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A model for cell polarisation without mass conservation.1

Nicolas Verschueren∗ and Alan Champneys†2

3

Abstract. A system of two Schnakenberg-like reaction-diffusion equations is investigated analytically and nu-4
merically. The system has previously been used as a minimal model for concentrations of GTPases5
involved in the process of cell polarisation. Source and loss terms are added, breaking the mass6
conservation, which was shown previously to be responsible for the generation of stable fronts via a7
so-called wave-pinning mechanism. The extended model gives rise to a unique homogeneous equi-8
librium in the parameter region of interest, which loses stability via a pattern formation, or Turing9
bifurcation. The bistable character of the reaction terms ensures that this bifurcation is subcrtical10
for sufficiently small values of the driving parameter multiplying the nonlinear kinetics. This sub-11
criticality leads to the onset of a multitude of localised solutions, through the homoclinic snaking12
mechanism. As the driving parameter is further decreased, the multitude of solutions transforms13
into a single pulse through a Belyakov-Devaney transition in which there is the loss of a precursive14
pattern. An asymptotic analysis is used to probe the conservative limit in which the source and15
loss terms vanish. Matched asymptotic analysis shows that on an infinite domain the pulse solution16
transitions into a pair of fronts, with an additional weak quadratic core and exponential tails. On17
a finite domain, the core and tails disappear, leading to the mere wave-pinning front and its mirror18
image.19

Key words. Reaction-diffusion systems, Cell polarisation, G-proteins.20

AMS subject classifications. 35B25, 35B32, 35K57, 34B07.21

1. Introduction. Eukaryotic cell polarisation is the process by which a cell forms two22

distinct spatial domains a “front-end” and a “back-end”, defining a polarisation axis. This23

process is the first step in many vital cellular processes such as cell differentiation, wound24

healing, cell motility and organelle organisation. Roughly speaking, cell polarisation can be25

described as the symmetry-breaking presented by the spatial concentration of certain proteins26

and lipids inside the cell [17]. Polarisation may be caused spontaneously or by some external27

trigger or stimulus, here we shall consider the polarisation induced by an external stimulus,28

acting on the spatially heterogeneous concentration of certain GTPases, also known as G-29

proteins or Rho’s. See section 2 below for background information.30

The spatio-temporal dynamics of Rho-GTPases within a single cell has been described31

using reaction-diffusion models; see [12, 17, 35]. Minimal models consider just one GTPase,32

present in both active and inactive forms. Examples of such models were proposed by Mein-33

hardt [24] and, with the explicit introduction of mass conservation, by Otsuji et al. [29]. These34

works presume that the fundamental mechanism for spatial symmetry breaking is the so-called35

diffusion driven or Turing instability, see e.g. [28]. This mechanism is appealing, because there36

is a natural discrepancy between the diffusion rates of the free, inactive GTPases and their37

membrane-bound active counterparts. However, the Turing mechanism is known to lead to38
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2 N. VERSCHUEREN AND A.R. CHAMPNEYS

patterns characterised by a specific spatial wavelength rather than a single front or pulse —39

see. Figure 1(a,b) below. (Note though that the assumption in these works is that of super-40

crtical Turing bifurcations; it is argued in [3] that subcritical Turing bifurcations naturally41

lead to spatially localised states through the so-called homoclinic snaking mechanism [1, 39]).42

Additionally, the timescale required for the break of symmetry in the Turing instability was43

found not to match those observed experimentally; see [17] for details.44

In order to overcome these difficulties, Mori et al. [26], proposed a rather different mech-45

anism, called wave pinning, in which a single front is set up between two different asymptotic46

levels of the active G-protein. The pinning mechanism is different from that of scalar reaction-47

diffusion equations and relies on the resting position of a moving front being set by the overall48

mass conservation of active and inactive species (see section 3 below for a concise argument).49

Once the front is established, the polarity can be inverted (the spatial reflection of the origi-50

nal front) through new stimuli, a feature which is observed in the experiments. This minimal51

model has also served as the basis for more complex models in cell motility (see [23] and52

references therein).53

The minimal models describing the dynamics of a single GTPase are intended to be54

prototype models. However they have been successfully fit to experimental data [22]. The55

simplicity of these models allows analytic calculations which enable us to uncover the essential56

mechanism responsible for cell polarisation. In [27] a simple bifurcation analysis of the wave57

pinning model is carried out. In the same spirit, in [34] linear and weakly non-linear analysis58

of the Otsuji model is performed. Also [32] identify a cusp bifurcation as being the organising59

centre responsible for setting up the bistable kinetic profile responsible for the cell polarisation.60

The aim of this paper is to consider the effect of source and loss terms on the wave-pinning61

model. Specifically we are motivated by the related Schnakenberg-like model proposed by62

Payne and Grierson [31] and further studied in [2, 3] for the formation of a single localised63

patch of active Rho’s in Arabidopsis root hair cells. That model has striking similarities to64

the wave-pinning model, with the main difference being the presence of source and loss terms65

which were argued to represent nuclear control and secondary growth initiation processes66

respectively, which occur on a similar timescale to the the patch formation.67

Specifically, in what follows, we shall study the dimensionless system of equations68

∂tu = δ∂xxu+ [F (u, v)− εθu],(1a)69

∂tv = ∂xxv − [F (u, v)− εα], x ∈ [−L,L] , ∂x(u, v)(±L) = 0,(1b)70

where F (u, v) = γ
u2v

1 + u2
− ηu+ v.(1c)71

72

Here 2L� 1 is a large (possibly infinite) domain length, u(x, t) and v(x, t) represent the con-73

centrations of active and inactive species respectively and δ � 1 is the ratio of their diffusion74

rates. The function F (u, v) represents the local kinetics of the activation step parametrised75

by O(1) parameters η, γ. The specific form of F is not important and indeed we shall also76

consider a simpler form in section 3 in order to make explicit illustrative calculations. The77

parameters α and θ represent the strength of a constant source of inactive form and linear loss78

of active form respectively, with ε > 0 representing the relative importance of these effects79

compared to the other dynamics. In particular we shall be interested in both the cases ε = 180
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A MODEL FOR CELL POLARISATION WITHOUT MASS CONSERVATION. 3

and ε→ 0; the latter case leading precisely to the wave pinning model.81

The rest of the paper is organised as follows. Section 2 contains a brief review of the biology82

of cell polarisation and of the minimal reaction-diffusion models that have been proposed to83

describe it. Then, section 3 contains a new, simplified analysis of the wave-pinning mechanism.84

