Calasiné Bacosb
+ arctan
2%\/Wn20+1 a2a2sin®6 + 1
Ca?pcos b aasinf

arctan

+
21/ 2a2 cos2 0 + 1 B2a2cos260 + 1

and
E (RP) = CraPt225 711 (2 + 1)

2

forr >0,0<60 <27 and p>0.

Conditionally specified bivariate skew normal distribution (Balakrishnan and Lai, 2009,

equation (6.78)) has the joint pdf specified by

f(z,y) = 26(z)p(y)P (Azy)

for —oco <z < 400, —00 <y < 400 and —oo < A < +o00. For this distribution,

2 2
flr,0) = r exp (—T) P (/\r sin29> ,
s 2 2

-

fol®) = 5 {1 +exp {4)\251112(29)] erte (wsnla@e))}
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and
E(rr) =251 (2 +1)

forr >0,0<60 <27 and p>0.

Bivariate alpha-skew-normal distribution (Louzada et al., 2016) has the joint pdf specified by
flx,y)=C [1 +(1—ax— by)ﬂ exp (—2% —y? — 2pxy)

for —oo < z < 400, —00 < Yy < 400, —00 < a < +00, —00 < b < +00 and —1 < b < 1, where C

denotes the normalizing constant. For this distribution,

f(r,0) = Cr |2 —2r (asinf + bcosf) + 2 (asinf + bcos 9)2] exp [—r® — pr®sin(26)],

B C ~ /7C (asinf + beosb) C (asin 6 + beos 0)?
L+psin(20)  2[1 + psin(20))*/? 21+ psin(20)]°

fe(0)

X (92 k
fr(r) = Crexp (—r?) Z 7( 2152 ) (14 (-1)F] 12 (k;1>
’ wy o (K2
o e (552)

< (—2pr2)"
+(a® +b%) Cr exp (—1%) ;M (14 (=1} [1+ (~1)k2)T (k;”) r (’““;3)

and

E(RP) = Ci ﬁjg’k [1+4 (-1)*]T (g Ny 1) r? (T)
k=0

— (_QP)k p 12 (k+2
+abckzzomr (5 +k+2) 1+ (-1 T <2>

2, 12 = (_QP)k p 9 kE+1 k+3
+ (a®+0b )C;WF(2+k+2> [T+ (=D [1+ (=D ]r(2>r<2>

forr >0and 0 <6 < 27.

Bivariate generalized skew-symmetric normal distribution (Fathi-Vajargah and Hasanalipour,
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2013, equation (1)) has the joint pdf specified by

109

f(z,y) = Cexp (—xQ —;—y2> @< wy

1+ bx2y? )
constant. For this distribution,

for —oo < & < 400, —00 < y < 400, —00 < a < +00 and b > 0, where C denotes the normalizing

r? 2ar? sin(26)
0) = -—— |
f(r,6) = Crexp ( 2 ) (4 bt sin2(29)) !

-2
fr(r) = Crexp <

_2) /2”q>< 2ar? sin(26)
0

db
4 4 br*sin”(26) >

and

o0 2 2
—C’/ rexp (_g) <I>< 2ar? sin(20)
0

dr
4 4 brt sin2(29)>
forr >0and 0 <6 < 27.

Bivariate Kotz type distribution (Balakrishnan and Lai, 2009, Section 13.6.1) has the joint pdf
specified by

flz,y)=C (2> + y2)N_1 exp [qu (z® + yz)s}

for —co <z < 400, —0 <y < +00, N >0, s > 0 and ¢ > 0, where C denotes the normalizing
constant. For this distribution,

f(r,0) = O™ exp (—pr™)
fr(r) = 2rCr2N-1) exp (7@,25) ,

fo(0) = € 5=
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and

oot 2N +p—-1
B = Lo (B2

forr >0,0<60 <27 and p>0.

Bivariate t distribution (Kotz and Nadarajah, 2004, Chapter 1) has the joint pdf specified by

v42

f(z,y) =C (1+az® + by + 2cay) *

for —oco < x < 400, —00 <y < 4+00,a>0,b>0, —o0 < ¢c < +o0 and v > 0, where C' denotes the
normalizing constant. For this distribution

)

cos(26) + csin(29)] r2} i

f(r,&):Cr{l—l—a;—er—l— {b;a

9
2

BRI oo

_vt2 g
B {4+1 kE—10+ (2h+1 1+a+br2 2
2 2

2C
fo(0) = via+ b+ (b— a)cos(20) 4 2csin(20))

and

B - 2 € kszkj () <’“)<2c>fm 14 (~1)F o+ (—1)f o (1)
B<£;17k €+1> <k g ’I/—p>

forr>0,0<60<27mandp<v.

Bivariate Cauchy distribution (Kotz and Nadarajah, 2004, Chapter 1) has the joint pdf specified
by

flz,y)=C (1 +az®+ byz)_%

for —oco <z < 400, —00 < y < 400, a > 0 and b > 0, where C denotes the normalizing constant
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For this distribution,

1 + cos(26)] r2} ,

o

b-a [

flr,0) = Cr{l+ar2+

fr(r) = ci (f) <b ; “)k 1+ (-1)¥] B (; k;l) 2kt [1 + “;brﬂ _%_k,

2C

50 = /-3 b—a\" 1 k+1 P 1—p
P) — E 2 _1)k - g
B (b+a)st! <k><b+a> e 1)]3(2’ 2 )B(H?H’ 2 )
forr>0,0<60<27andp<]1.

Bivariate skew ¢ distribution (Azzalini and Capitanio, 2003) has the joint pdf specified by

v+2
1 22 4+y?\ v+ 2
==(1 T, by)y | ————
f(xvy) 7_(_( + v ) +2 ((a‘z+ y) $2+y2+V)

for —oo <z < 400, —00 < Yy < +00, —00 < a < +00, —00 < b < +00 and v > 0, where T, (-) denotes

the cdf of a standard Student’s ¢ random variable with degree of freedom a. For this distribution,

2
T,42 <r (asin0+bcos9)wy2j_> ,
r2+v

v+2

2\ T2
F(r,0) = % <1+Ty)

_ 1 ol (42 o (DR (3), (), 2k+1
fo(0) = - 27r3/2r(%+2)kz:0 N, (asin® + beos o) B(k+2,2>

and
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forr>0,0<60<2rand p<vw.

Bivariate skew Cauchy distribution (Azzalini and Capitanio, 2003) has the joint pdf specified

flz,y) = % (1 + z? —|—y2)7% Ty ((ax—&-by)qlﬁzﬂ?}m)

for —o0o <z < 400, —c0 <Yy < 400, —0 < a < +00 and —oo < b < +oo. For this distribution,

r -3 . /3
f('l", 9) = ; (1 + 7’2) T3 (T‘ (Cl sin 6 + b cos 9) 7.2_'_1> s

by

2 1
* (asinf + beos0)** ! B (k + g, 2)

and

forr>0,0<60<2randp< 1.
Standard bivariate ¢ distribution (Kotz and Nadarajah, 2004, Chapter 1) has the joint pdf

specified by

v+2

flay) =C(a® +a* +y°) 7

for —oco <z < +00, —0 <y < +00, a > 0 and v > 0, where C' denotes the normalizing constant.

For this distribution,

v42

f(r,0)=Cr(a®+1%) %,

v+2

fr(r) =2nCr (a* +1%) =,
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and

E(RP) = nCa”~"B (g +1,7 ;p)

forr>0,0<60<2randp<v.
Conditionally specified bivariate ¢ distribution (Kotz and Nadarajah, 2004, equation (4.26))

has the joint pdf specified by

v+1

f(z,y) = C (a+bz® +by® + ca®y®) 2

for —oco < x < 400, —c0o <y < 4+00,a>0,b>0, —00 < ¢c< +o0 and v > 0, where C' denotes the

normalizing constant. For this distribution,

vt1
2

f(r,0) =Cr [a +br? + 27‘4 sin2(29)} - ,

NERZE R, ert r 1 1
fr(r)=2Cr (a+br*) Z( k2 ) [4(a+br2)] B(2,k5+2>

k=0

and

C 1 vow b2
0) = Fiz 2ol —
fo(®) Veva /2 [sin(20)] 7 (2 29 " acsin2(29)>
forr >0and 0 <6 < 27.
Bivariate poly t distribution (Dickey, 1968) has the joint pdf specified by

+1 v+1

k) _rrl
flz,y)=C (1 +az? + ay2) 2 (1 + Bz + ﬁyQ) 2
for —co < < 400, —00 < y < +00, « >0, >0, p > 0 and v > 0, where C' denotes the
normalizing constant. For this distribution,

pt1 v+1

fr,0)=Cr (1 + oer)_T (1 + ﬁrQ)_T ,
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+1 v+1

fr(r) =2=Cr (1 + 047'2)_“T (1 + ﬂrQ)_T ,

and

e D p+v—p D v+1 p+v 8
E(RP) = IcBlz+1,——— ), [ Z2+1 : 1.1-2
( ) ™« 2 <2+ 5 9 )2 1(2+ ) 2 ) 2 + 3 py

forr>0,0<0<2mandp<pu+v.
Bivariate poly Cauchy distribution (Dickey, 1968) has the joint pdf specified by

flz,y)=C (1 +az? + ayQ)_l (1 + Bz + ﬁyQ)_l

for —oo < & < 400, —0c0 < y < +00, a > 0 and 8 > 0, where C' denotes the normalizing constant.

For this distribution,

f(r,0)=Cr (1 + 047“2)71 (1 + Br2)71 ,

fr(r) =27Cr (1 + arQ)fl (1+ ,37“2)71 )

«

C
fe(0) = %2F1 <1, 1;2;1 — 5)
and

_p_ 2 —
E(R") =ra 5"'CB <§+1,2p)21«1 (§+1,1;2;1—§)

forr>0,0<0<27andp<?2.
Bivariate heavy tailed distribution (Balakrishnan and Lai, 2009, equation (9.22)) has the joint

pdf specified by

_B _a
2 2

f(I»y):C’(1+o:2)_% (144277 (1+2>+?)

for —o00 <z < 400, —00 < y < +00, @ > 0, f > 0 and v > 0, where C' denotes the normalizing
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constant. For this distribution,

[Nl]e)

f(r,0) =Cr (1 + 72 sin? 9)7% (1 + 72 cos? 0)7 (1 +r2)7%7
= 2) =5 lap 5, 1
fr(r) =2rCr (1+17%) F1<2,2,2,1, S

and

NI

fo(0) :C’/ (1—|—2ysin29)_% (1+2ycos®6) (142y) % dy
0

forr >0and 0 <6 <27.

Standard symmetric bivariate Laplace distribution (Kotz et al., 2001, equation (5.1.2)) has

the joint pdf specified by
1 21 .2
I@,y) = —Ko (V2@ +12))
for —oo < < 400 and —oo < y < +o00. For this distribution,

f(r,0) = %TKO (\@r) ,

fr(r) =2rK, (\/57”) ,

and
E(RP) = 2512 (g + 1)

forr >0,0<60 <27 and p>0.

General symmetric bivariate Laplace distribution (Kotz et al., 2001, equation (5.2.2)) has

the joint pdf specified by

f(y) =C (@ +9?)f K, (V2@ + 7))
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for —oo < x < 400, —00 < y < 400 and v > 0, where C denotes the normalizing constant. For this

distribution,
£(r6) = Or K (Var).
fa(r) = 2mCr 4K, (Var)
fo() =2271CT (v +1)
and

e O

forr>0,0<60 <27 and p>0.

Asymmetric bivariate Laplace distribution (Kotz et al., 2001, equation (6.5.3)) has the joint

pdf specified by
f(z,y) = Cexp(az + By) (2> +4°)* K, ( 2 1 y2>

for —oco < z < 400, —00 < Yy < 400, a < 0, 8 <0,y >0 and v > 0, where C' denotes the

normalizing constant. For this distribution,

f(r,0) = Cr't” exp (arsin@ + pBrcos ) K, (r),

fR(T’) = 2’/TCT‘1+VIO (T\/W) Ku ('Yr)a

VO (27)'T(2 4 2v)

fe(8) = F(g +V) (v — asinf — S cosf

1 5
)2+2V2F1 <2+21/, +v; -+,

_7—|—asin9—|—ﬂcos9
2 2

v —asinf — Scosf
and

2 2
B(R) =220y 2o (14 v+ D)1 (14201 (1 AR Bt O‘*;ﬁ)
S
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forr>0,0<6 <27 and p>0.

Standard asymmetric bivariate Laplace distribution (Kotz et al., 2001, page 302) has the

joint pdf specified by
f(z,y) = Cexp (ax + By) Ko (7 x? + yQ)

for —oo <z < 400, —00 < y < 400, a < 0, 8 <0 and v > 0, where C denotes the normalizing

constant. For this distribution,

f(r,0) = Crexp (arsinf + Brcosf) Koy (yr),

fr(r) =2nCrly (r\/a2 + 62) Ky (yr),

4C 15 + asinf + S cosb
fe(0) = - 52F1 (2;; *;—FY - b >
3(y— asinf — Bcosh) 22" ~v—asinf — Bcosb
and
E(RP) = 27+ nCy =212 (1_,_2) F(1+?2 1+B.1.0‘2+52
2 2 1 27 27 b) r)/2

forr>0,0<60 <27 andp>0.

Bivariate poly Laplace distribution (Aravkin et al., 2011) has the joint pdf specified by
A
f(z,y) = Cexp (azx + By) («* +y*)" K, (7 a2 + y2) K, (7 a? + yz)

for —co <z < 400, —c0<y<+o00,a>0,8>0,7v>0,A>0, x>0 and v > 0, where C' denotes

the normalizing constant. For this distribution,

f(r,0) = Cr' ™ exp (arsind + frcos ) K, (yr) K, (yr),

falr) = 2O L (122 + ) K, () K (),
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fo(0) = C/ r T2 exp (arsin @ + Brcos0) K, (yr) K, (yr) dr
0

and

22 +P p+u+v p+u—v
E(RP) = P(l1+X+——"— )T (14+X+—F—
. Y22MPT (24 20 + p) <+ * 2 ) <+ + 2 )
r<1+A+p_g+”>r<1+A+p_g_”>r4@A+p+m

+u+v +u—v —u+v —u—-v
'4F3<1+)\+pg,1+/\+p”,1+/\+p“,1+)\+pg;

L+A+ 5 1+0+

p+1 1.a2+ﬁ2
2 b b 472

forr>0,0<6 <27 and p>0.

Bivariate hyperbolic distribution (Balakrishnan and Lai, 2009, Section 13.14) has the joint pdf

specified by

f(z,y) = Cexp [—a(2® +y*) — Bz — yy]

for —oco <z < 400, —00 < y < +00, @ > 0, f > 0 and v > 0, where C' denotes the normalizing

constant. For this distribution,

fr,0) =Crexp (—ar2 — Brsinf — yr cos 9) ,

fr(r) = 27Crexp (—057’2) Iy (7’\/ B2+ 72> ,

(Bsin@—&—’ycos@)T D (ﬁsin@—l—vcos@)
-2 e

C
o) = € ooy [00 5

and

2 2

_p_ + v

E(RP) = 1F(3+1)F 3+1~1-ﬂ
(RP) =7nCa™ 2 5 11| 5 L

forr>0,0<6 <27 andp>0.

Bivariate hyperbolic secant distribution (Balakrishnan and Lai, 2009, Chapter 13) has the
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joint pdf specified by

(1 + czy) sech (%x) sech (%y)

>~ =

fla,y) =
for —oo < < 400, —00 <y < 400 and —1 < ¢ < 1. For this distribution,

sin 6 0
2 (1 + fr sin 29) sech (mﬂ Zm > sech <7TT (;OS > ,

f(r,0) =

oo

T > E2 E2 7T21+2J . 1 . 1 2i+2j
522 N(27) |4H—JB H_§7J+§ " ’

1=0 j=

= xS (14 2 ) mo s (54 L Yeosd]

1=0 j=0

. {1 + 3cmr ™2 sin(26) [(z + ;) sin 6 + (j + ;) cos 9} _2}

if sinfcosf > 0, and

—QZZ WK ;>sin9—(j+;>cose}_2

1=0 j=0

. {1 + 3cmr ™2 sin(26) Kz + ;) sinf — (j + ;) cos 9} _2}

if sinfcosf <0 forr>0,0<6<27r and p > 0.

Conditionally specified bivariate Gumbel distribution (Balakrishnan and Lai, 2009, Section
12.13.1) has the joint pdf specified by

f(z,y) = Cexp|—x —y — exp(—x) — exp(—y) — aexp(—z — y)]

for —oco < x < 400, —00 < y < 400 and 0 < a < 1, where C' denotes the normalizing constant. For

this distribution,

f(r,0) = Crexp[—rsin@ — rcosf — exp(—rsin ) — exp(—r cos ) — aexp(—rsind — rcos0)],



CHAPTER 6. AMPLITUDE AND PHASE DISTRIBUTIONS 120

XX z+7+k k

- QWCTZZZ z'y'k' I (r\/(l Yt k2t (1+g +k)2>

1=0 j=0 k=0

and

(=1)i+itkak

R [(14i+k)sing+ (1+j+k)cos6] >

forr >0and 0 <6 < 2.

Bivariate logistic distribution (Balakrishnan and Lai, 2009, Section 2.3.1) has the joint pdf

specified by
f(z,y) = 2exp (—az — By) [ + exp(—az) + exp(—By)]

for —oco <z < 400, —00 <y < 400, a > 0 and § > 0. For this distribution,

f(r,0) = 2rexp (—arsind — Brcos ) [1 + exp(—ar sin0) + exp(—fBr cos0)] 2,

(r) = drr i zk: <‘k3> (’;) Iy (7“\/042(2 Y12+ 32(k— 0+ 1)2)

k=0 £=0

and

o k
;g( )() (1+O)asinb+ (1+k—£)Bcosd]

forr >0and 0 <6 <27.

Bivariate Gumbel type distribution (Balakrishnan and Lai, 2009, equation (13.27)) has the

joint pdf specified by

f(z,y) = Cexp{—a (x2 +y®) —bexp [—a (x2 + yQ)]}

for —oco <z < 400, —00 < y < 400, a > 0 and b > 0, where C' denotes the normalizing constant.

For this distribution,

f(r,0) = Crexp {—ar2 —bexp (—arQ)} ,
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fr(r) =2nCrexp {fa?ﬂ2 —bexp (farz)} ,

if p is even, and

E(R?) = a(fa(’;p/? (ai)(p_l)/z { /O | /i exp(—bt)dt]

a=0
if p is odd, where r > 0 and 0 < 6 < 27.

Bivariate skew elliptical distribution (Arnold and Beaver, 2002, Section 10) has the joint pdf

specified by
flz,y) = Cg(z,y)H (a + bx + cy)

for —co <z < 400, —00 <y < 400, —00 < a < 400, —00 < b < 400 and —o0 < ¢ < +00, where C'
denotes the normalizing constant, g denotes a valid joint pdf and H denotes a valid univariate cdf.

For this distribution,

f(r,0) = Crg(rsin®,rcos0)H (a + brsiné + cr cosd),

2
fr(r) = Cr/ g (rsin®,rcosf) H (a+ brsin + cr cos 0) df
0
and
fo(0) = C/ rg (rsind,rcosd) H (a4 brsinf + cr cos §) dr
0

forr >0and 0 <6 < 27.

Bivariate Sarmanov distribution (Sarmanov, 1966) has the joint pdf specified by

f(z,y) = g1(2)g2(y) {1 + b1 (x)02(y) }
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for —o0o < z < 400, —00 < y < 400 and —1 < a < 1, where g1, go are valid probability density

functions and 64, 65 are bounded nonconstant functions such that

+oo “+oo
[ 01(z)g1(x)dz =0, [ 02(y)g2(y)dy = 0.

For this distribution,

f(r,0) =rg; (rsinf) gs (rcosf) {1+ aby (rsinh) 6 (rcosb)},

27
fr(r) = r/ g1 (rsin@) go (rcosf) {1+ aby (rsinh) by (rcosd)} do
0
and
fo(0) = / " g1 (rsin6) ga (r cos0) {1+ adh (rsin ) s (r cos 6)} dr
0

forr >0and 0 <6 < 27.

Bivariate Farlie-Gumbel-Morgenstern distribution (Farlie, 1960; Gumbel, 1960; Morgenstern,

1956) has the joint pdf specified by

f(@,y) = g1(2)g2(y) {1 + a[1 = 2G1(2)] [1 — 2G2(y)]}

for —oo < z < 400, —00 < y < +00 and —1 < a < 1, where g1, go are valid probability density

functions and G, G are the corresponding cumulative distribution functions. For this distribution,

f(r,0) =rg; (rsinf) gs (recosf) {1+ a[l — 2G; (rsind)] [1 — 2Gs (rcos )]},

fr(r) = T/O ng (rsin®) gs (rcosf) {1+ a[l —2G; (rsinf)][1 — 2G5 (r cos )]} db
and
fo(0) = /000 rg1 (rsinf) gz (rcosd) {1+ o[l — 2G; (rsind)] [1 — 2G5 (rcos8)]} dr

forr >0and 0 <6 <27.
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6.4 Simulation

Simulation of R and © from the stated bivariate distributions is simple given there are algorithms
for simulating (X,Y):

e simulate (X,Y) from the stated pdf f(z,y);

e set R=vVX2+Y2 ;

e set © = arctan (Y/X).

Algorithms for simulating from each of the stated bivariate distributions are available in the

literature. For example, a random vector (X,Y) having the bivariate normal distribution with means

(1, p1yy), variances (02,02) and correlation coefficient p can be simulated as

e simulate Z; and Z5 independently from a standard normal distribution;
e set X = (1 — p2) 021+ pogZa + pig;

o set Y =o0,25 + py.

Similarly, a random vector (X,Y) having the bivariate ¢ distribution with means (f4, ), scale

parameters (0’%, 05), correlation coefficient p and degree of freedom v can be simulated as

e simulate Z; and Z5 independently from a standard normal distribution;

e set P = (1 — p2) 0z 21 + poypZo;

o set QQ = 0y Zo;

e simulate U independently from a chisquare distribution with degree of freedom v;
e set X:uerP\g;

o set Y =, +Q\/f-



Chapter 7

Characteristic functions of product

7.1 Introduction

Many variables in the real world (including the signal processing area) can be assumed to follow the
normal distribution. That is, we can write U = u + 0 X, where X is a standard normal variable, u is
the mean and o is the standard deviation. But often the mean and standard deviation are themselves
random variables, so U involves a product of two random variables. For the rest of this chapter, we

use Y to represent o.

Schoenecker and Luginbuhl (2016) derived the characteristic function of the product, i.e. XY,
when X is a standard normal random variable and Y is an independent random variable following
either the normal or gamma distribution. They expressed the distribution of XY = W say in terms

of its characteristic function ¢w (t) = E [exp (itW)], where i = v/—1 is the complex unit.

The charateristic function defines the probability distribution of any real-valued random variable.
It is the Fourier transform of the probability density function. The tail behavior of the charateristic
function defines the smoothness character of the density function. Literatures where the characteristic
function arises include: estimation of the joint reperesentations in signal analysis (Cohen, 1996);
estimation of affine asset pricing models (Singleton, 2001); estimation of continuous-time stochastic

processes (Jiang and Knight, 2002).

The aim of this chapter is to derive closed form expressions for the characteristic function
¢w (t) when X is a standard normal random variable and Y is an independent random variable

following a wide range of other distributions. For a variety of applications, it is needed that the

124
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o follows different types of distributions. For example, as introduced in the previous chapter, in
signal transfer, amplitude is the height from the central line to peak. There is another measure
which refers to the distance between two peaks, so called, period. The period of different waves
may be different, which results in the difference in shape of parabolic curves. Therefore, we need
to adjust the shape parameter (o) to provide the goodness of fit to different signal data. Here
we construct a comprehensive study on the light-tailed distributions (e.g. nomal distribution,
exponential distribution), and the heavy tailed distributions (e.g. the Pareto distribution, the Cauchy
distribution, the student’s ¢ distribution) for Y. The full list of distributions for Y considered
in this chapter is: Pareto distribution (Pareto, 1964), triangular distribution, Argus distribution
(Albrecht, 1990), Cauchy distribution, Student’s ¢ distribution (Gosset, 1908), skewed Student’s
t distribution (Zhu and Galbraith, 2010), asymmetric skewed Student’s ¢ distribution (Zhu and
Galbraith, 2010), Rice distribution (Rice, 1945), symmetric Laplace distribution (Laplace, 1774),
Laplace distribution (Laplace, 1774), asymmetric Laplace distribution (Kozubowski and Podgorski,
2000), Poiraud-Casanova-Thomas-Agnan Laplace distribution (Poiraud-Casanova and Thomas-Agnan,
2000), Holla-Bhattacharya Laplace distribution (Holla and Bhattacharya, 1968), McGill Laplace
distribution (McGill, 1962), log Laplace distribution, exponential distribution, gamma distribution,
chi distribution, variance gamma distribution (Madan and Seneta, 1990), normal inverse gamma
distribution, Nakagami distribution (Nakagami, 1960), reciprocal distribution, Maxwell distribution
(Maxwell, 1860), quadratic distribution, uniform distribution, power function distribution, Rayleigh
distribution (Weibull, 1951), exponentiated Rayleigh distribution, beta Rayleigh distribution, normal
distribution (de Moivre, 1738; Gauss, 1809), truncated normal distribution, split normal distribution,
g-Gaussian distribution (Tsallis, 2009), normal exponential gamma distribution, Wigner semicircle
distribution, Kumaraswamy distribution (Kumaraswamy, 1980), linear failure rate distribution (Bain,

1974) and Irwin Hall distribution (Irwin, 1927; Hall, 1927).

