
Cloud Based Collaborative Software Development:
A Review, Gap Analysis and Future Directions

Stanley Ewenike, Elhadj Benkhelifa and Claude Chibelushi

School of Computing and Digital Technologies,
Cloud Computing and Applications Research Lab

Staffordshire University, Stoke of Trent, UK.
Stanley.Ewenike@research.staffs.ac.uk, (e.benkhelifa, cc.chibelushi)@staffs.ac.uk.

Abstract—Organizations who have transitioned their
development environments to the Cloud have started realizing
benefits such as: cost reduction in hardware; relatively
accelerated development process via reduction of time and effort
to set up development and testing environments; unified
management; service and functionality expansion; on-demand
provisioning and access to resources and development
environments. These benefits represent only a fraction of the full
potential that could be achieved via leveraging Cloud Computing
for the collaborative software development process. Related
efforts in this area have been mainly in the areas of:
asynchronous collaboration; collaboration in isolated aspects of
the Software Development process, such as coding activities; use
of open-source tools for contributing, improving, and managing
code, etcetera. Although these efforts represent valid
contributions and important enablers, they are still missing
important aspects which enable a more holistic process, with
solid theoretical foundation. This paper reviews this research
area, in order to better assess factors and gaps creating the need
to enhance the collaborative software development process in the
Cloud, to better meet the pressure to collaboratively create better
cloud-agnostic applications.

Keywords—Collaborative software development, Cloud, gap
analysis, collaboration

I. INTRODUCTION (HEADING 1)

A review of related literature reveals a variety of problems
and factors which act as barriers to collaboration in the
collaborative software development process [17], [18], [22].
These have been broadly grouped into the following
categories geographical factors, sociocultural and linguistic
factors, temporal factors, management and process factors,
infrastructural/technological factors, organizational factors and
trust. These problems reveal a need for better and more
cohesive collaboration within the collaborative software
development process, with some solutions been suggested
[21], [23]–[25]. Among some of the suggested ways of
addressing the barriers to collaboration in software
development is leveraging benefits and opportunities offered
by emerging paradigms, namely, the Cloud Computing
paradigm.

The prospect of leveraging the Cloud computing paradigm
within the structured collaborative software development
process, presents a research area of possible synergies yet to
be fully exploited[1]. The real-time collaboration and

efficiency opportunities offered by the Cloud promises close-
knit collaboration for Cloud-based processes[2], [3]. Increased
adoption of Cloud applications and servicesintroduces a
noticeable shift in the way computing resources and
applications are provisioned, accessed, utilized, stored and
managed; and necessitates the need to explore and adapt
present the collaborative software development process for the
Cloud[4]–[6]. Accessing and housing software applications in
the Cloud, implies a need for change in the way these
applications are engineered[7], [8]. The inherent capabilities
of the Cloud hold a lot of promises in the quest to address
collaboration in the wider spectrum. Potentials exist for
leveraging Cloud capabilities to adapt software development
stages for better collaboration and efficiency[1].

This research paper reviews existing literature in the
research area to better assess gaps and challenges currently
existing. Literature review reveals notable increase in activity
from industry in Cloud-based collaboration with a lot of
emphasis in content management, sharing and storage, but less
in Cloud-based collaborative software development[9].The
review was based on the adapted systematic process, where a
search for relevant articles in the research domain was carried
out. Query strings were used in searching and retrieving
literature for review usingMendeley, a reference management
tool, with a large, interconnected academic database[10]. This
was very useful for finding, storing, managing and correlating
academic research materials and libraries. Mendeley was
chosen because of its reasonably fair approximation of research
databases, such as Scopus, and appears to have one of the
largest databases in terms of research articles and journal
coverage, and traffic [11].

II. WHAT ISCOLLABORATION?

According to the Oxford dictionary, Collaboration is “the
action of working with someone to produce or create
something”[12]. Collaboration is a conceptspanning different
context and disciplines, but is commonly used to refer to the
act ofworking together towards a common goal[13]–[15].
Collaboration may be in either of two forms – synchronous or
asynchronous; and may be based on a variety of factors –
model-based collaboration, process-based collaboration,
infrastructure-based collaboration, activity-based
collaboration, distance-based collaboration and inter-
discipline/multi-discipline based collaboration [16]–[19].
Despite the numerous definitions of collaboration as a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by STORE - Staffordshire Online Repository

https://core.ac.uk/display/158371959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

concept, it has often been misconstrued, and used quite
interchangeably with other concepts or terms like:
cooperation, communication, and coordination, depending on
context [20]. Hence, for the purpose of this research,
Collaboration is used to refer to - the set of activities
involving: jointly working together to solve common
problems, carrying out complementary activities to solve
diverse problems, and all other activities geared towards
achieving or accomplishing a common goal[21]. These
activities could involve: building and sharing knowledge;
accessing shared knowledge; working together in a shared
space or distributed space, towards common goals.

III. OVERVIEW OF CLOUD COMPUTING

Many definitions for Cloud computing exists, but one of
the most adapted definitions is that offered by the NIST -“….a
model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal
management effort or service provider interaction”[26]. This
definition tries to capture what the Cloud is all about in
unambiguous terms. It captures the five main characteristics of
the Cloud, which constitute the most attractive features of the
Cloud. These features: rapid elasticity, measured service, on-
demand self-service, broad network access and resource
pooling; represent the strengths from whence, most of the
benefits attributed to the Cloud come from. This definition
also captures one key point that is sometimes overlooked - the
minimal effort it entails to provision services or resources.

