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Abstract: Interstitial lung disease (ILD) encompasses a group of heterogeneous diseases characterised
by varying degrees of aberrant inflammation and fibrosis of the lung parenchyma. This may occur in
isolation, such as in idiopathic pulmonary fibrosis (IPF) or as part of a wider disease process affecting
multiple organs, such as in systemic sclerosis. Anti-Vascular Endothelial Growth Factor (anti-VEGF)
therapy is one component of an existing broad-spectrum therapeutic option in IPF (nintedanib) and
may become part of the emerging therapeutic strategy for other ILDs in the future. This article
describes our current understanding of VEGF biology in normal lung homeostasis and how changes
in its bioavailability may contribute the pathogenesis of ILD. The complexity of VEGF biology is
particularly highlighted with an emphasis on the potential non-vascular, non-angiogenic roles for
VEGF in the lung, in both health and disease.
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1. Introduction

The term ‘fibrotic lung disease’ or interstitial lung disease (ILD) encompasses a group of more
than 100 heterogeneous diseases characterized by similar clinical and radio-pathological patterns of
aberrant inflammation and fibrosis of the lung parenchyma despite a wide variety of potential triggers
and prognoses [1]. Accurate diagnosis depends on thorough assessment of potential contributing
aetiologies, including drugs, granulomatous disease, occupational or environmental exposures
(Hypersensitivity pneumonitis–HP) and connective tissue disorders (CTD), but may occur secondary
to an unknown cause and are termed the Idiopathic ILDs. Some of these are potentially reversible,
such as acute respiratory distress syndrome (ARDS) whilst others are inexorably progressive such as
Idiopathic Pulmonary Fibrosis (IPF).

Whilst the exact pathogenesis of each disease may differ, they are characterised by a pathologic
fibrotic-repair mechanism following epithelial and endothelial cell injury with aberrant vascular
remodelling, expansion and activation of the lung fibroblast/myofibroblast population with resulting
abnormal accumulation of extracellular matrix (ECM) and architectural distortion.

Over the last decade there has been growing interest in the role of Vascular Endothelial Growth
Factor (VEGF) in the pathogenesis of ILD, with the development of nintedanib for the treatment of IPF,
a novel triple tyrosine kinase inhibitor of VEGF, fibroblast derived growth factor (FGF) and platelet
derived growth factor (PDGF) receptors [2].

This review describes our current understanding of VEGF biology, highlighting its potential
role in normal lung homeostasis and in ILD pathogenesis, with a particular focus in ARDS, IPF, HP
and CTD-ILD.
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A detailed account of recent advances in VEGF signaling is beyond the scope of this review and is
provided elsewhere within this themed collection. Nonetheless, we shall briefly report VEGF biology
with respect to its relationship with lung homeostasis and disease. Whilst not systematic in nature,
we shall draw on a number of sources, including preclinical mechanistic studies, clinical research and
clinical trial data.

2. VEGF Biology

2.1. VEGF Isoforms

VEGF-A is a 34–46 kDa glycoprotein that belongs to a superfamily of structurally and functionally
related proteins that includes VEGF-B, VEGF-C, VEGF-D, VEGF-E and placental growth factor (PlGF) [3].
Whilst VEGF-A was originally described as a key regulator of angiogenesis [3,4], there has been
significant evolution of the understanding of VEGF biology over the last three decades such that the
initial description can be considered as a misnomer; VEGF has been identified in nematode species who
lack any vasculature [5], and expression or targeted function is not specific to endothelial cells [6,7].

The VEGF-A gene consists of 8 exons separated by 7 introns. Differential splicing of VEGF-A
mRNA from exons 5 to 8 generates six known human isoforms, collectively termed the VEGF-Axxxa
isoforms: VEGF-A121a, VEGF-A145a, VEGF-A165a, VEGFA183a, VEGF-A189a and VEGF-A206a, where
the subscript denotes the number of amino acids (Figure 1) [3]. VEGF-A165a is considered to be most
abundant of these isoforms, functioning through tyrosine kinase receptors VEGF receptor 1 (VEGFR1)
and receptor 2 (VEGFR2) and co-receptors Neuropilin 1 (NP1) and (NP2).
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Figure 1. Schematic diagram of the exonic structure of the Vascular Endothelial Growth Factor-A
(VEGF-A) gene and its splice isoforms. The VEGF-A gene consists of 8 exons separated by 7 introns.
Two alternative exon 8 splice sites exist. Differential splicing of VEGF-A mRNA from exons 5 to 8,
with proximal splice site (PSS) selection in exon 8 (Ex8a) generates human isoforms, collectively
termed the VEGF-Axxxa isoforms: including VEGF-A121a, VEGF-A165a, VEGF-A189a and VEGF-A206a,
where the subscript denotes the number of amino acids. Distal splice site selection (DSS) produces
a second family of isoforms, the VEGF-Axxxb proteins which have the same number of amino
acids as the conventional VEGF-Axxxa isoforms but have an alternative amino acid sequence
at their carboxy-terminal (C-terminal) domain: Ser-Leu-Thr-Arg-Lys-Asp (SLTRKD) instead of
Cys-Asp-Lys-Pro-Arg-Arg (CDKPRR) in VEGF-Axxxa isoforms. TGA represents the stop codon (stop).
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Differential splicing of the VEGF gene at the distal splice site with exon 8; 66 bp distal to the
VEGF-Axxxa acceptor-site, produces a second family of isoforms, the VEGF-Axxxb proteins which have
the same number of amino acids as the conventional VEGF-Axxxa isoforms but have an alternative
amino acid sequence at their carboxy-terminal (C-terminal) domain: Ser-Leu-Thr-Arg-Lys-Asp (SLTRKD)
instead of Cys-Asp-Lys-Pro-Arg-Arg (CDKPRR) in VEGF-Axxxa isoforms (Figure 1) [8]. The most widely
studied of these isoforms, VEGF-A165b, has been shown to act as an inhibitor of VEGF-A165a [8,9]
through competitive interference with the VEGFR2-NP1 complex and activation of different downstream
receptor phosphorylation sites [10]. Because of sequence homology between these isoform families,
a precise, isoform-specific methodology is required to differentiate between them [11].

VEGF-A is the most widely studied molecule of the VEGF superfamily, but it may form
heterodimer complexes with other family members to activate VEGF receptors [12] and modulate
downstream signalling [13]. VEGF-B is particularly abundant in the heart and skeletal muscle [14]
and may contribute to the pulmonary vascular remodelling occurring in response to chronic hypoxia
exposure [15]. VEGF-C and VEGF-D are key mediators of lymphangiogenesis [16,17]. VEGF-E is
an Orf virus-encoded VEGF homologue which although not present in the human genome binds
specifically to VEGFR2 [18]. In normal tissues, PlGF is present most abundantly in the placenta, thyroid
and lungs, although its exact role in these tissues remains unclear [19]. When PlGF is produced in the
same population of cells with VEGF, it can act as a natural occurring competitive inhibitor [20,21].

2.2. VEGF Receptors

VEGFR2 (also known as kinase domain region (KDR) or fetal liver kinase-1 (FLK-1)) is considered
by many as the main signalling receptor for VEGF bioactivity [22,23]. It is abundantly expressed in the
vascular bed where it appears to be critical for normal development [24], but several non-endothelial
cells (non-ECs), including lung macrophages [3] and alveolar epithelial type II (ATII) cells [25] have
also been shown to express VEGFR2.

VEGFR1 (or Flt-1 (Fms-like tyrosine kinase 1) in the mouse) is a 180–185 kDa glycoprotein [26],
which also exists as an alternatively spliced soluble isoform (sFlt). Like VEGFR2, VEGFR1 is expressed
in high levels throughout development and in adulthood within the vascular bed and is also expressed
by several non-ECs, including in lung macrophages, monocytes [27] and ATII cells [28,29]. The exact
roles of both VEGFR1 and sFlt are not fully understood, although an abundance of evidence indicates
that they function as ‘decoy’ receptors, sequestering VEGF, thus limiting its availability to bind to
VEGFR2 [30,31]. Several studies dispute this however, directly implicating it in the regulation of EC
migration [32] and survival [33].

NP1 and NP2 are transmembrane glycoproteins, which notably have a short cytoplasmic domain
and as such are thought to transduce functional responses only when co-expressed with other
receptors [34,35]. Contrasting evidence exists, however, suggesting that NP1 is able to support
VEGF-induced cellular signalling independent of VEGFR2 [36] and may have an independent role in
the maintenance of normal lung structure [37].

2.3. VEGF and the Lung

In utero, the alveoli, airways and pulmonary vasculature all develop in synchrony [38]. Airway
epithelial cells are the predominant source of VEGF-A throughout lung organogenesis [39] and it appears
to be crucial for normal alveolarisation, rapid alveolar multiplication during lung maturation [40,41] and
normal development of the vascular bed [42]. VEGF-B, VEGF-C, VEGF-D and PlGF are also thought to
play a role in physiological lung development but have not been widely studied [43–46].

Following birth, the human lung continues to undergo a period of maturation with rapid alveolar
multiplication up to the age of 2 years [47]. Several animal studies also implicate VEGF-A as a crucial
factor in this process [42,48,49].

Significant amounts of VEGF-A persist in the normal adult lung, where again the alveolar
epithelium [28,50–52] appears to be the prominent source, although smooth muscle cells, macrophages,
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ECs and fibroblasts [52] also express VEGF-A [53,54]. Recently it has been shown that this
VEGF-A represents both VEGF-Axxxa and VEGF-Axxxb isoforms [52]. Likewise, VEGF receptors and
co-receptors are also expressed by several cell types within the normal lung, on both sides of the alveolar
capillary membrane (ACM) including ATII cells [25,28,29,55], ECs [24,56,57], macrophages [3,27] and
fibroblasts [52].

The classical processes linked to VEGF-A activity (permeability, angiogenesis and mitogenesis) are
extremely limited in the mature lung. Thus, whilst the exact role of VEGF-A in the lung has not been
fully defined, it has been proposed that compartmentalisation of VEGF-A within the alveolar space,
by way of an intact ACM [51,58], is imperative for maintaining normal lung structure and function.
ACM disruption is considered part of the disease pathogenesis of ARDS, IPF, HP and systemic sclerosis
(SSc), albeit by potentially differing mechanisms, which supports this theory. Each mechanism will be
discussed in more detail in the relevant sections.

VEGF-A has been observed to stimulate ATII growth [59,60], surfactant production [61] and
angiogenesis of the systemic vasculature [4] with reports suggesting an additional anti-apoptotic and
survival role for epithelial [62–64] and ECs [65–67], as such a role for VEGF-A in lung repair following
injury has been proposed. Both VEGF-A blockade [42,68–70] and VEGF-A overexpression [71] have
been reported to result in an emphysema phenotype in pre-clinical models, suggesting tight regulation
of VEGF-A expression as part of lung homeostasis, whilst others have observed the development
of pulmonary oedema secondary to VEGF-A overexpression [72]. The role of other VEGF family
members in lung homeostasis is not well defined, although PlGF overexpression in pre-clinical animal
models also appears to induce emphysematous change [73].

3. VEGF in ARDS

ARDS is a form of diffuse lung injury characterised by the onset of refractory hypoxaemia
associated with bilateral lung infiltrates that are not associated with cardiac failure or fluid overload
and occur following trigger insult [74]. Damage to the ACM is central to disease pathogenesis,
with resulting increased vascular permeability and accompanied inflammatory cell migration and
proteinaceous fluid exudation into the lung parenchyma (exudative phase) [75]. Recovery from ARDS
is thought to require repair of the ACM through a co-ordinated process of ATII cell proliferation with
resorption of the oedema and clearance of proteinaceous material. Whilst the changes associated
with ARDS may fully resolve, a proportion of patients heal by fibrin deposition and the development
of pulmonary fibrosis (fibroproliferative response) [76], but the factors determining this are not
completely understood.