The given expressions are as explicit as possible. They involve various special functions, including

the gamma function defined by

I'(a) = /0+00 t*Lexp (—t)dt

for @ > 0; the incomplete gamma function defined by

v(a, ) :/ t* Lexp (—t) dt
0
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for a > 0 and = > 0; the complementary incomplete gamma function defined by

+oo
I'(a,z) = / t*Lexp (—t) dt

for x > 0; the beta function defined by

1
Bla,b) :/ 1=1(1 = )t=ld
0

for @ > 0 and b > 0; the incomplete beta function defined by

x
B.(a,b) :/ t2 (1 — )b dt
0

for 0 <z <1, a >0 and b > 0; the error function defined by

erf(z) = % /Ol’ exp (—t%) dt

for x > 0; the complementary error function defined by

+oo
erfe(x) = %/ exp (—t%) dt

for —oo < x < 4005 the parabolic cylinder function of order v defined by

v—1

.2 +00
M / 727114+ 2t)7 exp (—2?t) dt
0

for v < 0 and 22 > 0; the Whittaker W function of orders v, u defined by

W 1’”+% +oo 1 h—v—73 1 ptv—3% g
() = =% t— t+ = exp (—at) dt
W=, (m5) (+3) ewm

for y —v > f% and z > 0; the modified Bessel function of the first kind of order v defined by

Ly 1 N 2k+v
L(@) :kZ:()F(kJFV+1)k! (5) ;



CHAPTER 7. CHARACTERISTIC FUNCTIONS OF PRODUCT

the modified Bessel function of the second kind of order v defined by

%(WV) L-v(z) - L(x)], ifv¢Z,
K, (x) =

the confluent hypergeometric function defined by

1Fi(o; Bix) = K

127

where (o) = a(a+1)--- (o + k — 1) denotes the ascending factorial; the Gauss hypergeometric

function defined by

the standard normal distribution function defined by

o= [ (L)

and the function ¥(a, ¢; z) defined by

'l—o

L'(e—-1)
I'(l4+a-c)

U(a,cz) = ()

1Fi(a;¢;2) +

AR (14 a—¢2—c2)

These special functions are well known and well established in the mathematics literature. Some

details of their properties can be found in Prudnikov et al. (1986) and Gradshteyn and Ryzhik (2000).

In-built routines for computing them are available in packages like Maple, Matlab and Mathematica.

For example, the in-built routines in Mathematica for the stated special functions are: GAMMA[a]

for the gamma function; GAMMA[a]-GAMMA[a,x] for the incomplete gamma function; GAMMA[a,x]

for the complementary incomplete gamma function; Beta[a,b] for the beta function; Beta[x,a,b]

for the incomplete beta function; Erf[x] for the error function; Erfc[x] for the complementary error

function; ParabolicCylinderD[nu,x] for the parabolic cylinder function; Whittaker[nu,mu,x] for the
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Whittaker W function of orders v, u; Bessell[nu,x] for the modified Bessel function of the first kind of
order v; BesselK[nu,x] for the modified Bessel function of the second kind of order v; Hypergeomet-
riclF1[alpha,beta x] for the confluent hypergeometric function; Hypergeometric2F1[alpha,beta,gamma, x|
for the Gauss hypergeometric function; PDF[NormalDistribution[0,1],x] for the standard normal density
function; CDF[NormalDistribution[0,1],x] for the standard normal distribution function. Mathemat-
ica like other algebraic manipulation packages allows for arbitrary precision, so the accuracy of

computations is not an issue.

The contents of this chapter are organized as follows. Section provides simple derivations
of the characteristic functions due to Schoenecker and Luginbuhl (2016). Section [7.3]lists explicit
expressions for ¢y (t) for nearly fifty distributions for Y. Section presents simulation results that

verify correctness of the expressions in Section

7.2 Simpler derivations for normal and gamma cases

Here, we present simpler derivations of the characteristic function of W = XY when: i) X is a
standard normal random variable and Y is an independent normal random variable with mean p and
standard deviation o; ii) X is a standard normal random variable and Y is an independent gamma
random variable with shape parameter o and scale parameter 5. For any distribution of Y, we can

write

2y72
ow (t) = Eexp(itW)] = E [exp(itXY)] = E{F [exp(itXY) | Y]} = FE {exp <t ;/ ) } .

If Y is a normal random variable with mean p and standard deviation o then

I Py (y—p)?
t) = — —_—— =1 d
dw(t) 2mo /_oo P [ 2 202 Y

1 /°° (0%t +1) y* — 2uy + p? g

= exp | —
210 J_ o P 202 4

242 00 242 2
= . exp Y / exp Lol Yy — e dy
Voro 2(022+1)| J_o 202 o2t2 +1

1 12t?
= —————exXp|—————
o2t +1 P72 (c2t2+1) |’
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where the last step follows from the fact that any probability density function must integrate to one.

If Y is a gamma random variable with shape parameter a and scale parameter 8 then

« > 2,2 a 2
o= e (o= ) () oo () ()

where the last step follows by direct application of equation (2.3.15.3) in Prudnikov et al. (1986,

volume 1).

Note that the n-th moment of W can be generated from the characteristic function ¢y (¢) by the
following equation.
an

B =i o) =i (o)

where i = /—1 is the complex unit. Moments can be used for obtaining the statistical characters
of W. For example, the first moment indicates the mean of W. The second moment gives the
information on the scale of the distribution of W; The third moment defines the skewness of the
distribution of W. If the third moment is zero, the distribution is symmetric. The fourth moment is

used for measuring the flatness or peakedness of the distribution.

7.3 Expressions for characteristic functions

Here, we list explicit expressions for ¢y (t) when X is a standard normal random variable and Y
is an independent random variable following nearly fifty other distributions. We also select the

representative models and provide the details of derivation in the Appendix C.

Pareto distribution (Pareto, 1964): for this distribution,

fY(y) = aKay_a_lv

2,2
ow(t) = aK*27 27 1T (—C;, K; )

fory> K >0 and a > 0.
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Triangular distribution: for this distribution,

72@_@) if a c
G—alc—a Ta<y<e

fr(y) = (bi(z)(byzc)’ if e <y <,

0, elsewhere,

W@ZW%&memC%ﬂ‘“ﬁjfﬂ

mrmai=a | (-7 ) e (7))

e T G5) -5

i FG5) -t (65
for a <y < b.

Argus distribution (Albrecht, 1990): for this distribution,

for 0 <y < c and a > 0, where ¥(z) = ®(z) — x¢(x) — 1

Cauchy distribution: for this distribution,

W)=~

- 242y
ow(t) = ﬁexp (74

3
)

3

for —oo <y < +o0 and v > 0.

Student’s ¢t distribution (Gosset, 1908): for this distribution,

130
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for —oco <y < +o00, ¥ >0 and o > 0.
Skewed Student’s ¢ distribution (Zhu and Galbraith, 2010): for this distribution,

_ vl

Kw)[t+3(£)] 7, ity <0,

fy(y) =

v+1

1 2 2 .
K(V)|:1+V<2(1y_a)):| s lfy>0,

1 1
ow (t) = K(v)ay/mv¥ (2, g — V—; ;2ua2t2)

+K()(1 — a)/mv¥ (;, g - UTH; 2v(1 — a)2t2>

_ — (w+1)/2)
for oo<y<—|—oo,1/>Oand0<a<1,whereK(u)—\/EF(U/Q).
Asymmetric skewed Student’s ¢ distribution (Zhu and Galbraith, 2010): for this distribution,

_vi+1

2K 1+ (R 7, ify <0,

fr(y) =

2 2
11__0‘3‘*]:{ (1/2) |:1 + %2 (ﬁ) :| ; lf Yy > 0,

ow (t) = ay/Tv K (1) ¥ <;, % _n ;_ 1;2V1 (a*)2>

13 1
+(1 — a)/7aK (1) ¥ (2, 3~ V2;_ 205 (1 — a*)? t2>

for—oo<y<+oo,1/1>0,1/2>0and0<oz<l,whereK(y):%anda*

aK(v1)
aK(v1)+(1—a)K(vsa)*

Rice distribution (Rice, 1945): for this distribution,

2 2
Yy y v vy
Fr(y) = o2 P (_ o2 ) To (ﬁ) ’

o (t) = — e (1Y
WA T 22 R I e G P + 204¢2

fory > 0,0 >0 and v > 0.

Symmetric Laplace distribution (Laplace, 1774): for this distribution,
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for —oo <y < +o00 and A > 0.

Laplace distribution (Laplace, 1774): for this distribution,

_ Lo op(L L pbt?
¢W(t)_2bteXp[4b2t2 2<b+2)}D1< b

1 1 w1 ut? ubt? +1
—exp |- — (-2 + 2 ) | D_
Fop P [4b2t2 2( b2 ﬂ 1( bt

for —oo < y < 400, —00 < p < 400 and b > 0.

Asymmetric Laplace distribution (Kozubowski and Podgorski, 2000): for this distribution,

exp {2@— m)} , ify <m,

exp [Ak(y —m)], ify>m,

1 A2 m (A mt? A
owl) = LTy P [4/»@2152 32 <n * 2)] Doy (ms - mt)

+ 1 ex /\2K2—@ /\/£—|—m7252 D mt—)\—ﬂ
(k+ 1)t Ple 2 -t t

for —o0 <y < +00, —00 < m < 400, A >0 and k > 0.

Poiraud-Casanova-Thomas-Agnan Laplace distribution (Poiraud-Casanova and Thomas-

Agnan, 2000): for this distribution,

a(l-a)jexp{(l-a)(y-0)}, ify<é,

fr(y) =
a(l—a)exp{a(d—y)}, ify >4,
a(l —a) 1-a)? (1-a)f 6% -«
ow(l) = ——— oxp { w2 2 4} D < t gt)

for —co <y < 400, —oo < < 400 and 0 < o < 1.
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Holla-Bhattacharya Laplace distribution (Holla and Bhattacharya, 1968): for this distribution,

apexp{op(y—0)}, if y <9,

(1—a)pexp{p (0 —y)}, ify>¥,
2 0 92 2
o= o (5182, (8-

_ 2 2] 92 2
+(1 a)(b exp (Z; + g - 41%) D,1 (0t + (f)

for —oco <y < 400, —00 < 0 < 400, ¢p>0and 0 <a<1.

McGill Laplace distribution (McGill, 1962): for this distribution,

1 _
— exp (M>, ify <49,

1exp<a_y), ify >0,
1 1 0 0%t? 1
)= gz (g~ 3~ 1) -+ ()
1 1 0 6%t 1
v (gt 1) P (0 )
for —oo <y < +00, —00 < 0 < 400, ¢ >0 and ¥ > 0.

Log Laplace distribution: for this distribution,

y?Lexp (—%) , ify <,

fY(y):%
y*%*IeXp(%), if y > p,
-l tok—2 K 1 g 1l L2 M 1 e
ow(t) = bt 2% eXp( b>7<2b’ 5 )T eXp(b)F % 2

for y > 0,b >0 and p > 0.

Exponential distribution: for this distribution,

fy (y) = XNexp(=Ay), )

for y > 0 and A > 0.
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134
Chi distribution: for this distribution,

for y > 0 and k > 0.

Variance gamma distribution (Madan and Seneta, 1990): for this distribution,
fr) = =0y Ky
N -1 )
Yy ST () (20) 1 Y A—1 Y
a |2} p=A—393/4-2/2

2 2
« «
RSS e Lp} W_1-3.4-1 ()

for —oo < y < 400, —00 < a < 400 and A > 0.

Normal inverse gamma distribution: for this distribution,

B VB 284+ My — p)?
fr(y) = mexp {—%2} )

dw (1) VA .

B ox _25+>\u2 )\2#2
T 2 2 (a) Yoz A ¥ 202 202 (A 0212)
for —co <y < +00, A >0,a>0and g >0.

Nakagami distribution (Nakagami, 1960): for this distribution,

2mm 2
fr(y) = %m)yszl exp {rrg} )
m 2 -m

ow() = (5+5)

for y > 0, m >0 and 2 > 0.

Reciprocal distribution (Hamming, 1970): for this distribution,

for 0 < a < y < b, where C' denotes the normalizing constant.
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Maxwell distribution (Maxwell, 1860): for this distribution,

for y > 0 and a > 0.

Quadratic distribution: for this distribution,

fy(y) = aly — B)?,
owty = V20 [e (308 Ly (3.00)]

2a3 t?a? t2p?
‘ze%“p<‘2>‘*ﬁp<‘z)]

aB? 1 t2a? 1 202
+%%F(T2>_F<T:zﬂ

for—oo<a<y<b<+OO,WhereﬁzaT+banda: (bgz)B'

Uniform distribution: for this distribution,

1 b%t?
_F<szﬂ

ow0)= 575 (%)

for —co < a <y <b< +o0.

Power function distribution: for this distribution,

a—1

fY(y) =ay )
2
dw (t) = a28 1ty (;, t2)

for 0 <y < 1anda>0.

Rayleigh distribution (Weibull, 1951): for this distribution,

Fr(y) =2 %y exp (=A%y?) ,
2)2
oWl = o

for y > 0 and A > 0.
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Exponentiated Rayleigh distribution (Kundu and Ragab, 2005): for this distribution,

fy (y) = 22 *yexp (—)\QyQ) [1 — exp (—)\2y2)]a71 ,

t2
ow(t) = aB (1 + 2/\27a)

for y >0, « > 0and A > 0.

Beta Rayleigh distribution (Kundu and Ragab, 2005): for this distribution,

2
fr(y) = BQ(Z/\B)yeXp (—=BA2y%) [1 —exp (—A%2)]" 7,
o 2
ow(t) = WB <5 + 2/\2,0l>

fory>0,a>0,8>0and A > 0.

Truncated normal distribution: for this distribution,

friy)=—= @ (b;) mryp=ny exp [—(3/2_05)2} ,
dw(t) = U?ﬂ) — (aa;/sﬂ]ﬁﬁ \/leex {M‘Z;til)}

fora <y <b, —oo < p < +00 and o > 0.

Split normal distribution: for this distribution,

(y—w?] .
exp {—20%) , iy <up,

(y—w?] .
exXp {—205) , iy >p,

Coq —2u%t? — pPott —pot?
dw (1) = 279 exp( 4(1 242 ' D 272
o2 + 1 (1+07t?) o2 + 1
Cos —20%t% — 2ot Hoot?
exp 573 D | ———
o3t +1 4(1+ o35t?) o3t2 +1

for —oco <y < 400, —00 < p < +00, 01 > 0 and o9 > 0, where C' denotes the normalizing constant.
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g-Gaussian distribution (Tsallis, 2009): for this distribution,

fy(y):g[l—(l—q)ﬂyz}ﬁ,
V2 13 1 12 .

ow(t) =

1 1 2—¢q 11 2—¢q —t2 .
Bz F--+2—2_— ) ifg<l1
CyT—¢ (2’1—61)1 1(2’2+1—q 21—qp) 1
_ i 1 1
for —co <y < +o0if 1 < g < 3, m<y<+mlfc]<landﬁ>0.

Normal exponential gamma distribution: for this distribution,

2
fy(y) = Cexp <—4%2> D_g1 <Z|) ;

1
pw (t) = Cy/mo2~Fr—1 (k + ‘;) oF (2, 1k + g; —t292)

for —oco <y < 400, k> 0 and 6 > 0, where C' denotes the normalizing constant.

Wigner semicircle distribution: for this distribution,

fy(y) = 27VR273/2

TR2 ’
1 t2R?
ow(t) =1F1 (2’2, 5 )

for —-R <y < R.

Kumaraswamy distribution (Kumaraswamy, 1980): for this distribution,

w0=2(2) on() -9

for0<y<1anda>0.

Linear failure rate distribution (Bain, 1974): for this distribution,

fy(y) = (a+by)exp (—ay - b‘f) ;

a

ow(t) = =5 P Lx(b(:2 tQ)} Do <\/b(17t2) i bft2 op [4(ba—i tg)] D= (\/biit?>

for y >0, a >0 and b > 0.
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Irwin Hall distribution (Irwin, 1927; Hall, 1927): for this distribution,

fr(y) = ﬁ > (—1F (Z) (y — k)" 'sign(y — k),

k=0
_ 1 - BT = n—1 n—1l-—-m m;I —m—1 m+1 n2t2
o= g 0 () X (7)o ()
1 & k(T = n—1 n—1—-m m2+1 —m—1 m+1 k2t2
‘z(nfnvkzzo(‘” (k> m_0< m )“’“’ 2t 7(2’2)

forO0<y<mnandn>1.

7.4 Simulation results

Here, we perform simulations to check the mathematical derivations for Section [7.3] We simulated

the distribution of W for given distributions of X and Y as follows:

1. simulate 1000 random numbers from the distribution of X;
2. simulate 1000 random numbers from the distribution of Y’;
3. set W = XY,

4. construct a histogram of the 1000 values of W.

The simulated histograms can be compared to the theoretical probability density functions of W
computed by the method of inverse Fourier transform using the characteristic functions in Section

[[3]in software Mathematica.

The comparisons are illustrated in Figures to for five of the distributions of Y considered
in Section [7.3} Figure [7.1] for the exponential distribution; Figure [7.2] for the uniform distribution;
Figure [7.3] for the power function distribution; Figure[7.4] for the Rayleigh distribution; Figure [7.5] for

the exponentiated Rayleigh distribution.

We see that the simulated histogram and the theoretical probability density function agree well in
each of the five figures. We have considered the five distributions for illustration. But the conclusions

were the same for other distributions in Section [T.3]
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7.5 Future work: density function of the product

Both the characteristic function and the density function define a random variable’s probability
distribution. Benefit from the formula of Rohaty, we can also obtain the density function of the

product W =X x Y.

w= [ @ (%) e

Here, we present two derivations of the density function of W = XY as examples when: i) X is a
standard normal random variable and Y is an independent Pareto random variable with density

function fy (y) = aK%y~“~1;ii) X is a standard normal random variable and Y is an independent

21-% y

Fye e (-%):

Chi distributed random variable with density function fy (y) =

Example 1: Y is an independent Pareto random variable.

fw(w) = / Ix (@ ) L

Because fooo 2 Lexp (—pzt)dx = ip—“//‘l“ (%), herea=a+1,p=3, p=2.

a+1
1 1/1\ 2 a+1
— K —a—1- [ = T
N 2(2> ( 2 )

a2 el 1 a—+1
= —w T .
N < 2 >
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Example 2: Y is an independent Chi distributed random variable.

fx (z fY
/ ) [a] |
_ / ! ( * (
" T Ver 2
B 21—7 k—1 0 1 1 - x2 w2 L d
= =T (&) /_Oo — 1z exp 5 5 % x
21—7 k—1 o0 1 1 k—1 1.2 ’LU2 5
(= Y24
T (2)/0 z (ac) eXp( 2 2" ) v
215 k-1 1 1\t 22 w?
= —_— _1 k — — - -2 d
= )/O Z<Z> exp( A > :
00 k-1 2 2
1/1
O NE G
If k is a odd value, fi(w) =0. If k is a even value,

92— k=1 oo 1 2
fwlw) = ﬂ/ z *exp <212 - wxz) dx
0

fw(w)

T (D 2
Because [;° 2"~ exp (—faP — ya~P) dx = % (%) (2\/7) here, v =1—k, 8 = §,p=2,y =
¥
22—§wk—1 o2 1-k
= 4 K1,
_ 2277wk;1 (w)
Vorr (5)

As we can see, the explicit form of the density functions of some products can be derived by the

formula of Rohaty. However, there are two points we need to consider before applying this method.

1. Because there is an absolute item Tal | in Rohaty’s formula, we need to split the formula into two

integrals due to the domain of z, i.e. fy(w) = ffoo L fx (@) fy (2) dat ;7 L fx (2) fy (2) da.

This may require accurate substitution in derivations.

2. If there is an exponential function in the density function of Y, we need to solve the integral
[ A(z) exp (ax? + bz~ ?) dz, where A(z) is a function of z, a and b are real values, p > 0, ¢ > 0.

If p # g, we can not derive the closed expression of the integral.

Hence, it remains further investigation in finding the sufficient method for the derivation of the

density function of the product distribution.
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Figure 7.1: Simulated histogram and theoretical probability density function of W = XY
when X is a standard normal random variable and Y is an independent unit exponential
random variable.
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Figure 7.2: Simulated histogram and theoretical probability density function of W = XY
when X is a standard normal random variable and Y is an independent uniform [0, 1] random
variable.
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Figure 7.3: Simulated histogram and theoretical probability density function of W = XY
when X is a standard normal random variable and Y is an independent power function
random variable with a = 2.
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Figure 7.4: Simulated histogram and theoretical probability density function of W = XY
when X is a standard normal random variable and Y is an independent Rayleigh random
variable with A = 1.
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Figure 7.5: Simulated histogram and theoretical probability density function of W = XY
when X is a standard normal random variable and Y is an independent exponentiated
Rayleigh random variable with o =2, A = 1.



Chapter 8

Distribution of Aggregated risk
and its TVaR

8.1 Introduction

Results related to the sum of dependent risks are of interest in the calculation of the accumulated
risks for portfolio investment and risk measures for decision making. Besides, strategic planning
also requires the knowledge of the cumulative distribution function of the sum of dependent random
variables (Cossette et al., 2015). Therefore, risk measures like Value at Risk and Tail-Value at Risk

are worthwhile being explored.

In recent years, several closed-form expressions for the distribution of aggregate risks, its TVaR
and TVaR based allocations have been developed, based on an allocation method due to Tasche (1999).
These expressions are based on a given joint distribution between the components of a portfolio.
The joint distributions considered so far are the: multivariate normal distribution (Panjer, 2002);
multivariate elliptical distributions (Landsman and Valdez, 2003; Dhaene et al., 2008); multivariate
gamma distribution (Furman and Landsman, 2005); multivariate Tweedie distribution (Furman
and Landsman, 2008); multivariate Pareto distribution (Chiragiev and Landsman, 2007); Farlie-
Gumbel-Morgenstern copula (Barges et al., 2009); Farlie-Gumbel-Morgenstern copula with mixed
Erlang marginals (Cossette et al., 2013); multivariate compound distributions (Cossette et al., 2012);

bivariate exponential and bivariate mixed Erlang distributions (Cossette et al., 2015).

The distribution of bivariate aggregate risks can be applied for many practical uses. Here is an

146
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example in automobile insurance. Let S = X + Y and suppose X and Y are the total claims from
safe drivers and high-risk drivers in a fixed time period. Assume that X =rg+ 7 and Y = rg + rs.
ro is the random variable which stands for the amount of claims due to some objective reasons, e.g.
car condition, weather condition, road condition, etc. r; and ro are the random variables that stand
for the amount of claims due to subjective reasons in X and Y repectively, e.g. driving behavior,
number of overspeed, etc. We can see there is a correlation of X and Y due to some common affected
events. Distribution of S is important to a insurer in estimating the total amount of claims from X
and Y. An insurer can also optimize the insurance contract by understanding the contribution of
each group to the aggregated loss. More details on the bivariate aggregate risks distributions can be

found in Hesselager (1994).

The aim of this chapter is to derive expressions for the distribution of aggregate risks, its TVaR
and TVaR based allocations for a comprehensive collection of bivariate distributions. We consider
thirty-three families of bivariate distributions each defined on (0,00) x (0,00) or (8,00) X (8, 0)
for some 8 > 0. They include mixtures of independent exponential distributions, Mirhosseini et
al. (2015)’s bivariate exponential distribution, Crovelli (1973)’s bivariate exponential distribution,
Gumbel’s bivariate exponential distribution, Lawrance and Lewis’ (1980) bivariate exponential
distribution, Block and Basu (1976)’s bivariate exponential distribution, Arnold and Strauss (1991)’s
bivariate exponential distribution, mixtures of independent gamma distributions with real shape
parameters, Nadarajah and Gupta (2006)’s bivariate gamma distribution with equal scale parameters,
Nadarajah and Gupta (2006)’s bivariate gamma distribution with unequal scale parameters, Nagar
and Sepulveda-Murillo (2011)’s bivariate confluent hypergeometric distribution, Becker and Roux
(1981)’s bivariate gamma distribution, Mohsin et al. (2013)’s bivariate gamma distribution, Cheriyan
(1941)’s bivariate gamma distribution, Dussauchoy and Berland (1975)’s bivariate gamma distribution,
mixtures of independent two piece gamma distributions, beta Stacey distribution in equation (5.38) of
Balakrishnan and Lai (2009), Mardia (1970)’s bivariate distributions, bivariate Liouville distributions,
bivariate equilibrium distributions due to Unnikrishnan Nair and Sankaran (2014), Chacko and
Thomas (2007)’s bivariate Pareto distribution, bivariate Pareto distribution in equation (10.68) of
Balakrishnan and Lai (2009), bivariate Pareto distribution with equal scale parameters, bivariate
Pareto distribution with unequal scale parameters, mixtures of independent Pareto distributions,
mixtures of bivariate Pareto distributions with equal scale parameters, mixtures of bivariate Pareto
distributions with unequal scale parameters, generalized bivariate Pareto distribution, Lee and Cha
(2014)’s bivariate distribution and truncated bivariate normal distribution. We have not considered

the bivariate normal or other distributions defined over (—oo, 00) x (—00,00), as they have already



CHAPTER 8. DISTRIBUTION OF AGGREGATED RISK AND ITS TVAR 148

been considered by others.