The advent of Cloud computing has brought about an
increase in the servicification of IT resources such as:
Infrastructure as a Service (IaaS), Software as a Service
(SaaS) and Platform as a Service (PaaS); resulting in the
consumption of these resources as services on a pay-per-use
basis which greatly favors organizations and companies with
limited resources[27], [28]. These services are deployed either
publicly, privately, in hybrid form, or as a community model.
The area of software development is not left out too. Effect of
these changes can be seen in the paradigm shift from use of
desktop IDEs to Cloud APIs, in building software projects.
Various Cloud services providers, for example, Amazon,
Google, Microsoft, IBM, and a host of others, all have their
own API offerings, often built on top of their IaaS
offerings[29], [30].

Prior to the advent of Cloud computing, traditional data
centers and IT setups often relied on architectures that could at
best be described as similar to silos, making it difficult for
fluid and easily scalable interactions between infrastructure,
applications and data. Situations synonymous with these
include: waste of resources, complex administrative and
management functions, less agility and response to changing
business and user needs, high costs associated with scaling,
staffing, maintenance, development, operations, maintenance,
and even capital for expansion[31],[32]. However, the
emergence of Cloud computing introduce a lot of benefits, as
well as open doors for countless opportunities and models of

computing and business[33]. Cloud computing has become an
enabler of various platforms capable of: relatively higher
degrees of flexibility; faster and much larger scale of
computation, processing and sharing; wider accessibility and
greater availability[34]. Other benefits of Cloud computing
include: cost flexibility and efficiency; scalable resources for
storage, backup and recovery; relatively easier setting up of
customized environments and quicker deployments; and a
myriad of service provisioning options[35]. Since the
emergence of Cloud computing, more efforts are directed
towards exploiting and leveraging cloud computing for the
range of benefits and advantages it offers, mostly as services;
and this is now evident in a range of services springing up e.g.
Big Data-as-a-Service, analytics-as-a-service, and a host of
other service offerings in the industry[36].

Cloud computing is a technology trend that is changing the
IT landscape and changing collaboration[3]. One of its most
notable advantage lies in its adaptability to varying contexts of
use, its extensibility, as well as, the numerous possibilities and
opportunities it presents for all stakeholders to collaborate
[37]. However, not unlike most emerging paradigms, mixed
feelings trail adoption of the Cloud[4], [5], [38]. For
collaborative software development, the benefits include, but
are not limited to, cost savings, scalability, agility for business
and development peak period needs, motivation for innovation
and increased R&D [29]. On the other hand, there are fears
about: security issues; vendor lock-in and interoperability
issues, portability issues; automation, performance issues;
availability issues; handling uncertainty about: heterogeneity
and content type, location of client, bandwidth
unpredictability, dynamic workload variations, workflow
schedules, architecture and resource optimization; availability
and integrity of relevant information within participating
teams and systems; context awareness and reproducibility
within contexts; amongst others [27], [37], [39]. Some of these
challenges and issues listed here, are partly inherited due to
the fact that Cloud Computing itself, is a paradigm that
leverages a couple of other technologies [40].

IV. OVERVIEW OF COLLABORATIVE SOFTWARE

DEVELOPMENT PROCESS

 The importance of software in business and in daily
activities cannot be overemphasized. This is partly due to the
important role software has come to occupy in daily scenarios,
resulting in a lot of attention and attempts been directed
towards standardizing and improving the software
development process[41]. Further fueling these attempts at
improving the process is, the increase in size, complexity, and
distribution involved in software development projects[21],
[42]. This far exceeds what any one individual, or component
can handle, and hence necessitates some sort of standardized
collaboration approach between diverse set of people, skills,
activities, processes, locations, tools and environments,
configurations and specifications. Software developmentis a
collaborative activity, involving divergent and convergent
activities carried out by people or teams, in an environment,
towards achieving a set of objectives or outcome[43][44].

 The Software development process refers to the entire
process of developing software, encompassing: a team,
framework of activities, set of practices providing guidelines
for designing, developing, testing, deploying, maintaining and
managing software[45]. This includes the interactions too. The
entire process involves different parts working together
towards a goal. This process spans the entire development
lifecycle and is usually embodied in a defined high-level
abstraction usually referred to as a software development
model[46]. Software development models facilitate and guide
a set of tasks or activities to transform problem definitions and
requirements into software[23], [45], [46]. Various types of
software development models, adapted as different
methodologies, are essentially efforts aimed at standardizing
and improving the process of developing software[1]. The
table presents a cross-section summary of some common
software development models and related characteristics,
advantages and challenges. This is provided to serve as a
baseline review template for relative comparisons,
considerations, and reconciliations or possible
combinations[23]. Some inherent similarities amongst the
models include: reliance on collaborative development process
and the team; accountability of the team and process along the
lines of responsibility, roles, and functions; iteration within the
process geared towards management of change, risks and
performance; design, development and testing activities
geared towards achieving a common overall outcome[47].

 Despite these differentiating aspects, themodels possess
some inherent similarities. These include: reliance on the
collaborative development process and the team;
accountability of the team and process along the lines of
responsibility, roles, and functions; iteration within the process
geared towards management of change, risks and
performance, etcetera. Nonetheless, when properly
implemented within the various stages of the software
development process, any of the models has the capacity to
deliver quality solutions. The stages of the software
development process are not always set in stone, neither are
the boundaries of the stages always clearly delineated or
differentiated[21], [23], [47]–[50].