As a potent angiogenic and permeability factor, which is thought to be critical for the structure
and maintenance of the normal lung, VEGF-A has been proposed as a key factor in the pathogenesis of
this disease [58,76]. VEGF polymorphisms have been associated with both increased severity of and
mortality from ARDS [77–79], suggesting that genetic factors may have a role.

Several studies support that VEGF-A contributes as a protective factor against ARDS [80],
with observations of reduced bronchoalveolar lavage fluid (BALF) and increased plasma VEGF-A in
early ARDS and normalisation in recovery [81–83]. Expression of ATII-derived VEGF-A is increased
during recovery from experimental lung injury, implicating VEGF-A in the ACM repair process [84].
Furthermore, the overexpression of VEGF-A165a in distal lung epithelial cells confers cytoprotection
against experimental hyperoxic lung injury, in part mediated through the production of anti-apoptotic
proteins [85].

In contrast, others have suggested a pathological role for VEGF-A in ARDS with the development
of pulmonary oedema and increased capillary permeability following adenoviral delivery of
VEGF-A165a into the trachea of mice, an effect mitigated by anti-VEGF-A therapy [86,87]. Whilst
methodological diversity might explain these apparently contrasting findings, we also proposed that
the identification of VEGF-Axxxa and VEGF-Axxxb isoforms, with seemingly opposing effects both
in vitro and in vivo, may also provide an alternative explanation [78]. In vitro, VEGF-A165b was found



Int. J. Mol. Sci. 2018, 19, 1269 5 of 17

to inhibit the proliferative effect of VEGF-A165a on human primary ECs and ATII cells, with reduced
expression of VEGF-A165b in ARDS compared to the normal lung, suggesting a role for VEGF-Axxxb
in the repair of the ACM following lung injury [60].

The contribution of VEGF-A to the fibro-proliferative phase of ARDS has not been specifically
addressed, as far as the authors are aware, although several studies have established a role for VEGF-A
in the development of IPF, and these are discussed separately in this article.

A planned phase 2 clinical trial studying the efficacy of the anti-VEGF monoclonal antibody
bevacizumab in preventing ARDS (NCT01314066) was recently withdrawn, prior to enrolment, due to
inadequate funding. As such, there are no disease modifying therapies currently available for ARDS
and supportive care, and lung protective ventilator strategies remain the mainstay of treatment.

4. VEGF in IPF

IPF is the most common of the idiopathic ILDs associated with high mortality; estimated as
greater than 50 per 1,000,000 persons [88,89] and an estimated mean survival of only 2–5 years from
diagnosis [90,91]. Best supportive care for these patients includes consideration of pharmacological
options such as pirfenidone [92] and the triple tyrosine kinase inhibitor (VEGF, FGF and PDGF)
nintedanib [2], which attempt to slow disease progression with both pharmacological and
non-pharmacological interventions to palliate symptoms.

The pathogenesis of IPF remains poorly understood, although alveolar epithelial cell injury [1,93]
with disruption of ACM integrity alongside abnormal vascular repair and remodelling, have been
proposed as possible pathogenic mechanisms [94–96]. Ultimately, the formation of collections of
fibroblasts and activated myofibroblasts (fibroblastic foci) appear to be at the leading edge of this
disease [97], producing the exaggerated extracellular matrix (ECM) deposit that contributes to the
disruption of normal lung architecture.

The relationship of VEGF-A expression in IPF remains controversial and appears to differ
according to the compartment sampled. Several groups have observed reduced VEGF-A in the
BALF of IPF patients compared to controls [52,94,98–100], whilst others have reported unchanged
levels [101]. Similarly, VEGF-A in lung homogenates are reduced [101] or unchanged [52,94] in IPF.
Equally, there are contrasting reports as to the trend of circulating VEGF-A levels in IPF patients
relative to the severity and progression of the disease [52,99,101,102].

As a potent angiogenic factor, interest arose into whether VEGF-A may contribute to the
vascular remodelling process [95,103]. Minimal VEGF-A expression has been demonstrated within
the fibrotic focus itself [52,94], but is expressed in abundance in the surrounding tissue [52]. Increased
alveolar capillary density in non-fibrotic regions of the IPF lung has also been associated with the
expression of VEGF-A and other potent angiogenic mediators by ATII cells in close proximity to these
capillaries [95]. The primary vascular abnormality in IPF, be it a lack or excess of neovascularisation
is still unknown, and equally, the role of increased vascularisation in the least fibrotic regions has not
been defined [38,104,105]. Given that VEGF-A potentially plays a role in normal lung maintenance and
repair, it has been hypothesised that in relatively normal areas of the IPF lung, VEGF-A released from
ATII cells may play a role in alveolar wall protection, contributing to the regeneration of wall defects;
with locally increased vascularity occurring as part of the attempted repair process [105]. Several studies
support this hypothesis, suggesting a protective role for VEGF-A against the formation of pulmonary
fibrosis [101,106,107] and Murray et al. [101] have recently proposed that this epithelial-protective
function of VEGF-A may occur via a non-cell autonomous function mediated by the endothelium.

Fehrenbach et al. [25] were amongst the first groups to suggest that VEGF–A may have a wider part
to play in the development of pulmonary fibrosis, rather than only on the vasculature, by demonstrating
a marked increase in VEGF-A positive stained cells in the absence of increased vascularisation in the
fibrotic regions in a preclinical model of pulmonary fibrosis (Bleomycin (BLM)-induced pulmonary
fibrosis). Subsequently, Hamada et al. [108] proposed that VEGF-A might facilitate fibrogenesis.
Transfection of anti-VEGF gene therapy, in the form of the sFlt-1, resulted in the attenuation of
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pulmonary fibrosis with a reduction in lung collagen deposition and additional anti-inflammatory and
anti-angiogenic effects. Furthermore, Chaudhary et al. [109] demonstrated that BIBF 1000, a novel
tyrosine kinase inhibitor of PDGF, FGF and VEGF, attenuated BLM-induced pulmonary fibrosis in rats,
as measured by a reduction in collagen deposition and the inhibition of pro-fibrotic gene expression.
This compound is now available clinically as Nintedanib and has been approved for the treatment of
IPF based on the results of twin Phase III INPULSIS-1 and -2 trials [2].

Therefore, as was the case for ARDS, results from the currently available evidence suggests
potentially conflicting roles for VEGF-A as both a protective and contributory factor in the
development of IPF. Interestingly, in pre-clinical studies, the concomitant adenoviral delivery of
TGF-β1 and VEGF-A165a results in exaggerated pulmonary fibrosis, but attenuation of pulmonary
artery remodelling and pulmonary hypertension, compared to TGF-β1 alone [110], highlighting the
complicated role that VEGF-A may play in the lung, with potentially opposing effects of VEGF-A in
different lung compartments existing concurrently.

An alternative explanation for the apparently contradicting data regarding the role of VEGF-A
in IPF has recently been proposed. The co-ordinated expression of VEGF-Axxxa and VEGF-Axxxb
isoforms are important for the development of pulmonary fibrosis both in vitro and in pre-clinical
murine models [52]. In this study, ATII cell-derived VEGF-Axxxa was critical for the development
of fibrosis in a preclinical model of fibrosis, with an inhibitory/regulatory function for VEGF-Axxxb
isoforms. Furthermore, VEGF165a and VEGF-A165b had differential effects on fibroblast proliferation,
migration and ECM production in vitro. Up-regulation of VEGF-A165b within the IPF lung and in
patients who progressed after 1 year follow-up (Forced Vital Capacity (FVC) fall of ≥10% or death),
suggests that the VEGF-Axxxb may be released as a compensatory protective mechanism against
fibrogenesis, overwhelmed by other processes occurring within the lung.

5. VEGF in Hypersensitivity Pneumonitis (HP)

HP is an interstitial lung disease characterised by inflammation and/or fibrosis in susceptible
individuals following repeated inhalation of environmental antigens. As only a small proportion
of individuals exposed to a particular antigen develop the disease, paradigms suggest a two-hit
hypothesis with an additional genetic predisposition [111]. A clinical spectrum of disease exists
with acute presentations thought to be mediated through immune complexes, as suggested by lung
neutrophilia and high titres of antigen-specific serum IgGs, whilst sub-acute and chronic presentations
are characterised by a T-cell-mediated immune response [112].

Progressive fibrosis may ensue, if responsible antigens are not identified and continued exposure
occurs, with associated excessive extracellular matrix deposition and the destruction of normal lung
architecture. The processes driving this are less well understood, although differences in gene
expression profiling [113], BALF cellular content and cytokine expression between IPF and HP suggests
mechanistic divergence in the pathogenesis of fibrosis between these two conditions [114,115]. That said,
the upregulation of the markers of alveolar epithelial apoptosis in human lung sections from patients
with HP [116] suggests that alveolar epithelial cell integrity is again important in the disease process.

Very few studies have examined a potential role for VEGF-A in HP. In the small cohorts
examined thus far, analogous to ARDS and IPF, BALF VEGF-A levels are reduced in patients with
HP [115,117]. In contrast, serum VEGF-A levels appear increased compared to controls [117,118] and
IPF patients [118].

The function of the lymphatic system is primarily to transport antigens and antigen-presenting
cells from the peripheral tissues to lymph nodes to stimulate an immune response [119].
Lymphangiogenesis occurs in various pathological conditions, including during inflammation and
wound healing. As key mediators of lymphangiogenesis, a role for VEGF-C and VEGF-D in the
development of HP has thus been proposed. In a small cohort of acute and subacute HP patients,
BALF VEGF-C and VEGF-D levels were elevated compared to healthy controls, with increased levels
of VEGF-D but not VEGF-C compared to IPF patients. Furthermore, VEGF-D levels correlated with
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HP inflammatory severity as determined by BALF lymphocytosis [118]. Further work is required to
explore this apparent association.

6. VEGF-A in Autoimmune Rheumatic Diseases

Dysregulated tissue remodeling with aberrant fibrosis is one of the pathological hallmarks of the
autoimmune rheumatic diseases and ILD is an important cause of disease-related morbidity across
this group of disorders, particularly within connective tissue diseases (CTD) such as SSc [120].

6.1. SSc

SSc is a multisystem disease characterised by a triad of autoimmunity, vasculopathy and aberrant
tissue remodeling resulting in varying degrees of tissue fibrosis [121,122]. SSc-ILD is the leading
cause of disease-related mortality [123]. Endothelial injury is an important initiating pathological
event [124–126] and clinical manifestations of vasculopathy (characteristic nailfold capillary changes
and Raynaud’s phenomenon) pre-date the development of tissue fibrosis [127]. The evolving
obliterative microangiopathy characterized by progressive capillary loss (that can be directly visualized
at the nailfold) results in progressive tissue ischaemia, which could be an important driver of both
ischaemic complications such as digital ulcers but also tissue fibrosis [128,129].