8.2 Mathematical notation

Let (X,Y) be non-negative continuous risks with joint probability density function f(x,y). Let
S = X +Y denote the aggregated risk. We are interested in: the probability density function of S

given by

S

fs(s) = flx, s — x)dx; (8.1)

0

the cumulative distribution function of S given by
S
Fg(s) = / fs(t)dt; (8.2)
0
the truncated expectation of S given by
E [Sligsey] = / sfs(s)ds; (8.3)
b
the contribution of each risk to the aggregated risk given by
E[X1iss0] :/ 9x,s(s)ds, (8.4)
b

where

gx.s(s) = /OS xf(x,s —x)de. (8.5)

We derive expressions for (8.1))-(8.5) for thirty-three bivariate distributions.

The derived expressions given in Section [8:3] involve several special functions, including the

gamma function defined by

I'(a) = /000 ! exp(—t)dt;

the incomplete gamma function defined by

fy(a,x):/ t* L exp(—t)dt;
0
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the complementary incomplete gamma function defined by

o0
I‘(mx):/ t2 exp(—t)dt;

the error function defined by

2 x
erf(z) = —/ exp (—t?) dt;
vy )
the beta function defined by
1
B(a,b):/ t27 11 — 1)’ Lt
0

the incomplete beta function defined by

B, (a,b) :/ 1=1(1 = )=t
0

the standard normal distribution function defined by

the Whittaker W function of orders v, u defined by

N I = T )
w, =~ t— - t+ - —xt)dt
() F(MVJr%)/; ( 2) ( +2) exp (—xt)

for p —v > —% and x > 0; the Gauss hypergeometric function defined by
o0 2k
2F1 a b LU Z k’"

k=0 o

the Appell hypergeometric function of the first kind of two variables defined by

F1 (a, b, c, d;x y i i m+n m )nwmyn;

In!
m=0n=0 m+"mn
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and the degenerate hypergeometric series of two variables defined by

oo 0 amnbnxmn
& (b my) =Y 3 Doty

m=0n=0 (C)m+nm!n!

where (e)r = e(e+1)---(e+ k — 1) denotes the ascending factorial.

In-built routines for computing these special functions are available in packages like Matlab, Maple
and Mathematica. For example, Erf[x], Gammala, x|, Beta[a, b], Beta[x, a, b], Hypergeometric1F1[a,
b, x], Hypergeometric2F1[a, b, ¢, x] and AppellF1[a, b, ¢, d, x, y] in Mathematica compute the
error, complementary incomplete gamma, beta, incomplete beta, confluent hypergeometric, Gauss
hypergeometric and Appell hypergeometric functions. Mathematica allows for arbitrary precision, so

the accuracy of computation is not an issue.

8.3 The collection

Here, we give expressions for (8.1)-(8.5) for thirty three bivariate distributions. We also select the

representative models and provide the details of derivation in the Appendix D.

Mixtures of independent exponential distributions:

NE

f(z,y) =) Crexp(—arz — Bry),
k=1

Fs() = 3" O fexp (“as) — exp (—Brs)]

= Br — o ’

B O 1 —exp(—aygs) _l—exp (Bks)]
Fss) = kzz:l Br — o [ o B ’
= Gy (bay + 1) exp (—bag)  (bBk + 1) exp (—bBk)

FE [Sl{s’>b}] — k; Bk “ag l: Ck%, - 6]% :| P

e o (— 1 —exp(Brs —aws)  sexp (Brs — aus)
9x,s(s) = ;Cke P (—Bks) [ (ax — B p— ] ;

(axb+Dexp(—ard) | exp(—Bib)  exp(—aub) ]
o, (o — Br) B (ak = Be)? o (o — Br)”

for a, >0, B > 0, z >0 and y > 0.
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Mirhosseini et al. (2015)’s bivariate exponential distribution:

f(@,y) = Naexp (—Az — Ay) [I — cvexp (—Az — Ay)] [1 — exp (—Az — Ay)]* 2,
fs(s) = Nasexp (—=As)[1 — aexp (—As)] [1 — exp (—)\s)]o‘f2 ,

Fo(s) =y ( . 2) (](C :)1)2 [ = (14 (k+ 1)As) exp (—(k + 1)As)]

,0[2 O<ak >(]§: )2 [1 (1+(k+2))\5)exp( (k+2))\5)]’

P +2)?
E[Slison] = Z( ) ]i (1+ (k+ 1)Mb + W) exp (—(k + 1)A)
—2% (‘“;2) (k; )2) (1+(k‘+2))\b+ (’”22)“) exp (—(k + 2)Ab) ,

k=0
gx,5(s) = 27 \2as? exp (—As) [1 — avexp (= As)] [1 — exp (_)\8)]&,2 ,

o — _1)k 21232
E [X1isspy] = AZ( >k+1)1) <1+(k+1)Ab+(k+12)“’>exp(—(k+1)Ab)

o o — \k 21272
7; ( . 2>(1i+1)2)3 (1 +(k+2)Ab+ (“22)“’) exp (— (k + 2)A\b)
k=0

fora>0,A>0,z>0andy>0.
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Crovelli (1973)’s bivariate exponential distribution:

o) afexp(—Py) [1 — exp(—ax)], if 0 < ax < Py,
x,y) =
"7 aBexp(—a) 1 — exp(—By)], i£0 < By < az,

fs(8)=(a+ﬁ)e><p<— “58)+ O exp(—5) — L exp(—as),

a+ a—pf a—pf
B (a+ B)? afs o?
Fg(s) = o [l—exp <_a+ﬁ)] +ﬁ(ﬂ—a) [1 —exp (—ps)]
62
704(5 _ O[) [1 — €xXp (7043)} )
_(a+ B)3 afb afBb a?
stisn) = o (2205 ) [1+ 205+ g o)
2
- ewlab),
2 ﬁ2 200 — B 2 _ 25
gx,5(s) = aﬂ_ ﬂsexp(—as) + oz((aa—ﬂ)Q) exp(—as) + aﬂ((j—ﬂ)Q) exp(—fs)
afs —at + 203 + g% — 2033 afs
+Bsexp (a-f'ﬁ) N ICEIE exp <Oé+5>’
2 2090 —
E[X1{gspy] = cy?((f—ﬂ)(l + ab) exp (—ab) + M exp (—ab)

a?(a—28) (a+ B)? afb af3b
+ﬁ2(a—ﬁ)2 exp (—pb) + a2 (1+a+5>exp (_a—l—ﬁ)

(a+ B) (—a* + 203 + p* — 2a8%) afb
ex ( )

- (@B (o — )2 Pl arp

fora>0,8>0,z>0andy > 0.
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Gumbel’s bivariate exponential distribution:

f(@,y) = [(1+ 02)(1 + Oy) — O] exp (—z — y — by),
fs(s) = —i93/2\/%§ exp (—s - 0482) erf (1293>

2 .
—iVOrsexp (—s — 98) erf (195>
4 2
+i 97re fs? o ive
x| —5 — 0 A
g P\ ) 2
2 .
—iy/m/0 exp (—s - Hi) erf <l2es> - gs exp (—s),
o iymed? 0s* iV
gx.s(s) =— g S exp (—s - 4) erf 5
TR, (0 (Y
1 XP e 5 S
ivor 052 ivo
sexp|—s—— |erf | —s
2 4 2

_|_

Ty (- 8t () (3= 2 Yt

4
_ 1_1'_84_@ __QQ
5 )P (s s

for0< <1, z>0andy >0, wherei=+/—1.

Lawrance and Lewis’ (1980) bivariate exponential distribution:

flay) =1{By <z < y/ﬁ}ﬁeXP (-fig) + %exp <_xﬂ) ,
_(1-p)s S S s
fs(s) = mexp <_1+ﬁ> + Bexp (—5> ,

L ae - e (-

) =155

B
Jr% {52 — B%exp (;) — Bsexp <;)] ,
+

BS1ey] = LZD0484D) (_ b

1+

1— 2 2 2
gx,s(s) = m)exp <_1-|S-ﬁ> + iexp

b b2 b
EX1sn] = 02 1+ 15 + gy oo (1)

b2 b
+ ([32 + b8+ 2> exp (—5)

153



CHAPTER 8. DISTRIBUTION OF AGGREGATED RISK AND ITS TVAR 154

for0<pB<1,z>0andy>0.

Block and Basu (1976)’s bivariate exponential distribution:

Cexp(—ax — By), ifz>y,
fla,y) =
Dexp(—yzx —dy), ifz<y,

fs(s) = 3 (—;a [exp(—as() — e;{p (_ (a 25)8)] B 5?7 {e;)p(_és) — exp <_ (0 —|—2’Y)s>} ’
Fo(s) = 1 —exp(—as B 2 1 — ex _(a+P)s
S ﬂég{ [52(1 <1 — expa(+(i§_78>>p(1 _ ej([;((s)s))%
_ B) )
b ] :7 C +f(ba+1)exp(—ba) 3 4 (ba—l—ﬁ +1) —bw
{5>6} 8-« a? (a+pB)? 2 eXP ( 2 )}
5= [(5f7)2 (béy * 1) P ("’6;7) e 1)662@(_%)} /
gx.s(s) = C {exp(—ﬂ(s)_—;;p(—as) B sexpﬁ—ﬁas)}
D :eXp(5s) (;}2)%2(6 +7)s/2)  sexp (2(6(5:;;)5/2)}
o [e®(=hs) ~ eXl; (—682— (v —0)s/2) sexp (_gsa_ (v — 5)3/2)] |
-_ B (ba + 1() e):p’(Y)—ba) exp(—bp) 3 exp(—b(a)_ K
EX 0] =€ [ a—B) Bla—B? ala- 6)2}

+D

[exp(—b6)  2exp (—(d+7)b/2)  (2+ (6 +y)b)exp (=(6 + 7)6/2)}
[6(6 —)? (0 =)0 +1) (0+7)%(0 =)

_o[ep(=b8)  exp(=bB — (v = §)b/2) }
LB =72 (6= (B+(y-9)/2)
+0(2 + 208 + b(y — 8)) exp (=B — (v — 8)b/2)

(6—7) (28 +~ —6)*
fora>0,>0,7v>0,0>0,z>0andy>0.

Arnold and Strauss (1991)’s bivariate exponential distribution:

f(z,y) = Cexp (—yx — dy — Oxy),

fs(s) = CV/mp™/ exp (58 * Zp> @ (V2ps — (20)7"/%) — @ (~(20)7 %) |,

gx.s(s) = 27 CVmp~ g exp (55 + Z;) @ (Vaps = 20)7 ) @ (~(20)"q)]

2
—271Cp~texp (55 + Zp) [exp (—ps® + ¢s) — 1]

for —oco <y < 00, —00 < J < 00, —00 < 0 < oo, z>0andy >0, where p=—60 and ¢ = — 0s.
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Mixtures of independent gamma distributions with real shape parameters:
o0
fla,y) = Cra™y»exp (—yea — dry)

k=0

fs(s) = CiB(an, Bi) s** P exp (—0xs) 1 Fy (ki o + Bri (06 — ) 8)
k=0

FS(S) = i f: CyB (O‘k,ﬁk) (ak)i (5k - 'Vk)i i (7' + ag + B, §ks)

k=0 i=0 l (ak + Bk)i 5:4k+5k+i ,
E[51n] = 3300 o) LA B 100
9x.5(s) = giCkB (o +1,8) (o +1); (512531;); i;:)jff exp (—5;@3)’

for ap >0, B >0, v > 0,0, >0,z >0and y > 0.

Nadarajah and Gupta (2006)’s bivariate gamma distribution with equal scale parame-
ters:

o0
fla,y) = Cra®t~ty» @ + y)* exp (—prz — pry)
k=0

fs(s) =" CkB (ak, Bi) s® T4 exp (—pys)
k=0

Fs(s) = ZCkB (o, Br) P ™7 7oy (ke + Br + Vi, PiS)
k=0

9x,5(s) = Y CkB (g + 1, B,) s** T exp (—pys)
k=0

o0
E [Slisspy] = Z Ci B (a, Br) pp ™ I (i + Br + i + 1 pih)
k=0

E [Xl{S>b}} = ZCkB (Oék + 1,519)])]:6%_5’“_’%_1

I' (g + Br + v + 1, pid)
k=0

for ap >0, B >0, v >0, pr >0, z>0and y > 0.
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Nadarajah and Gupta (2006)’s bivariate gamma distribution with unequal scale param-

eters:

o
Fla,y) = Cra®ty? ! (g + qry) ™ exp (—prw — ary) ,

k=0
Zquk exp (—qxs) Z (%) (pk - 1) B (i + o, Bi,) s sl
izo \ ! dk

1F1( +akal+ak+ﬁk§*(pk*Qk)3),

Zqu'y’“Z ( ) (p’“ - 1>iB(i+ak,Bk)

dk

i i+ o), (—1)7 (pk — 1)’

-y (g + Br + vk + J, qrs)
i+ ag + Bk) Olk+/3k+7k+,7

]:0
9x,s( Zquk exp (—qxs) Z (Z’“) (z’“ - 1) B(i+ ap + 1, B) sk +Bet
k
k=0 =0

P i+ o+ i+ ap+ B+ 1, — (pr — qi) 9)

for ap >0, B >0, 7 >0, p >0, qx >0, x>0 and y > 0.

Nagar and Sepulveda-Murillo (2011)’s bivariate confluent hypergeometric distribution:

f(z,y) = CaP Ly Fy (o B;—2 — ),

fS(S) = CB(pa q)sp+q711F1 (Oé, ﬂa _S) )
o~ (@)p(=1)F sprath

Fs(s) = CB(p?q)kZ:o B)ek! p+q+k’

9x,5(s) = CB(p+1,q)s" 4 Fy (a; B; —s)

forp>0,¢>0,aa>0,8>0,z>0andy>0.
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Becker and Roux (1981)’s bivariate gamma distribution:

Ca~ Yz +py)’~ ' exp(—yz —dy), ifx <y,
fla,y) =
D!z + qy)" " exp(—ex — fy), ifw >y,

1
fs(s) = 2 2q 1O tB1 exp(—0s)Pq (a, 1-6,14a,(6 — 7)%, _2p)
P

-1
+¢? eI Dse I exp(— f5) @y <c, 1—d,14¢,(f —e)s, q )
q

—1
7276qd71D50+d71 exp(ffs)tl)l (C7 1-—- da 1 + c, (f - e)ga qz) )
q

1—
3.5(5) =27 a4 )05 exp(-05)0 (a4 1,1 5.2+ .= )5~ F )

-1
+q¢7 (1 + ¢) 7 Dst exp(— f5) Py (1 +e,1—-d,24¢,(f —e)s, 4 . >

-1
—2717¢gd- 1 Dsetd exp(—f5)®, (1 +el—d,24¢ (f - e)%7 (12>
q

fora>0,6>0,v>0,6>0,¢>0,d>0,e>0, f>0,p>0,¢g>0,z>0andy>0.

Mobhsin et al. (2013)’s bivariate gamma distribution:

) 0
f(xay) = F(i)FZ’Y) xa_ﬂy_ly’y_l €xXp <_ T — xy> )

i (50&7,6'4“{71 exp s -1 kﬂoHrk B
fs(s) =2 () L) )k:' ST ek asken (9),
k=0 :
[e%S) 6a+72€+’v exp (%) (_1)k/8a+k
— a+k )
gX,S(S) - kZ:O F(a) k! S W*'yfza—k$o¢+k;'y+ (6)

fora>0,6>0,v>0,6>0,z>0andy >0.

Cheriyan (1941)’s bivariate gamma distribution in equation (8.31) of Balakrishnan and
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Lai (2009):

min(z,y)
f(z,y) = Cexp(—z —y) / (x—2)" (y — 2)"2 7 2% exp(2)dz,
0
fs(s) = CB (61 + 1,02) exp(—s)

s/2
/ x‘91+93(s—x)92_1©1 (93,1—92,914-03—1-1,:10,1316) dx
0 — T

+CB (02, 603) exp(—s)
! S —X

/ xel(s_‘r)02+9371q)1 (037_01792+0333_x7 ) d(E,
s T

/2
9x.5(s) = CB (01 + 1,603) exp(—s)

s/2
/ x91+93+1(5 o x)@zfl(pl <03’ 1— 92,91 + 65+ 1,z, 1.%) dx
0 — X

+CB (02, 03) exp(—s)

1 —
. / 21 H (s — g)f2t0s—1p, (93, —01,605 + 03,5 — =, H) dx
s/2 T

for 81 > 0,605 >0,603 >0, x>0and y > 0.
Dussauchoy and Berland (1975)’s bivariate gamma distribution:

fla,y) = Cra™ " (y— Bx)" " exp [—yea — 6i (y — Br)],
k=0

>\ Cpexp (—dys) sk T0k—1
fis) = 30 R EI S b (a1 = B+ 11 s — (1 B)s),
k=0 Ok

2. Crps® 0% exp (—0y5)
gx,s(s) = — Py (e + 1,1 = 0k, 24+ g, 1+ B, 7,8 — (1 + B)dgs)
kZ:o(aHl)(um S

for ap >0, 8>0, 7 >0, 0t >0and y > Bz > 0.
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Mixtures of independent two piece gamma distributions:

ZCk:v"k Ly texp (—ypw — ry), if v <y,
flz,y) = "=

o0
ZDkxp’“ Lyae=bexp (—rpx — try), if x>y,
=1

0o Br—1 (1) (a’“Jri*.l)!sﬂk*i*lex bs
; Xg < > (0 — )™ p(=0s)

e’} 1oy 1 . .
_ Zﬁkz aki Ch <ﬂ’“ - 1> (D on+i— D g i exp ( k2
i - i) (6 — )T 2041 2

t — %)

oo qr—1lpr+i—1 ; .
=1\ (=)' (pe+i-1 .y TkS
+Z Z Z Dk( ) ) ( pr+i—j 2jj!8 g exp 5 T o

Qk_1>( 1) (pk+l 1) gk —iti—1
(tx —Tk)pkﬂ jJ!

Fs(s) = > i e, <ﬁk — 1) (1) (g +1i— 1)!7 (Bi — i, 01,5)

(% — )™ g

exp (—rgs),

(O =)™ 1 (e + 877

0
Bkz—:mkﬂ;l (ﬁk - 1) (—1) (g +i — 1)1285—iny (ﬂk i+, ('Yk‘;(;k)s)

oo qu—1ppti-1 1 (—1)% (pr + i — 1);2qk—i7( k_H_j’M)
DI D Iy

(tk _ T,k)m+i—j (tk- + Tk-)Qk i+j j!

—1ppti-1 i ;  + 9
_iq’“ pkz’: Dk(Qk—1> (=1)" (px +i = D)y (g — i+ j, mx3)
2 i (1 =) G

oo Br—1 ; . .
Br— 1\ (=1) (g +i— D)IT (By — i+ 1, 65D
E [Sl{s>b}} = Z Z Ck( ’ >( ) (OEI;k _Z,yk)ogk-ﬁ-i(fgk—iil : )
y k

159

(tk _ rk)Pk-&-i—j (tk + Tk)Qk—i+j+1j!

Prti—j an—iti+l )
(tk —7i)"™" TR )

-1 @ [0 +'L ' =
—( ) ()Zk_HL 5Pk Lexp (—6s)

(
_ iqkz_:lpk+i_le (Qk - 1) (1) (pr+i— V)T (qx — i + j + 1,r4b)
)

Ok — "k

6k _ ,yk)(lk"r’b—J-l-l 2],7'

0o qr—1pr+i I3 ;
+Z D qr — 1 (—1) (pk + i)! s®—i+i=1 oxp _TeS  UkS

ty — )P 21 2

oo qr—1pr+i ; .
—1\  (=1) (pg +9)! i
23 (") et e o)
. : k— Tk 7

e 1) (1) (pp, + i — 1)1206=iT (qk i1, W)

oo PBr—1ar+i i .
BS Cr (Bk - 1) : (DY + D injr g < kS _ OkS

0
Br—1ag+i—1 Be—1 (_1)i (ap +i— 1)[25k—ir (ﬁk —i+j+1, ('Yk‘;&)
o) -
(0 =)™ 1 (o + 87T
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oo Br—1 1) — i 8b
E [X1(5mn)] Z Z e (ﬁkl )( )" (o +)3k+z(ﬁk§5: lk )

k=1 i=0 (5k

oo Br—1ak+i ( ) ( 1)z (Oék —|—’L)'2B’“ i (51@ — i+, (’Yk+5k:)b)
7

72 Z Z Ck (6k )ak-H Jj+1 7! (’Yk + 6k)ﬂk i+j

k=1 i=0 5=0

1 prti i 199k —i _ M)
)
(tr — )P (g 4 ) T )
)

)
k=1 =0 35=0

550 <k—1> 1) (pi )M (qi — i 4 5 7ib)
i—j+1 —i+] -
P st (tk_rk)Pk-‘r Jj+ lek +Jj!

for ap >0, B > 0,7 >0, >0,pr >0,q: >0,7, >0, t >0, z>0and y > 0, provided that

gk, Bk, pr and g are integers.

Beta Stacey distribution in equation (5.38) of Balakrishnan and Lai (2009):

fla,y)=Ca?~y — ar)" Yy exp (—ay”),

CZ —)” gpktrpa "B(Bk+71+1,p)2Fy (1 — q,p; Bk + 1 +p—+1;2),
k=0 :

o0
(—o)* k
Fg(s)=C B(Bk 1,p)o 1 (1 — q, p; Bk 1;2) gPktrtrta
S(S) Zkl Bk+r+p+q) (/8 +r+ ap)Q 1( qapaﬁ +r+p+1; )5 )
Oé N
gx.s(s Z Bk+T+p+qB(ﬂk:+r+1,p—|—1)2F1(1—q,p+1;ﬁk+7“+p+2;2)

forp>0,¢g>0,r>0,a>0,8>0andy>x>0.
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Mardia (1970)’s bivariate distribution in equation (5.77) of Balakrishnan and Lai (2009):

) (yr 40y +1)",

’;Mib<><>< Yoo
ZE( ))C) ()

gititk+2
i+j+k+2

ZZZ 2 ()C) () ()

=0m=0

B(i+k—m+1,j+m+1)

(2—|—k m+ 2,7 +m+1)stHitkt2

fora>0,8>0,v>0,0>0,p>0,¢g>0,r>0,x>0and y > 0, provided that p, ¢ and r are

integers.

Mardia (1970)’s bivariate distribution in equation (5.78) of Balakrishnan and Lai (2009):

flw,y) = CaPyi(y —x —1)",

2s
fs(s) = CB(g+ 1,p+ 1)s"* 7 (s — 1)"5 Fy <—7",p+ Lp+q+2 8_1> )

2
9x,5(s) = OB(g+1,p+2)s*T1 (s = 1)"2 <_Tap +2ip+q+3; 3_51)

forp>0,¢>0,7>0,z>0and y >x+ 1.

Mardia (1970)’s bivariate gamma distribution in equation (5.81) of Balakrishnan and
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Lai (2009):

vy + 1)% exp(—ry),

n
fs(s) = Czp: Zq: 3 b (q) <Z 2‘7> ot (B — ) (—1)*klr R gt ti=k (] 4 yg)a7d

—czpjf% (2)(4) a5 = 2P0+ 7 0 oy enp-rs),

e S35 8 () (0)( V(1o T
Ci Z > (p) (q) <qmj>‘“i(5 — WD T T (L),

J

9x.5(5) = CZP: Zq: i (ZZ) (q) (Z " ‘]i+ 1) (8 — ) (—1)Fklr R LR (] g3

1=0 j=0 k=0 J
P q
033 (1) ()8 = D R s ex(r)
i=0 j=0

fora>0,6>0,v>0,p>0,¢>0,7r>0,z>0and y > 0, provided that p and ¢ are integers.

Bivariate Liouville distribution on page 202 of Balakrishnan and Lai (2009):

flz,y) = Ca* "y~ g(z +y),

fs(s) = CB(a, B)s* T 1g(s),

Fi(9) = CB(a.f) [ u+* g(ud

E [Slis=py] = CB(a,B) /boo u*tPg(u)du,
gx.s(s) = CB(a+1,8)s**Pg(s),

E [X1{5>b}] =CB(a+ 1,5)/ uO‘+Bg(u)du
b

fora>0,8>0,z>0andy>0.
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Bivariate Liouville distribution in equation (9.46) of Balakrishnan and Lai (2009):

fla,y) = Ca* P Ha+y) Tg(x +y),
fs(s) = CB(a7ﬂ)s“+5_7_1g(s),

Fs(s) = CB(a, p) /03 ua+’@_"’_1g(u)du,

B[S1(s21] = CBla.B) [t g(u)dn
gx,5(s) = CB(a+1,8)s*7g(s),

E[Xlsspy] = CB(a+ Lﬁ)/ u g (u)du
b

fora>0,8>0,v>0,z>0andy>0.

Bivariate equilibrium distributions due to Unnikrishnan Nair and Sankaran (2014):

fly)=p"g(x+y),
fs(s)=p"tsg(s),

Fs(s)=p~! /OS ug (u) du,

E [S1{sspy] = lfl/ s°g (s) ds,
b
gx.s(s) =2""'u""s?g (s),

E[X1gspy] = 27llfl/b 59 (s) ds,

where ¢(+) is the probability density function of a univariate random variable X say and p = E(X).