The stages in the development process are usually carried
out via different activities, grouped into development models,
with some overlapping, and mixing towards achieving the
outcome[47]. A typical software development project usually
comprises a team made up of people of diverse cultures,
skillset, technical expertise, and technological/non-
technological viewpoints, either, working together on different
tasks, or separately on complementary tasks at each stage of
the process towards a common goal, all the while ensuring
communication via a variety of tools or medium[21]. This
calls for efficient collaboration and management in the
software development process [44]. The important role of
software in the society, and other factors such as: increase in
size, complexity, and distribution involved in software
development projects have generated a lot of attention,
leading to attempts been directed towards standardizing and
improving the development process[21], [41].

At the beginning of any software development project,
determining the scope of collaboration is one of the most

challenging aspects of the project. Understanding and defining
what presents as core aspects and what is not, is necessary.
This definition could sometimes come from stated business
values and requirements; as well as from architectures,
ontologies, taxonomies, dictionaries, standards[51]. To date,
the focus of majority of R&D efforts in the area of Cloud-
based software development is at best imbalanced. Most
concentrate on specific aspects of the development process,
resulting in insufficient attention being paid to other aspects
equally undermining collaboration. A review of related
literature reveals that efforts devoted towards Cloud-based
Collaborative Software Development have been mainly in the
areas of: trust and privacy; asynchronous collaboration;
isolated collaboration in specific aspects of the process, such
as coding activities; use of open-source tools for contributing,
improving, and managing code, and some have leveraged
social networking as an enabler too [9], [52]–[55]. Although
these efforts represent valid contributions and important
enablers, they are still missing important aspects that enable a
more holistic process, with solid theoretical foundation in the
Cloud[52], [56].

The concept of leveraging the Cloud to create or enhance
collaboration in different activities is shaping up and gaining
solid ground in a lot of areas and field. The table in this
section plot the landscape of current updated or reported
knowledge on cases of successful leveraging of Cloud
Computing capabilities for collaborative software
development from a cross section of industry. However, it is
important to state here, that this table is not an exhaustive list.
This is attributed to reasons such as: work may be unrecorded
or unpublished; work may be closely guarded or
undocumented industrial intellectual property (IP); or work
may be experimental projects yet to be verified or validated
[54], [57], [58]. Furthermore, highlighting and reviewing these
works would also help in highlighting gaps and emphasizing
the need for more research efforts. This table shows that
leveraging the Cloud for collaborative software development
is a viable area that is gaining traction and being explored by
industry, as well as, academia. This is in a bid to: address the
inefficiencies and inconsistencies of the traditional process
and environment for software development; align software
development with current trends and changing business
requirements; leverage new concepts and methods for optimal
development process, economies of scale and efficient use of
resources, tighter collaboration, efficient management from
automation and context-aware linking and sharing of
information [1], [21]. From the table, it can be seen that most
current solutions offered in Industry as 'Cloud-based
solutions', offer more support for the coding and deployment
stages of the software process, and less for other stages such
as the requirements gathering stage, the testing stage and the
design stage.Some of the solutions attempt to integrate social
communication by featuring some social communication tools
[59]–[62]. In the same way that merely developing
applications compatible with the Cloud does not make the
application Cloud-agnostic, merely integrating social
communication tools or features with a Cloud-based IDE does
not necessarily make the development environment a
collaborative Cloud-based development platform. Arguably,
integrating social networks in the enterprise with Cloud

development environments would be an approach towards
enabling or enhancing collaboration in Cloud development
environments, but leveraging the Cloud for a fully
collaborative development environment in the Cloud is more
than that[63]. Table 1below, presents a survey of a cross-

section of notable open source tools in industry, representing
efforts towards Collaborative Software development process
in the Cloud. These have been categorized according to
various emerging themes of differentiation from surveyed
literature.

Table 1:A Survey of cross-section of notable open source industry tools/platforms towards Cloud-based SDLC process
Differentiation

themes
GitHub CloudTeams Sonarqube Atlassian

Confluence/Jira
IBM jazz/CLM CollabNet/

TeamForge
Heroku

Cloud-
based/Cloud-

hosted/Non-Cloud

Cloud-hosted Cloud-based Cloud-hosted Partially Cloud-
based

Cloud-hosted Cloud-based Cloud-based

Explicit
Collaboration

activity-themed,
Theoretical Basis
for architecture
for Cloud-based

collaborative
software

development
process

None/Indetermi
nate

None/Indetermin
ate

None/Indetermi
nate

None/Indetermin
ate

None/Indetermi
nate

None/Indetermi
nate

None/Indetermi
nate

Implicitly
associated
theories

Social Network
Graph

None /
Indeterminate

Cognitive
Complexity

None /
Indeterminate

None /
Indeterminate

None /
Indeterminate

None /
Indeterminate

Cloud-agnostic,
contextualised

artefact format for
artefacts from all

stages

partial partial partial partial partial None/Indetermi
nate

partial

Collaboration in
all SDLC stages

partial partial partial Yes Yes Yes partial

Formal testing
across all stages
(Validation &
verification)

partial partial partial partial Yes partial partial

Metrics/benchmar
ks

Yes partial partial Yes Yes Yes Yes

Metrics/benchmar
ks for

analyzing/measuri
ng collaboration

within the
lifecycle process

partial None /
Indeterminate

None /
Indeterminate

None /
Indeterminate

partial None /
Indeterminate

None /
Indeterminate

Traceability Yes None /
Indeterminate

partial Yes Yes Yes partial

Awareness partial partial partial partial partial partial partial
Co-ordination Yes partial Yes Yes Yes Yes