The induction of VEGF pathways by hypoxia [130] has led to interest in its potential role in the
pathogenesis of SSc. Early studies demonstrated raised circulating levels of VEGF-A in both early [131]
and more established SSc [132]; surprising given the progressive capillary loss in SSc. Subsequent work
examining VEGF-A splice isoforms provided a plausible explanation, having identified increased plasma
levels of the VEGF-A165b splice variant in association with more severe nailfold capillary loss [133]. It is
possible that isoform switching from pro-angiogenic VEGF-Axxxa isoform production in early disease
to inhibitory VEGF-Axxxb isoforms might help explain disease evolution in this heterogeneous disease,
although the mechanisms leading to isoform switching have yet to be elucidated. With regards to SSc-ILD,
there are lower VEGF-A BALF levels in SSc compared to both healthy controls and SSc patients without
lung involvement [134]. De Santis et al. observed a direct correlation between circulating VEGF-A
and increased severity of ILD, as determined by the extent of interstitial abnormalities on CT imaging
and lung function parameters, suggesting a possible pathological role for VEGF-A in SSc-ILD [135].
The anti-angiogenic VEGF-A165b isoform has yet to be fully investigated in SSc-related pulmonary
disease. Nintedanib has recently been shown to ameliorate histological features of pulmonary arterial
hypertension (PAH) and pulmonary fibrosis in pre-clinical models of SSc, which has encouraging
implications for ongoing phase III clinical trials of nintedanib in SSc-associated ILD [136].

6.2. Other Forms of CTD-ILD

Both VEGF-A and anti-angiogenic VEGF-A165b isoforms are over-expressed in muscle tissue from
patients with myositis-spectrum disorders (MSD) compared to healthy donors [137,138]. However,
there is limited data on circulating VEGF-A levels and pulmonary disease in MSD [139]. The only
work examining VEGF in systemic lupus erythematosus (SLE)-related lung disease has focused on
PAH, identifying higher levels of VEGF-A in SLE patients with PAH compared to those without [140].
Similar results were found in PAH related to mixed connective tissue disease [141]. Microscopic
polyangiitis (MPA) is a systemic small vessel vasculitis with pulmonary involvement ranging from
ILD, nodularity, consolidation and pleural effusions. Serum VEGF-A is increased in MPA patients
(with lung involvement) and falls in response to systemic immunosuppression, perhaps because
inflammatory cells such as macrophages are an important source [142].

6.3. Inflammatory Arthritis

Rheumatoid arthritis (RA) is common (prevalence ~1%), but clinically meaningful RA-associated
ILD is rare. Circulating VEGF-A is increased in RA patients, particularly in those patients with
extra-articular manifestations (including pulmonary fibrosis) [143,144].
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7. Summary

Significant quantities of VEGF-A exist in the normal lung. Processes classically associated with
VEGF-A (angiogenesis, mitogenesis and permeability) are extremely restricted, however, suggesting
an alternative role for VEGF-A in the mature lung. Growing evidence suggests that this role
involves the maintenance of normal lung structure and function, where an intact ACM and thus
compartmentalisation of VEGF-A appears crucial.

There are apparent disparities in the literature regarding VEGF-A in lung disease, which may be
in part due to methodological differences in the study design and animal models used. It is possible
that regional or compartmental differences in VEGF-A expression in the lung or heterogeneity within
and between the individuals studied may also account for the differences observed. The presence of
and differential influence of VEGF-A splice variants offers an alternative explanation (Figure 2).
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Figure 2. Schematic diagram of the role of VEGF-A in the development of fibrotic interstitial lung
disease. Current paradigms suggest repeated alveolar epithelial cell injury is an important initiating
factor. VEGF-A receptors are abundantly expressed on both sides of the alveolar capillary membrane;
alveolar epithelial type II (ATII) cells [25,28,29,55], macrophages [3,27], in the vascular bed [24,56,57]
and by fibroblasts [52]. Total VEGF-A levels are consistently reduced in the bronchoalveolar lavage
fluid of patients with fibrotic lung disease. Nintedanib is a tyrosine kinase inhibitor of VEGF-A
receptor activity [2] (thus theoretically inhibiting VEGF-Axxxa and VEGF-Axxxb isoforms) with clinical
application in the treatment of idiopathic pulmonary fibrosis (IPF) [2]. ATII cell derived VEGF-Axxxa
appears critical for the development of pulmonary fibrosis in pre-clinical models, with VEGF-A165b
having an inhibitory/opposing effect [52]. In vitro, VEGF-A165a has been shown to induce the
proliferation of ATII cells [60], endothelial cells [60] and fibroblasts [52], and increase extracellular
matrix production by fibroblasts [52], all inhibited by VEGF-A165b. Taken in conjunction with the
data from pre-clinical models it suggests that the co-ordinated expression of VEGF-Axxxa:VEGF-Axxxb
appears important in health and disease, with VEGF-Axxxa acting as a driver of the fibrotic process.
Upregulation of circulating VEGF-A165b levels in IPF patients who subsequently progressed after 1 year
follow-up (FVC fall of ≥10% or death), suggests that VEGF-Axxxb may be released as a compensatory
protective mechanism against fibrogenesis, overwhelmed by other processes occurring within the
lung [52].
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The complexity of VEGF biology in lung disease is becoming increasingly apparent, not to mention
the numerous physiological roles of VEGF in several organ systems and the potential for pleiotropic
effects [145,146]. The development of future therapies directed at VEGF requires consideration of these
factors with detailed characterisation of patient phenotypes to enable superior targeted therapy.

Author Contributions: Shaney L. Barratt conceived the idea for this manuscript. All authors (Shaney L. Barratt,
Victoria A. Flower, John D. Pauling and Ann B. Millar) contributed to the writing of the manuscript equally.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory
Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias.
This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS)
was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am. J.
Respir. Crit. Care Med. 2001, 165, 277–304.

2. Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.; Costabel, U.; Cottin, V.; Flaherty, K.R.;
Hansell, D.M.; Yoshikazu, I.; et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl.
J. Med. 2014, 370, 2071–2082. [CrossRef] [PubMed]

3. Ferrara, N.; Gerger, H.P.; Lecouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676.
[CrossRef] [PubMed]

4. Leung, D.W.; Cachianes, G.; Kuang, W.J.; Goeddel, D.V.; Ferrara, N. Vascular endothelial growth factor is a
secreted angiogenic mitogen. Science 1989, 246, 1306–1309. [CrossRef] [PubMed]

5. Zacchigna, S.; Lambrechts, D.; Carmeliet, P. Neurovascular signaling defects in neurodegeneration.
Nat. Rev. Neurosci. 2008, 9, 169–181. [CrossRef] [PubMed]

6. Harper, S.J.; Bates, D.O. VEGF-A splicing: The key to anti-angiogenic therapeutics? Nat. Rev. Cancer 2008, 8,
880–887. [CrossRef] [PubMed]

7. Bates, D.O. Vascular endothelial growth factors and vascular permeability. Cardiovasc. Res. 2010, 87, 262–271.
[CrossRef] [PubMed]

8. Bates, D.O.; Cui, T.G.; Doughty, J.M.; Winkler, M.; Sugiono, M.; Shields, J.D.; Peat, D.; Gillatt, D.; Harper, S.J.
VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell
carcinoma. Cancer Res. 2002, 62, 4123–4131. [PubMed]

9. Woolard, J.; Wang, W.Y.; Bevan, H.S.; Qiu, Y.; Morbidelli, L.; Pritchard-Jones, R.O.; Cui, T.G.; Sugiono, M.;
Waine, E.; Perrin, R.; et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant:
Mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004,
64, 7822–7835. [CrossRef] [PubMed]

10. Cebe Suarez, S.; Pieren, M.; Cariolato, L.; Arn, S.; Hoffmann, U.; Bogucki, A.; Manlius, C.; Wood, J.;
Ballmer-Hofer, K. A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows
attenuated signaling through VEGFR-2. Cell. Mol. Life Sci. 2006, 63, 2067–2077. [CrossRef] [PubMed]

11. Bates, D.O.; Qiu, Y.; Cater, J.G.; Hamdollah-Zadeh, M.; Barratt, S.; Gammons, M.V.; Millar, A.B.;
Salmon, A.H.J.; Oltean, S.; Haeper, S.J. Detection of VEGF-A(xxx)b isoforms in human tissues. PLoS ONE
2013, 8, e68399. [CrossRef] [PubMed]

12. Olofsson, B.; Korpelainen, E.; Pepper, M.S.; Mandriota, S.J.; Aase, K.; Kumar, V.; Gunji, Y.; Jeltsch, M.M.;
Shibuya, M.; Alitalo, K.; et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and
regulates plasminogen activator activity in endothelial cells. Proc. Natl. Acad. Sci. USA 1998, 95, 11709–11714.
[CrossRef] [PubMed]

13. Joukov, V.; Pajusola, K.; Kaipainen, A.; Chilov, D.; Lahtinen, I.; Kukk, E.; Saksela, O.; Kalkkinen, N.; Alitalo, K.
A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2)
receptor tyrosine kinases. EMBO J. 1996, 15, 290–298. [PubMed]

14. Olofsson, B.; Pajusola, K.; Kaipainen, A.; Von Eular, G.; Joukov, V.; Saksela, O.; Orpana, A.; Pettersson, R.F.;
Alitalo, K.; Eriksson, U. Vascular endothelial growth factor B, a novel growth factor for endothelial cells.
Proc. Natl. Acad. Sci. USA 1996, 93, 2576–2581. [CrossRef] [PubMed]

http://dx.doi.org/10.1056/NEJMoa1402584
http://www.ncbi.nlm.nih.gov/pubmed/24836310
http://dx.doi.org/10.1038/nm0603-669
http://www.ncbi.nlm.nih.gov/pubmed/12778165
http://dx.doi.org/10.1126/science.2479986
http://www.ncbi.nlm.nih.gov/pubmed/2479986
http://dx.doi.org/10.1038/nrn2336
http://www.ncbi.nlm.nih.gov/pubmed/18253131
http://dx.doi.org/10.1038/nrc2505
http://www.ncbi.nlm.nih.gov/pubmed/18923433
http://dx.doi.org/10.1093/cvr/cvq105
http://www.ncbi.nlm.nih.gov/pubmed/20400620
http://www.ncbi.nlm.nih.gov/pubmed/12124351
http://dx.doi.org/10.1158/0008-5472.CAN-04-0934
http://www.ncbi.nlm.nih.gov/pubmed/15520188
http://dx.doi.org/10.1007/s00018-006-6254-9
http://www.ncbi.nlm.nih.gov/pubmed/16909199
http://dx.doi.org/10.1371/journal.pone.0068399
http://www.ncbi.nlm.nih.gov/pubmed/23935865
http://dx.doi.org/10.1073/pnas.95.20.11709
http://www.ncbi.nlm.nih.gov/pubmed/9751730
http://www.ncbi.nlm.nih.gov/pubmed/8617204
http://dx.doi.org/10.1073/pnas.93.6.2576
http://www.ncbi.nlm.nih.gov/pubmed/8637916


Int. J. Mol. Sci. 2018, 19, 1269 10 of 17

15. Wanstall, J.C.; Gambino, A.; Jeffrey, T.K.; Cahill, M.M.; Bellomo, D.; Hayward, N.K.; Kay, G.F. Vascular
endothelial growth factor-B-deficient mice show impaired development of hypoxic pulmonary hypertension.
Cardiovasc. Res. 2002, 55, 361–368. [CrossRef]

16. Wirzenius, M.; Tammela, T.; Uutela, M.; He, Y.; Odorisio, T.; Zambruno, G.; Nagy, J.A.; Dvorak, H.F.;
Yla-Herttuala, S.; Shibuya, M.; et al. Distinct vascular endothelial growth factor signals for lymphatic vessel
enlargement and sprouting. J. Exp. Med. 2007, 204, 1431–1440. [CrossRef] [PubMed]