Section 4 contains analytical, simulation and numerical continuation results on the existence85

of stable localised states of the model (1) for ε = 1, while taking δ and γ as bifurcation86

parameters and prototypical values of the other constants. Parameter regions are identified87

in which homogeneous states, periodic states, localised patterns, or isolated pulses may be88

observed. Then, the key question is addressed in section 5 of how this structure composed by89

different states collapses to the wave-pinned fronts solutions in the mass-conservation limit90

ε → 0. First, numerical results show how the pulse solutions transform into front and back91

pairs with non-vanishing core and tails. These results suggest distinguished scalings that leads92

to a multiscale asymptotic analysis. This analysis also explains the key differences observed93

on a finite rather than infinite domain. Finally, section 6 draws conclusions and discusses94

potential implications of our findings to the biology of cell polarisation and more generally to95

pattern formation theory.96

2. Cell polarisation models. Eukaryotic cells can respond to gradients caused by small97

differences in concentration of exogenous or internal chemical signals. The phenomenon of98

cell polarisation induced by such stimuli has been observed experimentally in several cell99

types such as: budding yeast, Dictyostelium discoideum and Mammalian cells (white blood100

cells) [36]. From these experiments, many factors involved in the cell polarisation have been101

identified, a few being proteins like small GTPases (Cdc42, RaC and Rho), PI membrane102

lipids (PIP, PIP2 and PIP3) and Arp 2/3 (in active cytosol form). The interaction and spatial103

concentration of these factors depend on the cell-type, position and cellular state. Moreover,104

the molecular networks responsible for cell motility or chemotaxis are complex and depend105

on the cell-type. However, the basic mechanisms seemed to be preserved across all eukaryotic106

cells even though not all these factors are present in every cell type.107

Consequently, in order to study cell polarisation as a phenomenon independent of cell-108

type, a minimal approach is often used, where the features that are common to all cell-types109

studied are captured. The most relevant factors appear to be the small GTPases, known110

collectively as Rho proteins. These proteins are present in the cytosol (in inactive GDP-111

bound form) and the membrane (in active GTP-bound form). There is a constant exchange112

between the active and inactive forms. The active form can be deactivated via GTPase113

activating proteins (GAPs) and the inactive forms can be activated by Guanine exchange114

factors (GEFs). GEFs are thought to be responsible for the observed positive feedback, or115

autocatalysis of the activation step. Moreover, experimental observations have shown that116

there is a big difference between the diffusion ratios of G-proteins in the membrane and the117

cytosol (Figure 1(c)). Finally, within the timescale of polarisation (minutes), the total amount118

of the protein (considering both active and inactive form) is often taken to be constant [14].119

The spatio-temporal dynamics of the concentration of G-proteins in the cell (whether in120

active or inactive form) are determined by two processes: diffusion and reaction. The diffusion121

is responsible for the spatial dependence. On the other hand, GAPs and GEFs induce local122

reactions that are modelled typically by the non-linear interplay between components.123

This manuscript is for review purposes only.
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Figure 1. Schematic description of the mathematical modelling. (a,b) Representation of the one-
dimensional spatial domain as the limit (green line) when either a typical radial ((a), left)) or circumferential
((b), left) slice of the cell is considered (red dashed rectangle). Consequently polarisation corresponds to either
a front solution ((a), right) or a localised solution ((b), right). (c) The modelled protein exists in an active
form in the membrane, with diffusion constant Du and the inactive form is in the cytosol (with active form
Dv). The protein is deactivated by GAPs and activated through GEFs, the latter of which is assumed to be
autocatalytic.

In [26], the wave pinning model ( expression (1) when ε = 0) was introduced as a minimal124

reaction-diffusion description for the cell polarisation problem. In their derivation, the one-125

dimensional domain is obtained from taking a typical radial slice through the cell. Throughout126

the spatial domain, both cytosol and membrane are present. In the Figure 1 a sketch of the127

domain is depicted. In this scenario, the cell polarity is characterised by increased concen-128

tration of active G-proteins (black dots in the Figure 1(c)). In the continuum limit, such a129

state would correspond to a front connecting low to high concentrations of the active form130

(Figure 1(a), right). Thus, the wave-pinning model considers the spatio-temporal dynamics131

of the concentration of a single G-protein, existing in active and inactive form in the same132

long spatial interval.133

To explain where the model comes from, let û(x̂, t∗) and v̂(x̂, t∗) represent the concentra-
tions of the active and inactive forms. Experimental findings show that there is at least a
ten-fold difference between the diffusion rates of the active and inactive forms; in dimensional
co-ordinates Du � Dv. The conservation of total concentration suggests both the use of a
non-flux boundary conditions and the same kinetic function F̂ for creation of active and de-
struction of inactive forms. The function F̂ accounts for both the activation and deactivation
steps, mediated by the GEF and GAP respectively. Let k0 and δ̄ represent the basal rates of
each process. The positive feedback of the activation can be modelled by a Hill function, the
simplest form of which should have coefficient 2, in order to enable the appropriate symmetry
consideration. Letting the Hill parameters be given by γ and K2, we have the simplest form

F̂ (û, v̂) = γ
û2v̂

K2 + û2
− δ̄û+ k0v̂.

Actually, as discussed and explored in [27], any reasonable function can be used, as long as it134
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Figure 2. Numerical observation of the wave-pinning phenomenon in model (2); (a) spatio-temporal plots,
(b) initial and final solutions. See text for details. Parameter values are 2L = 10[µm], δ = 1[s−1], γ =
1[s−1],K = 1[µM ], k0 = 0.067[s−1], Du = 0.1[µm2s−1], Dv = 10[µm2s−1].

satisfies certain non-degeneracy assumptions. Given F̂ , the full model is135

∂t∗ û = Du∂x̄x̄û+ F̂ (û, v̂),(2a)136

∂t∗ v̂ = Dv∂x̄x̄v̂ − F̂ (û, v̂), x̄ ∈ [−L,L], ∂x̂(u, v)(±L) = 0,(2b)137

T =

∫ L

−L
(û+ v̂)dx̄.(2c)138

139

Here T is proportional to the total mass of G-proteins in the domain. Note, from the form of140

these equations and the no-flux boundary conditions that ∂tT = 0, so that the total mass is141

conserved.142

Figure 2 shows simulation results for the model at typical parameter values. Initially143