Communication Yes partial Yes Yes Yes Yes
Shared

Workspace
Yes Yes Yes Yes Yes Yes

Shared memory Yes Yes Yes Yes Yes Yes
Context-

awareness
partial partial partial Yes partial partial

Main features Code repository,
Developer
profiles,
dedicated
project pages,
code-related
actions
(Commits, forks,
pull requests),
subscription
actions, version
control,
documentation

Customizable
platform,
allowsmashable
endpoint
connection of
development
tools, interface to
allow anonymous
end-user
engagement with
development
teams in
earlystages

Java-code
analysis engine,
metrics & issue
detectors, GUI
Dashboard with
drill-down
features, Plug-in
extension
capabilities

Cloud Platform,
UI Modules,
Webhooks, Rest
API, device
drivers, plugin
managers,
network
abstractions and
generic services

Integrated set of
tools developed
on IBM Jazz
platform, web-
based interface,
extension
capabilities;

Integrated
toolchain
combining open
source tools for
end-to-end
application
development &
testing. Include:
Eclipse, Git,
Subversion,
Jenkins, Visual
Studio,
Atlassian Jira,
JFrog

Managed
Containers,
Heroku
Pipelines, built-
in monitoring
tools, extension
capabilities,
GitHub
integration,
single point
dashboard for
managing
teams&
processes, API

As can be seen from Table 1, most of the surveyed notable
open source development tools are cloud-based, and are more
collaborative in some stages of the development process than
others. A good proportion of the surveyed tools are
collaborative in all the stages, with little or no defined metrics
for specifically benchmarking collaboration in the process.
The main areas of focus for most of the tools include:
continuous code quality management via inspection, analysis
and reporting on issues, bugs or errors in code; providing
interface to mashable collection of popular development tools.
For example, in the case of GitHub, collaboration in the
process exists in the form of team members working together
via pull requests and commit actions. It is sometimes difficult
to figure out which projects are live and which are abandoned.
Only way of doing so is through history of commit actions,
because not all pull requests are guaranteed to be accepted and
merged. Another way of considering collaboration in
development processes using Github, is by considering
projects in light of partial contexts such as: actions on code;
who executed the actions; manual linking of related commits,
comments and issues, in order to make inferences and
reasoning. This platform used to be collaborative only in some
stages of the SDLC, and makes provisions for using various
methodologies. However, recent updates extended this
collaboration across all stages. The end to end traceability
offered by artefacts is a good feature, but there is still need to
have a full Cloud-agnostic, contextualized artefact format for
artefacts from all stages to allow for easy automations and
implementation of automations, as well as synchronized
understanding.GitHub focuses mainly on developers and.
Collaboration exists but mostly centered on the development,
testing and deployment of applications Collaboration is mostly
asynchronous. This is applicable to most of the surveyed tools.
Collaboration is not a focal point, neither does it extend to
other stages in the life cycle development process not
involving code. Less focus is placed on the activity. Table 1
above clearly shows the absence of explicit activity-themed,
theoretical basis for the cloud-based software development
process. Some of the tools seek to promote collaboration
between end-users and teams via participation and incentives.
They do not address underlying issues undermining
collaboration such as: complexity or unified formats for output
to ensure synchronized understanding. Addressing the latter
could lead to developing a formal empirical way of validating
that end product meets user requirements, or the proposal of
metrics for benchmarking the collaboration in the Cloud-based
development process.

V. CHALLENGES AND FUTURE DIRECTIONS FOR CLOUD BASED

COLLABORATIVE SOFTWARE DEVELOPMENT LIFE CYCLE

Need for Cloud-based Collaborative software development
architectures with explicit theoretical foundation.
Emerging technologies and software engineering trends
change the way software is accessed, utilized, stored and
maintained. These introduce consideration points such as:
more distribution, greater complexity and increase in contexts.
The result of this is a constant need to develop safe, secure and

reliable software that will continuously evolve and adapt to
changing requirements, and a constantly evolving
development process. Current innovative solutions rely on
results from a mix of successful and failed implementations
and glitches [9], [50]–[53], [62]–[68].
Impact

i. randomness in the science of the development
process

ii. Undermined collaboration in the software
development lifecycle process

iii. Increase in emphasis on need for better and
sustainable frameworks, architectures, methods,
tools, practices and strategies, with explicit
theoretical foundations to embrace and adapt to
changing trends in technology, process, requirements,
and related complexity, whilst still facilitating
effective collaboration across the entire development
process

iv. need for sustainable change management and self-
learning methods in Cloud-based collaborative
software development lifecycle

Proposed recommendation
Provision of explicit theoretical framework with activity
underpinnings to:

i. facilitate sustainable and reproducible blueprint for
Cloud-based context-aware, collaborative software
development lifecycle process

ii. aid understanding and conceptualization of ways to
enhance collaboration in Cloud-based software
development lifecycle

iii. lay a foundation for defining processes, activities,
and aligning them with goals and deliverables,

iv. synthesize empirical knowledge to facilitate future
research, development and adaptation of
collaborative models for development and testing of
Cloud applications

v. Flag up irregularities, inconsistencies, and other
factors which might impact an activity.

vi. reduce or eliminate randomization and reliance on
results from failed implementations and glitches