Chacko and Thomas (2007)’s bivariate Pareto distribution:

flz,y) =Clz+y)™ %,
fs(s) =Cs (s —28),

FS(S) = j [8270‘ _ (26)2704] _
Ch3—>  28CH
E[Sl{s>b}]: a—3  a-2
gx,s(s) = 271Cs (s — 2p),
CbS—a B ﬁon_a
(a—3) o—2

12?2 [Slfa o (26)17(1] ,

)

E[Xlssn] = 5

fora>0,z>p8>0andy >4 > 0.
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Bivariate Pareto distribution in equation (10.68) of Balakrishnan and Lai (2009):

flay)=Cla+z+y) ",

fs(s)=Cs(a+ s)fﬁ7

fora>0,8>0,z>0andy>0.

Bivariate Pareto distribution with equal scale parameters:

fla,y) = Cx* YyP 11+ pa + py) 7,

fs(s) = OB(a, B)s* P~} (1 + ps) 7,
_ OB(a.p)

s“TBLF (v, a+ Bya+ B+ 1;—ps),
P oI (v,a+ B+ B ps)

Fs(s)
patB—r+1
pPy—a-5-1

gx.5(s) = CB(a+ 1,5)8‘”‘5(1 +ps)77,
patB—y+1

E [Sl{s>b}] = CB(CY,ﬁ) )2F1 (’y,’y —a—f— 17—« _ﬂ;_plb) ,

1
E[X1(sspy] = CB(a+1,8) 1)2Fl (%v—a—ﬂ—l;v—a—ﬁ;—pb>

pP(y—a—p-

fora>0,8>0,p>0,vy>0,x>0andy > 0.
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Bivariate Pareto distribution with unequal scale parameters:

flz,y) = Cz* P 1+ px +qy) 7,

F5(9) = OBl s (1 g 7o (asa+ g 2,
_ orsn= (Me(@)r(g —p)ks”
Fslo) = @Bl 5)s kzo (a+ B)rk!(k + o+ B)
oFy (k+v,k+a+Bik+a+pB+1;—-gs),
(Mk(a)e(qg —p)* patBh—+1

E [Sl{ssy] = CB(o, 8) )

k=0

1
-2F1 <k+%7al31;7a5;qb),

(a+ Bkl ¢ th(y—a—p-1)

gx,5(8) = CB(a+1,B8)s* (1 + ¢s) "o Fy (% a+lia+ 4+ 1; g _p)5> ,

1+gs
patB—v+1

Bl 1 g (ia+ Dila )
X lson] = CBO+1.0) ) 05w ot —a= 1)

1
2P <k+%’7—a—5—1;7—a—5§—qb)

fora>0,6>0,v>0,p>0,¢q>0,z>0andy >0.

Mixtures of independent Pareto distributions (Lee, 1981):

oo Ckx(xk—lyﬂk—l

= (L4 pra)™ (1 + gz)™

f(x,y) =

fs(s) = ZCkB (aus Br) s™* XV FY (e, Vi Oy vk + Brs —PiS, —kS)

=
Il
o

9x.5(5) =Y CiB (ak + 1, Bi) s PP Fy (g + 1,3k, Oy k + B + 1; —pies, —qes)
k=0

for a; >0, B, >0, v >0, 6 >0, pr >0, g >0, x>0 and y > 0.

Mixtures of bivariate Pareto distributions with equal scale parameters (Jones, 2002;
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El-Bassiouny and Jones, 2009; Nagar et al., 2009):

Flay) = Coa™ 'y (14 pra + pry)
k=0

fs(s) =D CkB (ag, B) s™ 1 (14 pps) 7",
k=0

CyB (ag, o
Fs(s) = Z M PRy (ks a + Brs o+ Br + L —pies)

= kTt Bk
> ok +Br+1—7k 1
E [S1{s5}] :z_:CkB(ak,ﬁk)ka (%_ak_ﬁk_1)2F1(%,7k—ak—ﬁk—l;%—ak Br; — pkb)
9x,s( ZCkB ag + 1, B,) s (14 prs) 7,
k=0
E[X1 " OB (ap 41 LA 1 !
[(X1gssny] =Y CiB(ak +1,5) P (= an—Be = 1) (Vs Yk — @k — B — Ly — o — Br; — pkb)

k=0
for ax, >0, B, >0, pp, >0, 7 >0,z >0and y > 0.

Mixtures of bivariate Pareto distributions with unequal scale parameters (Jones, 2002;

El-Bassiouny and Jones, 2009; Nagar et al., 2009):

fla,y) = Coa™ Ty (14 pra + qry) 7,
k=0

fs(s) = Z Ci B (ok, Br) s P71 (14 qrs) ™ o Fy (%, ag; o + Br;
k=0

(Qk—Pk)S>
1+qps /)’
Fo(s) = S CuB (. antBr (v); (ar); (qr —pr)" s
s(s) kZ:O kB (ak, Br) s Z o + 5041 (i T ¥ B0
2F1(i+7k7i+ak+6k»l+ak+6k+1;*qk5),

(v); (o), (qr — pr)" bowtPr—mtl
Sl C B K3 7 ‘
{S>b} Z k Z (g + Bk)z i!qlk+7k e — o — B — 1

=0
. 1
oF vk + 47 — ok — Br — Live — agp — Br — P
D
9x,s(s ZCkB ap + 1, Be) s™ P (14 qis) " o FYy (%ﬂk—kl a + Bk + 1; <1+q:5)>7
k=0
= — i (o +1); (Qk_pk)' A
E[X1 SN CuB(ar+ 1,8
[ {S>b}] ];) kB (ak k; ak+ﬁk+1) "/k+z i — g — B — 1
. 1
2 ('Yk'f‘za')’k_ak_ﬂk_l;'yk_ak Br; — qb>

for ap >0, B >0, v >0, pr >0, g >0, x>0andy > 0.
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Generalized bivariate Pareto distribution:

Cxa—lyﬂ—l
(1+pz+qy +ray)’
fs(s) = CB(a B)(—n) " (w) s Ry (0,804 5=, 2
u v

gx.5(s) = CB(a+ 1, B)(—r)~* (wv) °so+8 (a $1,6,6,a+5+1: 5 %)

f(z,y) =

fora>0,5>077>0,5>0,p>O,q>O,r>0,x>0andy>0,whereu=%:‘”—1—

1+gs | (p—gq+rs)? _ p—gqtrs _  [14qs | (p—q+trs)?
\/ r + 472 and v = 2r r + 472 :

Lee and Cha (2014)’s bivariate distribution:

Clz+a)(y+p)°, ifz<y,
flz,y) =
D+t)'(y+uw)?, ifz>y,

fs(s) =371Cas™ (s + B)° I <1, —,—6,2; —%’ 2(as+ﬁ)>

4 1 /(S Vs w s s
D (7 ) (7 ) F 1,_ 7_ ,2;_7’7 b
o Ds {5 rt) (g te) B O T o s+ 2u

_ a1l 14y —1 b 1 -]~ —§.9. 5 5
x(5) =371Cat 1M s 4 PR (1m0 =02

o=l T4y —1 5 Y s, S 5
37 Ca s (s + ) F1<17 v, —6,2; 20472(044'5))

s 1+v /g w s s
371Dg~! (f t) (f ) F(1,-1—v—w2—— %
+ s 2Jr 2+u 7 U S T T o s+ 2u

—37 D¢ —1(f t)v(f )wF 1 —v —w.9 -5 5
s g™ g Tu) M\ b s e T o

fora>0,>0,t>0,u>0,<0,v<0,2>0andy>0.

Truncated bivariate normal distribution:

f(z,y) = Cexp (*Ofﬁfz — By? — yr — 0y — Gacy) ,
2
fs(s) = C’\/E]fl/2 exp <652 — s+ Zp) [CI) (\/%s — (2p)71/2q> —® (—(2p)71/2q)} ,

9x,5(s) =27 'CV/ap~* qexp <ﬂ52 — 05+ Z;) {‘I) (\/%s - (219)’1/2(1) - @ (*(2;0)*1/2(1)]

2
_2*16’1)*1 exp <—ﬂ52 — s+ Zp) [eXp (—p32 4 qs) — 1}

fora>0,8>0 —co<y<o00, —0<§<0o0,—00<fh<oo,x>0andy >0, wherep=a+5—10

and g =28s — v+ — 0Os.



Chapter 9

Moments using Copulas

9.1 Introduction

Sums of a random number of random variables arise in many areas of the finance and economics. A
prominent example is the total insurance claim over a fixed period. In this example, the number N (t) =
n is the number of insurance claims in time interval [0,¢] and the variables X = (X1, Xo, -+ , X,,)
are the amounts claimed. A related variable {W,} represents the inter-arrival time between insurance
claims. The model of the sums of a random number of random variables (or, the model of random
sums) is very important to insurers in terms of making predictions of the expected total amount
of claims from groups of individuals in different classes of risk. (Papush et. al., 2001). Accurate
estimates of the random sums over a time period can help an insurer optimize the insurance contract

to be more competetive and attract more potential clients.

There is a vast amount of literature on the distributions and moments of the random sums. Many
of the papers suppose that the claims are independently and identically distributed conditioned on the
number of claims. They suppose no relationship between the amounts claimed and the inter-arrival
times between insurance claims. This may not be a realistic assumption. Recently, researchers have
supposed that the amounts claimed and the inter-arrival times are dependent, but are marginally
independently and identically distributed conditioned on the number of claims. Some papers based
on this assumption are Albrecher and Teugels (2006), Asimit and Jones (2008a), Cossette et al.
(2008), Marceau (2008), Ambagaspitiya (2009), Asimit and Badescu (2010) and Chueng et al. (2010).
See also Asimit and Jones (2008b), Asimit et al. (2014a, 2014b), Asimit and Chen (2015) and Asimit
et al. (2016).
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A most recent of these papers is by Mao and Zhao (2013). They derived the first and second
moments of the total insurance claim by supposing that the joint distribution of amounts claimed and
the inter-arrival times is specified by a copula. They specialized their results to one of the simplest
known copulas, the Farlie-Gumbel-Morgenstern (FGM) copula due to Morgenstern (1956), see also
Nelsen (2006).

In this chapter, we extend Mao and Zhao (2013)’s results. We derive the general moment of the
total insurance claim. Our results hold for a wide range of copulas not just the FGM copula. We

also extend Mao and Zhao (2013)’s results to the case where the identical assumption does not hold.

In management science and related areas, higher order moments are of interest, not just the mean
and variance. Examples include: portfolio selection (Harvey et al., 2010); value-at-risk forecasting

(Polanski and Stoja, 2010); market risk assessment (Sihem and Slaheddine, 2014).

The contents of this chapter are organized as follows. Section [0.2] derives the general moment of
the random sums, under the assumptions given in Mao and Zhao (2014). Section extends the
results of Section to the case that the inter-arrival times between claims are independent but not
identically distributed, the amounts claimed are independent but not identically distributed, and
the copulas of the joint distributions are not identical. Section performs a simulation study to
show the practical values of the results in Section [0.2] We show in particular that the expressions in
Section [9.2| are computationally less time consuming and computationally more accurate than results

obtained by simulation.

Section [9.4] shows that the results in Sections[9.2]and 0.3 can really have practical appeal. Suppose
an insurance company wants to determine the expected value and variance of the total claim over
a year. Being able to compute them more accurately and in less time is of course crucial, so that

important short-term and long-term decisions could be made in the company.

9.2 Main results

Here, we suppose N (t) is a renewal process with inter arrival times W;, and (X;, W;) are independent
and identically distributed with common copula function C, common copula density ¢, common joint
probability density function fx w, common joint cumulative distribution function Fx y, common
marginal probability density functions fx, fiw, and common marginal cumulative distribution

functions Fx, Fyy .
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From the Skar Theorem, we have

Fix wy(z,w) = C(Fx(x), Fw(w))

and

8%C
ooy (@, w) = B fx () - fw (w),

where u = Fx(z) and v = Fy (w).

Let Sy = X1 + - + Xn(s)- Theorem 1 derives the kth moment of S;. It generalizes Theorems

3.1 and 4.1 in Mao and Zhao (2013). These theorems derived the first and second moments of S;.

Theorem 1 The kth moment of S; can be expressed as

oo min(n,k)
By n & =) (f e —
E (St ) B 7;1 m <m> Z (kilﬂ T 7kim,7 07 o 70> { ‘/t—le T T Wiy, >0 F (t wll wlm)

= kiy+-+kip, =k
m

Jj=1

t
_/ / FrOmm) (¢ — g, — e — i)
y=0Jt—y—w;; ——w;,, >0

j=1
where
+o0 A
gxr(w) = / ¥ fx(x)c(Fx (z), Fyw (w)) dz, (9.1)
0
and ki, , ..., k;,  denote the positive values among k1, ..., k, and w;,, ..., w;,  are the corresponding
ws.

Proof: Set B, = {N({)=n} ={W1+-- -+ W, <t}-{W1+--+ W,y <t}andb, = {wy + - +w, <t}—
{wy + -+ 4+ wpy1 <t}. Let I4 denote the indicator function, that is I4 = 1 if A is true and 14 =0

if A is false. By the multinomial theorem,
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[
{E :(X1 +---+XN(t))k‘ N(t)”

- f:E :(X1 +-~-+Xn)k’N(t) :n} Pr(N(t) = n)

0o B k n
S I D VR (R )1 £+

n=1 Lki+-+kn=Fk

Jﬂitth,W (i, wi,) dzy,
k?<k7;1?'.. 7k7;7n70’... ’0 b, t=1 0

n+1
. [ H x? - fw (wy) dwj]

</€kk0 >/ /{ﬁ/mw (Fx (1), Fw (w;,))

t=

oo min(k,n) .
n k
N zjl (m) Z (ki“... ki 0, ,())/"'/{tl:[lgxmt (wu)}
bn -

kiy +kiy+-+kip, =k

n+1
: [H fw (wj)dwj]

j=1
oo min(k,n) n k m .
= (m) Z (k T T 0) / / {ng o (wi, } wa (w;) dw;
n=1 m=1 iy +kiy -+ tkip, =k 119 s Wi Yy ) e < iy
_Z Z (m) Z (k e ki 0. ) / / {ng i w%}
n=1 m=1 ki +kiy+-+ki,, =k 11 s Rip, s Uy o<
n+1
. [H fW (wj) dwj] . (9.2)
=1

The two integrals in (9.2) reduce to
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(1 : / / {ng ki, wzt} ﬁfw(wj)dwj

w1+t w, <t

[f ffloom)[ T o]

wy - w, <t J=1,J701,00m
m
= / / FHmm (g, = —wy,,) [gxkij (wi,) fw (w;,) dwij}
Wiy - Fwi,, <t J=1
m
= / Frn—m) (t—wiy — - —wg,,) H [ ki wlj fW (wzj) dw%}
t_wil_'“_wivn 20

and

@ [ {ﬁ . wit>}~ﬁfw<wj>dwj

witetwag1 <t N

/ / / {lng'“” (wit)}' f[fW(wj)dwj fw (y) dy

Wi+t wp41 <t—y

t m
= / / Frn=m) (t—y—wiy —- —w,) H [QXM]. (wij) fw (wij) dwij] Jw (y)dy,
y=0 Jt—y—w; ——w;,, >0 j=1
where F*("=™) m < n is the (n —m)—fold convolution of F, F** = 1. Hence, the result. The author
also have checked the expressions of Theorem 1 when k& = 1 and 2, which are identical with the

derivations by Mao and Zhao (2014).

Corollaries 1 and 2 specialize Theorem 1 for k = 3,4 and the author also gives the corresponding
examples when n is a given real number. These corollaries can be used to compute among others the

skewness and kurtosis of S;.
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Corollary 1 The third moment of S; can be expressed as

E(s?)

n=1m Lk, = i1 im> t—wy ==, >0 j=1
: m
_ Fro=m) (p s — e —w [ wy ) fw (Wi, dw:.]
/y:o A ( i im) 13 ki, (Wi, M w (w3, )dwy,
> /n 3 t t t—y
*(n—1) ., 7/ / w(n—1) ., _
F t—w w w) dw F t w w w) dwd:
ngl(l)(&o,--wo){ w=0 (= waxs () fw () y=0 Jw=0 (0 v whoxs () fw () y}
X in 3 t t—w1
+ > ( )( ) P2 (4w — w2) gx1 (w1) fw (w1) gx2 (w2) fw (w2) dwadwy
m—o \2 1,2,0, ,0 w1=0 Jwg=0

t tmy ptey—wi Lo

*/ 0_/ o F (t —y — w1 —w2) gx1 (w1) fw (w1) g2 (w2) fw (w2) fw (y)dwadwidy
y=0Jw

>, 3 t t—w w(n—
+2 (Z) (2,1,0,“_ 0 {/w1=0/w P (t — w1 —w2) gx2 (w1) fw (w1) g1 (w2) fw (w2) dwadw,

t -y TYTYL pa(n-2)

—/ o (t —y — w1 —w2) gx2 (w1) fw (w1) g1 (w2) fw (w2) fw (y)dwadwidy
y=

+ i (n)< s ,0){ ‘ T /1:;11}171”2 FH 73 (4 wy — wy — w3) ﬁ lgx (wi) fyy (w;)dw;]

Jwy=0Jwg=0 . i=1

3
Il
)

t t—y  t—y—wy ptoy—wi—wy . 3
-/ / FrO=) (4 y —wy — wp — wg) [] [gx(wz‘)fw(wi)dwz‘]fW(l!)dy}
Jy=0. . w3 i=1

) t + +—
Z n{ A:O prn=1) (t —w) gy3 (w) fw (w) dw — /y:() /w:: Frn=D (t —y —w)gys (w) fw (w) dwdy}

n=

1
oo
+2

n=2

3 t t—w w(n—
Sl = 1>{/ . 01 F*=2 (4 g — wa) g1 (w1) fov (w1) gx2 (w2) fi (w2) dwadw:
w1 =0 Juwy=

t t—y t—y—w w(n—
-/ D/ T T = w2 g () S (1) 92 (w2) fw (w2) i (v)dwzdw dy
Yy wy wo=

t t—wy

+ Fr=2) (4w — w2) gx2 (w1) fw (w1) gx1 (w2) fw (w2) dwadwy
wq=0Jwg=0

t t—y  ptoy—wy
o /w1 0/w2:0 Frm2) gy g wa) gx2 (w1) fw (w1) gx1 (w2) fw (wz)fw(y)dw2dw1dy}

t t—w t—wq —w 3
+Zn(n—1 n72){/ 1/ P8 (fwy — wg — wg) T lox (we) fw (ws)dw;]
w w3

p1=0 Jwg= i=1

t t—y ft—y—wy [t—y—wi—wy . 3
-/ 0/ / P (6 2y — g — wp — wg) ] [gx(wi)fmwi)dwi]fw<y>dy}
y w w

91 =0 Jwy=0 wg i=1

O it S o) i o)

(9.3)
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Example 1 When n =3, S} = (X1 + X2 + X3)3. E[S}] can be expressed as

E (SE’) = 3/0 F*(Q) (t _ ’LU) gy (w) fW (’LU) dw
+9/ / —w, F*O (t —wy —ws) gx (w1) gx2 (w2) fw (w1) fw (ws2) dwadw;

t t—wy
+9 / / F*O) (¢ — wy —ws) gz (w1) g (ws) fuv (w1) fiv (w2) dwadu

t—wyi— wz 3
o [T 0 i Tl ) o ot
0 Jo =1

_3 /0 /0 RO (t— g — w) gs (1) fiv (w) o (y)dudy
_9/ / y/ Y 1F*(l) (t—y—w; —ws)gx (w1) gxz (we)

fw (w1) fw (w2) fw (y)dwadwdy

t—y—w;y
_9/ / / F*W (t —y — wy — ws) gxz (w1) gx (ws2)

Jw (1) fw (w2) fw (y)dwadw,dy

t—y t—y—wi t—y—wyi—ws2
—6// / / F*(O)(t—y w) — wy — w3)

3

H 9x (wj) fw (w;)] fw (y)dwsdwaduwn dy.
j=1
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Corollary 2 The fourth moment of Sy can be expressed as

IO R B |

Lk
P Mim t—wiy = —wg,, >0

PO (1w =) T oy (o) (o)

=1

E(Sf) = ié(;) +¥k i

n=1m i
m

[gxk'ij (wij) fw (w; )dwz ] fw(u)du}

s

Wi )

pr(n—m) (t —y—wiy — =
=1

t
_/yzo tmy—wi — o —wg,, >0
ad) 4 t (n— t =Y (n
= = (Do, 70){/1“:01” 70 (= w) gca () v )= [ [T (g )fw(w)fw(y)dwdy}

2
Fr 2 (6 —wy —wo) T [ox2 (wi) fw (wi) dw]

SN ([ RN Y A A 4
2 v }

= \2
- /;0 LT e sy w2) I [oxz (w0 s (o) dws] o )
+§‘_;2 (Z) 13,0, .0 { tl: 1:2 1;1 F*"=2 (¢ —wy — wa) gx (w1) 953 (w2) fw (w1) fw (w2) dwydws
t—y— w1 —wz)gx (w1)gx3 (w2) fw (w1) fw (w2) fw (y) dwldwzdy}

t t—y —y—wy _
,/ / Frn=2)
y=0Jw; Jwy=0

(=D (4w — w2) gx3 (w1) gx (w2) fw (w1) fw (w2) dwidws

X /n 4 t
> (2)(3,1,0,.-- ,0){.w1=o.w2=o
t—y—w
/ T pr ) (t —y — w1 —w2)gy3 (w1) g9x (w2) fw (w1) fw (w2) fw (y)dwldwzdy}

/t t—y
y=0Jw;y
o) t—w t—wy—w 3
+ > ( )( ) / / ! / P o) (g —wg — wy) gx (w1) gx (w2) g2 (w3) [] fw (wi) dwzdwadw;
= 1,1,2,0, w1 =0 Jwg=0 Jwz=0 i=1
t t—y rt—y—w t—wq —w 3
- ! TR () t—y—w; —wz —w3)gx (w1) gx (w2) gx2 (w3 fw (w;) dwzdwadw: fw (v) dy
X
y=0Jw; Jwy=0 w3 =0 ich
X p 4 towy pt-wi—way g 3
+ () ) / Frn t—w) —wy —w3)gx (w1)g wy) gx (w f w; ) dwzdwadw
,12::3 3/\1,2,1,0,-+,0/ | Jwy =0 Juwg=0 Jws—o ( 1 - wz —ws) gx (w1) gx2 (wa2) gx ( 3)1.];[1 w (wi) dwzdwadw;
t t—y [t—y—wy [t—w]—wy 3
-/ / / “(3) (4~ — wy — wp — wg) gx (w1) gy2 (w2) 9x (ws) [ Fw (wy) dwsdwadws fi () dy}
y=0Jw; Jwy=0 w3 =0 i=1
2 /n 4 t—wy rt—w)—wy 3
+> (0)( LY Lol L (=9 (¢ wy —wp — w3) g2 (w1) gx (w2) gx (w3) [] fw (wi) dwsdwaduw
n—sa \3 2,1,1,0, ,0 wq=0 w3z =0 i=1
3
t t—y [t—y—wy [t—w]—wg
- / / F* ) (4 — gy~ wy — wp — w3) g2 (1) gx (wa) gx (wg) [ fw (wi) dwsdwadwr f (v) dy}
y=0Jwy wy=0 w3 =0 i=1
il n t—wl t—wy —wo t—wq)—wog—w3 w(n—4) 4
+ / / F t—w)] —wg — w3z —w g w;) f w;) dw;
Z 4) (1,1,1,1,0 ,0){ wq=0 w2—0 w3z =0 wy=0 ( ! 2 ? 4)11;[1[ x (o fw (e .
4
D (f— oy —wy —wa — wy — wy) 11 lox (wi) fw (wi) dws) fw (v) dy}

t—wy —wgy

/t /t y/t N wl/
y=0Jw; Jwy=0 w3=0

n=4
t—wy —wz—wg _
/ F
i=1

wy=0

(9.4
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Example 2 When n =4, S} = (X1 + X2 4+ X3 + Xu)*. E[S}] can be expressed as

E(S) =4 / F*O) (t — w) gxs (w) fu (w) duo

+36/ / r (t — w1 — wa) gx2 (w1) gx2 (w2) fw (w1) fw (w2) dwadw,
t— w1

124 / / (t — w1 — ws) gx (1) gxs (ws) fiv (w1) fov (w2) dwadduoy
t— w1

+24/ / (t — w1 —w2) gxs (w1) gx (w2) fw (w1) fw (w2) dwodw,

+48/0 /O /0 —w1 —wa ) (t —wy; —wy —ws3) gx2 (w1) gx (we) gx (ws3)
Sfw (wr) fw (w2) fw (w3) dwsdwadw;

+48/0 /O 1 /0 U e (t —wy — wy — ws) gx (w1) gx2 (w2) gx (w3)
fw (w1) fw (we) fw (ws3) dwsdwadw,

+48/ / 1/ 1 2F*(l) (t —w; —wy —ws3) gx (w1) gx (w2) gxz (w3)

fw (w1) fw (w2) fw (ws3) dwsdwadw;

t—wq t—wi—w2 t—wi; —w2—ws3
+24/ / / / F*(O) (t—wl—wg—wg—w4)
4

H gx (w;) fw (w;)] dwsdwzdwsdw

- / / F*(; —y—w) gxs (w) fiv () fr (y)dudy
—36/ / / R -y — wn) g () s ()

Sfw (wr) fw (w2) fw (y)dwadw, dy
_24// y/ N IF*(Q (t —y — w1 —w2) gx (w1) gxs (w2)
fw (w1) fw (w2) fw (y)dwadw,dy

t—y t—y—w1
-y / / / F@) (£~ y — wy — wn) gxa (w1) gx (w2)

fw w1) fw w2)fw( )dwsdw: dy
-yxz( )gx (w2) gx (w3)
fW w1) fw w2)fw (ws3) fw (y)dwsdwadw: dy
X( )9X2 (w2) gx (ws)
fw (w1) fw w2)fw (w3) fw (y)dwsdwadw: dy
( wz)gxz (ws)

Sfw (wr) fw (w2) fw (w3) fw (y)dwsdwedw, dy
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t t—y t—y—wq t—y—wi—ws t—y—wi;—war—w3
—24// / / / F*(O)(t—y—wl—wg—wg—w4)
0 JO 0
4

H gx (w;) fw (w;)] fw (y)dwsdwzdwadw dy.
Jj=1

Corollary 3 specializes Theorem 1 to the case that N(t) is a Poisson process with rate parameter

A

Corollary 3 Suppose {N(t)} is a Poisson process with rate parameter A. Then the kth moment of

St can be expressed as

B (SF) :im% (m> > k<k k.k 0...70)r(n{1m)

s Wiy Yy

n=1 m=1 Koy ++kiy, =
.{/ ,Y(n_m,)\(t_wil_..._wi'm))
t—wiy — - —w;, >0
m m
eXp —A Z Wi H |:ng‘7 (wza) dw11:|
j=1 j=1
t
,)\// yn—m ANt —y—wiy, — - —w;,))
0 Jt—y—wiy ——w;,, >0
m m
exp | —A\y — )‘Zwid H [ngLJ (w“) dwlj} dy}7
j=1 j=1

where gxx(+) is given by , v(a,x) denotes the incomplete gamma function defined by

T
'y(a,ac):/ t* L exp(—t)dt,
0

and k;,, ..., k;,, denote the positive values among ki, ..., ky, and w;,,...,w;,  are the corresponding

ws.