(b, left), an asymmetrical stimulus is applied for the inactive form v (continuous red line)144

while the active form u remains homogeneous (blue dashed line). Consequently, the active145

form u(x, t) develops a front solution that propagates as the inactive form tends to a roughly146

homogeneous equilibrium (see the spatio-temporal plots in (a)). After a characteristic time,147

a steady front is established in the active form (cf. the dashed blue line in (b), right).148

An in depth treatment of the wave-pinning model and its various extensions can be found149

in [26, 27]. An energetic explanation of the pinning phenomenon is given in section 3.150

According to the theory developed in [33], a front connecting two given homogeneous151

equilibria will be stable only at one point in the parameter space called the Maxwell point (see152

section 3 for more details). In the case of model (2), it possess a continuum of homogeneous153

equilibria given by the curve F (u, v) = 0 which is the nullcline of both the u and v spatially-154
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6 N. VERSCHUEREN AND A.R. CHAMPNEYS

independent systems (cf. Figure 3(a)). This degeneracy provides an extra degree of freedom155

in the system which turns the Maxwell Point into an interval of parameter values.156

When an asymmetrical stimulus is applied to v and a monotonic front arises, then the157

homogeneous equilibria either side of the front are free to move along the nullcline F = 0,158

attaining a stable stationary front whose homogeneous equilibria lie in the Maxwell Region, a159

subset of the bistability region. The precise choice of which among the family of possible front160

solutions is chosen is determined by the initial total mass T .161

In comparison with other proposed models, the wave pinning mechanism seems to account162

for several typical features of experimental observations (see [17] for a review). For instance:163

the polarisation time in the model (∼ 20s) is in good agreement with experiments, the ho-164

mogeneous states are stable and the front can be reversed through the introduction of new165

stimuli. Due to its popularity, the wave pinning model has also served as a basis for further166

investigation of cell polarisation phenomena [38, 32].167

It is useful to nondimensionalise the wave-pinning model by introducing the dimensionless168

quantities:169

t = k0t
∗, x = x̄

√
L2k0

Dv
= x̄L, δ =

Du

Dv
,170

γ =
γ̄

k0
, η =

δ

k0
, û = Ku, v̂ = Kv,171

172

the model (2) takes the form173

∂tu = δ∂xxu+ F (u, v),(3a)174

∂tv = ∂xxv − F (u, v) x ∈ [−L,L] ,(3b)175

where F (u, v) = γ
u2v

1 + u2
− ηu+ v.(3c)176

177

We can break the mass conservation law by adding generic source and loss terms (as in178

[37]). The extra control parameter ε is introduced in order to investigate the role played by179

the new terms. The new extended model therefore takes the dimensionless form (1)180

3. Energetic description of the wave-pinning phenomenon. The above-described phe-
nomenon of wave pinning can be understood in terms of Maxwell-point theory as follows.
Consider the dimensionless wave-pinning model (3) and introduce the new variables

R(x) = δu(x) + v(x), S(x) = δu(x)− v(x).

The spatial system then takes the form181

d2R

dx2
= 0,(4a)182

d2S

dx2
= −2F (S,R∗) := −dV

dS
(S,R∗).(4b)183

184

Owing to the boundary conditions, the solution for the R variable is a constant, R = R∗185

say. Hence the four-dimensional spatial dynamical system is reduced to a two-dimensional186
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Figure 3. Illustrating the wave pinning phenomenon in two different coordinates systems, see text for
details. Parameters values used are δ = 0.06, γ = 15, η = 5.2, 2L = 25.

one for the variable S, albeit with an unknown parameter R∗. This new formulation enables187

a simpler description of the wave-pinning phenomenon. In Figure 3, the panels (a) and188

(d) depict the nullclines in both the (u, v) and (R,S) coordinate systems, with the green189

areas demarcating the bistability region. Full and empty circles correspond to homogeneous190

equilibria that would be stable or unstable respectively in the absence of diffusion. Considering191

the front solution in the case δ � 1, the changes in v along the front are negligible compared192

with the changes in u. Therefore, the inactive form is approximately constant (v(x, t) ≈ v0,193

note the small vertical scale in panel (c)). In Figure 3(a), the line solution for v0 is depicted194

by a horizontal red dashed line. The yellow points correspond to the possible homogeneous195

equilibrium values for u when v = v0. The blue points mark the values for (u−, v+) and196

(u+, v−) for the front solution. The components u and v are illustrated in (b) and (c). The197

corresponding pictures for the (R,S) coordinates are depicted in Figure 3(e,f). Here the front198

connects S− with S+ while R = R∗ is constant.199

The right-hand side of equation (4b) can be seen as the derivative of a potential. Thus,200

the system conserves the energy given by201

(5) E =
1

2

(
dS

dx

)2

+ V (S,R∗).202

Now, energy arguments can be used to construct solutions, because values of S that corre-203

sponds to minima of the potential V (S,R∗), represent equilibria that are spatially stable.204

When both minima of the potential have the same value, the system is said to be at the205

Maxwell point [25]. Here, a heteroclinic cycle exists between the two equilibria. This solution206

represents a front solution (and its corresponding ‘back’). We shall call the energy value at207

which such fronts and backs exist as E = Ef . Given Ef , it is possible to solve the differential208

equation (5) by separation of variables and obtain an implicit expression for the front solution209

(6)

∫
dx = x+ C =

∫
dS√

2(Ef − V )
.210
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8 N. VERSCHUEREN AND A.R. CHAMPNEYS

The family of front solutions are parametrised by C, which represents the position of the core.211

Considering the kinetics given by (3c), for a certain values of parameters, the system (4b) has212

a Maxwell point and it posses three zeros S−, Sm, S+ (cf. Figure 4(a)).213

Upon integration of the right-hand side of (4b), it is possible to obtain a closed-form214

expression for the potential215

V (S,R0) = 2

∫
F (S,R0)dS + V0216

=
3γδR2

0 + 4γδ2
(
δ log

(
4δ2 + (R0 + S)2

)
− 2R0 arccot

(
2δ

R0+S

))
2δ

217

+
2R0S(γδ + δ − η)− S2(γδ + δ + η)

2δ
+ V0.218

219

The set of equienergetic curves (including the heteroclinic orbit) in the (S, Sx)−phase plane
form the conservative phase portrait depicted in Figure 4(c). The numerical front solution
is highlighted with a red dashed curve in the space and phase space in Figure 4(b) and (c)
respectively. Even though this numerical solution satisfies expression (6), obtaining a closed-
form expression is cumbersome. Instead we can consider p, a cubic polynomial approximation
of F given by

F

(
w =

R∗ + S

2δ

)
= F (w) =

p(w)

1 + w2
,

p(w) =
R∗

w+w−wi
(w − wi)(w − w−)(w − w+).