17. Saaristo, A.; Veikkola, T.; Enholm, B.; Hytonen, M.; Arola, J.; Pajusola, K.; Turunen, P.; Jeltsch, M.;
Karkkainen, M.J.; Kerjaschki, D.; et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement,
tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J. 2002, 16,
1041–1049. [CrossRef] [PubMed]

18. Ogawa, S.; Oku, A.; Sawano, A.; Yamaguchi, S.; Yazaki, Y.; Shibuya, M. A novel type of vascular endothelial
growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic
activity without heparin-binding domain. J. Biol. Chem. 1998, 273, 31273–31282. [CrossRef] [PubMed]

19. DiPalma, T.; Tucci, M.; Russo, G.; Maglione, D.; Lago, C.T.; Romano, A.; Saccone, S.; Della Valle, G.;
De Gregorio, L.; Dragani, T.A.; et al. The placenta growth factor gene of the mouse. Mamm. Genome 1996, 7,
6–12. [CrossRef] [PubMed]

20. Cao, Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci. Signal. 2009, 2. [CrossRef]
[PubMed]

21. Eriksson, A.; Cao, R.; Pawliuk, R.; Berg, S.M.; Tsang, M.; Zhou, D.; Fleet, C.; Tritsaris, K.; Dissing, S.;
Leboulch, P.; et al. Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by
the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell 2002, 1, 99–108. [CrossRef]

22. Carmeliet, P.; Moons, L.; Luttun, A.; Vincenti, V.; Compernolle, V.; De Mol, M.; Wu, Y.; Bono, F.; Devy, L.;
Beck, H.; et al. Synergism between vascular endothelial growth factor and placental growth factor contributes
to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 2001, 7, 575–583. [CrossRef]
[PubMed]

23. Matsumoto, T.; Claesson-Welsh, L. VEGF receptor signal transduction. Sci. STKE 2001, 2001. [CrossRef]
[PubMed]

24. Shalaby, F.; Rossant, J.; Yamaguchi, T.P.; Gertsenstein, M.; Wu, X.F.; Breitman, M.L.; Schuh, A.C. Failure
of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995, 376, 62–66. [CrossRef]
[PubMed]

25. Fehrenbach, H.; Kasper, M.; Haase, M.; Schuh, D.; Muller, M. Differential immunolocalization of VEGF in rat
and human adult lung, and in experimental rat lung fibrosis: Light, fluorescence, and electron microscopy.
Anat. Rec. 1999, 254, 61–73. [CrossRef]

26. De Vries, C.; Escobedo, J.A.; Ueno, H.; Houck, K.; Ferrara, N.; Williams, L.T. The fms-like tyrosine kinase,
a receptor for vascular endothelial growth factor. Science 1992, 255, 989–991. [CrossRef] [PubMed]

27. Sawano, A.; Iwai, S.; Sakurai, Y.; Ito, M.; Shitara, K.; Nakahata, T.; Shibuya, M. Flt-1, vascular endothelial
growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans.
Blood 2001, 97, 785–791. [CrossRef] [PubMed]

28. Maniscalco, W.M.; Watkins, R.H.; D’Angio, C.T.; Ryan, R.M. Hyperoxic injury decreases alveolar epithelial
cell expression of vascular endothelial growth factor (VEGF) in neonatal rabbit lung. Am. J. Respir. Cell
Mol. Biol. 1997, 16, 557–567. [CrossRef] [PubMed]

29. Medford, A.R.; Douglas, S.K.; Godinho, S.I.; Uppington, K.M.; Armstrong, L.; Gillespie, K.M.; Van Zyl, B.;
Tetley, T.D.; Ibrahim, N.B.; Millar, A.B. Vascular Endothelial Growth Factor (VEGF) isoform expression and
activity in human and murine lung injury. Respir. Res. 2009, 10, 27. [CrossRef] [PubMed]

30. Waltenberger, J.; Claesson-Welsh, L.; Siegbahn, A.; Shibuya, M.; Heldin, C.H. Different signal transduction
properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 1994, 269,
26988–26995. [PubMed]

31. Kendall, R.L.; Thomas, K.A. Inhibition of vascular endothelial cell growth factor activity by an endogenously
encoded soluble receptor. Proc. Natl. Acad. Sci. USA 1993, 90, 10705–10709. [CrossRef] [PubMed]

32. Kanno, S.; Oda, N.; Abe, M.; Terai, Y.; Ito, M.; Shitara, K.; Tabayashi, K.; Shibuya, M.; Sato, Y. Roles of two
VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial
cells. Oncogene 2000, 19, 2138–2146. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0008-6363(02)00440-6
http://dx.doi.org/10.1084/jem.20062642
http://www.ncbi.nlm.nih.gov/pubmed/17535974
http://dx.doi.org/10.1096/fj.01-1042com
http://www.ncbi.nlm.nih.gov/pubmed/12087065
http://dx.doi.org/10.1074/jbc.273.47.31273
http://www.ncbi.nlm.nih.gov/pubmed/9813035
http://dx.doi.org/10.1007/s003359900003
http://www.ncbi.nlm.nih.gov/pubmed/8903720
http://dx.doi.org/10.1126/scisignal.259re1
http://www.ncbi.nlm.nih.gov/pubmed/19244214
http://dx.doi.org/10.1016/S1535-6108(02)00028-4
http://dx.doi.org/10.1038/87904
http://www.ncbi.nlm.nih.gov/pubmed/11329059
http://dx.doi.org/10.1126/stke.2001.112.re21
http://www.ncbi.nlm.nih.gov/pubmed/11741095
http://dx.doi.org/10.1038/376062a0
http://www.ncbi.nlm.nih.gov/pubmed/7596435
http://dx.doi.org/10.1002/(SICI)1097-0185(19990101)254:1&lt;61::AID-AR8&gt;3.0.CO;2-D
http://dx.doi.org/10.1126/science.1312256
http://www.ncbi.nlm.nih.gov/pubmed/1312256
http://dx.doi.org/10.1182/blood.V97.3.785
http://www.ncbi.nlm.nih.gov/pubmed/11157498
http://dx.doi.org/10.1165/ajrcmb.16.5.9160838
http://www.ncbi.nlm.nih.gov/pubmed/9160838
http://dx.doi.org/10.1186/1465-9921-10-27
http://www.ncbi.nlm.nih.gov/pubmed/19358726
http://www.ncbi.nlm.nih.gov/pubmed/7929439
http://dx.doi.org/10.1073/pnas.90.22.10705
http://www.ncbi.nlm.nih.gov/pubmed/8248162
http://dx.doi.org/10.1038/sj.onc.1203533
http://www.ncbi.nlm.nih.gov/pubmed/10815805


Int. J. Mol. Sci. 2018, 19, 1269 11 of 17

33. Zhang, F.; Tang, Z.; Hou, X.; Lennartsson, J.; Li, Y.; Koch, A.W.; Scotney, P.; Lee, C.; Arjunan, P.; Dong, L.; et al.
VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits
pathological angiogenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 6152–6157. [CrossRef] [PubMed]

34. Neufeld, G.; Cohen, T.; Gengrinovitch, S.; Poltorak, Z. Vascular endothelial growth factor (VEGF) and its
receptors. FASEB J. 1999, 13, 9–22. [CrossRef] [PubMed]

35. Grunewald, F.S.; Prota, A.E.; Giese, A.; Ballmer-Hofer, K. Structure-function analysis of VEGF receptor
activation and the role of coreceptors in angiogenic signaling. Biochim. Biophys. Acta 2010, 1804, 567–580.
[CrossRef] [PubMed]

36. Ishida, A.; Murray, J.; Saito, Y.; Kanthou, C.; Benzakour, O.; Shibuya, M.; Wijelath, E.S. Expression of vascular
endothelial growth factor receptors in smooth muscle cells. J. Cell. Physiol. 2001, 188, 359–368. [CrossRef]
[PubMed]

37. Le, A.; Zielinski, R.; He, C.; Crow, M.T.; Biswal, S.; Tuder, R.M.; Becker, P.M. Pulmonary epithelial neuropilin-1
deletion enhances development of cigarette smoke-induced emphysema. Am. J. Respir. Crit. Care Med. 2009,
180, 396–406. [CrossRef] [PubMed]

38. Farkas, L.; Gauldie, J.; Voelkel, N.F.; Kolb, M. Pulmonary hypertension and idiopathic pulmonary fibrosis:
A tale of angiogenesis, apoptosis, and growth factors. Am. J. Respir. Cell Mol. Biol. 2011, 45, 1–15. [CrossRef]
[PubMed]

39. Accrregui, M.J.; Penisten, S.T.; Goss, K.L.; Ramirez, K.; Snyder, J.M. Vascular endothelial growth factor gene
expression in human fetal lung in vitro. Am. J. Respir. Cell Mol. Biol. 1999, 20, 14–23. [CrossRef] [PubMed]

40. Ng, Y.S.; Rohan, R.; Sunday, M.E.; Demello, N.G.; D’Amore, P.A. Differential expression of VEGF isoforms in
mouse during development and in the adult. Dev. Dyn. 2001, 220, 112–121. [CrossRef]

41. Galambos, C.; Ng, Y.S.; Ali, A.; Noguchi, A.; Lovejoy, S.; D’Amore, P.A.; Demello, D.E. Defective pulmonary
development in the absence of heparin-binding vascular endothelial growth factor isoforms. Am. J. Respir.
Cell Mol. Biol. 2002, 27, 194–203. [CrossRef] [PubMed]

42. Mura, M.; Binnie, M.; Han, B.; Li, C.; Andrade, C.F.; Shiozaki, A.; Zhang, Y.; Ferrara, N.; Hwang, D.;
Waddell, T.K.; et al. Functions of type II pneumocyte-derived vascular endothelial growth factor in alveolar
structure, acute inflammation, and vascular permeability. Am. J. Pathol. 2010, 176, 1725–1734. [CrossRef]
[PubMed]

43. Janer, J.; Lassus, P.; Haglund, C.; Paavonen, K.; Alitalo, K.; Andersson, S. Pulmonary vascular endothelial
growth factor-C in development and lung injury in preterm infants. Am. J. Respir. Crit. Care Med. 2006, 174,
326–330. [CrossRef] [PubMed]

44. De Paepe, M.E.; Greco, D.; Mao, Q. Angiogenesis-related gene expression profiling in ventilated preterm
human lungs. Exp. Lung Res. 2010, 36, 399–410. [CrossRef] [PubMed]

45. Greenberg, J.M.; Thompson, F.Y.; Brooks, S.K.; Shannon, J.M.; McCormick-Shannon, K.; Cameron, J.E.;
Mallory, B.P.; Akeson, A.L. Mesenchymal expression of vascular endothelial growth factors D and A defines
vascular patterning in developing lung. Dev. Dyn. 2002, 224, 144–153. [CrossRef] [PubMed]

46. Janer, J.; Andersson, S.; Haglund, C.; Karikoski, R.; Lassus, P. Placental growth factor and vascular endothelial
growth factor receptor-2 in human lung development. Pediatrics 2008, 122, 340–346. [CrossRef] [PubMed]

47. Thurlbeck, W.M. Postnatal human lung growth. Thorax 1982, 37, 564–571. [CrossRef] [PubMed]
48. Jakkula, M.; Le Cras, T.D.; Gebb, S.; Hirth, K.P.; Tuder, R.M.; Voelkel, N.F.; Abman, S.H. Inhibition of

angiogenesis decreases alveolarization in the developing rat lung. Am. J. Physiol. Lung Cell. Mol. Physiol.
2000, 279, L600–L607. [CrossRef] [PubMed]