Nadarajah (2015) showed that a wide range of bivariate copulas (including the FGM copula) can

be expressed as
n
= Z azaibu® bt (9.5)
i=1
for n > 1 an integer and {(ay,a;,b;) : i > 1} some real numbers. Using (9.5), we can write

gxr(w Za abi o )/+Oo ¥ fx (2) FE (@) da. (9.6)
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If a, are positive integers and if X;,..., X,, are independent and identical copies of X, then based

on E(Xk |=n[zFFn=1(2) f (z)dx, can be further rewritten as
gxr(w) = by (w)E [ZE ],
i=1

where Z,,.,, = max (Xi,..., X,,), which represents the maximum order statistic.

9.3 An extension

Theorem 2 extends Theorem 1 to the case that (Xy, W), (X2, Wa),... are independent but not
identical. We suppose that (X;, W;) has copula function C | copula density ¢, joint probability
density function fx, w,, joint cumulative distribution function Flx, w,, marginal probability density

functions fx,, fw,, and marginal cumulative distribution functions Fx,, F,.

Theorem 2 The kth moment of S; can be expressed as

oo min(n,k)
Ry _ n k K=m) (4 e,
E(St) _Zl <m> Z (kiu'“ 7k 07 a0>{~/t—w' ——wy >0F (t i wlm)
n= m 1 tm

=1 k}il+"'+kim’:k im
m .
Lo, () v, (i) doy |

Jj=

t
_// Frm) (f— g~y — e —w, )
0 Jt—y—w;y ——w;, >0

m

' H {gzjk)l] (wh) fWij (w%) dwi:} S (y)dy},
j=1

—

where
@ +oo )
sfhtw) = [ 2 0)c? (P, (@), v, () o
0
and ki, , ..., k;,  denote the positive values among k1, ...,k, and w;,, ..., w;,  are the corresponding

ws.



CHAPTER 9. MOMENTS USING COPULAS 179

Proof: Define B, b, and I as in the proof of Theorem 1. By the multinomial theorem,

p[t] = E[(rirerxme)']
= iE[(Xl+-»~+Xn)k‘1\l(t):n]Pr(N(t):n)
n=1

N(t) =n|Pr(N(t) =n)

Il
8

(i )2 [ I
E X
ki kn Pl

3
Il

1ky4-thkn=k

oo & n N
SIS VR R LI |

n=1ky+ - thp=k “F1 " kn =1

oo min(nk) . / /{ . / N
= z.tf W, zi,,w; dzi}

7,;1 ,nz::l (77L> kil‘*'";kim:k <ki1»"‘ 7,Iwmy()y..» ,0>' by tllll. it th Wlt ( it 7t) it

n+1
' [ II fw; (wj)dwj}
J=1,GF#i1,.s im

imt'ﬂ('nk)(n) 5 ( k )/ /{ﬁ/kit(i)( ( ) ( )) ( )
- xz. "ttt (Fx. (zq, ), Fw, (w; fx. (= dac-}

n=1 m=1 m kip 4k, =k Kigs o 5 Ekip,,0,---,0 . =1 't Xiy 't Wiy it Xy it it

j=1
oo min(n,k) m n41
- Do ( : )/ {6, ()}
- > > gt (wy, II 5w, (w)) dw;
=1  m=1 (m ki1+"'+kim:k }gil’..l 7Icim,07... ,0 . =1 Xt ( ) J=i J

k(k kk 0, 0) / ) {ﬁg(;k)it (wbt)}[n fwj(wj)dwj}

i1

Gt i, @} [T o] oo

kigtothiy, =k 27017 fm? wit w1 <t

k'il kg, =

ETE)

n=1 m=1

The two integrals in reduce to
/ PO (¢, ==, ) T [0 () f, () |
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Hence, the result.

9.4 Simulation

Here, we illustrate computational efficiency of the expressions derived in Section [9.2} Computational

efficiency is assessed in terms of time and accuracy.

Suppose N(t) is a Poisson process with rate parameter A, X; are independent and identical
exponential random variables with rate parameter A and (X;, W;) have the common copula function

C(u,v) = wv + fuv(l — u)(1 — v), the FGM copula function. We computed E (Sf) by simulation
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and using Theorem 1 for every k = 1,2,...,100. Note that the k’s value here is only chosen as an

illustration in the simulation. The simulation was performed as follows:

1. simulate N from a Poisson distribution with parameter A;

2. simulate (U1, V1),...,(Un, Vn) from the FGM copula;

3. set X; =—1log(1—U;) and W; = —slog(1—V;) fori=1,...,N;
4. compute SF = (X1 + - + Xn)F;

5. repeat steps 1 to 4 for one million times;

6. compute the average of the values of SF.

E (Sf) was also computed using Theorem 1 for every k = 1,2,...,100. The Maple software
was used. Maple like other algebraic manipulation packages allows for arbitrary precision, so the
accuracy of computed values was not an issue. That is, the values computed using Theorem 1 can be

considered as exact.

The central processing unit times taken in seconds to compute E (Sf) are plotted in Figure
The differences between the simulated and exact values of F (S’f) are plotted in Figure We have
taken A =1, 6 = —-0.6,—-0.2,0.2,0.6 and £k =1,...,100.

We see that our expression in Theorem 1 is computationally more efficient for all values of k.
The central processing unit times for the expression in Theorem 1 appear about two times smaller.
The simulated values are computationally less accurate in addition to being computationally more
time consuming. There is no evidence that the computational times or the computational accuracy

change significantly with respect to k or 6.

For reasons of illustration, we have taken the copula to be the FGM copula. But the results
in Figures and held for a wide range of copulas of the form and for a wide range of
parameter values. In particular, the central processing unit times for the expression in Theorem 1
always appeared about two times smaller. The simulated values were always computationally less

accurate in addition to being computationally more time consuming.
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Chapter 10

Conclusions

10.1 Conclusions

As metioned in the Introduction (Chapter 1), this thesis is a collection of selected works I have
contributed to the field of distribution theory. The main chapters are presented in Chapter 2 through

to Chapter 9.

Chapter 2 introduces and provides the reviews of the Generalized Hyperbolic distribution and its
most popular univariate relatives. Chapter 3 and Chapter 4 construct the smallest order statistic
study on the Pareto distribution and the Weibull distribution, repectively. We succeed in providing
the simplified conditions for the comparison of smallest order statistics of two datasets from the
same type of distribution but with different parameters. A real data application is also presented in
each chapter. Chapter 5 can be thought of as a novel work where we construct seven new classes of
discrete bivariate models. Even though, some of the newly proposed models outperform the models
proposed by Lee and Cha previously in fitting the same data provided by them, some of the future
works still need to done on those proposed models which are disscussed in later section. In Chapter
6, we contribute new and original expressions for the distribution of amuplitude, its moments and
the distribution of phase for a wide range of bivariate distributions, not only the Gaussian models.
Another theoretical contribution to the area of statistical distributions is presented in Chapter 7.
We give the explicit expressions for the characteristic function of the product of two independent
random variables, in which one follows the standard normal distribution, and the other follows one
from a selection of nearly forty distributions. A potential practical area can be in signal transfer.

In Chapter 8, we present the closed expressions for the distribution of aggregate risks, its TVaR
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and TVaR based allocation for a comprehensive collection of light-tailed, semi-heavy tailed, heavy
tailed bivariate distributions which are widely used in finance. In the last chapter, we construct and
present the derivation of the general form of the moment of the random sums using copulas. We let
the number of claims, N(t), be a renewal process, and let the claims X and time-interval, W, be
independently and identically distributed. We also extend the case to non-identical random variables

and to a wide ranges of different copulas.

Four of the main chapters have been published in refereed journals:

e Chapter 3 has been published as
Nadarajah, S., Jiang, X. and Chu, J., (2017). Comparisons of smallest order statistics from
Pareto distributions with different scale and shape parameters. Annals of Operations Research,

pp-1-19.

e Chapter 5 has been published as
Jiang, X., Chu, J. and Nadarajah, S., (2017). New classes of discrete bivariate distributions
with application to football data. Communications in Statistics-Theory and Methods, 46(16),
pp-8069-8085.

e Chapter 6 has been published as
Nadarajah, S., Chu, J. and Jiang, X., (2016). Distributions of amplitude and phase for
bivariate distributions. AEU-International Journal of Electronics and Communications, 70(9),

pp.1249-1258.

e Chapter 8 has been published as
Nadarajah, S., Chu, J. and Jiang, X., (2017). Aggregation and capital allocation formulas for

bivariate distributions. Probability in the Engineering and Informational Sciences, pp.1-11.

10.2 Future work

Listed below are some aspects of future work which are based on the work presented in this thesis.

In Chapter 2, we have reviewed the univariate Generalized Hyperbolic (GH) and other twenty
related distributions, as well as the related packages in the programming language, R. A future work
is to produce a more comprehensive review including univariate, bivariate, multivariate, complex
variate and matrix variate GH distributions, and the related packages and modules in different

programming languages.
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In Chapter 4, we have presented the comparisons of smallest order statistics from the standard
and a lower truncated Weibull distribution, respectively. A future work is to build the comparisons
of maximum order statistics or kth order statistics from Weibull distributions with different scale

and shape parameters.

Predictions of the results of football matches can be considered one of the classical applications
for discrete bivariate distributions. We have introduced seven new families of discrete bivariate
distributions in Chapter 5. Some of the newly proposed models also provided better fits to the football
data than those proposed by Lee and Cha (2015). However, none of them present a goodness-of-fit to
the data. Moreover, it is better to have the same model family for each team with different parameter
values. Besides, the dataset spans too many years. Over this time, each team may be expected
to change substantially. It is suggested to model the time variation in team attack and defensive

strengths.

In Chapter 7, we have derived a number of characteristic functions of the product of two
independent but non-identical random variables. A future work can be to relax the assumption that
one follows the standard Normal distribution to produce more combinations of products. Another
future work could be to extend the characteristic function to the products of two dependent random

variables.
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Appendix A

Appendix to Chapter

Here, we present the football scores data what we use for the application in Chapter 5. Note that

X = the number of goals scored by ACF Fiorentina and Y = the number of goals scored by Juventus.
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Table A.1: The football data.



Appendix B

Appendix to Chapter 6

Here, we illustrate the derivations of the given expressions in Section for the bivariate skew
normal distribution (Balakrishnan and Lai, 2009), the bivariate t distribution (Kotz and Nadarajah,
2004), the bivariate skew t distribution (Azzalimi and Capitanio, 2003), the standard symmet-
ric bivariate Laplace distribution (Kotz et al, 2001, equation (5.1.2)), the asymmetric bivariate
Laplace distribution (Kotz et al. 2001), the bivariate hyperbolic distribution (Balakrishnan and

Lai, 2009), and the conditionaly specified bivariate Gumbel distribution (Balakrishnan and Lai, 2009).

Derivations for the Bivariate skew normal distribution (Balakrishnan and Lai,2009) It

has the joint pdf specified by

22 + 42
2a2

J,y) = Coxp (— ) @ (az) ® (By)

for —oo < x < 400, —00 < Yy < 400, a >0, —00 < a < +00 and —o0 < f < 400, where C' denotes
the normalizing constant.

Based on the definition, © = r - sinf, y = r - cosd and f(x,y) =7 - f(r,0). We have

2

f(r,0) = Crexp (222) ® (arsinf) @ (Brcosb)
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o (—1)*(z 2k+1
Note that ®(z) =  + %erf(%) =1+ %% > o (CHMCTAE) 1)k!((22\fl)) .
B r 1 1 & (—1)*2 %2 (arsin 0)2k+! 1 & ~2(Br cos )21+
U C’“exp( 2a2> [2+7rk§_% K2k + 1) } [ w; zv 2z+1)
_ Cresp o [1 N 1 i ( 1)k27k7%(ar)2k+1 Sin2k+1(9 N 1 i o 27l7%(57n)2l+1 COS2I+1(0)
2e¢2) 4 27 P El(2k+ 1) 2y/m & N20+1)
1 [SSHICS) (_1)k+l27k7l71T2k+2l+2a2k+152l+1 okl 21
T ;; 2k + 1)(20 + 1) sin?1(6) cos? 1 ()]
(B.2)

Because both 2k+1 and 2/+1 are even for k,l € Z,,Z, = {0,1,2,3,...}, we have fOQTr sin?**1(9)df = 0,

fo% cos?*t1(0)df = 0, and fozﬂ sin?**1(9) cos?*+1(0)dh = 0. Therefore,

2

f(r,0)do

fr(r)

|
I
Q
3
@
]
o
~—
L
>
own
3

The marginal density distribution of © can be expressed as

r2 arsin 6

fo(0) = fC’/ 7 exp(—5—)dr + C/ rexp(— 22)erf(7)dr

arsin

Brcos

r2 Brcosf 2
+ZC/O rexp(—ﬁ)erf(

We can devide it into four parts to derive the explict forms.

1 o r? 1 1,1 2
1) - —)dr = SC0=(=—)"2?1(
(1) 3€ [ respl=gar = 105 ()
_ wc
- e

as [~ 2~ exp(—pat)de = fp_"‘/”F(g)

7 )dr + C/ rexp(— 22)rf( 7 Jerf(

7 )dr.
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o in 6 1 ind/v2
2 C’/ rexp(—=—) f(arsm Ydr = fCaQM
0 V2 4 [a2sinzo | 1
2 2a?
B a?C asin @
4 ﬂﬁ V1+a2a2sin?0
Ca’asinf

4v/a2a?sin’ 6 + 1 7

1 asin 6

X n 7px2 _ 1 c _
as [j x"e erf(cx)dxfzpm where n = 1,p = 57, ¢ = 2255,

1 o r2 Br cos 6 1,5, Bcosh/V2
(3) ZC\/O Texp(fﬁ)erf( \/i )dr = ZOCL m
2 2a?
Ca3fcosd

4y/a2B2cos20+ 1

o n —pz? _ 1 c _ _ 1 S
as [, x"e P erf(cx)dr = 5 , where n = 1,p = 507, ¢ = 22

/e +p

o0 2 .
(4) %C/O rexp(;ﬂ)erf(a\s}ger)erf(ﬁ(j;;gr)dr

2 . .
_ C2a ( «asin 0/\/5 - arctan S cos 0/\[ . (B cos 9/[ - arctan asin 0/\/§ )
1

4a a?sin? 6 1 a?sin? 6§ 51112 0 B2 cos? 0 C0b2 9 1 B2 cos? 6
2 + 2a? + 2a 2(12 2 + 2a?

Ca? aasin @ aﬁ cos 6 aﬁ cos f aosin
- arctan + arctan

Bz <\/cm Va2a?sin?0+1  /a?B%cos? 0+ 1 v a?(3?% cos? 0 + U

as foo x"e_p”’zerf(bx)erf(cx)dx = L (—L—arctan ), where n = 1,p =

C C
b2+p \/b2+p + \/c2+pamtan Vettp

b= asin 6 c= B cosb
vz o¢T e

(1.2’

The explicit form of fg(0) is,

a’C Ca’asin 6 Ca?fcos b
fe(0) = —(+
4\/a2a2 sin?6 + 1 4\/a2,82 cos? 6 +1
Calasind aBcosf
+ arctan
21V a2a?sin? 6 + 1 Va2a?sin?0 + 1
Ca®Bcosb aasin 6
arctan

27r\/a2ﬁ200520—|— Vva2p2cos?6+1
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The the p — th moment of R can be derived as

E[R)

+1
7 o Tp eXp(—ﬁ)dT
aC1, 1 _ 0 1D
I (—yp/2-1p(E 4
2 2(2112) (2+ )

7rCa”+22p/2_1I’(§ +1)

Derivations for the bivariate t distribution (Kotz and Nadarajah, 2004) It has the joint

pdf specified by

_vx2

f(z,y) = C (1 +az® + by* + 2cay) *

for —oco < x < 400, —00 <y < 400, a>0,b>0, —o00 < ¢ < +o0 and v > 0, where C' denotes the

normalizing constant. Based on the definition, x = 7 -sin, y = r - cos§ and f(x,y) =r- f(r,6). We

have

The marginal density distribution of R is

fr(r)

Cr <1+

Cr(1+ ar® 4 (b — a)r? cos® 6 + cr? sin(20)) ™ 2
b—
Cr(1 + ar® + Ta(l + c0s20)72 + cr?sin(260))” 2

a+b ,

V42

Cr(1+ ar®sin? 0 + br? cos® 0 + cr?sin20) ™ 2

_vf2

v+2

v42
2

2

r? 4 [b ; ? cos(20) + csin(29)} r2)

r )+(b;a00529+csin29)r2] de

? 020 + csin 20)kr2k[1 4 ——

2m
—a)k_l/ sin’(26) cos*~!(26)do 211 +
0

a + b,r?]_VTH_k)
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where

2m 1 4m
/ sin’(26) cos*~!(20)d6 5/ sin' () cos* 7! (z)dx
0 0

= /O%sinl( ) cos® ! (z)dx

—1) _1)k—1 _
_ [+ 1)][;+( 1) }B(lzl,k ;+1)’

as f5+2ﬂ sin™ z cos™ zdr = [1+(_1)m}2[1+(_1)”] B(zHL 2EL) | Therefore,

SEE(N() oo

k
—"T“—k
( +1 k— €+1>r2k+1 {1+a+br2} .

Let f(r,0) = Cr(1+ Dr?)~*%", where D = 25 + 252 cos(20) + csin(20).

-
@
5
N~—
I
=
=
N
U
3

Let Dr? = Z, T = \/% and dr = Z_%dz

fol0) = C /m\/7(1+2)_y;2\;5z_1/2dz

- 2D ’5)
) c r(;
a+b+ (b—a)cos(20) + 2csin(20) T(5 + 1)
2C

via+ b+ (b— a)cos(20) + 2c¢sin(20))

as fo (x+ﬂ)p dr = p*PB(a,p— ), where « = 1, u = 1,p = “52, and B(a, b) is the Beta function.

The pth moment for R is

C vz b—a.,_ 1 k=141
- 2};2_)( 1 e e e e

p2kpHi atb o w2y
/0 1+ 5 2] dr,



o0 2k4p+1 atb,. 21— 22k Fits k+241 —rk2 g 1 -1
where, [ 2P 44Xl y2] dr = 77 (35 ZFTzta(l42)" 2 Tk 2dz when
__ a+b 2 _ 1 -3
2= r = a+b and dr = S +b)z 3 dz.

—1

z+#) dx = p* PB(a,p — a), the explicit form of the pth moment of

By applying the equation fo
R is

p_ k v k—¢
E (RP) 28 — ZZ ( +2> (k> 2@‘% (14 (=1)F + (=) + (-1)*1]

(b+a)*" 2000 (b+a)
B €+17k76+1 B v—p
2 2 2

forr>0,0<60<2randp<v.

Derivations for the bivariate skew t distribution (Azzalini and Capitanio, 2003)

It has the joint pdf specified by

v4+2
1 w2+ 2\ 2 v+2
=—(1 T, b -5
f(xay) 7T< + U v+2 (CLI‘—F y) $2+y2+l/

for —c0o <z < 400, —00 < Yy < 400, —0 < a < +00, —00 < b < +o00 and v > 0, where

T(-) denotes the cdf of a standard Student’s ¢ random variable with degree of freedom a.

By definition,

1 TG a1 s 2
e Ty T oG 22!

Note that

So,

LG +3) S O o

Here in our case, the 227! = 2"+ (g sin 6 + bcos 0)*" 1 (v + 2)"+%(r2 + V)_”_%.
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The marginal density distribution of R can be derived as

r V—i—rQ)u 1[ N F(%( 3))

fr(r) = 7T( » m
< (1),(42),
Z (3) 2"“/ (asin® + beosh)?™ | dp
=0 3)n 7’2 +v) "*2

(B.3)

Note that fozw(a cosz+bsinz)™dx = M (( ),) 21 (a® 4 b%)™/2. Here, m = 2n+ 1, which

is always a odd number when n € Z,. So, H%W = 0. Therefore,

frlr) = r(+T)7E

The marginal density distribution of © can be derived as

fo(#) = /0 " fr0)dr

x r 2 _uiarl
= [ e
F(%(V—i—?))) > (%)n(”T?’)n(—l)"(asin9—i—bcosH)Q”+1 r2 nt
t G2 @ )
1 & rdr
= 5 ; 4(1_'_ 2),,+2
N F(%(l/—i-?))) i (%)n(”73)”(—1)”((181119—i—bcos€)2"Jrl /OOT(1+742)_U.2+2
0 v

w0 (3(v +2)) i (3)n -
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I
—

as [ (a + 24 Pdr = p 2P B(1/ pyp — 1/ p).

o0

aso

¢

oy

(2)

> T2 v_1q 7"2 1
1 B St et Y A n+§d
/0 r(1+ » ) (r2 n 1/) r
> v v 1
/ T(V + TQ)—§—1V§+1T27L+1(T2 + V)_n_idr
0

o0
VV/2+1/ P22 (2 4 V)*(%JF"JF%)dT
0

v/2+1 o) ,
- / 2" 2 (z + ) (5T gy
0

dr = v*PB(a,p — a).

Therefore, the marginal density distribution of © is

fo(0)

1
o

v+3

27r3/

i) Z 7) )i > )i (asin@ + bcos0)**™ B

3
k:o 2

215

(

3
Ea 2 2
+2’2

2



The pth moment of R can be derived as

o] 2
E[RF] = / P14+ )51y
0 12

1 [ zP/?
= 5| e
2 Jo (1+%)u/2+1

s+l oo ZP/2
= - 1dac
2 Jo (v+a)zt
vetl 0w p v—op
- BY 11
2 v 2 (2+ ? 2 )
= oL htigl i LDy
Vil 1Y)

Derivations for the standard symmetric bivariate Laplace distribution (Kotz et

al., 2001,equation (5.1.2) It has the joint pdf specified by
1 21 .2
oy = Ko (V2 +)

for —oco < x < 400 and —o0 < Yy < F00.

Based on the definition, z =7 -sinf, y = r - cos 0 and f(z,y) =r- f(r,0). We have
1
f(r,0) = —rKj (\/57“) ,
7r
The marginal distribution of R can be derived as

fr(r) = /OQW;K()(\/ir)dG
= 2rKj (\@7‘)

The marginal distribution of © can be derived as

™

= (VR

1
o’

fo(0) = 1/00O rKy (\/§r> dr
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as [z Ky (ca)dr = 2072 OT(242)(254), and o = 2,v = 0,c = V2.

The pth moment of R can be derived as

E[RY] = /0 T f(r)dr
= 2/C>Q P K (\/57') dr
0
= 2.22(v2r2rE 1 rE 4 1)

- v (e)

as [0z Ky (ca)de = 2072 T (42)N(%5%), and o = p+ 2,v = 0,¢c = V2.

Derivations for the asymmetric bivariate Laplace distribution (Kotz et al., 2001,equa-

tion (6.5.3) It has the joint pdf specified by

f(z,y) = Cexp (ax + By) (=% + 3/2)% K, (’Y 2 + y2)

for —oco < x < 400, —00 < y < 400, a <0, § <0, >0 and v > 0, where C' denotes the
normalizing constant.