Where w±, wi correspond to the maximum, minimum and intermediate zeros of p respectively220

and therefore w±,i = (R∗ + S±,m)/(2δ). In Figure 4(a), a comparison between F and p is221

depicted (red continuous and green dashed lines respectively). The cubic approximation p222

presents qualitatively the same behaviour as F . Considering p it is possible to solve (6)223

analytically and obtain a closed-form expression for the front224

S(x) = S− +

(
S+ − S−

2

)
(1 + tanh[ξ(x− C)]) ,(7a)225

ξ =

(
S+ − S−

4

)√
2R∗

(R∗ + S−)(R∗ + Sm)(R∗ + S+)
.(7b)226

227

The expression (7a) captures the essential features of the front-like solution. In particular,228

(7a) provides an analytical approximation of the “width” of the front (∆ in Figure 4(b)). The229

values x± correspond approximately to the extreme values of the second spatial derivatives of230

(7a). The width of the front an its relation with the core position are given by231

(8) x± = C ± ∆

2
, ∆ =

2

ξ
arcsinh

(
1√
2

)
.232
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Figure 4. Energetic description of wave pinning. (a) The function F in terms of the new variable S, and
its cubic approximation p. (b) Graph of a front (heteroclinic) solutions; numerical solution of (4b) (dashed
line) and analytical solution (7a) (solid line). (c) Phase space obtained from level sets of the energy E, with
the dashed red line corresponding to the heteroclinic solution connecting S− with S+. Parameter values are:
R∗ = 1.849, δ = 0.06, γ = 15, η = 15, S− = −1.8273, Sm = −1.77756, S+ = −1.71962.

4. Localised states of the non-conservative system. In this section we now consider an233

investigation of the dynamics of (1) in the case ε = 1. As a first remark, in contrast with the234

case where the mass is conserved, this new system posses a unique homogeneous equilibrium235

given by236

(9) (u0, v0) =

(
α

θ
,
α(εθ + η)(θ2 + α2)

θ[θ2 + α2(1 + γ)]

)
=
(α
θ
, β0 + εβ1

)
.237

4.1. Linear and weakly non-linear stability analysis. Performing a linear stability analysis238

around the homogeneous equilibrium, we can find the conditions for a pattern formation239

instability (also known as a Turing bifurcation or, in spatial dynamics as a Hamiltonian-240

Hopf bifurcation). Such bifurcations are of codimension-one in the parameter space, see241

e.g. [7, 28, 37]. To look for such bifurcations, we substitute the following ansatz into (1)242

(10) (u, v) = (u0, v0) + (ū, v̄)eikx+σt ||(ū, v̄)|| � 1,243

neglect the non-linear terms for (ū, v̄) and impose that the maximum of the real part of σ(k)244

be zero. This then allows us to solve for the critical parameter value and predict the critical245

wavelength of the bifurcation. Proceeding in the usual way, we find the expressions for the246

critical point and the wavevector to be:247

εθ∂vF −
(∂uF − δ∂vF − εθ)2

4δ
= 0,(11a)248

k2
c =

∂uF − δ∂vF − εθ
2δ

> 0,(11b)249
250

where ∂ξF = ∂F
∂ξ

∣∣∣
(u0,v0)

when ξ = u, v.251

We can understand the behaviour of the system in the vicinity of the spatial instability252

by introducing the change of variables253

(u, v) = (u0, v0) + (U, V ),254
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10 N. VERSCHUEREN AND A.R. CHAMPNEYS

into (1) to obtain255

(12) ∂t

(
U
V

)
= [J + D∂xx]c

(
U
V

)
+

(
1
−1

)
NL(U, V ),256

where [J + D∂xx]c is the linear operator evaluated at the critical point (evaluated at (9)257

and (11)), composed of the jacobian matrix J and the diagonal matrix accounting for the258

second spatial derivative D. The scalar quantity NL corresponds to the nonlinear terms in259

the expansion.260

If we assume the pattern to be a time-independent linear solution of (12), we obtain261

(13)

(
U
V

)
l

= (Aeikcx + Āe−ikcx)

(
∂vF

−∂uF + εθ + k2
cδ

)
,262

where A stands for the amplitude of the pattern. We are interested in finding an amplitude263

equation for A in a neighbourhood of the instability. This amplitude equation can also be264

thought of as the normal form of the spatial dynamical system (where x is thought of as a265

time-like variable), see [15]. The calculation of the coefficients of the normal form can be266

carried out using the procedure outlined in [13]. The calculation is lengthy but standard, and267

we relegate the details to the Appendix A, giving only the bare essentials here.268

The change of variables and the amplitude equation obey the ansatz:269 (
U
V

)
= W [1] +W [2] + . . . ,(14a)270

∂tA = ∂tA
[1] + ∂tA

[2] + . . . ,(14b)271272

where the superscript accounts for the order in A. We can solve this equation at each order;
for example, at first order we have:

∂tW
[1] = ∂AW

[1]∂tA
[1] = [J + D∂xx]U [1].

The choice ∂tA
[1] = 0 reduces this equation to a linear one and therefore we have

W [1] =

(
U
V

)
l

.