Need for effective methods for capturing and representing
contexts and other related data in a Cloud-agnostic formatfor
generation of actionable insights
Requirements, artefacts, action plans, feedback, and other
important related information, necessary to achieve the
defined goalare sometimes not clearly and accurately defined
within the Cloud-based development process. One factor
contributing to this is the poor collection, unsynchronized
understanding, ignorance and poor application, of contexts and
other related metadata [44], [55]–[59], [62]-[64], [67]–[79].
Impact

i. negative impact on balancing and optimization of
information flow within development environments and
teams;

ii. late detection and resolution of issues and bugs that
could have been otherwise avoided via appropriate

collection, consideration and application of sufficient
context data within development activities;

iii. inadequate tracking of project progress;
iv. conflicting perspectives, understanding, interpretation

and execution of activities, often resulting in defective
software, or software needing more rework

Proposed recommendation
Design and implementation of a common representational
format for: context information, requirements, outputs from
each stage of the lifecycle development process, logs,
feedback, ideas, instructions, concerns, and other related data.
Also recommended is the design and implementation of
knowledge management mechanisms and modules for data
processing, analytics, and visualization and reporting
functions. This would require scalable data storage. Benefits
include:

i. Effective traceability, change management, better
visibility and synchronised understanding and
awareness

ii. Generation of actionable insights from: logs,
feedback from tasks, activities, interactions,
executions and transformations. This would aid and
facilitate:self-learning from historical data, process
improvement in management, technical, and
coordinating aspects

iii. Building up of domain knowledge for the process,
troubleshooting purposes, creation of libraries and
templates, as well as improving the adaptability of
the process

iv. Automation of information flow frees up valuable
resources; reduces unnecessary noise (assumptions
and discussions), and makes it easier to monitor and
manage - conversations, alerts, notifications,
changing parameters, exchanges, design progress,
status, changing mission parameters, directives and
instructions.

Need for effective ways of managing complexity across Cloud-
based collaborative software development lifecycle
Certain disciplines such as the engineering disciplines, are
usually guided, constrained and regulated by physical laws
that ensure regularity and a way of keeping complexity in
check. Conversely, Software Engineering is not easily
regulated or bound by physical laws. This makes it harder to
ensure synchronous collaboration and verifiable outputs at the
various stages of the process[1], [21], [69], [80]–[82]
Impact

i. Growth in complexity of software artefacts and
across the Cloud-based development lifecycle
process

ii. Differences and difficulty in understanding,
developing and testing in the right way, and
correctly.

iii. Increased need to challenge and validate results via
some form of empirical effort

Proposed recommendation

One way to approach and reduce impact of this gap would be
to limit complexity via the development of an architecture. An
architecture would contribute towards managing complexity
through decomposition and abstraction of main components of
the Cloud-based collaborative development process.
Furthermore, the provision of an activity-themed or
collaboration-themed theoretical foundation for the
architecture would help to boost confidence in the
architecture, and its sustainability. Like in the case of the
engineering disciplines, this theoretical foundation can be
derived from existing laws, theories, and concepts, that be
applied to guide different aspects of both the architecture and
the process. Benefitsinclude:

i. Reduction of constraints impacting the ability to
understand, design develop, test and maintain
software artefacts. This helps to manage complexity
and impact.

ii. Promotion of integrity of the process and outcomes
iii. Facilitation of reusability and impact analysis

Need for standards and adequate metrics for benchmarking
Cloud-based collaborative development and testing
The existing standards commonly used in software
development processes are quite generic. They are mostly
used for assessing and analyzing how organizations follow
their defined processes, as well as, modelling processes to
monitor and control the development of software. These
standards do not expressly cater for the analysis, assessment
and measurement of the collaborative process within the
cloud. Presently, the commonly used standards include: ISO
9000, CMMI, ISO 15504[67], [78], [83]–[87].
Proposed recommendation
Introduction of suitable methods for benchmarking Cloud-
based collaborative software development lifecycle process to
ensure monitoring and management of the process, and
continuous process improvement

VI. CONCLUSION

The collaborative software development process comprises
of divergent and convergent activities carried out by people or
teams, in an environment, towards achieving a set of
objectives or outcome. Analyzing and differentiating various
collaborative approaches, contributions and tools in both
industry and academia, helps in vertically organizing and
aligning all existing fragmented approaches within context.
Cloud-based collaborative software development process
needs to incorporate holistic collaborative concepts and
technologies; theoretical foundations, as well, as integrate a
management layer to effectively manage the collaboration and
resources within the project in line with identified constraints,
and stated or identified business requirements and needs.

VII. REFERENCES

[1] G. A. Dafoulas, K. Swigger, R. Brazile, F. N. Alpaslan,
V. L. Cabrera, and F. C. Serce, ‘Global Teams:
Futuristic Models of Collaborative Work for Today’s
Software Development Industry’, in 2009 42nd Hawaii

International Conference on System Sciences, 2009, pp.
1–10.

[2] F. Lanubile, ‘Collaboration in distributed software
development’, Softw. Eng., pp. 174–193, 2009.

[3] J. Noll, S. Beecham, and I. Richardson, ‘Global
software development and collaboration: barriers and
solutions’, ACM Inroads, vol. 1, no. 3, pp. 66–78, 2010.

[4] A. M. Magdaleno, C. M. L. Werner, and R. M. de
Araujo, ‘Reconciling software development models: A
quasi-systematic review’, J. Syst. Softw., vol. 85, no. 2,
pp. 351–369, Feb. 2012.