49. McGrath-Morrow, S.A.; Cho, C.; Zhen, L.; Hicklin, D.J.; Tuder, R.M. Vascular endothelial growth factor
receptor 2 blockade disrupts postnatal lung development. Am. J. Respir. Cell Mol. Biol. 2005, 32, 420–427.
[CrossRef] [PubMed]

50. Berse, B.; Brown, L.F.; Van de Water, L.; Dvorak, H.F.; Senger, D.R. Vascular permeability factor (vascular
endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors.
Mol. Biol. Cell 1992, 3, 211–220. [CrossRef] [PubMed]

51. Kaner, R.J.; Crystal, R.G. Compartmentalization of vascular endothelial growth factor to the epithelial surface
of the human lung. Mol. Med. 2001, 7, 240–246. [PubMed]

http://dx.doi.org/10.1073/pnas.0813061106
http://www.ncbi.nlm.nih.gov/pubmed/19369214
http://dx.doi.org/10.1096/fasebj.13.1.9
http://www.ncbi.nlm.nih.gov/pubmed/9872925
http://dx.doi.org/10.1016/j.bbapap.2009.09.002
http://www.ncbi.nlm.nih.gov/pubmed/19761875
http://dx.doi.org/10.1002/jcp.1121
http://www.ncbi.nlm.nih.gov/pubmed/11473363
http://dx.doi.org/10.1164/rccm.200809-1483OC
http://www.ncbi.nlm.nih.gov/pubmed/19520907
http://dx.doi.org/10.1165/rcmb.2010-0365TR
http://www.ncbi.nlm.nih.gov/pubmed/21057104
http://dx.doi.org/10.1165/ajrcmb.20.1.3251
http://www.ncbi.nlm.nih.gov/pubmed/9870913
http://dx.doi.org/10.1002/1097-0177(2000)9999:9999&lt;::AID-DVDY1093&gt;3.0.CO;2-D
http://dx.doi.org/10.1165/ajrcmb.27.2.4703
http://www.ncbi.nlm.nih.gov/pubmed/12151311
http://dx.doi.org/10.2353/ajpath.2010.090209
http://www.ncbi.nlm.nih.gov/pubmed/20167862
http://dx.doi.org/10.1164/rccm.200508-1291OC
http://www.ncbi.nlm.nih.gov/pubmed/16690974
http://dx.doi.org/10.3109/01902141003714031
http://www.ncbi.nlm.nih.gov/pubmed/20718599
http://dx.doi.org/10.1002/dvdy.10095
http://www.ncbi.nlm.nih.gov/pubmed/12112468
http://dx.doi.org/10.1542/peds.2007-1941
http://www.ncbi.nlm.nih.gov/pubmed/18676552
http://dx.doi.org/10.1136/thx.37.8.564
http://www.ncbi.nlm.nih.gov/pubmed/7179184
http://dx.doi.org/10.1152/ajplung.2000.279.3.L600
http://www.ncbi.nlm.nih.gov/pubmed/10956636
http://dx.doi.org/10.1165/rcmb.2004-0287OC
http://www.ncbi.nlm.nih.gov/pubmed/15722510
http://dx.doi.org/10.1091/mbc.3.2.211
http://www.ncbi.nlm.nih.gov/pubmed/1550962
http://www.ncbi.nlm.nih.gov/pubmed/11471568


Int. J. Mol. Sci. 2018, 19, 1269 12 of 17

52. Barratt, S.L.; Blythe, T.; Jarrett, C.; Ourradi, K.; Shelley-Fraser, G.; Day, M.J.; Qiu, Y.; Harper, S.; Maher, T.M.;
Oltean, S.; et al. Differential Expression of VEGF-Axxx Isoforms Is Critical for Development of Pulmonary
Fibrosis. Am. J. Respir. Crit. Care Med. 2017, 196, 479–493. [CrossRef] [PubMed]

53. Yao, J.S.; Shen, F.; Young, W.L.; Yang, G.Y. Comparison of doxycycline and minocycline in the inhibition of
VEGF-induced smooth muscle cell migration. Neurochem. Int. 2007, 50, 524–530. [CrossRef] [PubMed]

54. Wu, W.K.; Llewellyn, O.P.; Bates, D.O.; Nicholson, L.B.; Dick, A.D. IL-10 regulation of macrophage VEGF
production is dependent on macrophage polarisation and hypoxia. Immunobiology 2010, 215, 796–803.
[CrossRef] [PubMed]

55. Medford, A.R.; Ibrahim, N.B.; Millar, A.B. Vascular endothelial growth factor receptor and coreceptor
expression in human acute respiratory distress syndrome. J. Crit. Care 2009, 24, 236–242. [CrossRef]
[PubMed]

56. Fujio, Y.; Walsh, K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in
an anchorage-dependent manner. J. Biol. Chem. 1999, 274, 16349–16354. [CrossRef] [PubMed]

57. Soker, S.; Fidder, H.; Neufeld, G.; Klagbrun, M. Characterization of novel vascular endothelial growth factor
(VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J. Biol. Chem. 1996, 271,
5761–5767. [CrossRef] [PubMed]

58. Medford, A.R.; Millar, A.B. Vascular endothelial growth factor (VEGF) in acute lung injury (ALI) and acute
respiratory distress syndrome (ARDS): Paradox or paradigm? Thorax 2006, 61, 621–626. [CrossRef] [PubMed]

59. Brown, K.R.; England, K.M.; Goss, K.L.; Snyder, J.M.; Acarregui, M.J. VEGF induces airway epithelial cell
proliferation in human fetal lung in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 281, L1001–L1010.
[CrossRef] [PubMed]

60. Varet, J.; Douglas, S.K.; Gilmartin, L.; Medford, A.R.; Bates, D.O.; Harper, S.J.; Millar, A.B. VEGF in the lung:
A role for novel isoforms. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 298, L768–L774. [CrossRef] [PubMed]

61. Compernolle, V.; Brusselmans, K.; Acker, T.; Hoet, P.; Tjwa, M.; Beck, H.; PLaisance, S.; Dor, Y.; Keshet, E.;
Lupu, F.; et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with
VEGF prevents fatal respiratory distress in premature mice. Nat. Med. 2002, 8, 702–710. [CrossRef] [PubMed]

62. Mura, M.; Han, B.; Andrade, C.F.; Seth, R.; Hwang, D.; Waddell, T.K.; Keshavjee, S.; Liu, M. The early
responses of VEGF and its receptors during acute lung injury: Implication of VEGF in alveolar epithelial cell
survival. Crit. Care 2006, 10, R130. [CrossRef] [PubMed]

63. Roberts, J.R.; Perkins, G.D.; Fujisawa, T.; Pettigrew, K.A.; Gao, F.; Ahmed, A.; Thickett, D.R. Vascular
endothelial growth factor promotes physical wound repair and is anti-apoptotic in primary distal lung
epithelial and A549 cells. Crit. Care Med. 2007, 35, 2164–2170. [CrossRef] [PubMed]

64. Kuhn, H.; Kruger, S.; Hammerschmidt, S.; Wirtz, H. High concentrations of vascular endothelial growth
factor reduce stretch-induced apoptosis of alveolar type II cells. Respirology 2010, 15, 343–348. [CrossRef]
[PubMed]

65. Gerber, H.P.; Dixit, V.; Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic
proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 1998, 273, 13313–13316. [CrossRef]
[PubMed]

66. Gerber, H.P.; McMurtrey, A.; Kowalski, J.; Yan, M.; Keyt, B.A.; Dixit, V.; Ferrara, N. Vascular endothelial
growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal
transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 1998, 273, 30336–30343.
[CrossRef] [PubMed]

67. Alavi, A.; Hood, J.D.; Frausto, R.; Stupack, D.G.; Cheresh, D.A. Role of Raf in vascular protection from
distinct apoptotic stimuli. Science 2003, 301, 94–96. [CrossRef] [PubMed]

68. Kasahara, Y.; Tuder, R.M.; Taraseviciene-Stewart, L.; Le Cras, T.D.; Abman, S.; Hirth, P.K.; Waltenberger, J.;
Voelkel, N.F. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Investig. 2000,
106, 1311–1319. [CrossRef] [PubMed]

69. Tang, K.; Rossiter, H.B.; Wagner, P.D.; Breen, E.C. Lung-targeted VEGF inactivation leads to an emphysema
phenotype in mice. J. Appl. Physiol. 2004, 97, 1559–1566. [CrossRef] [PubMed]

70. Tuder, R.M.; Kasahara, Y.; Voelkel, N.F. Inhibition of vascular endothelial growth factor receptors causes
emphysema in rats. Chest 2000, 117, 281S. [CrossRef]

http://dx.doi.org/10.1164/rccm.201603-0568OC
http://www.ncbi.nlm.nih.gov/pubmed/28661183
http://dx.doi.org/10.1016/j.neuint.2006.10.008
http://www.ncbi.nlm.nih.gov/pubmed/17145119
http://dx.doi.org/10.1016/j.imbio.2010.05.025
http://www.ncbi.nlm.nih.gov/pubmed/20692534
http://dx.doi.org/10.1016/j.jcrc.2008.04.003
http://www.ncbi.nlm.nih.gov/pubmed/19327291
http://dx.doi.org/10.1074/jbc.274.23.16349
http://www.ncbi.nlm.nih.gov/pubmed/10347193
http://dx.doi.org/10.1074/jbc.271.10.5761
http://www.ncbi.nlm.nih.gov/pubmed/8621443
http://dx.doi.org/10.1136/thx.2005.040204
http://www.ncbi.nlm.nih.gov/pubmed/16807391
http://dx.doi.org/10.1152/ajplung.2001.281.4.L1001
http://www.ncbi.nlm.nih.gov/pubmed/11557604
http://dx.doi.org/10.1152/ajplung.00353.2009
http://www.ncbi.nlm.nih.gov/pubmed/20228180
http://dx.doi.org/10.1038/nm721
http://www.ncbi.nlm.nih.gov/pubmed/12053176
http://dx.doi.org/10.1186/cc5042
http://www.ncbi.nlm.nih.gov/pubmed/16968555
http://dx.doi.org/10.1097/01.CCM.0000281451.73202.F6
http://www.ncbi.nlm.nih.gov/pubmed/17855831
http://dx.doi.org/10.1111/j.1440-1843.2009.01701.x
http://www.ncbi.nlm.nih.gov/pubmed/20199645
http://dx.doi.org/10.1074/jbc.273.21.13313
http://www.ncbi.nlm.nih.gov/pubmed/9582377
http://dx.doi.org/10.1074/jbc.273.46.30336
http://www.ncbi.nlm.nih.gov/pubmed/9804796
http://dx.doi.org/10.1126/science.1082015
http://www.ncbi.nlm.nih.gov/pubmed/12843393
http://dx.doi.org/10.1172/JCI10259
http://www.ncbi.nlm.nih.gov/pubmed/11104784
http://dx.doi.org/10.1152/japplphysiol.00221.2004
http://www.ncbi.nlm.nih.gov/pubmed/15208295
http://dx.doi.org/10.1016/S0012-3692(15)51033-7


Int. J. Mol. Sci. 2018, 19, 1269 13 of 17

71. Le Cras, T.D.; Spitzmiller, R.E.; Albertine, K.H.; Greenberg, J.M.; Whitsett, J.A.; Akeson, A.L. VEGF causes
pulmonary hemorrhage, hemosiderosis, and air space enlargement in neonatal mice. Am. J. Physiol. Lung
Cell. Mol. Physiol. 2004, 287, L134–L142. [CrossRef] [PubMed]