Based on the definition, z =7 -sinf, y = r - cos§ and f(x,y) =r- f(r,0). We have
f(r,0) = Cr'* exp (arsin @ + Brcos 0) K, (yr) .
The marginal distribution of R can be derived as

2m
fr(r) = Cr'"K,(y- r)/ exp (arsin @ + prcosf) df
0
= Cr'"K, (y-r)2rly <r\/a2 + /32)
= 2nCr'""K, (y-r) Iy <r\/a2 + 52) .
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The marginal distribution of © can be derived as

fo(0) = / CritY exp (arsin® + Brcosb) K, (yr) dr
0

29T (2 4 2 1
R VTC(29)"T(2 4 2v) - 2F1<2+2,,7+V;5+,,;_
['(3+v)(y—asing—Bcosh) " 2 2

v+ asinf + S cosf
v —asinf — B cost

a—v,a+v

as [, 2 te P K, (cx)dx = (2(7+z)°\£l’r {

il }gFl(a+vu+2,a+2,p+c>,anda:

24 v,p=—(asinf + fcosh), v =v,c=1.

The pth moment of R can be derived as

E[RP] = / P 2rCriItV K, (v 1) I (7“\/0(2 + 62> dr
0

o
= 27TC/ 7“1+”+p10( a2+62> K, (v
0

2, 32
2”+P+1ﬂ072”pf(1+u+p>r< >2F1 1+l/+£,1+2;1;a+ﬁ ,
9 2 2 72

(atp+v)/2,(at+p—v)/2

as [y° 2oL, (be) K, (co)da = 207 2pco T | [-or (o, =y 1 ),

put1
anda=p+v+2,u=0>b=+\a?+p2,v=r,c=1.

Derivations for the bivariate hyperbolic distribution (Balakrishnan and Lai,

2009) It has the joint pdf specified by

f(z,y) = Cexp [—a (2° + y°) — Bz — vy]

for —oo < x < 400, —0 <y < +00, & > 0, f > 0 and v > 0, where C denotes the
normalizing constant.

Based on the definition, z =7 -sinf, y =r - cos @ and f(z,y) =r- f(r,0). We have

f(r,0) = Crexp (—arQ — Brsinf — vr cos 9) .
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The marginal distribution of R can be derived as

2
fr(r) = Crexp (—ar2)/ exp [(—ﬁr) sinf + (—~yr) cos 0 |do
0

= 2nCrexp (—arQ) Iy (r\/m)

The marginal distribution of © can be derived as

fe(@) = C/Ooorexp[—arQ—(/Bsinﬁ—i—’ycosQ)r}dr

_ in 6 + + cos 0)? Bsinf + ~ycos 6
= CcrEIle (Bsin D_
cr@r za)exp (P , (Bt acosty
C o (Bsin @ + v cos 6)? D Bsin 6 + v cos 6
= —ex -

2a¢ P Sa 2 vV2a ’

as [ g le—pe’—aw gy — I'(a)(2p)~*? exp [%}D,a(%p>, and a = 2,p = a,q = fSsinf +

~ cos 6.

The pth moment of R can be derived as

Bl = [ rranCrexp (~ar®) 1o (r/FT 2 dr
0
= 2nC [ exp (~ar®) fo (/BT ) dr
0
= o510 (P P B+
= ameza F<2+1>1F1(2+1’1’ Ia )

2 2
- wcw%lr(gﬂ) P <p+1;1;’8 nalt] )

2 4o

(a+v)/2

as fooo l‘a_le_pley(c.l‘)dl’ _ 2—u—lcl/p—(a+u)/21“|: :|1F1 (a;ru; v+1; %), and o = p+
v+1

2, p=a,v=0c= \/62"’_’72'

Derivations for the conditionally specified bivariate Gumbel distribution (Bal-

akrishnan and Lai, 2009, Section 12.13.1) It has the joint pdf specified by

flz,y) = Cexp[-z—y—exp(—x) —exp(~y) — aexp(—z — y)]

for —oc0 < & < 400, —00 < y < 400 and 0 < a < 1, where C' denotes the normalizing
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constant.

Based on the definition, z = r -sinf, y = r - cos @ and f(x,y) =r- f(r,0). We have

f(r,0) = Crexp|—rsinf —rcosf — exp(—rsinf) — exp(—rcosf) — aexp(—rsinf — r cos )]
= Crexp|—r(sinf + cosf)] exp [—exp (—rsin )] exp [— exp (—r cos )]

-exp [—aexp (—rsinf — r cos )]

> 1 0) ° J ; 0
= Crexp|—r(sinf + cos0)] Z Gl exp —irsin eXp —jrcost)
=0 j=0

2 (—1)ka® exp (—kr(sin @ + cos 0
2 k!

k=0
Cr 353 U o [y (1 i+ R)sind 4 (=) - (14 7+ ) cost
= Cr ————exp|(—7)-(14+i+ k)sin@ + (—r)-(1+j+k)cos
P s 151k

_1)ititkgk
(z)"j'k'aIO (r\/(l +i+k)?2+(1+j5+ k)2)

The marginal distribution of © can be derived as

© 0 0 ( 1)i+j+k k

fo(0) = CZZZW/Ooorexp[—((1+z‘+k:)sin0+(1+j+k:)cos0)r dr

=0 j=0 k=0

0o o0 00 Z+j+k k ) . ‘ o
= CZZZW[(l—i—Z—i—k)smﬁ—i-(l—i—j—i—k’)cos@] ,

=0 j=0 k=0

as [[Or* e P dr = p7°T (), and a = 2,p = (1 4+ i+ k)sinf + (1 + j + k) cos .
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Appendix C

Appendix to Chapter 7

Here, we illstrate the derivation for the characteristic function of the product of two random
variables. One follows the standard normal distribution, and the other follows one of the
following twelve distributions. They are the Pareto distribution, the Triangular distribution,
the Argus distribution, the Student’s ¢ distribution, the Rice distribution, the Laplace
distribution, the Exponential distribution, the Normal Inverse Gamma distribution, the
Uniform distribution, the Rayleigh distribution, the g-Gaussian distribution, and the Normal

Exponential Gamma distribution.

Derivation for the Pareto distribution (Pareto, 1964)

If y is a Pareto random variable with y > k£ > 0 and « > 0, the density function of y is

fy(y) = aK%y "L

The characteristic function of the product can be derived as

0o t2
du(t) = ozKa/K y_a_lexp (2y2) dy

2

B QKQ% <_a7tK2>
25y \ 22
2

— Ka27a/271tar _g 7K2
@ 29 )
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as f:om_mexp(—ﬁa,‘”)daz = n—ézf‘(z,ﬁ,u”),z =1m andn=273= %,u = K,m

a+1l,z="

Derivation for the Triangular distribution

The density function of y is

2(y — a) .
_ A"
b—a)c—a) ifa<y<e,
_ 2(b—y) :
= _— fe< b
0, elsewhere,
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The characteristic function of the product can be derived as

bult) = Eexp (_gy)]

- /:(b_a)z(c_a)(y )exp< 5 >dy+/ (b_;(b_c)(b—y)exp<—t22y2>dy

- mstezal[ o) [ ()
o U be’“’( 2Y >dy /cye"p<‘t2y2>dy]
a22 622
- <b—a>2<c—a> [;e’q’(‘ 2t>‘t12“p<‘ ;ﬂ

2 2
2 r (%v 5 a2> r (%? 5 02)
a —a
c—a)

(b—a)( V2t V2t
) r(s5e) (559
HOEDIED {b T

“=a=g [rer (-7 ) ~wer (7))
- t?(b—f)(c—a) {‘”‘p (‘t2> - (—Zﬂ
TR0 a2><b—c> [exp (_t2) - (‘t2b>]
e () T (%)
imatma (o) (37

Derivation for the Argus distribution (Albrecht, 1990)

The density function of y is

a3 a,2 y2 y2
w0 = e [ (- B) -

for 0 <y < c and a > 0, where ¥(x) = ®(z) — z¢(x) —

N[ =
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The characteristic function of the product can be derived as

bult) = Eexp (_gy)]
= e[ 5) [ @) e [(5 ) ()] e
ST R T

)

2
- N;;(G)exp [—a;] /01(1 — )7 exp K“‘; - c?) x} dx

Considering Confluent Hypergeometric function of the first kind,

1
F . b - 7 Ztt(l—l 1 _ t b—a—ldt
8 = 5 g J, €0

a’ [ a?]T(3)r(1) 5 a? — 22
t) = ————exp|—— Fi(1; =
¢w() 2\/%\11(01) p_ 2_ F(% 1 1( 2 9 )
3 r .27 3 -1 2 _ o242
= aiexp _v 2;/% 1F1<1;§;u)
2v21¥(a) 2] gvrm 2 2
a3 [ a?] 5 a? — *t?
= ———exp|—— | 1F1(l; o ———
st P |z g )

Derivation for the Student’s ¢ distribution

The density function of y is

BRACY) 2\
fY(y)— JMF (%) (1+ 2) )

for —oco < y < 400, v >0 and ¢ > 0.
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The characteristic function of product can be derived as,

bult) = Eexp (_gy)]
I

Let z = %, z € (0,00), then y = /vox? and dy = ‘/ggx_%dx.

v+l 00
dw(t) = ))/ af%(l +$)7VTH exp (—V05t2$> dx
0

- () (5 5)
1

I (4 <1 3 u+1_l/02t2)

2 — o
r (%) 2’2 27 2

IR

i
E e

—_

N

S|

as [ 22 e Py = M)z (a,a+ 1 — q;pz), and o = %, z=1,q="3,p= "%~

0 (z+2)¢
Derivation for the Rice distribution (Rice, 1945)

The density function of y is
2, 2
Y Y +v vy
i = oo (<555 ) 0 ().

for y > 0,0 >0and v > 0.

The characteristic function of product can be derived as

2
out) = B |ow (~502)]
Y Y A v “)
= /0 U2exp( 2<J2+t>y exp ( —5 3 10(02 dy
2 00
-2 v L1 2,2 (VZ/)
= _ - — I _<
o exp( 202)/0 yexp( 2<02—|—t>y 02 dy

v? v?
= exp |- A (1
1+ o022 P [ 202] e ( T 202 + 204252) ’
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as fO ro—le —pax? I, ( )da: — Aa Aa — 9-—v-1 p (atv)/21 |:(Oc+l/)/2} F <a+u

and o =2,v=0p=3 (3 +1}),c= 2%

Derivation for the Laplace distribution (Laplace, 1774)

The density function of y is

fr(y)

Lo (Llyord
2b b '

for —oco < y < 400, —00 < pu < 400 and b > 0.

The characteristic function of product can be derived as

Pu(t)

0 [ (e ()
LT ) ()
= % Uoo exp <—ITJ> exp L
= 2%) 000 exp (—%) exp <—22(£E - ,u)2> dx
= % Oooexp —t;xz—i—,utz —b—tzﬂ) dx

1 — pbt?

2,2 1 (1_/;#2)2 1— [,th2
= ) = — ¥ _  \D_
P ( 9 )2t TP\ T a2 L ( bt )
1 1 —2ubt? + p2b%t* — 24262t
= —exp D_,
20t 4b2¢2
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bt

1 1 w1l ut? 1 — pbt?
2t P <4b2t2 ~3 <b + 2)) D1 (m !

)

y—i—l,zp)



as [;° gV le Pt T gy = (268)/*T'(v) exp (%) D_, (ﬁ) and v =1,8= %,fy = % — ut?.

[ 5520 ()
= exp( )exp< t; [(y — 1) + ] >d(y—u)
1

- Cp (AN (L bt
T o P e T2\ 2 )| o )’

as [o° g Le Py = (28)7V/2T (1) exp ( ) D_, (f) andv=1,08= % v = ¢+ ut?
Hence, the characteristic function of the product of two random variables, which one follows

the standard normal distribution and the other follows the Laplace distribution has the

explicit form as

1 1 w1 ut? 1 — pbt?
ow(t) = gy exp [4b2t2 2<b+ 2>}D‘1( bt

1 1 w(l 1 pt? ubt? + 1
— Sl N i I I YDA bt
T op P [41)%2 > ( b2 >] 1( bt

Derivations for the Exponential distribution

The density function of y is

Ty (y) = Aexp(—=Ay),

for y > 0 and A > 0.
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The characteristic function of the product can be derived as

2,
duw(t) = E |exp —5Y
0o t2 9
= /0 Aexp(—Ay) exp (—2y )dy
> t2 2\
= )\/0 exp <2 <y2 + to)) dy
& t2 2 A2 A2
= )\/O exp <—2 <y2+t2y+t4> +2t2) dy
A2\ [ ty A \?
= )\eXp<2t2>/0 exp(—(\/i—l-m))dy
t 212 . V2 o V2t V27 V2t
W2 A2 N3 A
= —, &P <2t2> - —erfc <>

- () ().

Derivation for the Normal Inverse Gamma distribution The density function of ¥ is

Fry) VAB XD [_W

= — € N
V20203 () 202

for —co <y < 400, A >0, a>0and 8 > 0.
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The characteristic function of the product can be derived as

bult) = Eexp (_gy)]

_ VB 28 > Ay — p)? £, d
= JZroil(a) exp | —5 3 /_Oo oxp | == exp | —5y” | dy
_ VB exp <_ 203 > /°° exp [_ (A +t202)y? — 2uly + )\/1,2:| dy

X
2102030 () 20?2
o Vs (2B o (M
V271020430 (a) P\ 7202 ) P T2
N2A2

oo 202 /(X +t202) A+ 12027 (A + t202)2 202 /(X + t202)
\Aﬂa 28 + A,U/2 MQ/\Z 1

= 5= ——~exp|— + :
020+2T () 202 202(\ + t202) 022 + A

oo V2o [N T2 4+ A P 202 /(X + t202) YN 202 4

B \ABO‘ 1 o _25+A/1,2 )‘QMQ
T 02020(a) ok A p 902 202 (A 1 0212)

Derivation for the Uniform distribution

The density function of y is

for —co<a<y <b< +o0.

The characteristic function of the product can be derived as

o0 = ol (-5
_ /ab_iexp( % )
T b- a ; (tz >
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2 2,2 1242 _1
Letx:%y2,x€ [%,%},theny:% 2x and dy:ﬁx 2dzx.
2;2
1 SR
Pu(t) = ——Fm 272 exp(—z)dz

(b—a)v2t Ji2a2
- W[F<§’t252>”(3’t252)]'

Derivation for the Rayleigh distribution (Weibull, 1951)

The density function of y is

frly) = 222y exp (—/\2y2) ,

for y > 0 and A > 0.

The characteristic function of the product can be derived as

oult) = B e (~507)]
= 2)\2 /Oooyexp < ()\2 + t;) y2> dy.

Let (A2 + %)y2 =z, 2 € (0,00), then y = (\2 + %)_%a}% and dy = (A% + %)_% 1 -z~ 2dz.
2

0
AZ /oo
= — exp(—z)dx
X2+ 8 o )
2)?2

NI
VI
-

| =

2X2 427

Derivation for the ¢-Gaussian distribution (Tsallis, 2009)

The density function of y is

frt) =2 [1— (1 - )y ™

1

<y <+ if g <1 and g > 0, where C
B(1—q)

v B(1-q)

for —-co<y<4+0ifl <¢<3, —

denotes the normalizing constant.

230



When 1 < ¢ < 3, that is, —oco < y < +00. The characteristic function of the product can be

derived as,

Pu(t) = E[exp (—t;zf)]

1 2
= \F/ [1—(1—q)By?] 7 exp <—2;y2> dy
1 2
- 2 [ g 0] s ()

Let z = (q - 1)63/27 T (07 OO)? then Yy = [(q - 1)&]7% {II% and dy = % [(q - 1)6]7% ‘Tﬁ%dx

bult) = C[ql_l]é/ooox—é(1+x)‘qilexp<—2ﬁé2_l)x>dx

1 1 13 1 12
B C(q—1)ér<2>qj<2’2_q—1’25(q—1)>

R EE e ——)

Cyqg—1 2 q—1"28(q—1)
as fo (x+2) % Pdr =T(a)z 90 (a,a+ 1 —q;zp),and a = 3,2 =1, = qfll,p =
2[3(61 26(q-1)"
When ¢ < 1, that is —m <y < —i—\/ﬁ(%_q). The characteristic function of the product
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can be derived as,

bult) = Bexp (_gy)}

2
= f/ [1—( By}lqexp(—2y2>dy
2
B e ()
VA=)
1 1 2
= Q\C/B/m [1—(1—q)By*] 7 exp (—2y2> dy

2B 1 2] %
- o [1—( ﬁ(l—q)y)]

12 2
€xXp <_2((1—Q)5)2 ( (1- Q)ﬁy) ) dv/ (1 —q)By

L ! _% —_ qux <—t2>
Cm/ox (1 —z)T-aexp Qﬁ(l—q)x dx
1 F(%)T(E)F<1_1+2—q' —t?2 )
11\ 555 ’
Cy1—q¢q T(%+?—:Z> 272 1-¢ 28(1—q)
B i) (11 2-q
Cyi—q' 1(2’2+1—q725(1—Q)>

[\

as 1Fy1(a;b;2) = O a)r fo t2= (1 — t)b=eLle?tdt, and a = %,b = % + ﬁ,z = 72/3(_175;).

Derivation for the Normal Exponential Gamma distribution

The density function of y is

2
fY(y)ZCGXP< 4y€2>D 2% 1('?)7

for —oo <y < 400, k> 0 and 0 > 0, where C' denotes the normalizing constant.
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The characteristic function of the product can be derived as,

oo = olou -5
= / Cexp( 402)D2k 1('?) exp <—t22y2> dy
/ Cexp<<292+t)y2>D2 ( )dy
+/0 Cexp< <292—|—t2>y2>D %—1 %)dy

Let ( = —y when y < 0, thus, ¢ € (0,00).

buw(t) = /OO C exp ( L (2;2 - t2) 42) D_op 4 <g> d¢
/ C exp ( - <292 Tt ) y2> Do (%) dy
- 20/ exp < - (2192 + t2> y2) D_op s (%) dy

B 1 3 5 —2 (555 +t2
= 2C -2 k= 1\/> 0 - F|:k+3/2} oFy <, k+§ 62 (262 )>

2/

1
= Cc.27F. m-0.77! <k+§>2F1 (2,1;k+§’;—t292>,

as [;" e P D, (cx)dr = 20~/ /7T |:(1+a 1/)/2] 2F1 (%,QTH5 =L c22;;1:l)>’ and

a=1p=1(g:+t*),v=-2k-1c=4.
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Appendix D

Appendix to Chapter 8

Here, we present the derivations of the density function, the cumulative distribution function,
and the truncated expectation of the aggregated risk, as well as the expected contribution of
each risk to the aggregated risk, F [X 1 S>b]. The selected models are the representatives of
the different classes of bivariate distribution discussed in Chapter 8. They are the mixtures
of independent exponential distribution, the Gumbel’s bivariate exponential distribution,
the Block and Basu (1976’s) bivariate exponential distribution, the mixtures of independent
gamma distribution with real shape parameters, the Negar and Sepulveda-Murillo (2011)’s
bivariate confluent hypergeometric distribution, the Mardia (1970’s) bivariate distribution
in Eq (5.77) of Balakrishnan and Lai(2009), the bivariate Pareto distribution with equal

scale parameter, the generalized Pareto bivariate distribution.

Mixtures of independent exponential distribution

fla,y) = > Crexp(—apx — Bry)

k=1

flx,s—x) = Z Crexp (—agz — Prs + Brr)
k=1

= Z Cr exp (—Bks) exp (— (ax — Br) x)

k=1

234



fs(s) = /0 fla,s — )

— mCex (—Brs) sexp(—(a — Bi) x) dz
; e exp (— B /0 k — B

- Z C exp (—Ps) - o i 3, [1 —exp (= (o — B) s)]
k=0

- Z Ch o i B [exp (—Bks) — exp (—ays)]
k=1

Fs(s) = /0 " fslt)t

_ iaﬁﬁ {/Osexp(—ﬁkt)dt—/Osexp(—akt)dt}

k=1 k
B O 1 — exp (—fks) _ l—exp (—aks)}
B ; ag — B { Bk oy

Gea(s) = /0 T (s — 2)da

S

_ ch exp (—Brs) -/0 rexp (— (ag — Bi) ) dx

k=1

B m B 1—eXp(—(Oék_Bk)3) _S'eXp(_(ak_Bk)S)
— ;Ck exp (—ks) [ (o — Br)? (o — Br) ]
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E[Sl(s>b):| = /boosfs(s)ds

_ i Cr [l tep(=t)dt [T texp(-t)dt
k=1 (Qk - Bk‘) i 5]% ai
_ Zm: Ci  [(L+bBk) exp(=bB) (1+bak)exp(—bak)}
= (ar = Be) | Br a?
B [X1<s>b>} = /b x,s(8)ds
= S [ [T el —epcars) [ sexp(—aks) ]
; g _/b (Oék - 676)2 ds /b (Oék — Bk) ds
B m -¥ 00 . B 00 o - 1 i . »
- ;Ck (s — Br)? (/b exp (Bys) ds /b exp ( OékS)dS> o) (az /bak te dt)]
_ ick [exp(=bBk)  exp(=boy) (1+bak)exp(—bak)]
k=1 _Bk(ak’ - ﬁk)Q (073 (Oék — ﬁk)Q OZIQC(Oék — ﬁk)

Gumbel’s bivariate exponential distribution

f(z,Y) = [(1+6z)(1+0y)—0lexp(—z —y— Ozy)
flz,s—2) = [1+0x+0(s—z)+0*sz — 0% — 0] exp (—s — Osz + 02?)
= [(1+ 350 —0)+ 6*sz — 0%2?] exp (—s) exp (0 (ac — ;>2> exp (—332)
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fols) = [ flas - oo
0
0 5 $\2
= (1+s0—-10 exp<582>/exp(«9 Tr— = )daz
(1450 —6) ) fy e (0(=-3)
92 s S\ 2
2. . —_— —72 . _
+0 sexp(s 4s>/oxexp<9<x 2>>d:1c
s 2
—62 exp <—s—is2>/0 z? - exp (0 (l’—;) )daz
0 o s 5\ 2
(1—|—89—0)exp<—5—48>/0 exp<0<$—2) )dx
0 s s 8\ 2
2 . P _ s _ S
+0 sexp( s 48)/0 (a: 2>exp<9(x 2) )dx
6252 0 o s 5\ 2
+Texp <—s—45>/0 exp <9 ({L‘—§) >d:c
0 5 5\2 $\2
0 exp( S 43)/0 (3: 2) exp<9<az 2) )dx
—50% exp (—s—isz>/ (w—%) exp <9(
0
202 s 2
849 <—S—Z$2>/O exp <9 <$—;) )daz
s20% 5202 0 , s 5\ 2
= <+80 0+2—4>exp<—s—4s /Oexp<9<x—2>>d:v

)
+ (675 — 56%) exp <—s - 352) /O (v=3)exp <9 (=~ ;)2> dz
(

9exp(—s—s) x—f exp<9

<1+9<3_ 1)+42> exp <—s— Zs2> /O exp (= (6%) ¢2) d¢
—26% exp <—s — Zﬁ) /02 ¢%exp (— (0i%) ¢?) d¢

Note that
by ﬁerf( albl)
—aqpt?)dt = Y— VU
/O exp (—art?) e
and
b2 byexp (—a b2) Verf (\/azbs)
2 - 2 2 p 2
/0 t exp( ast )dt— Sy . a3/2 ,
S0,
2 /merf (z Vo %)
2
0i*) ¢*) d
e (= 02) e = ——
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and
s ‘ %exp 9% ﬁerf Z\/E%

0

fs(s) = 2<1+9(s—1)+82f2>exp<_5_082>\/&rf(“{e‘s)

4 2i -0
0 5 exp (9%) V/merf (2 V0 - %)
—20%exp [ —s — —s° +
4 20 —4.4-63/2

— <—z\/§ —iVlr(s—1) — iﬁ03/2‘12> exp <—S = isQ> erf (Z 2\/53>

iOr 9 , i-0 0
- exp | =5 — 8 erf s | — =sexp(—s)

2 2 2

AP R = SR L Lo 02 e (VO
= <z g O (s 2) i/l 1 )exp—s—7s erf 5
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bosls) = [ a s —a)da
_ /08 [(1+ 56— 6) & + 6250 — 6% exp <s = 352> exp (0 (- ;)2> do
= (1430 — ) exp <—3 - 932> / (a; - ;) exp (9 (g; _ ;)2> da

S s\ 2
+-(1+s0— 9exp< >/exp<6 T — = >d£L‘
5 e (0= 3)
0 5\ 2 5\ 2
2 .Y _ s s
+6 sexp( s >/0 T 2) exp 9(1: 2) >dx
0 S 5\ 2
2 72 _ - _ -
+6 Sexp< 15 /0 T 2)exp (0 (x 2) )dx

o4 [ao-2)

—6? exp <—s — Zs2> /08 (m — %)gexp (9 <:c — ;)2> dx

_30;92 exp (_8 B ZSQ> /8 (x _ ;)2exp 0 (;c - ;)2> dz
0

2
[1 + 50 — 0+ 0%s% — 32232] exp <—s — Zs2> /08 (a: — g) exp <9 (m — ;)2> dx
) )

2 T\ B

2 [1 FO(s—1)+ 94282:| exp (—s - 332) /02 <a; - %) exp (
12 (0 oxp (s - j) [ eo(0(-3) )i
—26% exp <—3 - Zﬁ) /02 (=~ §>3exp (0 (- ;)2> da—3)

Note that,
by Vmerf (y/aiby)
—at?) dt = V— Y "/
/o exp (~art’) 2,/a1
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1 — e2b

b2
texp (—agt?) dt = ———,
/0 exp( a9 ) 5o

’ _ —aszb2
/ 3 t? exp (—a3t2) di — bye %303 N Vmerf (y/azbs)
0

2@3 4a§/2 s

' 1— (1 2\ —aab?
/ 4t3 exp (_a4t2) dt = ( +a42b4)e 4 4‘
° 2ay

Thus,

Lo (o35 L)

2 20

/0; (2~ %) exp <9 (x;)2> dw—2) = W(%’:)—l

20 4103/

[ (ofe- ) wem - Lt

§ 5 rerf (05
/02 <a:—5>2exp<9(x_3)2>d($_;): s exp (9s2) +\f f( /o )
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grs(s) = [; + 39(8 —1) + 35 } Wexp <—s — Zsz)

L o) e (4s7) -1 0,
O(s—1) 4 }Hexp<—s—4s>

o
(8 [ e ()
-

+

0 2i63/2 4
(19 e (48] o (o 22)
[;\f . .6;( 1+ ﬁe;/zss . g@f o (i\2/58> exp (_8 - Zsz)
+ [e}{p(%)l +(s—1) <exp (ZSQ> — 1) + 9482 (eXp <Z$2) - 1)] exp (—3 - 232>
) [as2 . ;e;p (5 | (1 - Z) oxo (Z)] o (_3 _ Z)

s [m . 32Vmh w6323 i sv/7h iV 0 ,
ALV A e 3 + 5 erf — S exp<—8—4s>

_}_14_ _Q3 (_)_ 1_*__1_?2 __QZ
7 S 43 exp(—s 7 S 43 exp S 45

Block and Basu (1976)’s bivariate exponential distribution

Cexp(—ax — By), ifz>y,
flz,y) =
Dexp (—yx —dy), ifz<y,

fora>0,8>0,v>0,0>0,x>0andy>0.