At second order we can choose ∂tA
[2] = 0 as well. Actually this is possible for every even273

order. On the other hand, when dealing with odd powers, there will be resonant terms (terms274

which are proportional to (13), the vectors in the kernel of the linear operator (12)) on the275

right-hand-side of (12). In order to ensure that the problem at each odd order is solvable, we276

need to impose a solvability condition using the Fredholm Alternative theorem. In summary,277

we find an amplitude equation of the form278

(15) ∂tA = εC1A+ C3A|A|2 + C5A|A|4 +O(|A|6A).279

Here ε is an unfolding parameter that accounts for the parameter variation around the critical280

point. The constants Ci are obtained from the solvability conditions and are functions of the281

parameters evaluated at the bifurcation point. More details are given in the Appendix A.282
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In our study, the main purpose for computing the amplitude equation is to find where the283

bifurcation changes from being subcritical to supercritical. As argued in [37], sub-criticality284

of the Turing bifurcation is a necessary ingredient for the birth of localised structures in285

reaction diffusion systems. This such a transition point represents the nascence of a bistability286

region, where the homogeneous state coexists with the patterned one. That transition happens287

whenever C3 changes sign in equation (15) .288

Formally speaking, for the amplitude equation, we also need to check that C5 < 0 in order289

to ensure the existence of a higher order coefficient which stabilises the amplitude equation.290

We have found evidence for this numerically.291

Considering C3 = 0 and (11a) as implicit functions of two of the system parameters,292

the nascence of bistability will thus occur at the codimension-two intersection point of both293

curves.294

4.2. Numerical simulation results. The system (1) with ε = 1 has five parameters, and295

it is unfeasible to explore the effect of varying every possible combination. So, following296

[38, 26, 17], we fix all of them except two and consider the effect of variation only of the non-297

linearity in the system γ and the diffusion ratio δ. The fixed values of the other parameters298

will be taken to be299

(16) ε = 1, η = 5.2, θ = 5.5, α = 1.5, L = 100,300

unless otherwise stated.301

The left-hand panel of Figure 5 shows the basic bifurcation curves in the (δ, γ)-parameter302

plane, in a region where all the qualitatively different behaviours can be observed. The black303

continuous line corresponds to the spatial instability curve (equation (11a) when k2
c is positive304

in (11b)). This curve splits the parameter space into a region where just patterns are observed305

(above the line) and the rest. The dashed green line indicates where the cubic coefficient in306

the amplitude equation (15) vanishes. This curve is only relevant at its intersection with the307

spatial instability curve, at the light blue point. For values of δ smaller (greater) than the308

light blue point, a sub-critical (super-critical) bifurcation for the amplitude of the patterns309

takes place. The red dashed line in the lower part of the figure indicates where the dispersion310

relation [7] of the homogeneous states changes from having a maximum at zero (beneath this311

line) to have a non-zero maximum (above), the points in this curve correspond to a bifurcation312

which was termed a Belyakov-Devaney (BD) point in [5].313

All the curves and points listed so far were obtained through analytic calculations. More-314

over, the pink region corresponds to the region where localised structures were found using315

numerical continuation (the details will be explained below). Finally, the red dots are repre-316

sentative points in the parameter plane, where qualitatively different solutions are observed.317

In order to explore the dynamics of model (1), we proceed to simulate the full PDE system318

using finite differences in space (with dx = 0.01) and fourth-order Runge-Kutta scheme in319

time (with fixed timesteps dt = 10−3). Appealing to the Neumann boundary conditions,320

we also simulate on a half-interval [0, L], with results on the full interval being obtainable by321

reflection in x = 0. Sweeping parameters and trying different initial conditions, it is possible to322

corroborate the predictions made by the linear stability analysis (subsection 4.1) and also find323

localised structures. The insets of Figure 5 on the right, depict the representative solutions.324
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Figure 5. Numerical two-parameter bifurcation diagram for the model (1) with fixed parameters (16) The
pink shaded region is where localised solutions exist. The labelled points correspond to the qualitatively different
stable equilibrium solutions illustrated in the corresponding sub-figures. The (δ, γ)-values depicted are: (a)
periodic (Turing) pattern at (0.0406, 30), (b) homogeneous equilibrium at (0.10272, 20), (c) localised pattern at
(0.02688, 21.2411) and (d) a lone spike solution at (0.002, 14.8).

The solution in Figure 5(a) is a Turing pattern whose region of existence can be predicted325

using the critical condition (11). These patterns can be characterised in terms of their wave-326

length and amplitude which can be obtained using expressions (11b) and (15). Note how the327

oscillations of the active and inactive states are in anti-phase. These predictions are only valid328

in the vicinity of the instability. The homogeneous state observed in panel (b) is given by (9).329

Further, the solution in Figure 5(c) corresponds to a localised patterned state, which330

when reflected onto the full domain [−L,L] has five localised peaks of the active state (which331

correspond to troughs of the inactive state). In this parameter region we can find such332

localised patterns with an arbitrary number of peaks. Such solutions arise because there is a333

heteroclinic connection between the homogeneous state and the Turing patterns (as we shall334

explain shortly using the theory of homoclinic snaking). Note that there is a wavelength of335

the Turing patterns which corresponds to a well-defined distance between each of the peaks.336

These localised states coexist with the stable homogeneous, flat state. Sufficiently small initial337

conditions tend to converge to the flat solution whereas arbitrary sufficiently large initial338

conditions tend to converge to localised patterns with the numbers of peaks depending on the339

precise features of the initial data. On very long domains we can also find multiple localised340

patch patterns that are separated by long intervals of (almost) homogeneous solution.341

The solution depicted in Figure 5(d) is also a localised solution, but is rather different.342

Here we see a single isolated peak (trough). This pattern has no underlying wavelength343

and the decay of the tails of the peak are monotonic rather than oscillatory. Here initial344

conditions are found to converge to either the stable homogeneous state or to just these single345

isolated peaks. If multi-peaked initial data is used, then over a short timescale, several well-346

separated peaks can be be formed. These peaks are then found to separate at a speed that347

decreases (exponentially) as the separation increases. Eventually, either the subsidiary peak is348

annihilated or it disappears to the edge of the domain, or, due to numerical noise a bound state349

can be formed consisting of two or more peaks separated by a large interval of homogeneous350

state. In fact, taking the mirror image of the solution in Figure 5(d) we would have just such351
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a “numerical” bound state.352

Note that these two distinct kinds of localised solutions, either localised patterns with an353

underlying wavelength, or single isolated peaks are present in a broad spectrum of partial354

differential equations, derived in several different contexts; see section 6 for a discussion. In355

our case, a definite point of transition between the two behaviours can be identified (the red356

line in the lower region of Figure 5), which will be we explain in the next subsection.357