72. Bhandari, V.; Chho-Wing, R.; Chapoval, S.P.; Lee, C.G.; Tang, C.; Kim, Y.K.; Ma, B.; Baluk, P.; Lin, M.I.;
McDonald, D.M.; et al. Essential role of nitric oxide in VEGF-induced, asthma-like angiogenic, inflammatory,
mucus, and physiologic responses in the lung. Proc. Natl. Acad. Sci. USA 2006, 103, 11021–11026. [CrossRef]
[PubMed]

73. Tsao, P.N.; Su, Y.N.; Li, H.; Huang, P.H.; Chien, C.T.; Lai, Y.L.; Lee, C.N.; Chen, C.A.; Cheng, W.F.;
Wei, S.C.; et al. Overexpression of placenta growth factor contributes to the pathogenesis of pulmonary
emphysema. Am. J. Respir. Crit. Care Med. 2004, 169, 505–511. [CrossRef] [PubMed]

74. Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.;
Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. ARDS Definition Task Force. JAMA
2012, 307, 2526–2533. [PubMed]

75. Ware, L.B.; Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1334–1349.
[CrossRef] [PubMed]

76. Barratt, S.; Medford, A.R.; Millar, A.B. Vascular endothelial growth factor in acute lung injury and acute
respiratory distress syndrome. Respiration 2014, 87, 329–342. [CrossRef] [PubMed]

77. Medford, A.R.; Godinho, S.I.; Keen, L.J.; Bidwell, J.L.; Millar, A.B. Relationship between vascular endothelial
growth factor + 936 genotype and plasma/epithelial lining fluid vascular endothelial growth factor protein
levels in patients with and at risk for ARDS. Chest 2009, 136, 457–464. [CrossRef] [PubMed]

78. Medford, A.R.; Keen, L.J.; Bidwell, J.L.; Millar, A.B. Vascular endothelial growth factor gene polymorphism
and acute respiratory distress syndrome. Thorax 2005, 60, 244–248. [CrossRef] [PubMed]

79. Yang, S.; Cao, S.; Li, J.; Chang, J. Association between vascular endothelial growth factor + 936 genotype and
acute respiratory distress syndrome in a Chinese population. Genet. Test. Mol. Biomark. 2011, 15, 737–740.
[CrossRef] [PubMed]

80. Song, J.; Lu, H.; Zheng, X.; Huang, X. Effects of vascular endothelial growth factor in recovery phase of acute
lung injury in mice. Lung 2015, 193, 1029–1036. [CrossRef] [PubMed]

81. Thickett, D.R.; Armstrong, L.; Millar, A.B. A role for vascular endothelial growth factor in acute and resolving
lung injury. Am. J. Respir. Crit. Care Med. 2002, 166, 1332–1337. [CrossRef] [PubMed]

82. Maitre, B.; Boussat, S.; Jean, D.; Gouge, M.; Brochard, L.; Housset, B.; Adnot, S.; Delclaux, C. Vascular
endothelial growth factor synthesis in the acute phase of experimental and clinical lung injury. Eur. Respir. J.
2001, 18, 100–106. [CrossRef] [PubMed]

83. Azamfirei, L.; Gurzu, S.; Solomon, R.; Copotoiu, R.; Copotoiu, S.; Jung, I.; Tilinca, M.; Branzaniuc, K.;
Corneci, D.; Szederjesi, J.; et al. Vascular endothelial growth factor: A possible mediator of endothelial
activation in acute respiratory distress syndrome. Minerva Anestesiol. 2010, 76, 609–616. [PubMed]

84. Maniscalco, W.M.; Watkins, R.H.; Finkelstein, J.N.; Campbell, M.H. Vascular endothelial growth factor
mRNA increases in alveolar epithelial cells during recovery from oxygen injury. Am. J. Respir. Cell Mol. Biol.
1995, 13, 377–386. [CrossRef] [PubMed]

85. He, C.H.; Waxman, A.B.; Lee, C.G.; Link, H.; Ra-bach, M.E.; Ma, B.; Chen, Q.; Zhu, Z.; Zhong, M.;
Nakayama, K.; et al. Bcl-2-related protein A1 is an endogenous and cytokine-stimulated mediator of
cytoprotection in hyperoxic acute lung injury. J. Clin. Investig. 2005, 115, 1039–1048. [CrossRef] [PubMed]

86. Kaner, R.J.; Ladetto, J.V.; Singh, R.; Fukuda, N.; Matthay, M.A.; Crystal, R.G. Lung overexpression of the
vascular endothelial growth factor gene induces pulmonary edema. Am. J. Respir. Cell Mol. Biol. 2000, 22,
657–664. [CrossRef] [PubMed]

87. Watanabe, M.; Boyer, J.L.; Crystal, R.G. Genetic delivery of bevacizumab to suppress vascular endothelial
growth factor-induced high-permeability pulmonary oedema. Hum. Gene Ther. 2009, 20, 598–610. [CrossRef]
[PubMed]

88. Olson, A.L.; Swigris, J.J.; Lezotte, D.C.; Norris, J.M.; Wilson, C.G.; Brown, K.K. Mortality from pulmonary
fibrosis increased in the United States from 1992 to 2003. Am. J. Respir. Crit. Care Med. 2007, 176, 277–284.
[CrossRef] [PubMed]

http://dx.doi.org/10.1152/ajplung.00050.2004
http://www.ncbi.nlm.nih.gov/pubmed/15033636
http://dx.doi.org/10.1073/pnas.0601057103
http://www.ncbi.nlm.nih.gov/pubmed/16832062
http://dx.doi.org/10.1164/rccm.200306-774OC
http://www.ncbi.nlm.nih.gov/pubmed/14644931
http://www.ncbi.nlm.nih.gov/pubmed/22797452
http://dx.doi.org/10.1056/NEJM200005043421806
http://www.ncbi.nlm.nih.gov/pubmed/10793167
http://dx.doi.org/10.1159/000356034
http://www.ncbi.nlm.nih.gov/pubmed/24356493
http://dx.doi.org/10.1378/chest.09-0383
http://www.ncbi.nlm.nih.gov/pubmed/19349383
http://dx.doi.org/10.1136/thx.2004.034785
http://www.ncbi.nlm.nih.gov/pubmed/15741444
http://dx.doi.org/10.1089/gtmb.2011.0054
http://www.ncbi.nlm.nih.gov/pubmed/21797753
http://dx.doi.org/10.1007/s00408-015-9803-x
http://www.ncbi.nlm.nih.gov/pubmed/26415949
http://dx.doi.org/10.1164/rccm.2105057
http://www.ncbi.nlm.nih.gov/pubmed/12421742
http://dx.doi.org/10.1183/09031936.01.00074701
http://www.ncbi.nlm.nih.gov/pubmed/11510779
http://www.ncbi.nlm.nih.gov/pubmed/20661201
http://dx.doi.org/10.1165/ajrcmb.13.4.7546767
http://www.ncbi.nlm.nih.gov/pubmed/7546767
http://dx.doi.org/10.1172/JCI23004
http://www.ncbi.nlm.nih.gov/pubmed/15841185
http://dx.doi.org/10.1165/ajrcmb.22.6.3779
http://www.ncbi.nlm.nih.gov/pubmed/10837361
http://dx.doi.org/10.1089/hum.2008.169
http://www.ncbi.nlm.nih.gov/pubmed/19254174
http://dx.doi.org/10.1164/rccm.200701-044OC
http://www.ncbi.nlm.nih.gov/pubmed/17478620


Int. J. Mol. Sci. 2018, 19, 1269 14 of 17

89. Navaratnam, V.; Fleming, K.M.; West, J.; Smith, C.J.; Jenkins, R.G.; Fogarty, A.; Hubbard, R.B. The rising
incidence of idiopathic pulmonary fibrosis in the U.K. Thorax 2011, 66, 462–467. [CrossRef] [PubMed]

90. Collard, H.R.; King, T.E., Jr.; Bartelson, B.B.; Vourlekis, J.S.; Schwarz, M.I.; Brown, K.K. Changes in clinical
and physiologic variables predict survival in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.
2003, 168, 538–542. [CrossRef] [PubMed]

91. Raghu, G.; Weycker, D.; Edelsberg, J.; Bradford, W.Z.; Oster, G. Incidence and prevalence of idiopathic
pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2006, 174, 810–816. [CrossRef] [PubMed]

92. Noble, P.W.; Albera, C.; Bradford, W.Z.; Costabel, U.; Glassberg, M.K.; Kardatzke, D.; King, T.K., Jr.;
Lancaster, L.; Sahn, S.A.; Szwarcberg, J.; et al. Pirfenidone in patients with idiopathic pulmonary fibrosis
(CAPACITY): Two randomised trials. Lancet 2016, 377, 1760–1769. [CrossRef]

93. Katzenstein, A.L.; Mukhopadhyay, S.; Myers, J.L. Diagnosis of usual interstitial pneumonia and distinction
from other fibrosing interstitial lung diseases. Hum. Pathol. 2008, 39, 1275–1294. [CrossRef] [PubMed]

94. Cosgrove, G.P.; Brown, K.K.; Schiemann, W.P.; Serls, A.E.; Parr, J.E.; Geraci, M.W.; Schwarz, M.I.; Cool, C.D.;
Worten, G.S. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: A role in aberrant
angiogenesis. Am. J. Respir. Crit. Care Med. 2004, 170, 242–251. [CrossRef] [PubMed]

95. Ebina, M.; Shimizukawa, M.; Shibata, N.; Kimura, Y.; Suzuki, T.; Endo, M.; Sasano, H.; Kondo, T.; Nukiwa, T.
Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am. J. Respir.
Crit. Care Med. 2004, 169, 1203–1208. [CrossRef] [PubMed]

96. Turner-Warwick, M. Precapillary Systemic-Pulmonary Anastomoses. Thorax 1963, 18, 225–237. [CrossRef]
[PubMed]

97. Myers, J.L.; Katzenstein, A.L. Epithelial necrosis and alveolar collapse in the pathogenesis of usual interstitial
pneumonia. Chest 1988, 94, 1309–1311. [CrossRef] [PubMed]

98. Koyama, S.; Sato, E.; Tsukadaira, A.; Haniuda, M.; Numanami, H.; Kurai, M.; Nagai, S.; Izumi, T. Vascular
endothelial growth factor mRNA and protein expression in airway epithelial cell lines in vitro. Eur. Respir. J.
2002, 20, 1449–1456. [CrossRef] [PubMed]

99. Ando, M.; Miyazaki, E.; Ito, T.; Hiroshige, S.; Nureki, S.I.; Ueno, T.; Takenaka, R.; Fukami, T.; Kumamoto, T.
Significance of Serum Vascular Endothelial Growth Factor Level in Patients with Idiopathic Pulmonary
Fibrosis. Lung 2010, 188, 247–252. [CrossRef] [PubMed]

100. Meyer, K.C.; Cardoni, A.; Xiang, Z.Z. Vascular endothelial growth factor in bronchoalveolar lavage from
normal subjects and patients with diffuse parenchymal lung disease. J. Lab. Clin. Med. 2000, 135, 332–338.
[CrossRef] [PubMed]

101. Murray, L.A.; Habiel, D.M.; Hohmann, M.; Camelo, A.; Shang, H.; Zhou, Y.; Coelho, A.L.; Peng, X.; Gulati, M.;
Crestani, B.; et al. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight
2017, 2. [CrossRef] [PubMed]