Cexp(—(a—p)z—ps), ifz>y,
Dexp(—(y—d)z—ds), ifz<y,

fle,s—x) =

Note that, because x +y = s, x > y indicates that x > s — x, which is equal to = > §. That
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is, when z € (%,

] x > y. Therefore, when z € [0 } x <.

f(s) = /Osf(w,s \da
_ /O;f(x,sx)dx+ff(x,sx)dx

= /2Dexp(—('y—5):13—5s)daz+/SCeXp(—(a—ﬁ)x—ﬁs)dx
0

= ZEN 1o (< (- 0)5)] + CERE ey (<22 5) —exp (- (a - )
_ Bfa[exp(— —exp< atp )] - [exp (=3) —exp (< (1 +8) 5 )]
Fy(s) — /0 Fo(t)dt

E [81S>b]

= 5(—;’04 [/Osexp(—at)dt—/osexp <—;ﬁt> dt}
—ﬂ /Sexp(—ét)dt—/sexp (—Tt) dt]
=7 Lo 0
~ C [1—exp(—as) 2 . a+p
- s (e ()

2 (e (F25)) s e 9]

5€Oé [/b sexp (—as) ds—/b sexp (—Q;BS)]
_ﬂ {/Oosexp(—és)ds—/oosexp (—7_2{—65> ds}
- b b

¢ 1/°° (—as) das — —* /°° a+p CatB ) (a8
B —a a2 " as exp as)aos (a n 5)2 (a-g,B)b 9 S exp 9 S B S
D |1 (= 4 * (v+9) (y+9) \ ,(v+9)
5 | /51, dsexp (—ds)dds — CFE ﬂﬁ;)b 5 Sexp (— 5 S d 5 S

B(—ja [(122‘“6) oxp (—ab) — (afﬁ)Q <1+ O‘;%) exp <—O‘+ﬁb>]

D [14+06b 4 y+9 v+
2 Pt 1255 (255

+ o
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9x,5(8)

/Sxf(x,s—a:)dac
0

Dexp (—9s) /02 zexp(—(y—0)x)dx

+Cexp (—Bs)[ zexp (— (a—p)z)dx

2

D exp (—9s) /02 xexp(—(y—0)s)dx

+Cexp (—fs) /Os zexp (— (a—p)z)dx

—Cexp (—pfs) /02 zexp(— (y—0)z)dx

exp(—os 3(v=9)
P [T et - yexp (- (3~ 8)a) daly - 9)
exp(—Bs) @B
+C(a§(ﬁ;@2)/o 2(a— B)exp (- (a — B) z) dz (a — B)
exp(—LBs 2(v=9)
S [T st - e (- (1= ) de (3 -9)
D [exp (—0s) —exp(—(d+7)s/2) sexp(—(0+7) 8/2)}
(6 —7)? 2(6 —1)
exp (—fs) —exp (—as)  sexp(—as)
e e
o [exp (—Bs) —exp (—fs — (y—9)s/2) sexp(—fs—(y—9) 8/2)]
(0 —n)2 2(6 — ) ’

243



as foa zexp (—x)dxr =1 —exp(—a) — aexp(—a).

E[X,.,] = /“gm )ds
_ D/ [exp ~55) —exp( (5—{—7)8/2)_sexp(—(5+’y)s/2)]ds

—7)? 2(6 =)
+C’/ [exp 63 —exp( as) sezpf—ﬁozs)] s
o [ et —exp( Chr=G=DyD _sepipe =),

a?(a — ) Bla—pB)? ala—p)?
D [eXp(—M) C2exp(—(0+7)b/2) (24 (0 +)b)exp (—(0 +v)b/2)}
6(0 —v)? (6 =7)2(6+7) (6 +7)2(6 =)
c [exp(—bﬂ) _exp(=bB — (v —9)b/2) }
Bo—7)?2 (O—=7)?2B+(y—9)/2)
(24268 4 b(y — d)) exp (=bB — (v — )b/2)
(6 —7) (28 +~—9)? ’

_ [_ (ba+ 1) exp(— ba) exp(—bB)  exp(—ba) ]

+C

as [, sexp (—as)ds = 12—5’1’ exp (—ab) and [, exp (—as)ds = Lexp (—ab).

Mixtures of independent gamma distributions with real shape parameters

o
flay) = > Cra™'yP Vexp (—yz — 6y)
k=0

for ap >0, B >0, 7% > 0,0 >0,z >0and y > 0.

flx,s —x) ZC’kxO‘k s —2)" Lexp (—0ks) exp (— (9 — O) )

fs(s) = /Sfacs—xdm

= Z Cr exp (—0xs) / 21 (s — 2)* Lexp (= (7 — 0) 2) da,
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as [y 27 (a — 2)? e P?dx = B(a, B)a® P Fy (o o + B; —ap).

fs(s) = Cy,exp (=0ys) B (ak, B) s™ 1 Py (aw; o + Bri (05 — ) )
k=0
> (672 i (5k — Yk leB Oék,,Bk; o 17—
= ZZ( = (o +)Bk)<.il( )3 FFOEH exp (—6ks)
k=0 i=0 L
o0 a Zk
as 1F1 (a,b;2) = 302 ((b))l;k! '
F(s) = fs(t)dt
0
_ i i (an); Ok = )" Ca B (., Br) /S (B o (Z50) di
P (o + Br)i - ! 0
0o 00 ' o % . ks .
_ Z Z (o), ((5}2 Vi) C%-B.'(akaﬁk)(;k(ak+ﬁk+l1)5};1/ (5kt)ak+5k+1*1 exp (—0xt) dt
=0 i—0 o + Bk)z 2 0

_ i i (o); (65 — )" CiB (cuk, Br)

: —y (g + By, + 1, 9x5)
o= (ag =+ By)i-d- (5gk+6k+z

E [51S>b] = /boo sfs(s)ds

(o), (51205—}910&6)%%?!(%75’6)/[) s TPt exp (—6,5) ds

|
(]
(]

i

0 2=0

(an); (O — )" CiB (aus, Br) (- Buti) o1 [T et Bt
e : 0, \CETPETY S 01,8) TP T exp (—018) ds
0 (o + Br)i - 4! k k 6kb(k) P (—0ks)

(aw); Ok — )" CuB (au, Br)
(ak + /Bk)z Sl 5’f:k+ﬁk+i+1

I
Nk
M8

=
Il

01

|
NE
hE

T (a4 B+ i+ 1,0,b)

i

01

Il
o
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gx,s(s) = /boo xf(x,s —x)dx

& S
= Z C exp (—5ks)/ Y% (s — x)ﬁk_l exp (— (vx — 0x) z) dx
k=0 0
= > Crexp(—6ps) B (ag + 1, 8k) s Pk Py (g, + L 0 + Bi + 13 (O — )8)
k=0
— (o +1)i(0k — ) itap+8
k:(); CyB(ak + 1, By) (L4 on+t ,Bk),z! s exp (—0ks)

E[Xi.,] = /b 9x,s(s)ds
= kz:z;CkB ok + 1, By )( (k—i_a)k(—i_ﬁk)ii!) /b e k+ﬁkexp(75ks)d5
01

= Z Z CrB (o +1, B )<Ozli i (1Jé)k (+ /Bk)fyfl)i (J%)~ FertOR) (5,) !

k=0 =0
/ (5k8)i+ak+ﬂk exp (—5k8) ds
by,
= iiCkB (o + 1, B) (o +1); (0p =)' T (i + ax + ﬁk +1,0,b)
k=0 i=0 7 (1 + ok + Br); Z-!(;gwﬁkﬂﬂ

Nagar and Sepulveda-Murillo (2011)’s bivariate confluent hypergeometric dis-

tribution

flz,y) = CaP Yy YF (;8—2—vy),

fla,s—x) = Ca?Hs —2) "1 F1 (o3 B; —s)
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fols) = /0 [, — z)dz
C-1Fi@uﬁ;—sy/ﬁw”4(s—ﬂﬂ“4d$
0

= C-B(p,q) "1 1 Fi(a; 8;—3),

gxs(s) = /0 Cef(a,s — a)de

= (7-1F1(a;6;—8)J/ aP(s —x)? 'dx
0

= C-B(p+1,q) "7 1Fi(a; B;—s)

Mardia (1970)’s bivariate distribution in Eq(5.77) of Balakrishnan and Lai

(2009)
flz,y) = Clax+1)" (By+ 1) (yo +dy+1)",

fora>0,6>0,v>0,§>0,p>0,¢g>0,r>0,z>0and y > 0, provided that p, ¢ and

r are integers.

fles—2) = 0§0<p>a:cz(j)ﬁyk () G d (s = o)

i =0 =0
p q r k
_ CZ p ol Z q Bjyj . Z r k 5m (S x)m ,ykfmwkfm
i=0 ! j=0 J k=0 m=0 k m
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fs(s) = | flz,s—x)da

r

M= 11
M- 1M
wﬁqw

<.
Il
=)
<.
Il
=)
B
Il
o

Fs(s) = /anﬁ

= 055557,ﬁé(;)(ﬁ(;><2>dﬁmm¢’m.Bu+k—4n+1J+wn+1y

gx,s(s) = x- f(z,s —z)dr

Bivariate Pareto distribution with unequal scale parameter
flayy) = Ca® Ny (14 pr+ay)™”,
fora>0,8>0,v>0,p>0,g>0,2>0andy > 0.

flo,s—z) = Cz* ' (s—2)’ (1 +pz+qs—qu)"

= Ozt (s — x)’B_l (I+gs+(p—q)x

= C(1 Vel (s —2) (1
(14¢s) 72" (s—x) +1+q3

-
= Clp-g) e om0 (S )
p—q
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o\ /) \J k) \m 0
.
o \1/) \J k) \m

as [ #* (a — ) ldr = a®tP1B(a,B), and a = s,a =i+ k—m+1,8=m+j + L.

) _
p—qw)

giti+h+2

i+ k+2

k
Z <p> <q> <r><k>ai6j(5m"yk_m'B(i+k—m+2,j+m—|—1)-Si+j+k+2
1/ \Jj/) \k/)\m



i) = [ s —apto
~ Clp-q /Osxa—l((s—x)ﬁl <1p+_qqs+x)_’yd:c

_ 1+qgs\ " _ (g —p)s
_ _ v NCE e 1. B I . .
C(p q) (p_q> S (ﬂ'}a)Q 1(7,@,Oé+6, 1+q8

— _ - S
= C(1+gs) " B(a,8)s" P R <%a;a+ﬁ; ((iJrzl >,

as 3 a" ! (x—i—a))‘(,u—ac)ﬁ_ldm:a’\,uf””*lB(B,y)QFl( ANviB+v;—E) andp=s,v=

1+gs _
7ﬁ ﬁ)a_pqa)‘_ ’Y

e = fsltyt

: =, (Vo) (et
- CBW/O e
=0

_ S - p) / * ot Bkl —(y+k)
— aﬂz;) a+ﬁkk' Ot (14 qt) dt

_ a+3 )(q p) o F k ko1 k:—
CB(a, B)s Z a—l—B)kk'(k—i—oH—B) 2F1 (y+ koat B+ KL+ a+ B+ ks —gs),
asfo 1+B:c)” %gFl(y,u;leu;—Ba),anda:s,u:a+ﬁ+k,ﬁ=q,1/:7+k:.

E [Sls>b] = /boo sfs(s)ds

— / C 1+q5) WB a+52F1 (’Y,Oé 04‘1‘5, q p) >d8
o k ok —k
- C. B (1 — k(g — p) (1+gs)”
c B(aaﬂ)/b +¢s) kZ:O (@ + B) k! ds
N (7 P)* [ aspin —(y+k)
= C-B(a, / s (1+gs)""™ds
> o a+pB—y+1
= C-B(a,B) Wl@ilg %7) : +kb
— (a+ B) k! gtF(y—a—-p0-1)
1
2 <7—|—k,7—0z—6—1;7—a—5;—qb>,
asfoo(aii,;gx ,Bua(pl:p)2F1(VV piv—p+1; Ba)anda—bp—oz—I—B—l—k—l—lB—q,u_
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v+ k.

gx,s(s) = /OS xf(x,s —x)dx
= C’(]D—q)V/L()’:z:’)‘((s—x)ﬁ1 (HC](S—Fx)Vd:c
0

p—q

L (144qs\ " s
= Clr-9 7< q) B (B, a+1) 2k (%a+1;ﬂ+a+1;(q p)>
P4 14g¢s
= CB(a+1,8)s""(1+qs) 2 Fy <7,a+ La+B+1; (zlpﬁ) ,
qs

as f() :uxuil(x + Oé)/\(,u - ':U)/Bildx = a)\MBJrVilB(B) V)2F1(_)\7 v; /8 + v, _%) and H=SsV=

a+17a: 1p‘tqu7A:_,.Y,B:5

E[x.,] = /b gx.5(s)ds

= C-B(a+1,8)

S—

sa+ﬁ(1 +qs) 72 F (7,044_ La+B+1; (q—p)s> ds
1+gs

WE

— (Mrla+Drla=p)* [ arsin k)
= C'.B(Oé-i-laﬁ)kzo (@ + B+ 1)k! /b s (1+¢qs)" R ds
= . - (V) + 1)k(q—p)k . poatB-—-1
ol <7+/€,7—a—ﬁ—1;7_a_5;_1>
qb

Generalized bivariate Pareto distribution

Cxaflyﬁfl
(1+ px + qy + r:vy)‘s’

flz,y) =

fora>0,8>0~v>0,0>0,p>0,¢q>0,r>0,x>0andy>0.

C’:l:o‘_l(s — x)ﬁ_l
(14 pz +q(s — z) + ra(s — x))°
= C2° s — )1 (14+gs+ (p— q+rs)z —rz?)

f(a;,s—x) =

_ Cl‘ail(s o w)ﬁfl(w - ,u,)*‘s(:c _ V)f(s(—l)*é
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_ p— q+rs 1+qs (p—q+rs)? _ p—gtrs 1+4g¢s (p—q+rs)?
where p = + \/ pre and v = = e i e

fs(s) = / fa,s — 2)d
5,8, * a1 8-1 1 s 1 s
= C(-1)"°u 2 (s—x) T (1——2)°(1 — —x) %dzx
0 K v
= C(_l)_éu_éy_63a+ﬁ_lB(a7B)Fl <Oé, (57 67 a+ /37 i: j) 3

as [y 2 Y(a— )71 (1 — pa) P(1 — va) Az = a®P71B(a, B)Fi (o, p, A, o+ B; pa, va), and
CLZS,O[:CK,B:ﬁ,,U,:* = 7p_5)‘_5

gx,s(s) = /Smf(x,s—x)dx
- / Ca® (s — )z — )"z — ) (~1)Pda

s S

= C(-1)(w)?Bla+1,5)s a+ﬂF1<a+155a+5+1M,y>.
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Appendix E

R codes for Chapter 3

rm(list=1s())

library(insuranceData)

library(stats4)

data("AutoClaims")
state<-as.character (unique (AutoClaims$STATE))
state<-sort(state)

AC<-AutoClaims

data=NULL
A=NULL

B=NULL

C=NULL
D=NULL
N_male=NULL
N_female=NULL
A.SD <- NULL
B.SD <- NULL
C.SD <- NULL

D.SD <- NULL
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f=function (parl)
{
tt=1.0e20
if (par1>0&par2>0) tt=-n*log(parl)-n*parlx*log(par2)+(pari+1)*sum(log(x))
if (is.na(tt)) tt=1.0e20
if (abs(tt)>1.0e20) tt=1.0e20

return(tt)}

par2.min=NULL
bootstrap <- function(data,n)
{
size <- round(length(data)*0.9)
for(i in 1:n){
bootres <- sample(data,size,replace = FALSE)
par2.min <- c(par2.min, min(bootres))
}
par2.sd <- sd(par2.min)

return(par2.sd)

for (i in state){
data<-AC[AC$STATE==1i,]
male <- datal[data$GENDER=="M’,]
n <- length(male$PAID)
x <- male$PAID
N_male <- c(N_male, n)
par2<-min(male$PAID)
est.m <- mle(f,start = list(par1=0.1))

parl <- est.m@coef [1][[1]]
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parl.sd <-summary(est.m)@coef [2]
par2.sd <- bootstrap(male$PAID,1000)

B <- c(B, round(par2))

A <- c(A, parl)

A.SD <- c(A.SD, parl.sd)

B.SD <- c(B.SD, par2.sd)

female <- data[data$GENDER=="F’,]

n <- length(female$PAID)
x<-female$PAID

N_female <- c(N_female, n)
par2<-min(female$PAID)

est.f <- mle(f,start = list(par1=0.1))
parl <- est.f@coef[1][[1]]

parl.sd <-summary(est.f)@Qcoef [2]
par2.sd <- bootstrap(female$PAID,1000)
D <- c(D, round(par2))

C <- c(C, parl)

C.SD <- c¢(C.SD, paril.sd)

D.SD <- c(D.SD, par2.sd)

male_tab <- matrix(c(A,B,N_male,A.SD,B.SD),ncol=5)

rownames (male_tab)<-paste(’male’,1:13,sep="_")

female_tab <- matrix(c(C,D,N_female, C.SD,D.SD),ncol=5)

rownames (female_tab) <- paste(’female’,1:13,sep = ’_’)

result <- rbind(female_tab, male_tab)

colnames(result) <- c(paste(’para.’,1:2,sep = ’_’),’sample_size’,’para_1.sd’,’para_2.sd’)
output<-result[result[, ’sample_size’]>10,]

output

write.csv(output,’chapter3_application_table.csv’)
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Appendix F

R codes for Chapter 4

rm(list=1s())

install.packages(’survival’)

install.packages(’matlib’)

library(survival)
library(rgl)

library(matlib)

data(colon)

colnames(colon)
colcancer<-data.frame(colon[,c(’nodes’,’surg’,’time’)])
colcancer<- colcancer[complete.cases(colcancer),]
colcancer<-colcancer[colcancer$nodes>0,]

colcancer<-colcancer[colcancer$nodes<ii,]

nrow(colcancer[colcancer$nodes==0,])

nrow(colcancer[colcancer$nodes>11,])
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node <- as.numeric(unique(colcancer$nodes))

node<-sort (node)

f=function (p)
{
pari=p[1]
par2=p[2]
tt=1.0e20
if (par1>0&par2>0)
{tt= -n*log(parl) - parl*nxlog(par2) - (parl-1)*sum(log(x))
+ par2”parl*sum(x~parl)}
if (is.na(tt)) tt=1.0e20
if (abs(tt)>1.0e20) tt=1.0e20

return(tt)}

data=NULL
A=NULL
B=NULL
C=NULL
D=NULL
N_short=NULL
N_long=NULL
A.SD <- NULL
B.SD <- NULL
C.SD <- NULL

D.SD <- NULL

for (i in node){

data<-colcancer[colcancer$nodes==i,]
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x<-data[data$surg==0, "time"]

n <- length(x)

N_short <- c(N_short, n)

est.s <- optim(fn=f,par=c(1l,1) ,hessian=TRUE)
parl <- est.s$par[1]

par2 <- est.s$par[2]

mm <- est.s$hessian

parl.sd <- (Ginv(mm,fractions TRUE) [1,1])**x(1/2)

TRUE) [2,2])**(1/2)

par2.sd <- (Ginv(mm,fractions
B <- c(B, par2)

A <- c(4, parl)

A.SD <- c(A.SD, parl.sd)

B.SD <- c(B.SD, par2.sd)
x<-data[data$surg==1, "time"]
n <- length(x)

N_long <- c(N_long, n)

est.l <- optim(fn=f,par=c(1,1) ,hessian=TRUE)
parl <- est.l$par[1]

par2 <- est.l$par[2]

11<-est.l$hessian

parl.sd <- (Ginv(1ll,fractions = TRUE) [1,1])**(1/2)

par2.sd <- (Ginv(ll,fractions = TRUE) [2,2])**(1/2)
D <- c(D, par2)

C <- c(C, parl)

C.SD <- c¢(C.SD, parl.sd)

D.SD <- c(D.SD, par2.sd)

short_tab <- matrix(c(A,B,A.SD,B.SD,N_short) ,ncol=5)

rownames (short_tab)<-paste(’short’,1:10,sep="_")
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long_tab <- matrix(c(C,D,C.SD,D.SD,N_long) ,ncol=5)

rownames (long_tab) <- paste(’long’,1:10,sep = ’_’)

result <- rbind(short_tab, long_tab)

colnames(result) <- c(paste(’par’,1:2,sep = ’_’),
paste(’par.sd.’,1:2,sep = ’_’),’sample_size’)

result

write.csv(result,’chapter4_application_table.csv’)
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Appendix G

R codes for Chapter 5

x=c(1,0,1,1,1,0,1,3,1,1,1,3,0,1,1,1,3,0,1,1,1,3,1,1,0,0)
x=3-%
y=c(2,0,1,2,1,1,1,2,1,1,2,3,1,2,1,3,3,1,1,2,0,0,2,1,1,1)
y=3-y

n=26

a=c(1,0,1,0,3,3,1,1,3)
a=3-a
b=c(2,0,1,1,2,3,3,0,0)
b=3-b

obs=c(6,1,8,5,1,2,1,1,1)

ee0=0
eelA=0
eeB=0

eeC=0
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eel=0

ee2=0

ee3=0

ee4=0

eeb=0

ee6=0

ee7=0

for (j in 1:9)
{xx=alj]

yy=b[j]

#indep poisson

fO=function (p)

{a1=p[1]

a2=p[2]

tt=1.0e20

if (a1>0&a2>0)

{tt=0

for (i in 1:n)
{tt=tt-log(dpois(x[i],lambda=al)*dpois(y[i],lambda=a2))}}
if (is.na(tt)|labs(tt)>1.0e20) tt=1.0e20

return(tt)}

est0=nlm(£0,p=c(1,1))

#cat ("Indep Poisson ",estO$minimum,"\n")

al=estO$estimate[1]

a2=est0$estimate[2]
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e0=n*dpois(xx,lambda=al)*dpois(yy,lambda=a2)

#model A

fA=function (p)

{a1=p[1]

a2=p[2]

a3=p[3]

tt=1.0e20

if (a1>0&a2>0&a3>0)

{tt=0

for (i in 1:n)

{k=seq(0,min(x[i],y[i]))
tt=tt-log(sum(dpois(x[i]-k,lambda=al)*dpois(y[i]-k,lambda=a2)*dpois(k,lambda=a3)))}}
if (is.na(tt)|labs(tt)>1.0e20) tt=1.0e20

return(tt)}

estA=nlm(fA,p=c(1,1,1))

#cat ("model A ",estA$minimum,"\n")

al=estA$estimate[1]
a2=estA$estimate[2]
a3=estA$estimate[3]
k=seq(0,min(xx,yy))

eA=n*sum(dpois (xx-k,lambda=al)*dpois(yy-k,lambda=a2)*dpois (k,lambda=a3))

#model B
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fB=

function (p)

{a1=p[1]

a2=p[2]

a3=p[3]

tt=

if

1.0e20

(a1>0&a2>0&a3>0)

{tt=0

for (i in 1:n)