4.3. Numerical continuation results. From the direct numerical simulations, it is possible358

to conclude that despite the system (3) not being variational, it does not present permanent359

dynamic behaviours such as limit cycles or chaos (at least not in the parameter regime under360

consideration). Therefore, we can focus our attention on time-independent solutions. This361

assumption reduces the partial differential equation to a reversible 4-dimensional systems362

of ordinary differential equations (ODEs), which can be studied using spatial dynamics, see363

e.g. [39]. Specifically, if y(x) = (u, ∂xu, v, ∂xv) then we have364

(17) ∂x


y1

y2

y3

y4

 =


y2

εu−F (y1,y3)
δ
y4

F (y1, y3)− εα

 .365

Among the many advantages of studying the ODEs (17) instead of (1), is that the we can366

easily perform numerical continuation to look for periodic and localised solutions, for instance,367

using the software AUTO [9]. Numerical continuation allows us to unveil the region of existence,368

bifurcation and transition of the different solutions present in the system. Nonetheless, there369

are a few drawbacks. The continuation results do not give information on temporal stability,370

for that we need to study the full PDE system via simulation or spectral computation.371

Taking the localised pattern solution from Figure 5(c) as a starting point for the continua-
tion in γ, one obtains a sequence of solutions for the different values of γ. In order to visualise
the continuation, it is useful to represent some one-dimensional quantity as a function of the
parameter of continuation. One possibility is what we term L2 −Norm given by:

L2 =

√√√√ 1

L

∫ L

0

4∑
j=0

yj(x)2dx.

In the Figure 6, curve shown following by the path is presented when the L2 −Norm is372

considered.373

The most remarkable feature of this graph is the switching back and forth in a behaviour374

known as the homoclinic snaking [39, 4, 1, 3]. Within a certain region of the parameters, a375

family of solutions can be observed. Each one of these solutions exist in a line connecting two376

turning points, where a saddle-node bifurcation occurs. Hence, the two branches connecting377

any of these points have different stability. In order to determine the stability of each solution,378

we replace the different solutions in the full PDE (1) system and evaluate their persistence379

under perturbations. Here stable (unstable) solutions are represented by continuous (dashed)380

lines. Figure 6 also shows two different stable solutions that exist for the same value of γ.381
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Note that these solutions are left-right symmetric. According to the theory of snaking in non-382

variational systems (see [19]), there will be a bifurcation of a branch of non-symmetric states383

close to each saddle-node, but these will represent travelling rather than stationary states.384

Any stationary localised structure must be symmetric. The series of saddle-node bifurcations385

occur approximately at two values of γ, defining an interval known as the snaking region or386

pinning region where here pinning refers not to the front solutions of the wave-pinning model387

but to the pinning of the heteroclinic connection between the homogeneous state and Turing388

pattern. However, owing to the snaking region extending into the pulse region, we shall refer389

to the region as being the localisation region. The pink rectangle in Figure 6 represents the390

extent of the localisation region. Note that qualitatively similar results are obtained if we391

continue in δ rather than γ from the same initial localised state.392

Using two-parameter continuation to trace the saddle-node points, it is possible to de-393

lineate the snaking region in the (δ, γ)-space. Tracking one fold at each edge of the snaking394

interval, we obtain two curves in the (δ, γ)−space. The area delimited between these lines395

corresponds to the localisation region, which is also indicated in pink in the two-parameter396

plot in the left-hand panel of Figure 5,397

In theory, we should expect the localisation region to extend all the way to the subcritical398

Turing bifurcation point. But note from Figure 6 that that the portion of the localised solution399

from the Turing bifurcation to the first fold is unstable. As we approach the codimension-400

two super-to-subcritical transition point, then, in accordance with theory [20, 19] the local-401

isation region becomes an exponentially thin wedge which proceeds algebraically from the402

codimension-two point.403

In practice, because of numerical precision and the finite domain effects (see [8]) the404

This manuscript is for review purposes only.



A MODEL FOR CELL POLARISATION WITHOUT MASS CONSERVATION. 15

numerical routine used to follow the saddle-nodes into the exponentially thin region breaks405

down. However the location of the (Maxwell) line in the centre of the localisation region can406

be easily located numerically.407

The two-parameter plot reveals the richness presented by the family of localised solutions.408

In particular, both the spike and localised patterns solutions are both contained in the lo-409

calisation region (see the left panel of Figure 5). In order to understand the mechanism of410

transition between these two kinds of state, we perform a one-parameter numerical continua-411

tion of the spike solution. The results are presented in Figure 7. In contrast with the localised412

patterns, for the spike solution continuation in δ and γ leads to qualitatively different results.413

As can be seen in Figure 5, the continuation of the spike solution in γ crosses the line which414

represents the BD transition, whereas continuation in δ does not cross this line.415

According to linear stability analysis (cf. subsection 4.1), a homogeneous equilibrium will416

be linearly stable (linearly unstable) if the maximum of the real part of the dispersion relation417

σ(k) is negative (positive). At zero, we are in the critical situation (e.g. (11) in our case).418

The dispersion relation can exhibit two qualitatively different behaviours, namely type I and419

III in the notation of [7], corresponding to the maximum for k being at zero and non-zero420

respectively (see Figure 7 (a) and (b)). In a stable regime (max(σ(k)) < 0), any perturbations421

to the system will be decompose into Fourier modes with different wave numbers whose422

maximum is k, the slowest decaying mode. As a consequence, if we are in the case I, a non-423

zero wavelength will be observed during the transient dynamics that approaches the steady424

state solution. In this case it is said that there is the existence of a pattern precursor. On425

the other hand, a instability type III will not exhibit a precursor. Hence, in the left panel of426

Figure 5, the BD transition point corresponds to the point of transition between dispersion427

curves of type I and III. This transition curve can be determined analytically; in the case of428

(1), it corresponds to (11a) when (11b) is negative.429

Figure 7(c) shows the continuation in δ. Here the saddle-node bifurcation corresponds to430

the right-hand limit of the localisation region, and connects the stable single spike solution to431

a lower-amplitude unstable single spike, as illustrated in the insets.432

In contrast, Figure 7(d) shows continuation in γ. Here the solution crosses the BD line433

where the nature of σ(k) changes from type I to type III. (cf. Figure 7(a) and (b)). In the434

absence of a pattern precursor (in the dark green shaded region) the solution is analogous to435

that with continuation in δ. Outside of this region, the spike solution develops oscillatory tails,436

and we are in the parameter region where we would expect to see homoclinic snaking. As part437

of the snaking scenario, the switching back through the right-hand saddle-node corresponds438

to where the solution acquires a new (symmetric pair of) localised peaks. As this new three-439

peak solution is traced back towards the BD point, the continuation fails to converge before440

reaching there. It is clear what happens is that the wavelength of the precursor tends to441

infinity as the BD point is approached and so the separation between the three peaks in the442

multi-peaked state also becomes infinitely large. Hence the branch of multi-peaked solutions443

disappears in a non-local bifurcation at the BD point. See section 6 for further discussion on444

this non-local bifurcation.445

Thus we can see that the BD line splits the localisation region into two parts, the snaking446

region where localised patterns exist, and the region where there are only isolated spike so-447

lutions. Moreover, this observation is in complete accordance with the theory in [6] (and448

This manuscript is for review purposes only.