102. Simler, N.R.; Brenchley, P.E.; Horrocks, A.W.; Greaves, S.M.; Hasleton, P.S.; Egan, J.J. Angiogenic cytokines in
patients with idiopathic interstitial pneumonia. Thorax 2004, 59, 581–585. [CrossRef] [PubMed]

103. Fagan, K.A.; McMurtry, I.F.; Rodman, D.M. Role of endothelin-1 in lung disease. Respir. Res. 2001, 2, 90–101.
[CrossRef] [PubMed]

104. Renzoni, E.A. Neovascularisation in Idiopathic Pulmonary Fibrosis: too much or too little? Am. J. Respir.
Crit. Care Med. 2004, 169, 1179–1180. [CrossRef] [PubMed]

105. Tzouvelekis, A.; Anevlavis, S.; Bouros, D. Angiogenesis in interstitial lung diseases: A pathogenetic hallmark
or a bystander? Respir. Res. 2006, 7, 82. [CrossRef] [PubMed]

106. Lee, S.; Chen, T.T.; Barber, C.L.; Jordan, M.C.; Murdock, J.; Desai, S.; Ferrara, N.; Nagy, A.; Roos, K.P.;
Iruela-Arispe, M.L. Autocrine VEGF signaling is required for vascular homeostasis. Cell 2007, 130, 691–703.
[CrossRef] [PubMed]

107. Stockmann, C.; Kerdiles, Y.; Nomaksteinsky, M.; Weidemann, A.; Takeda, N.; Doedens, A.;
Torres-Collado, A.X.; Iruela-Arispe, L.; Nizet, V.; Johnson, R.S. Loss of myeloid cell-derived vascular
endothelial growth factor accelerates fibrosis. Proc. Natl. Acad. Sci. USA 2010, 107, 4329–4334. [CrossRef]
[PubMed]

108. Hamada, N.; Kuwano, K.; Yamada, M.; Hagimoto, N.; Hiasa, K.; Egashira, K.; Nakashima, N.; Maeyama, T.;
Yoshimi, M.; Nakanishi, Y. Anti-vascular endothelial growth factor gene therapy attenuates lung injury and
fibrosis in mice. J. Immunol. 2005, 175, 1224–1231. [CrossRef] [PubMed]

http://dx.doi.org/10.1136/thx.2010.148031
http://www.ncbi.nlm.nih.gov/pubmed/21525528
http://dx.doi.org/10.1164/rccm.200211-1311OC
http://www.ncbi.nlm.nih.gov/pubmed/12773325
http://dx.doi.org/10.1164/rccm.200602-163OC
http://www.ncbi.nlm.nih.gov/pubmed/16809633
http://dx.doi.org/10.1016/S0140-6736(11)60405-4
http://dx.doi.org/10.1016/j.humpath.2008.05.009
http://www.ncbi.nlm.nih.gov/pubmed/18706349
http://dx.doi.org/10.1164/rccm.200308-1151OC
http://www.ncbi.nlm.nih.gov/pubmed/15117744
http://dx.doi.org/10.1164/rccm.200308-1111OC
http://www.ncbi.nlm.nih.gov/pubmed/14754760
http://dx.doi.org/10.1136/thx.18.3.225
http://www.ncbi.nlm.nih.gov/pubmed/14064617
http://dx.doi.org/10.1378/chest.94.6.1309
http://www.ncbi.nlm.nih.gov/pubmed/3191777
http://dx.doi.org/10.1183/09031936.02.00089802
http://www.ncbi.nlm.nih.gov/pubmed/12503703
http://dx.doi.org/10.1007/s00408-009-9223-x
http://www.ncbi.nlm.nih.gov/pubmed/20066538
http://dx.doi.org/10.1067/mlc.2000.105618
http://www.ncbi.nlm.nih.gov/pubmed/10779049
http://dx.doi.org/10.1172/jci.insight.92192
http://www.ncbi.nlm.nih.gov/pubmed/28814671
http://dx.doi.org/10.1136/thx.2003.009860
http://www.ncbi.nlm.nih.gov/pubmed/15223865
http://dx.doi.org/10.1186/rr44
http://www.ncbi.nlm.nih.gov/pubmed/11686871
http://dx.doi.org/10.1164/rccm.2403006
http://www.ncbi.nlm.nih.gov/pubmed/15161610
http://dx.doi.org/10.1186/1465-9921-7-82
http://www.ncbi.nlm.nih.gov/pubmed/16725031
http://dx.doi.org/10.1016/j.cell.2007.06.054
http://www.ncbi.nlm.nih.gov/pubmed/17719546
http://dx.doi.org/10.1073/pnas.0912766107
http://www.ncbi.nlm.nih.gov/pubmed/20142499
http://dx.doi.org/10.4049/jimmunol.175.2.1224
http://www.ncbi.nlm.nih.gov/pubmed/16002726


Int. J. Mol. Sci. 2018, 19, 1269 15 of 17

109. Chaudhary, N.I.; Roth, G.J.; Hilberg, F.; Muller-Quernheim, J.; Prasse, A.; Zissel, G.; Schnapp, A.; Park, J.E.
Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur. Respir. J. 2007, 29, 976–985. [CrossRef]
[PubMed]

110. Farkas, L.; Farkas, D.; Ask, K.; Moller, A.; Gauldie, J.; Margetts, P.; Inman, M.; Kolb, M. VEGF ameliorates
pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats.
J. Clin. Investig. 2009, 119, 1298–1311. [CrossRef] [PubMed]

111. Selman, M.; Pardo, A.; King, T.E., Jr. Hypersensitivity pneumonitis: Insights in diagnosis and pathobiology.
Am. J. Respir. Crit. Care Med. 2012, 186, 314–324. [CrossRef] [PubMed]

112. Spagnolo, P.; Rossi, G.; Cavazza, A.; Bonifazi, M.; Paladini, I.; Bonella, F.; Sverzellati, N.; Costabel, U.
Hypersensitivity Pneumonitis: A Comprehensive Review. J. Investig. Allergol. Clin. Immunol. 2015, 25,
237–250. [PubMed]

113. Selman, M.; Pardo, A.; Barrera, L.; Estrada, A.; Watson, S.R.; Wilson, K.; Aziz, N.; Kaminski, N.; Zlotnik, A.
Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am. J.
Respir. Crit. Care Med. 2006, 173, 188–198. [CrossRef] [PubMed]

114. Gifford, A.H.; Matsuoka, M.; Ghoda, L.Y.; Homer, R.J.; Enelow, R.I. Chronic inflammation and lung fibrosis:
Pleotropic syndromes but limited distinct phenotypes. Mucosal Immunol. 2012, 5, 480–484. [CrossRef]
[PubMed]

115. Willems, S.; Verleden, S.E.; Vanaudenaerde, B.M.; Wynants, M.; Dooms, C.; Yserbyt, J.; Somers, J.;
Verbeken, E.K.; Verleden, G.M.; Wuyts, W.A. Multiplex protein profiling of bronchoalveolar lavage in
idiopathic pulmonary fibrosis and hypersensitivity pneumonitis. Ann. Thorac. Med. 2013, 8, 38–45. [PubMed]

116. Jinta, T.; Miyazaki, Y.; Kishi, M.; Akashi, T.; Takemura, T.; Inase, N.; Yoshizawa, Y. The pathogenesis
of chronic hypersensitivity pneumonitis in common with idiopathic pulmonary fibrosis: Expression of
apoptotic markers. Am. J. Clin. Pathol. 2010, 134, 613–620. [CrossRef] [PubMed]

117. Navarro, C.; Ruiz, V.; Gaxiola, M.; Carrillo, G.; Selman, M. Angiogenesis in hypersensitivity pneumonitis.
Arch. Physiol. Biochem. 2003, 111, 365–368. [CrossRef] [PubMed]

118. Yamashita, M.; Mouri, T.; Niisato, M.; Nitanai, H.; Kobayashi, H.; Ogasawara, M.; Endo, R.; Konishi, K.;
Sugai, T.; Sawai, T.; et al. Lymphangiogenic factors are associated with the severity of hypersensitivity
pneumonitis. BMJ Open Respir. Res. 2015, 2, e000085. [CrossRef] [PubMed]

119. Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 2011, 17, 1371–1380. [CrossRef] [PubMed]
120. Gutsche, M.; Rosen, G.D.; Swigris, J.J. Connective Tissue Disease-associated Interstitial Lung Disease:

A review. Curr. Respir. Care Rep. 2012, 1, 224–232. [CrossRef] [PubMed]
121. Herrick, A.L. Pathogenesis of Raynaud’s phenomenon. Rheumatology 2005, 44, 587–596. [CrossRef] [PubMed]
122. Van Hal, T.W.; van Bon, L.; Radstake, T.R. A system out of breath: How hypoxia possibly contributes to the

pathogenesis of systemic sclerosis. Int. J. Rheumatol. 2011, 824972. [CrossRef] [PubMed]
123. Steen, V.D.; Medsger, T.A. Changes in causes of death in systemic sclerosis, 1972–2002. Ann. Rheum. Dis.

2007, 66, 940–944. [CrossRef] [PubMed]
124. Freemont, A.J.; Hoyland, J.; Fielding, P.; Hodson, N.; Jayson, M.I. Studies of the microvascular endothelium

in uninvolved skin of patients with systemic sclerosis: Direct evidence for a generalized microangiopathy.
Br. J. Dermatol. 1992, 126, 561–568. [CrossRef] [PubMed]

125. Prescott, R.J.; Freemont, A.J.; Jones, C.J.; Hoyland, J.; Fielding, P. Sequential dermal microvascular and
perivascular changes in the development of scleroderma. J. Pathol. 1992, 166, 255–263. [CrossRef] [PubMed]

126. Roumm, A.D.; Whiteside, T.L.; Medsger, T.A., Jr.; Rodnan, G.P. Lymphocytes in the skin of patients with
progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum. 1984, 27,
645–653. [CrossRef] [PubMed]

127. Koenig, M.; Joyal, F.; Fritzler, M.J.; Roussin, A.; Abrahamowicz, M.; Boire, G.; Goulet, J.R.; Rich, E.;
Grodzicky, T.; Raymond, Y.; et al. Autoantibodies and microvascular damage are independent predictive
factors for the progression of Raynaud’s phenomenon to systemic sclerosis: A twenty-year prospective study
of 586 patients, with validation of proposed criteria for early systemic sclerosis. Arthritis Rheum. 2008, 58,
3902–3912. [CrossRef] [PubMed]