{ttt=dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)*(1-ppois(max(x[i],y[i]),lambda=a3))

if

if

if

if

if

if

if

if

tt=

if

(y[il>x[i]) ttt=ttt+dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(y[i],lambda=a3)
(y[il>x[i]) ttt=ttt+dpois(x[i],lambda=al)*(1-ppois(y[i],lambda=a2))*dpois(y[i],lambda=a3
(x[i]>y[i]) ttt=ttt+dpois(x[i],lambda=al)*dpois(y[il,lambda=a2)*dpois(x[i],lambda=a3)
(x[i]==y[i]) ttt=ttt+dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(y[i],lambda=a3)
(x[i]l==y[i]) {ttt=ttt+
dpois(x[i],lambda=al)*(1-ppois(y[i],lambda=a2))*dpois(x[i],lambda=a3)}
(x[i1>y[i]) {ttt=ttt+
(1-ppois(x[i],lambda=a1))*dpois(y[i],lambda=a2)*dpois(x[i],lambda=a3)}
(x[i]l==y[i]) {ttt=ttt+
(1-ppois(x[i],lambda=al))*dpois(x[i],lambda=a2)*dpois(x[i],lambda=a3)2}
(x[i]l==y[i]) {ttt=ttt+
(1-ppois(x[i],lambda=al))*(1-ppois(x[i],lambda=a2))*dpois(x[i],lambda=a3)}
tt-log(ttt) }}

(is.na(tt) | labs(tt)>1.0e20) tt=1.0e20

return(tt)}

estB=nlm(fB,p=c(1,1,1))

#cat("model B ",estB$minimum,"\n")

al=

a2=

estB$estimate[1]

estB$estimate[2]
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a3=estB$estimate[3]

ttt=dpois(xx,lambda=al) *dpois(yy,lambda=a2)*(1-ppois(max(xx,yy),lambda=a3))

if (yy>xx) ttt=ttt+dpois(xx,lambda=al)*dpois(yy,lambda=a2)*dpois(yy,lambda=a3)

if (yy>xx) ttt=ttt+dpois(xx,lambda=al)*(1-ppois(yy,lambda=a2))x*dpois(yy,lambda=a3)

if (xx>yy) ttt=ttt+dpois(xx,lambda=al)*dpois(yy,lambda=a2)*dpois(xx,lambda=a3)

if (xx==yy) ttt=ttt+dpois(xx,lambda=al)*dpois(yy,lambda=a2)*dpois(yy,lambda=a3)

if (xx==yy) ttt=ttt+dpois(xx,lambda=al)*(1l-ppois(yy,lambda=a2))*dpois(xx,lambda=a3)

if (xx>yy) ttt=ttt+(l-ppois(xx,lambda=al))*dpois(yy,lambda=a2)x*dpois(xx,lambda=a3)

if (xx==yy) ttt=ttt+(1-ppois(xx,lambda=al))*dpois(xx,lambda=a2)*dpois(xx,lambda=a3)

if (xx==yy) ttt=ttt+(l-ppois(xx,lambda=al))*(1-ppois(xx,lambda=a2))*dpois(xx,lambda=a3)

eB=nxttt

#model C

fC=function (p)

{a1=p[1]

a2=p[2]

a3=p[3]

tt=1.0e20

if (a1>0&a2>0&a3>0)

{tt=0

for (i in 1:n)
{ttt=dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)*ppois(min(x[i],y[i])-1,lambda=a3)
if (y[il<x[i]) ttt=ttt+dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(y[i],lambda=a3)

if (y[il<x[i]) ttt=ttt+dpois(x[i],lambda=al)*ppois(y[i]l-1,lambda=a2)*dpois(y[i],lambda=a3)

Hh

if (x[il<y[i]) ttt=ttt+dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(x[i],lambda=a3)
if (x[il==y[i]) ttt=ttt+dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(y[i],lambda=a3)

if (x[il==y[i]) ttt=ttt+dpois(x[i],lambda=al)*ppois(y[i]-1,lambda=a2)*dpois(x[i],lambda=a3)
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if (x[il<y[i]l) ttt=ttt+ppois(x[i]l-1,lambda=al)*dpois(y[i],lambda=a2)*dpois(x[i],lambda=a3)

if (x[il==y[i]) ttt=ttt+ppois(x[i]-1,lambda=al)*dpois(x[i],lambda=a2)*dpois(x[i],lambda=a3)

if (x[i]l==y[i]) {ttt=ttt+
ppois(x[il-1,lambda=al)*ppois(x[i]-1,lambda=a2)*dpois(x[i],lambda=a3)}

tt=tt-log(ttt)}}

if (is.na(tt)|labs(tt)>1.0e20) tt=1.0e20

return(tt)}

estC=nlm(fC,p=c(1,1,1))

#cat("model C ",estC$minimum,"\n")

al=estC$estimate[1]

a2=estC$estimate [2]

a3=estC$estimate[3]
ttt=dpois(xx,lambda=al)*dpois(yy,lambda=a2)*ppois(min(xx,yy)-1,lambda=a3)

if (yy<xx) ttt=ttt+dpois(xx,lambda=al)*dpois(yy,lambda=a2)*dpois(yy,lambda=a3)

if (yy<xzx) ttt=ttt+dpois(xx,lambda=al)*ppois(yy-1,lambda=a2)x*dpois(yy,lambda=a3)
if (xx<yy) ttt=ttt+dpois(xx,lambda=al)*dpois(yy,lambda=a2)*dpois(xx,lambda=a3)

if (xx==yy) ttt=ttt+dpois(xx,lambda=al)*dpois(yy,lambda=a2)*dpois(yy,lambda=a3)
if (xx==yy) ttt=ttt+dpois(xx,lambda=al)*ppois(yy-1,lambda=a2)*dpois(xx,lambda=a3)
if (xx<yy) ttt=ttt+ppois(xx-1,lambda=al)*dpois(yy,lambda=a2)*dpois(xx,lambda=a3)
if (xx==yy) ttt=ttt+ppois(xx-1,lambda=al)*dpois(xx,lambda=a2)*dpois(xx,lambda=a3)
if (xx==yy) ttt=ttt+ppois(xx-1,lambda=al)*ppois(xx-1,lambda=a2)*dpois(xx,lambda=a3)

eC=n*ttt

#case 1
f2=function (p)

{a1=p[1]
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a2=p[2]

a3=p[3]

tt=1.0e20

if (a1>0&a2>0&a3>0)

{tt=0

for (i in 1:n)

{if (x[i1>0) k=seq(1,x[i],1)

if (x[1]1==0&y[i]==0) tt=tt-log(dpois(0,lambda=al)*dpois(0,lambda=a3))

if (x[i]1>0&y[i]==0)

{ttt=dpois(x[i],lambda=al)*dpois(0,lambda=a3)
ttt=ttt+sum(dpois(x[i]-k,lambda=al) *dpois(0,lambda=a2) *dpois(k,lambda=a3))
tt=tt-log(ttt)}

if (x[1]1>0&y[i]1>0)
tt=tt-log(sum(dpois(x[i]-k,lambda=al)*dpois(y[i]/k,lambda=a2)*dpois(k,lambda=a3)))
1}

if (is.na(tt)|labs(tt)>1.0e20) tt=1.0e20

return(tt)}

tt=1.0e20

for (i1 in 1:5) for (i2 in 1:5) for (i3 in 1:5)
{est=nlm(£f2,p=c(i1,i2,1i3))

if (est$minimum<tt)

{tt=est$minimum

ee=est}}

est2=ee

#cat("Case 1 ",est2$minimum, "\n")

al=est2$estimate[1]
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a2=est2$estimate[2]

a3=est2$estimate[3]

ttt=NA

if (xx>0) k=seq(l,xx,1)

if (xx==0&yy==0) ttt=dpois(0,lambda=al)*dpois(0,lambda=a3)

if (xx>0&yy==0)

{ttt=dpois(xx,lambda=al)*dpois(0,lambda=a3)
ttt=ttt+sum(dpois(xx-k,lambda=al)*dpois(0,lambda=a2)*dpois(k,lambda=a3))}

if (xx>0&yy>0) ttt=sum(dpois(xx-k,lambda=al)*dpois(yy/k,lambda=a2)*dpois(k,lambda=a3))

e2=nxttt

#case 4

k=seq(1,100,1)

fll=function (p)

{a1=p[1]

a2=p[2]

a3=p[3]

tt=1.0e20

if (a1>0&a2>0&a3>0)

{tt=0

for (i in 1:n)

{if (x[i]==0&y[i]==0)
{ttt=dpois(0,lambda=al)*dpois(0,lambda=a2)*(1-dpois(0,lambda=a3))+dpois(0,lambda=a3)
tt=tt-log(ttt)}

if (x[i]1>0&y[i]==0)
{ttt=dpois(0,lambda=a2)*sum(dpois(x[i]/k,lambda=al)*dpois(k,lambda=a3))
tt=tt-log(ttt)}

if (x[11==0&y[i]1>0)
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{ttt=dpois(0,lambda=al)*sum(dpois(y[i]/k,lambda=a2)*dpois(k,lambda=a3))

tt=tt-log(ttt)}

if (x[i]1>0&y[i1>0)
{tt=tt-log(sum(dpois(x[i]/k,lambda=al)*dpois(y[i]/k,lambda=a2)*dpois(k,lambda=a3)))}}}

if (is.na(tt)|labs(tt)>1.0e20) tt=1.0e20

return(tt)}

tt=1.0e20

for (il in 1:5) for (i2 in 1:5) for (i3 in 1:5)
{est=nlm(£f11,p=c(i1,i2,i3))

if (est$minimum<tt)

{tt=est$minimum

ee=est}}

estll=ee

#cat("Case 4 ",est11$minimum,"\n")

al=estll$estimate[1]

a2=estll$estimate[2]

a3=estll$estimate[3]

if (xx==0&yy==0)
{ttt=dpois(0,lambda=al)*dpois(0,lambda=a2)*(1-dpois(0,lambda=a3))+dpois(0,lambda=a3)}

if (xx>0&yy==0) ttt=dpois(0,lambda=a2)*sum(dpois(xx/k,lambda=al)*dpois(k,lambda=a3))

if (xx==0&yy>0) ttt=dpois(0,lambda=al)*sum(dpois(yy/k,lambda=a2)*dpois(k,lambda=a3))

if (xx>0&yy>0) ttt=sum(dpois(xx/k,lambda=al)*dpois(yy/k,lambda=a2)*dpois(k,lambda=a3))

ell=n*xttt
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#case 5

f5=function (p)

{a1=p[1]

a2=p[2]

a3=p[3]

tt=1.0e20

if (a1>0&a2>0&a3>0)

{tt=0

for (i in 1:n)

{k=seq(1,100,1)

if (x[11==0&y[i]==0)
{ttt=dpois(0,lambda=a3)+(1-dpois(0,lambda=a3))*dpois(0,lambda=al)*dpois(0,lambda=a2)
tt=tt-log(ttt)}

if (x[i]1>0&y[i]==0)

{ttt=dpois(0,lambda=a2)*sum(dpois(x[i] /k,lambda=al)*dpois(k,lambda=a3))
tt=tt-log(ttt)}

if (x[11==0&y[i]1>0)
{ttt=dpois(0,lambda=al)*dpois(y[i],lambda=a2)*(1-ppois(y[i]-1,lambda=a3))
ttt=ttt+dpois(0,lambda=al)*(1-ppois(y[i],lambda=a2))*dpois(y[i],lambda=a3)
tt=tt-log(ttt)}

if (x[i]>0&y[i]1>0)

{k=y[i]+seq(1,100)
ttt=sum(dpois(y[i],lambda=a2)*dpois(k,lambda=a3)*dpois(x[i]/k,lambda=al))
ttt=ttt+(1-ppois(y[i]l-1,lambda=a2))*dpois(y[i],lambda=a3)*dpois(x[i]/y[i],lambda=al)
tt=tt-log(ttt)}}}

if (is.na(tt)|labs(tt)>1.0e20) tt=1.0e20

return(tt)}

268



tt=1.0e20

for (i1 in 1:5) for (i2 in 1:5) for (i3 in 1:5)
{est=nlm(£f5,p=c(il1,i2,i3))

if (est$minimum<tt)

{tt=est$minimum

ee=estl}}

estb=ee

#cat("Case 5 ",estb5$minimum, "\n")

al=estb$estimate[1]

a2=estb5$estimate [2]

a3=estb$estimate [3]

k=seq(1,100,1)

if (xx==0&yy==0)
{ttt=dpois(0,lambda=a3)+(1-dpois(0,lambda=a3))*dpois(0,lambda=al)*dpois(0,lambda=a2)}

if (xx>0&yy==0) ttt=dpois(0,lambda=a2)*sum(dpois(xx/k,lambda=al)*dpois(k,lambda=a3))

if (xx==0&yy>0)

{ttt=dpois(0,lambda=al) *dpois(yy, lambda=a2)*(1-ppois(yy-1,lambda=a3))

ttt=ttt+dpois(0,lambda=al)*(1-ppois(yy,lambda=a2))*dpois(yy,lambda=a3)}

if (xx>0&yy>0)

{k=yy+seq(1,100)

ttt=sum(dpois(yy,lambda=a2)*dpois(k,lambda=a3)*dpois(xx/k,lambda=al))

ttt=ttt+(1l-ppois(yy-1,lambda=a2))*dpois(yy,lambda=a3)*dpois(xx/yy,lambda=al)}

eb=nxttt
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#case 6

f6=function (p)

{a1=p[1]

a2=p[2]

a3=p[3]

tt=1.0e20

if (a1>0&a2>0&a3>0)

{tt=0

for (i in 1:n)

{if (x[i]==0&y[i]==0)

{ttt=dpois(0,lambda=a2)*dpois(0,lambda=a3)

tt=tt-log(ttt)}

if (x[1]==0&y[i]>0)
{ttt=dpois(0,lambda=al)*dpois(y[i],lambda=a2)*(ppois(y[i],lambda=a3)-dpois(0,lambda=a3))
ttt=ttt+dpois(0,lambda=a3)*dpois(y[i],lambda=a2)
ttt=ttt+dpois(0,lambda=al)*dpois(y[i],lambda=a3)*ppois(y[i]-1,lambda=a2)
tt=tt-log(ttt)}

if (x[i]1>0&y[i]1>0)

{ttt=0

if (y[i1>1) k=seq(1, (y[i]l-1))

if (y[il>1) ttt=sum(dpois(k,lambda=a3)*dpois(y[i],lambda=a2)*dpois(x[i]/k,lambda=al))
ttt=ttt+dpois(x[i]/y[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(y[i],lambda=a3)
ttt=ttt+ppois(y[i]l-1,lambda=a2)*dpois(y[i],lambda=a3)*dpois(x[i]/y[i],lambda=al)
tt=tt-log(ttt)}}}

if (is.na(tt)|labs(tt)>1.0e20) tt=1.0e20

return(tt)}

tt=1.0e20

for (il in 1:5) for (i2 in 1:5) for (i3 in 1:5)
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{est=nlm(£f6,p=c(i1,i2,i3))
if (est$minimum<tt)
{tt=est$minimum

ee=est}}

estb=ee

#cat("Case 6 ",est6$minimum, "\n")

al=est6$estimate[1]

a2=est6$estimate[2]

a3=est6$estimate [3]

ttt=NA

if (xx==0&yy==0) ttt=dpois(0,lambda=a2)*dpois(0,lambda=a3)

if (xx==0&yy>0)
{ttt=dpois(0,lambda=al)*dpois(yy,lambda=a2)*(ppois(yy,lambda=a3)-dpois(0,lambda=a3))
ttt=ttt+dpois(0,lambda=a3)*dpois(yy,lambda=a2)
ttt=ttt+dpois(0,lambda=al)*dpois(yy,lambda=a3)*ppois(yy-1,lambda=a2)}

if (xx>0&yy>0)

{ttt=0

if (yy>1) k=seq(l, (yy-1))

if (yy>1) ttt=sum(dpois(k,lambda=a3)*dpois(yy,lambda=a2)*dpois(xx/k,lambda=al))
ttt=ttt+dpois(xx/yy,lambda=al)*dpois(yy,lambda=a2)*dpois(yy,lambda=a3)
ttt=ttt+ppois(yy-1,lambda=a2)*dpois(yy,lambda=a3)*dpois(xx/yy,lambda=al)}

eb=n*ttt

#case 2
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f2=function (p)

{a1=p[1]

a2=p[2]

a3=p[3]

tt=1.0e20

if (a1>0&a2>0&a3>0)

{tt=0

for (i in 1:n)

{ttt=0

if (x[1]-y[i]-1>0) k=seq(y[il+1,x[i],1)

if (x[i1-y[i1-1>0)
{ttt=sum(dpois(x[i]-k,lambda=al)*dpois(y[i],lambda=a2)*dpois(k,lambda=a3))}

ttt=ttt+dpois(x[i]l-y[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(y[i],lambda=a3)

ttt=ttt+dpois(x[il-y[i],lambda=al)*dpois(y[i],lambda=a3)*(1-ppois(y[i],lambda=a2))

tt=tt-log(ttt)}}

if (is.na(tt)|labs(tt)>1.0e20) tt=1.0e20

return(tt)}

tt=1.0e20

for (i1 in 1:5) for (i2 in 1:5) for (i3 in 1:5)
{est=nlm(£f2,p=c(i1,i2,1i3))

if (est$minimum<tt)

{tt=est$minimum

ee=est}}

est2=ee

#cat("Case 2 ",est4$minimum, "\n")
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al=est2$estimate[1]

a2=est2$estimate[2]

a3=est2$estimate [3]

ttt=0

if (xx-yy-1>0) k=seq(yy+1,xx,1)

if (xx-yy-1>0) ttt=sum(dpois(xx-k,lambda=al)*dpois(yy,lambda=a2)*dpois(k,lambda=a3))
ttt=ttt+dpois(xx-yy,lambda=al)*dpois(yy,lambda=a2)*dpois(yy,lambda=a3)
ttt=ttt+dpois(xx-yy,lambda=al)*dpois(yy,lambda=a3)*(1-ppois(yy,lambda=a2))

e2=nx*ttt

#case 7
f7=function (p)
{a1=p[1]
a2=p[2]
a3=p[3]
tt=1.0e20
if (a1>0&a2>0&a3>0)
{tt=0
for (i in 1:n)
{ttt=0
if (x[i]+1<=y[i]-1)

{ttt=dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)

* (ppois(y[i]-1,lambda=a3)-ppois(x[i]+1,lambda=a3))}

if (y[il>x[i]) ttt=ttt+dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(y[i],lambda=a3)
if (y[il>x[i]) ttt=ttt+dpois(x[i],lambda=al)*ppois(y[i]l-1,lambda=a2)*dpois(y[i],lambda=a3)
if (x[il<y[il) ttt=ttt+dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(x[i],lambda=a3)
if (x[il==y[i]) ttt=ttt+dpois(x[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(y[i],lambda=a3)
if (x[il==y[il) ttt=ttt+dpois(x[i],lambda=al)*ppois(y[i]l-1,lambda=a2)*dpois(x[i],lambda=a3)

if (x[il<y[iD)
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{ttt=ttt+(1-ppois(x[i],lambda=al))*dpois(y[i],lambda=a2)*dpois(x[i],lambda=a3)}
if (x[il==y[il)
{ttt=ttt+(1-ppois(x[i],lambda=al))*dpois(x[i],lambda=a2)*dpois(x[i],lambda=a3)}
if (x[il==y[iD)
{ttt=ttt+(1-ppois(x[i],lambda=al))*ppois(x[i]-1,lambda=a2)*dpois(x[i],lambda=a3)}
tt=tt-log(ttt)}}
if (is.na(tt)|labs(tt)>1.0e20) tt=1.0e20

return(tt)}

tt=1.0e20

for (i1 in 1:5) for (i2 in 1:5) for (i3 in 1:5)
{est=n1lm(£f7,p=c(i1,i2,i3))

if (est$minimum<tt)

{tt=est$minimum

ee=est}}

est7=ee

#cat("Case 7 ",est7$minimum, "\n")

al=est7$estimate[1]

a2=est7$estimate[2]

a3=est7$estimate[3]

ttt=NA

if (xx+1<=yy-1)
{ttt=dpois(xx,lambda=al)*dpois(yy,lambda=a2)*(ppois(yy-1,lambda=a3)-ppois(xx+1,lambda=a3).

if (yy>xx) ttt=ttt+dpois(xx,lambda=al)*dpois(yy,lambda=a2)*dpois(yy,lambda=a3)

if (yy>xx) ttt=ttt+dpois(xx,lambda=al)*ppois(yy-1,lambda=a2)*dpois(yy,lambda=a3)

if (xx<yy) ttt=ttt+dpois(xx,lambda=al)*dpois(yy,lambda=a2)*dpois(xx,lambda=a3)
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if (xx==yy) ttt=ttt+dpois(xx,lambda=al)*dpois(yy,lambda=a2)*dpois(yy,lambda=a3)

if (xx==yy) ttt=ttt+dpois(xx,lambda=al)*ppois(yy-1,lambda=a2)*dpois(xx,lambda=a3)

if (xx<yy) ttt=ttt+(1-ppois(xx,lambda=al))x*dpois(yy,lambda=a2)*dpois(xx,lambda=a3)

if (xx==yy) ttt=ttt+(l-ppois(xx,lambda=al))*dpois(xx,lambda=a2)*dpois(xx,lambda=a3)
if (xx==yy) ttt=ttt+(l-ppois(xx,lambda=al))*ppois(xx-1,lambda=a2)*dpois(xx,lambda=a3)

e7=n*ttt

#case 3

f3=function (p)

{a1=p[1]

a2=p[2]

a3=p[3]

tt=1.0e20

if (a1>0&a2>0&a3>0)

{tt=0

for (i in 1:n)

{ttt=0

if (min(x[i],y[i]-1)>=0) k=seq(0,min(x[i],y[i]-1),1)

if (min(x[i],y[i]l-1)>=0)
{ttt=sum(dpois(x[i]-k,lambda=al)*dpois(yy,lambda=a2)*dpois(k,lambda=a3))}

ttt=ttt+dpois(x[i]l-y[i],lambda=al)*dpois(y[i],lambda=a2)*dpois(y[i],lambda=a3)

ttt=ttt+dpois(x[i]l-y[i],lambda=al)*dpois(y[i],lambda=a3)*ppois(y[i]l-1,lambda=a2)

tt=tt-log(ttt)}}

if (is.na(tt)|labs(tt)>1.0e20) tt=1.0e20

return(tt)}

tt=1.0e20
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for (i1 in 1:5) for (i2 in 1:5) for (i3 in 1:5)
{est=nlm(£3,p=c(i1,i2,i3))

if (est$minimum<tt)

{tt=est$minimum

ee=est}}

est3=ee

#cat("Case 3 ",est3$minimum, "\n")

al=est3$estimate[1]

a2=est3$estimate [2]

a3=est3$estimate[3]

ttt=0

if (min(xx,yy-1)>=0) k=seq(0,min(xx,yy-1),1)

if (min(xx,yy-1)>=0) ttt=sum(dpois(xx-k,lambda=al)*dpois(yy,lambda=a2)*dpois(k,lambda=a3))
ttt=ttt+dpois(xx-yy,lambda=al) *dpois(yy,lambda=a2)*dpois(yy,lambda=a3)
ttt=ttt+dpois(xx-yy,lambda=al)*dpois(yy,lambda=a3)*ppois(yy-1,lambda=a2)

e3=nxttt

cat(obs[j]," & ",formatC(e0,digits=1,format="£f")," & ",
formatC(eA,digits=1,format="£")," & ",
formatC(eB,digits=1,format="£")," & ",
formatC(eC,digits=1,format="£f")," & ",
formatC(el,digits=1,format="£")," & ",
formatC(e2,digits=1,format="£")," & ",
formatC(e3,digits=1,format="£")," & ",
#formatC(e4,digits=1,format="£f")," & ",

formatC(eb,digits=1,format="£")," & ",
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formatC(e6,digits=1,format="£")," & ",
formatC(e7,digits=1,format="£f"),

H\\\\ n s ll\nll )

if (!is.na(e0)) eeO=eeO+(obs[j]l-e0)**2/e0
if (!is.na(eA)) eeA=eeA+(obs[jl-eA)*x2/eA
if (!is.na(eB)) eeB=eeB+(obs[j]-eB)**2/eB
if (lis.na(eC)) eeC=eeC+(obs[j]-eC)**2/eC
if (!is.na(el)) eel=eel+(obs[jl-el)*x2/el
if (!is.na(e2)) ee2=ee2+(obs[j]-e2)**2/e2
if (!is.na(e3)) ee3=ee3+(obs[jl-e3)*x2/e3
#if (lis.na(e4)) eed=eed+(obs[j]-ed)**2/ed
if ('is.na(e5)) eeb5=ee5+(obs[j]-eb5)**2/eb
if (!is.na(e6)) eeb=eeb+(obs[jl-eb)**2/eb
if ('is.na(e7)) eeT=eeT7+(obs[jl-e7)**2/e7

by

cat(formatC(ee0,digits=1,format="£")," & ",
formatC(eeA,digits=1,format="£f")," & ",
formatC(eeB,digits=1,format="£f")," & ",
formatC(eeC,digits=1,format="£")," & ",
formatC(eel,digits=1,format="£f")," & ",
formatC(ee2,digits=1,format="£f")," & ",
formatC(ee3,digits=1,format="£")," & ",
#formatC(ee4,digits=1,format="f"),“ & ",
formatC(eeb,digits=1,format="£f")," & ",
formatC(ee6,digits=1,format="£")," & ",
formatC(ee7,digits=1,format="£f"),

ll\\\\ n s ll\nll )
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