16 N. VERSCHUEREN AND A.R. CHAMPNEYS

L 2
-N
o
rm

0 2.5 5 x10-3

0
.2
7
6

0
.2
7
3

1.4

0
0-

1.6

0.2
0-

u
v

p
re
cu
rs
o
r

γ

¬
p
re
cu
rs
o
r

L 2
-N
o
rm

0
.2
7
6

0
.2
7
3

13.8 15.7 18.0

1.4

0
0-

1.4

0
0-

00

c)

a) b)

d)
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references therein), in which the existence of a spatial wavelength in the system is claimed to449

be necessary ingredient for the existence of localised patterns.450

5. The mass-conservation limit ε→ 0. So far we have been investigating how the wave-451

pinning model changes when the mass is not conserved. Since in a realistic scenario the total452

mass is roughly constant, we are interested in the case of small ε. From a mathematical453

point of view, it is also intriguing to ask how the structure of localised and extended patterns454

collapses to the wave-pinned solutions as we pass to the mass-conservation limit ε → 0. In455

particular, wave-pinning naturally leads to front solutions (heteroclinic orbits), a solution456

where the spatial symmetry is broken, which can be argued to be a necessary ingredient for457

cell polarisation. Indeed, when we run simulations for ε = 0, inhomogeneous initial conditions458

on long domains quickly form a state with a number of fronts and backs which tend drift and459

coarsen into a single wave-pinned front. For ε = 1, on the other hand, in the localisation region460

inhomogeneous initial conditions on long domain quickly form states with a number of spikes461

(or localised patterns) which slowly drift into either isolated spikes (or localised patterns).462

We now seek to investigate how these two very different kinds of long term dynamics can be463

connected as we vary ε from 1 and 0.464

As a first step in understanding the mass-conservation limit, in Figure 8 we have plotted465

the two critical curves where a Turing instability and a BD transition take place (given by the466

analytic expressions (11a) when (11b) is positive and negative respectively), for a variety of467

values of ε. Approaching the limit ε→ 0, we find that these two curves approach each other.468

In fact it is possible to show that these curves become identical as ε→ 0.469
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are the same as in (16), except for L = 800.

Hence, if any localisation region survives into the limit ε → 0, the region of localised470

patterns will vanish, so that we are only left with localised spikes in the limit.471

5.1. Numerical results. The natural next step is to compute, using the same procedure472

as in subsection 4.2, the localisation region for different values of ε. The results are presented473

in Figure 9. At first glance, notice how the localisation region grows as ε tends to zero.474

Hence, according to Figure 8, this region becomes increasingly composed of spikes rather475

than localised patterns. Interestingly, the intersection of this region with δ = 0 seems to be476

independent of ε.477

In order to compare the equivalent of the localisation region at ε = 0, we have delineated478

precisely the region in the two-parameter space where the wave-pinned fronts exist. Since the479

spatial dynamics of model (1) is singular at ε = 0, we can consider the equivalent 2-dimensional480
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problem obtained using the (R,S) variables (see equation (4) in section 3). Imposing the481

continuity between the different localisation regions, the extra parameter R∗ in (4) is chosen482

such that R∗ = limε→0 δu0 + v0, where u0, v0 are given by (9). The codimension-two point483

at the tip of the region, which is calculated from the limit ε→ 0 in the analytical expression484

for C3 in (15), gives a perfect prediction of the tip of the front region region obtained by485

two-parameter continuation. Moreover, although the localisation region grows significantly,486

it appears to vary continuously as ε is reduced to zero, with the upper and lower bounds of487

the front region continuing naturally into the upper and lower saddle-node bifurcations of the488

spike solutions for non-zero ε.489

A next question is how localised spike solutions change their shape into being a front.490

Figure 9(b) illustrates how graphs of the solution are transformed as ε is reduced for fixed491

values of δ and γ. We start from the spike solution, in the middle of the domain, which we492

compute on the half-domain. As ε gets smaller, both components u and v start to develop493

a significant shelf so that the solution on the full domain resembles a front and back pair.494

Looking at just the u-component, we might imagine that the pulse converges uniformly to this495

front and back pair. Note also that, as expected, the exponential decay in the tail becomes496

progressively weaker.497

However, there appears to be a subtlety. Looking at the penultimate solution, depicted for498

ε = 10−5 , we note that on the domain size depicted, although the decay rate of the tail gets499

weaker, its amplitude if anything (especially in the v-component) appears to grow. Also, the500

core of the pulse is not flat but appears to have a dimples in both u and v components. When501

comparing with the corresponding front solution at ε = 0, we see that the chosen left-hand502

limit of the solution is not the same as that of the front. Instead the non-vanishing weakly503

decaying tail seems to play the role of adjustment of the unique equilibrium values (u0, v0) for504

the pulse to the asymptotic values of the selected front of the wave-pinning model.505

We therefore turn to asymptotic analysis to explore this curious phenomenon in the sin-506

gular limit ε→ 0.507

5.2. Asymptotic analysis. In the language of dynamical systems, the spike solution cor-508

responds to a homoclinic orbit of the spatial system and the front solution to a heteroclinic509

one. Thus, considering the extended domain [−L,L], the problem can be reformulated as510

the transition between a homoclinic solution whose maximum is at x = 0 and a heteroclinic511

loop. Since the solutions considered are even, the attention can be restricted to the domain512

x ∈ [−L, 0]. In section 3, we showed in the conservative case how the spatial dynamics can be513

reduced from a 4-dimensional space phase into a 2-dimensional one with a free parameter R∗.514

Hence, the transition involves a reduction of the number of degrees of freedom of the system515

as well as the nascence of a unique homogeneous equilibrium.516

In order to study this transition, in the spirit of section 3, we rewrite the spatial system517

in terms of the (R,S) variables. We shall also remove the dependence of the homogeneous518

equilibrium (given by (9)) on ε. Specifically, let519

(18) u =
R+ S

2δ
, v =

R− S
2

+ εβ1.520
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Defining

β1 =
α(θ2 + α2)