[5] I. Mistrík, J. Grundy, A. Hoek, and J. Whitehead,
Collaborative Software Engineering. Springer Science
& Business Media, 2010.

[6] A. Begel, J. D. Herbsleb, and M.-A. Storey, ‘The future
of collaborative software development’, in Proceedings
of the ACM 2012 conference on Computer Supported
Cooperative Work Companion, New York, NY, USA,
2012, pp. 17–18.

[7] M. Derntl, D. Renzel, P. Nicolaescu, I. Koren, and R.
Klamma, ‘Distributed Software Engineering in
Collaborative Research Projects’, in 2015 IEEE 10th
International Conference on Global Software
Engineering, 2015, pp. 105–109.

[8] Z. Mahmood and S. Saeed, Software Engineering
Frameworks for the Cloud Computing Paradigm.
Springer Publishing Company, Incorporated, 2013.

[9] Box, ‘The Cloud: Reinventing Enterprise
Collaboration’, FierceCIO, May 2012.

[10] B. Jackson, ‘Cloud Collaboration’, Mix, vol. 35, no. 5,
pp. 16–18, May 2011.

[11] B.-Y. Chang, P. H. Hai, D.-W. Seo, J.-H. Lee, and S. H.
Yoon, ‘The determinant of adoption in cloud computing
in Vietnam’, in 2013 International Conference on
Computing, Management and Telecommunications
(ComManTel), 2013, pp. 407–409.

[12] K. Ghaffari, M. S. Delgosha, and N. Abdolvand,
‘Towards Cloud Computing: A SWOT Analysis on its
Adoption in SMEs’, Int. J. Inf. Technol. Converg. Serv.,
vol. 4, no. 2, pp. 13–20, Apr. 2014.

[13] O. M. Yigitbasioglu, ‘Cloud Computing Adoption in
Australia: Evidence from the Forensic Accounting
Industry - DO NOT CITE’, 2014.

[14] S. Zardari and R. Bahsoon, ‘Cloud Adoption: A Goal-
oriented Requirements Engineering Approach’, in
Proceedings of the 2Nd International Workshop on
Software Engineering for Cloud Computing, New York,
NY, USA, 2011, pp. 29–35.

[15] L. Riungu-Kalliosaari, O. Taipale, and K. Smolander,
‘Testing in the Cloud: Exploring the Practice’, IEEE
Softw., vol. 29, no. 2, pp. 46–51, 2012.

[16] R. Oberhauser, ‘Towards Cloud-based Collaborative
Software Development: A Developer-Centric Concept
for Managing Privacy, Security, and Trust’, in ICSEA
2013, The Eighth International Conference on Software
Engineering Advances, 2013, pp. 533–538.

[17] J. Raubenheimer, Mendeley: Crowd-sourced Reference
and Citation Management in the Infomation Era. True
Insight Publishing, 2014.

[18] B. Cronin and C. R. Sugimoto, Beyond Bibliometrics:
Harnessing Multidimensional Indicators of Scholarly
Impact. MIT Press, 2014.

[19] Oxford Dictionaries, ‘collaboration: definition of
collaboration in Oxford dictionary (American English)’,
Jul-2013. [Online]. Available:
http://oxforddictionaries.com/definition/american_engli
sh/collaboration. [Accessed: 04-Jul-2013].

[20] A. M. Thomson and J. L. Perry, ‘Collaboration
Processes: Inside the Black Box’, Public Adm. Rev., vol.
66, pp. 20–32, 2006.

[21] A. M. Thomson, J. L. Perry, and T. K. Miller,
‘Conceptualizing and Measuring Collaboration’, J.
Public Adm. Res. Theory, vol. 19, no. 1, pp. 23–56, Jan.
2009.

[22] E. A. Henneman, J. L. Lee, and J. I. Cohen,
‘Collaboration: a concept analysis’, J. Adv. Nurs., vol.
21, no. 1, pp. 103–109, 1995.

[23] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaíno,
‘Collaboration tools for global software engineering’,
IEEE Softw., vol. 27, no. 2, 2010.

[24] J. Whitehead, ‘Collaboration in Software Engineering:
A Roadmap’, in Future of Software Engineering, 2007.
FOSE ’07, 2007, pp. 214–225.

[25] L. M. Camarihna-Matos and H. Afsarmanesh, ‘Concept
of Collaboration’, Academia.edu, 2008. [Online].
Available:
http://www.academia.edu/248756/Concept_of_Collabor
ation. [Accessed: 24-Jun-2013].

[26] L. Badger, T. Grance, R. Patt-Corner, and J. Voas,
‘Draft cloud computing synopsis and
recommendations’, NIST Spec. Publ., vol. 800, p. 146,
2011.

[27] M. Armbrust et al., ‘A view of cloud computing’,
Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[28] M. Armbrust et al., ‘Above the clouds: A berkeley view
of cloud computing’, 2009.

[29] E. M. Maximilien and P. Campos, ‘Facts, trends and
challenges in modern software development’, Int. J.
Agile Extreme Softw. Dev., vol. 1, no. 1, pp. 1–5, Jan.
2012.

[30] S. K. Doddavula, I. Agrawal, and V. Saxena, ‘Cloud
Computing Solution Patterns: Infrastructural Solutions’,
in Cloud Computing, Z. Mahmood, Ed. Springer
London, 2013, pp. 197–219.