128. Sulli, A.; Ruaro, B.; Alessandri, E.; Pizzorni, C.; Cimmino, M.A.; Zampogna, G.; Gallo, M.; Cutolo, M.
Correlations between nailfold microangiopathy severity, finger dermal thickness and fingertip blood
perfusion in systemic sclerosis patients. Ann. Rheum. Dis. 2014, 73, 247–251. [CrossRef] [PubMed]

http://dx.doi.org/10.1183/09031936.00152106
http://www.ncbi.nlm.nih.gov/pubmed/17301095
http://dx.doi.org/10.1172/JCI36136
http://www.ncbi.nlm.nih.gov/pubmed/19381013
http://dx.doi.org/10.1164/rccm.201203-0513CI
http://www.ncbi.nlm.nih.gov/pubmed/22679012
http://www.ncbi.nlm.nih.gov/pubmed/26310038
http://dx.doi.org/10.1164/rccm.200504-644OC
http://www.ncbi.nlm.nih.gov/pubmed/16166619
http://dx.doi.org/10.1038/mi.2012.68
http://www.ncbi.nlm.nih.gov/pubmed/22806097
http://www.ncbi.nlm.nih.gov/pubmed/23440593
http://dx.doi.org/10.1309/AJCPK8RPQX7TQRQC
http://www.ncbi.nlm.nih.gov/pubmed/20855643
http://dx.doi.org/10.3109/13813450312331337612
http://www.ncbi.nlm.nih.gov/pubmed/15764076
http://dx.doi.org/10.1136/bmjresp-2015-000085
http://www.ncbi.nlm.nih.gov/pubmed/26448865
http://dx.doi.org/10.1038/nm.2545
http://www.ncbi.nlm.nih.gov/pubmed/22064427
http://dx.doi.org/10.1007/s13665-012-0028-7
http://www.ncbi.nlm.nih.gov/pubmed/23125954
http://dx.doi.org/10.1093/rheumatology/keh552
http://www.ncbi.nlm.nih.gov/pubmed/15741200
http://dx.doi.org/10.1155/2011/824972
http://www.ncbi.nlm.nih.gov/pubmed/22162692
http://dx.doi.org/10.1136/ard.2006.066068
http://www.ncbi.nlm.nih.gov/pubmed/17329309
http://dx.doi.org/10.1111/j.1365-2133.1992.tb00100.x
http://www.ncbi.nlm.nih.gov/pubmed/1610706
http://dx.doi.org/10.1002/path.1711660307
http://www.ncbi.nlm.nih.gov/pubmed/1517881
http://dx.doi.org/10.1002/art.1780270607
http://www.ncbi.nlm.nih.gov/pubmed/6375682
http://dx.doi.org/10.1002/art.24038
http://www.ncbi.nlm.nih.gov/pubmed/19035499
http://dx.doi.org/10.1136/annrheumdis-2012-202572
http://www.ncbi.nlm.nih.gov/pubmed/23644551


Int. J. Mol. Sci. 2018, 19, 1269 16 of 17

129. Distler, O.; Distler, J.H.; Scheid, A.; Acker, T.; Hirth, A.; Rethage, J.; Michel, B.A.; Gay, R.E.; Müller-Ladner, U.;
Matucci-Cerinic, M.; et al. Uncontrolled expression of vascular endothelial growth factor and its receptors
leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ. Res. 2004, 95, 109–116.
[CrossRef] [PubMed]

130. Marti, H.H.; Risau, W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial
growth factor and its receptors. Proc. Natl. Acad. Sci. USA 1998, 95, 15809–15814. [CrossRef] [PubMed]

131. Distler, O.; Del Rosso, A.; Giacomelli, R.; Cipriani, P.; Conforti, M.L.; Guiducci, S.; Gay, R.E.; Michel, B.A.;
Brühlmann, P.; Müller-Ladner, U.; et al. Angiogenic and angiostatic factors in systemic sclerosis: Increased
levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated
with the absence of fingertip ulcers. Arthritis Res. 2002, 4, R11. [CrossRef] [PubMed]

132. Avouac, J.; Wipff, J.; Goldman, O.; Ruiz, B.; Couraud, P.O.; Chiocchia, G.; Kahan, A.; Boileau, C.; Uzan, G.;
Allanore, Y. Angiogenesis in Systemic Sclerosis Impaired Expression of Vascular Endothelial Growth Factor
Receptor 1 in Endothelial Progenitor-Derived Cells Under Hypoxic Conditions. Arthritis Rheum. 2008, 58,
3550–3561. [CrossRef] [PubMed]

133. Manetti, M.; Guiducci, S.; Romano, E.; Bellando-Randone, S.; Lepri, G.; Bruni, C.; Conforti, M.L.;
Ibba-Manneschi, L.; Matucci-Cerinic, M. Increased plasma levels of the VEGF165b splice variant are
associated with the severity of nailfold capillary loss in systemic sclerosis. Ann. Rheum. Dis. 2013, 72,
1425–1427. [CrossRef] [PubMed]

134. De Santis, M.; Bosello, S.L.; Capoluongo, E.; Inzitari, R.; Peluso, G.; Lulli, P.; Zizzo, G.; Bocci, M.; Tolusso, B.;
Zuppi, C.; et al. A vascular endothelial growth factor deficiency characterises scleroderma lung disease.
Ann. Rheum. Dis. 2012, 71, 1461–1465. [CrossRef] [PubMed]

135. De Santis, M.; Ceribelli, A.; Cavaciocchi, F.; Crotti, C.; Massarotti, M.; Belloli, L.; Marasini, B.; Isailovic, N.;
Generali, E.; Selmi, C. Nailfold videocapillaroscopy and serum VEGF levels in scleroderma are associated
with internal organ involvement. Auto-Immun. Highlights 2016, 7, 5. [CrossRef] [PubMed]

136. Huang, J.; Maier, C.; Zhang, Y.; Soare, A.; Dees, C.; Beyer, C.; Harre, U.; Chen, C.W.; Distler, O.; Schett, G.; et al.
Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2
mouse model of systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 1941–1948. [CrossRef] [PubMed]

137. Grundtman, C.; Tham, E.; Ulfgren, A.K.; Lundberg, I.E. Vascular endothelial growth factor is highly expressed
in muscle tissue of patients with polymyositis and patients with dermatomyositis. Arthritis Rheum. 2008, 58,
3224–3238. [CrossRef] [PubMed]

138. Volpi, N.; Pecorelli, A.; Lorenzoni, P.; Di Lazzaro, F.; Belmonte, G.; Agliano, M.; Cantarini, L.; Giannini, F.;
Grasso, G.; Valacchi, G. Antiangiogenic VEGF isoform in inflammatory myopathies. Mediat. Inflamm. 2013,
2013, 219313. [CrossRef] [PubMed]

139. Kikuchi, K.; Kubo, M.; Kadono, T.; Yazawa, N.; Ihn, H.; Tamaki, K. Serum concentrations of vascular
endothelial growth factor in collagen diseases. Br. J. Dermatol. 1998, 139, 1049–1051. [CrossRef] [PubMed]

140. Tanaseanu, C.; Tudor, S.; Tamsulea, I.; Marta, D.; Manea, G.; Moldoveanu, E. Vascular endothelial growth
factor, lipoporotein-associated phospholipase A2, sP-selectin and antiphospholipid antibodies, biological
markers with prognostic value in pulmonary hypertension associated with chronic obstructive pulmonary
disease and systemic lupus erithematosus. Eur. J. Med. Res. 2007, 12, 145–151. [PubMed]

141. Distler, J.H.; Strapatsas, T.; Huscher, D.; Dees, C.; Akhmetshina, A.; Kiener, H.P.; Tarner, I.H.; Maurer, B.;
Walder, M.; Michel, B.; et al. Dysbalance of angiogenic and angiostatic mediators in patients with mixed
connective tissue disease. Ann. Rheum. Dis. 2011, 70, 1197–1202. [CrossRef] [PubMed]

142. Iwakawa, J.; Matsuyama, W.; Kubota, S.; Mitsuyama, H.; Suetsugu, T.; Watanabe, M.; Higashimoto, I.;
Osame, M.; Arimura, K. Increased serum vascular endothelial growth factor levels in microscopic poly
angiitis with pulmonary involvement. Respir. Med. 2006, 100, 1724–1733. [CrossRef] [PubMed]

143. Hashimoto, N.; Iwasaki, T.; Kitano, M.; Ogata, A.; Hamano, T. Levels of vascular endothelial growth factor
and hepatocyte growth factor in sera of patients with rheumatic diseases. Mod. Rheumatol. 2003, 13, 129–134.
[CrossRef] [PubMed]

144. Kuryliszyn-Moskal, A.; Klimiuk, P.A.; Sierakowski, S.; Ciolkiewicz, M. A study on vascular endothelial
growth factor and endothelin-1 in patients with extra-articular involvement of rheumatoid arthritis.
Clin. Rheumatol. 2006, 25, 314–319. [CrossRef] [PubMed]

http://dx.doi.org/10.1161/01.RES.0000134644.89917.96
http://www.ncbi.nlm.nih.gov/pubmed/15178641
http://dx.doi.org/10.1073/pnas.95.26.15809
http://www.ncbi.nlm.nih.gov/pubmed/9861052
http://dx.doi.org/10.1186/ar596
http://www.ncbi.nlm.nih.gov/pubmed/12453314
http://dx.doi.org/10.1002/art.23968
http://www.ncbi.nlm.nih.gov/pubmed/18975312
http://dx.doi.org/10.1136/annrheumdis-2012-203183
http://www.ncbi.nlm.nih.gov/pubmed/23572336
http://dx.doi.org/10.1136/annrheumdis-2011-200657
http://www.ncbi.nlm.nih.gov/pubmed/22402140
http://dx.doi.org/10.1007/s13317-016-0077-y
http://www.ncbi.nlm.nih.gov/pubmed/26878864
http://dx.doi.org/10.1136/annrheumdis-2016-210823
http://www.ncbi.nlm.nih.gov/pubmed/28814429
http://dx.doi.org/10.1002/art.23884
http://www.ncbi.nlm.nih.gov/pubmed/18821695
http://dx.doi.org/10.1155/2013/219313
http://www.ncbi.nlm.nih.gov/pubmed/23840094
http://dx.doi.org/10.1046/j.1365-2133.1998.02563.x
http://www.ncbi.nlm.nih.gov/pubmed/9990370
http://www.ncbi.nlm.nih.gov/pubmed/17509958
http://dx.doi.org/10.1136/ard.2010.140657
http://www.ncbi.nlm.nih.gov/pubmed/21622771
http://dx.doi.org/10.1016/j.rmed.2006.02.006
http://www.ncbi.nlm.nih.gov/pubmed/16546368
http://dx.doi.org/10.3109/s10165-002-0211-8
http://www.ncbi.nlm.nih.gov/pubmed/24387171
http://dx.doi.org/10.1007/s10067-005-0007-2
http://www.ncbi.nlm.nih.gov/pubmed/16247585


Int. J. Mol. Sci. 2018, 19, 1269 17 of 17

145. Roth, D.A.; McKirnan, M.D.; Canestrelli, I.; Gao, M.H.; Dalton, N.; Lai, N.C.; Roth, D.M.; Hammond, H.K.
Intracoronary delivery of an adenovirus encoding fibroblast growth factor-4 in myocardial ischemia: Effect
of serum antibodies and previous exposure to adenovirus. Hum. Gene Ther. 2006, 17, 230–238. [CrossRef]
[PubMed]

146. Sarkar, N.; Rück, A.; Källner, G.; Y-Hassan, S.; Blomberg, P.; Islam, K.B.; van der Linden, J.; Lindblom, D.;
Nygren, A.T.; Lind, B.; et al. Effects of intramyocardial injection of phVEGF-A165 as sole therapy in patients
with refractory coronary artery disease—12-Month follow-up: Angiogenic gene therapy. J. Intern. Med. 2001,
250, 373–381. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1089/hum.2006.17.230
http://www.ncbi.nlm.nih.gov/pubmed/16454656
http://dx.doi.org/10.1046/j.1365-2796.2001.00905.x
http://www.ncbi.nlm.nih.gov/pubmed/11887971
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	VEGF Biology 
	VEGF Isoforms 
	VEGF Receptors 
	VEGF and the Lung 

	VEGF in ARDS 
	VEGF in IPF 
	VEGF in Hypersensitivity Pneumonitis (HP) 
	VEGF-A in Autoimmune Rheumatic Diseases 
	SSc 
	Other Forms of CTD-ILD 
	Inflammatory Arthritis 

	Summary 
	References