[31] Quest, ‘Challenges-Benefits-Cloud-Computing.pdf’, pp.
1–10, 2012.

[32] S. Logo, ‘Introduction to Cloud Computing’.
[33] F. Durao, J. F. S. Carvalho, A. Fonseka, and V. C.

Garcia, ‘A systematic review on cloud computing’, J.
Supercomput., vol. 68, no. 3, pp. 1321–1346, Jun. 2014.

[34] B. Warth, N. Levin, D. Rinehart, J. Teijaro, H. P.
Benton, and G. Siuzdak, ‘Metabolizing Data in the
Cloud’, Trends Biotechnol., 2017.

[35] M. Whaiduzzaman, M. Sookhak, A. Gani, and R.
Buyya, ‘A survey on vehicular cloud computing’, J.
Netw. Comput. Appl., vol. 40, pp. 325–344, Apr. 2014.

[36] G. Skourletopoulos et al., ‘Big Data and Cloud
Computing: A Survey of the State-of-the-Art and
Research Challenges’, in Advances in Mobile Cloud
Computing and Big Data in the 5G Era, C. X.
Mavromoustakis, G. Mastorakis, and C. Dobre, Eds.
Springer International Publishing, 2017, pp. 23–41.

[37] D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain,
‘Cloud Computing Features, Issues, and Challenges: A
Big Picture’, 2015, pp. 116–123.

[38] N. Leavitt, ‘Is Cloud Computing Really Ready for
Prime Time?’, Computer, vol. 42, no. 1, pp. 15–20,
2009.

[39] Q. Zhang, L. Cheng, and R. Boutaba, ‘Cloud
computing: state-of-the-art and research challenges’, J.
Internet Serv. Appl., vol. 1, no. 1, pp. 7–18, 2010.

[40] S. M. Hashemi and A. K. Bardsiri, ‘Cloud Computing
Vs. Grid Computing’, 2009.

[41] A. MacCormack, C. F. Kemerer, M. Cusumano, and B.
Crandall, ‘Trade-offs between productivity and quality
in selecting software development practices’, IEEE
Softw., vol. 20, no. 5, pp. 78–85, 2003.

[42] E. Kalliamvakou, D. Damian, K. Blincoe, L. Singer, and
D. M. German, ‘Open source-style collaborative
development practices in commercial projects using
github’, in Proceedings of the 37th International
Conference on Software Engineering-Volume 1, 2015,
pp. 574–585.

[43] R. Keil-Slawik, ‘Artifacts in Software Design’, in
Software Development and Reality Construction, C.
Floyd, H. Züllighoven, R. Budde, and R. Keil-Slawik,
Eds. Springer Berlin Heidelberg, 1992, pp. 168–188.

[44] T. Zimmermann and C. Bird, ‘Collaborative Software
Development in Ten Years: Diversity, Tools, and
Remix Culture’, in Proceedings of the Workshop on The
Future of Collaborative Software Development, 2012.

[45] A. Fuggetta, ‘Software process: a roadmap’, in
Proceedings of the Conference on The Future of
Software Engineering, New York, NY, USA, 2000, pp.
25–34.

[46] I. Sommerville, Software Engineering, 9 edition.
Boston: Addison Wesley, 2010.

[47] M. Lepmets and M. Nael, ‘Comparison of Plan-driven
and Agile Project Management Approaches: Theoretical
Bases for a Case Study in Estonian Software Industry’,
in Proceedings of the 2011 Conference on Databases
and Information Systems VI: Selected Papers from the
Ninth International Baltic Conference, DB&IS 2010,
Amsterdam, The Netherlands, The Netherlands, 2011,
pp. 296–308.

[48] T. Dybå and T. Dingsøyr, ‘Empirical studies of agile
software development: A systematic review’, Inf. Softw.
Technol., vol. 50, no. 9–10, pp. 833–859, Aug. 2008.

[49] N. M. A. Munassar and A. Govardhan, ‘A Comparison
Between Five Models Of Software Engineering’, IJCSI

Int. J. Comput. Sci. Issues, vol. 7, no. 5, pp. 94–101,
2010.

[50] J. Feller, B. Fitzgerald, and others, Understanding open
source software development. Addison-Wesley London,
2002.

[51] I. Skerrett, ‘Collaborative Software Development in the
Enterprise’, Open Source Bus. Resour., no. January
2009, 2009.

[52] R. Oberhauser, ‘Cloud-based Collaborative Software
Development: A Concept for Managing Transparency
and Privacy based on Datasteads’, Int. J. Adv. Softw.,
vol. 7, no. 3 and 4, pp. 435–445, Dec. 2014.

[53] R. Al Mushcab and P. Gladyshev, ‘The significance of
different backup applications in retrieving social
networking forensic artifacts from Android-based
mobile devices’, in 2015 2nd International Conference
on Information Security and Cyber Forensics, InfoSec
2015, 2016, pp. 66–71.

[54] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, ‘The making
of cloud applications: An empirical study on software
development for the cloud’, in Proceedings of the 2015
10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 393–403.

[55] J. Cito, P. Leitner, H. C. Gall, A. Dadashi, A. Keller,
and A. Roth, ‘Runtime Metric Meets Developer:
Building Better Cloud Applications Using Feedback’, in
2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and
Software (Onward!), New York, NY, USA, 2015, pp.
14–27.

[56] M. Nordio, H.-C. Estler, C. A. Furia, and B. Meyer,
‘Collaborative Software Development on the Web’,
ArXiv11050768 Cs, May 2011.

[57] Linux Foundation, ‘Collaborative Development Trends
Report, 2014’, Mar. 2014.

[58] W. Jun and F. Meng, ‘Software Testing Based on Cloud
Computing’, in 2011 International Conference on
Internet Computing Information Services (ICICIS),
2011, pp. 176–178.

[59] S. Ardaiz, ‘Collaborative Communication: Why
Methods Matter’, Triple Pundit People Planet Profit,
Dec. 2011.

[60] C. Gadea, B. Solomon, B. Ionescu, and D. Ionescu, ‘A
Collaborative Cloud-Based Multimedia Sharing
Platform for Social Networking Environments’, in 2011
Proceedings of 20th International Conference on
Computer Communications and Networks (ICCCN),
2011, pp. 1–6.

[61] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, ‘Social
Coding in GitHub: Transparency and Collaboration in
an Open Software Repository’, in Proceedings of the
ACM 2012 Conference on Computer Supported
Cooperative Work, New York, NY, USA, 2012, pp.
1277–1286.

[62] A. Begel, J. Bosch, and M.-A. Storey, ‘Social
Networking Meets Software Development: Perspectives

from GitHub, MSDN, Stack Exchange, and TopCoder’,
IEEE Softw., vol. 30, no. 1, pp. 52–66, Jan. 2013.

[63] A. Bento and A. K. Aggarwal, Eds., Cloud Computing
Service and Deployment Models: Layers and
Management. IGI Global, 2012.

[64] R. Jeffery, ‘Theory, models and methods in software
engineering research.’, in ICSE’2000 Workshop on”
Beg, Borrow, or Steal: Using Multidisciplinary
Approaches in Empirical Software Engineering
Research”(2000), 2000, pp. 2–7.

[65] P. Ralph, ‘Possible Core Theories for Software
Engineering’.

[66] P. Ralph, ‘Software Engineering Process Theory: A
Multi-Method Comparison of Sensemaking-
CoevoIution-Implementation Theory and Function-
Behavior-Structure Theory’, ArXiv13071019 Cs, Jul.
2013.

[67] I. Gorton, A. B. Bener, and A. Mockus, ‘Software
Engineering for Big Data Systems’, IEEE Softw., vol.
33, no. 2, pp. 32–35, Mar. 2016.

[68] M. DEVLIN and S. DRUMMOND, ‘Software
Engineering Students’ Cross-Site Collaboration: An
Experience Report.’, 2007.

[69] M. Mohtashami, V. Kirova, T. Marlowe, and F. Deek,
‘A Comparison of Three Modes of Collaboration for
Software Development’, AMCIS 2009 Proc., Jan. 2009.

[70] N. Chanda and X. F. Liu, ‘Intelligent analysis of
software architecture rationale for collaborative
software design’, in 2015 International Conference on
Collaboration Technologies and Systems (CTS), 2015,
pp. 287–294.

[71] T. Marlowe, ‘Addressing Change in Collaborative
Software Development: Process and Product Agility and
Automated Traceability’.

[72] N. Jastroch, ‘Advancing Adaptivity in Enterprise
Collaboration’, Social Science Research Network,
Rochester, NY, SSRN Scholarly Paper ID 1907348,
Nov. 2009.

[73] G. Mark, ‘Extreme Collaboration’, Commun ACM, vol.
45, no. 6, pp. 89–93, Jun. 2002.

[74] T. Hildenbrand, F. Rothlauf, M. Geisser, A. Heinzl, and
T. Kude, ‘Approaches to Collaborative Software
Development’, in International Conference on
Complex, Intelligent and Software Intensive Systems,
2008. CISIS 2008, 2008, pp. 523–528.

[75] A. Kyriakidou-Zacharoudiou, ‘Distributed development
of large-scale distributed systems: the case of the
particle physics grid’, phd, The London School of
Economics and Political Science (LSE), 2011.

[76] J. Münch and K. Schmid, Perspectives on the Future of
Software Engineering: Essays in Honor of Dieter
Rombach. Springer Science & Business Media, 2013.

[77] V. Pankratius, Emerging Research Directions in
Computer Science: Contributions from the Young
Informatics Faculty in Karlsruhe. KIT Scientific
Publishing, 2010.

[78] M. Richards, Software architecture patterns, 1st ed.
O’Reilly Media, Inc., 20015.

[79] B. Boehm, ‘Some future trends and implications for
systems and software engineering processes’, Syst. Eng.,
vol. 9, no. 1, pp. 1–19, Mar. 2006.

[80] B. W. Boehm, ‘Some Future Software Engineering
Opportunities and Challenges’, in ResearchGate, 2010,
pp. 1–32.

[81] B. Boehm, ‘A View of 20th and 21st Century Software
Engineering’, in Proceedings of the 28th International
Conference on Software Engineering, New York, NY,
USA, 2006, pp. 12–29.

[82] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI for
Development: Guidelines for Process Integration and
Product Improvement, 3 edition. Upper Saddle River,
NJ: Addison Wesley, 2011.

[83] M. Mohtashami, T. J. Marlowe, and C. S. Ku, ‘Metrics
Are Needed for Collaborative Software Development’,
J. Syst. Cybern. Inform., vol. 9, no. 5, pp. 41–47, 2011.

[84] E. M. Bouwers, ‘Metric-based Evaluation of
Implemented Software Architectures’, 2013.