θ2 + α2(1 + γ)
, ψ(u2) =

γu2

1 + u2
+ 1,

and substituting the new variables (18) into the time-independent version of (1), we obtain521

d2R

dx2
= ε

[
θ

2δ
(R+ S)− α

]
,(19a)522

d2S

dx2
= ε

[
θ

2δ
(R+ S) + α− 2β1ψ

((
R+ S

2δ

)2
)]

(19b)523

− 2F

(
R+ S

2δ
,
R− S

2

)
. x ∈]− L, 0].524

525

We can study the transition on the new system (19) by performing one-parameter nu-526

merical continuation in ε. Our starting point is the is the half-homoclinic solution at the527

orange point in Figure 9, transformed in the new variables (18). We will start our analysis528

by considering the case of the semi-infinite domain, with solutions that are asymptote to the529

same homogeneous value as x→ −∞. To that end, we shall choose L to be arbitrarily large530

(we shall consider finite-domain effects in the next subsection). Consequently, the front is531

developed in a small region of the space, making it difficult to visualise the dynamics for the532

different values of ε. It is then instructive to plot the solutions using the new scale533

(20) X =
√
εx, X ∈]− L, 0], L =

√
εL.534

In Figure 10(a), ten solutions for representative values of ε are superimposed using the new535

scale. The solutions are hardly distinguishable as ε→ 0. This is a consequence of the solutions536

converging to a well-defined limit.537

Zooming into the solutions, we observe the appearance of a front-like behaviour in the538

S component (see the inset for S in Figure 10(b)). This front solution can be studied as a539

interior layer problem using matched asymptotics [18, 16]. In this framework, two dynamical540

regimes can be distinguished. An inner zone where the solution varies on the fast O(x) scale541

and an outer zone, where the solution varies in the slow O(X) (given by (20)) scale. In the542

case of an interior layer, the space can be divided into three zones, as indicated in Figure 10(c);543

two outer zones (I and III) divided by an inner zone (II).544

545

Assuming Neumann boundary conditions in the extrema x = −L, 0 and imposing continu-546

ity of the solution in the transitions between inner and outer zones, the boundary conditions for547

each zone can be defined. In the Table 1, the zones and boundary conditions are summarised.548

Note that in the inner zone the value for R = R0 is assumed as constant in accordance to the549

leading order equation (21) in which we obtain the conservative wave-pinning model.550

For the outer regions we rewrite (19) using the scaling (20), the equations at each order551

in ε are as follows552

O(1) :

(21) F

(
R+ S

2δ
,
R− S

2

)
= O(ε) = 0,553
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Figure 10. Solutions of (19) in the half domain [−L, 0] as ε tends to 0. The values of the parameters are:
δ = 2× 10−3, γ = 14, η = 5.2, α = 1.5, θ = 5.5, L = 105. Superposition of the R (blue) and S (red) components
of the homoclinic solution for ε = {10−n}9n=0, the scaling X =

√
εx has being used in order to visualise all the

solutions in the same plot. Zooms of the solution, highlighted in the green rectangle and shown in the insets.
(b) Zoom around the front for both components. (c) Schematics of the behaviour for both components (see text
for details).

Zone Interval Boundary Conditions regime

I x ∈]− L, x−] d
dx (R,S)|x=−L = (0, 0), (R,S)|x=x−

= (R0, S−, ) outer

II x ∈ [x−, x+] (R,S)|x− = (R0, S−), (R,S)|x+ = (R0, S+) inner

III x ∈ [x+, 0] (R,S)|x=x+
= (R0, S+), d

dx (R,S)|x=0 = (0, 0) outer
Table 1

Boundary conditions between the inner and outer regions. The interval for each region is specified using
the original scale.

O(ε) :

d2R

dX2
=

θ

2δ
(R+ S)− α,(22a)554

d2S

dX2
=

θ

2δ
(R+ S) + α− 2β1ψ + χ(R,S).(22b)555

556

The separation of scale at O(1) says that F is approximately zero, but there is an as yet557

unspecified contribution O(ε). This contribution, termed χ(R,S), must be included at next558

order. In general χ depends on R and S and it can be seen as a Lagrange multiplier which559

makes the set of equations (21) and (22) a well-defined system of three differential-algebraic560

equations for the unknowns R(X), S(X) and χ(R,S).561

562

The boundary conditions Table 1 ensure the continuity of the solution, but they do not pro-563

vide any information about the parameters involved in the asymptotics (namely, R0, S±, x±).564
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More information can be extracted by imposing additional matching conditions. A natural565

matching condition for this problem is to impose continuity of the derivatives566

(23)
d

dX
(R,S)

∣∣∣∣
x=x−

=
d

dX
(R,S)

∣∣∣∣
x=x+

,567

which can be sen as being necessary in the limit ε → 0 in order to satisfy the appropriate568

jump condition across the inner zone that are consistent with the second derivative operator.569

In summary, the transition under study is equivalent to the interior layer problem, which570

is given by: the boundary value problems of the inner region (19) and outer regions ((21) and571

(22)), the boundary conditions (specified in Table 1) and the matching condition (23).572

573

In the remainder of this section, by making additional approximations to this problem, we574

will show how an analytical close-form approximate solution can be obtained. We will reduce575

the number of unknown parameters to just R0.576

First, since in the inner zone II the dynamics is driven by the leading order, we will
consider this boundary value problem as equivalent to the conservative case and therefore the
solution (7a) is an approximate analytical solution. The problem is then reduce to two outer
problems (equations (21) and (22)) for zones I and III, whose solutions are given by (R1, S1)
and (R3, S3) respectively. Under this assumption and considering the boundary conditions,
the solution in S presents a discontinuity at the point X = X∗, which connects both outer
zones. This assumption is equivalent to saying

X− = X+ = X∗.

When F is given by (3c), we can write the condition (21) in terms of the original variables577

(u, v) and obtain an analytical expression for v(u). Expanding it up to linear order around a578

certain point û, we obtain579

(24) v(u) =
ηu(1 + u2)

1 + u2(1 + γ)
≈ v(û) + v′(û)(u− û).580

Replacing u(R,S), v(R,S) by:

u =
R+ S

2δ
, v =

R− S
2

,

and substituting into (24), we can solve for S(R) and then replace it into (22a), obtaining a581

second-order affine differential equation. The expressions for S(R) and R(X) thus obtained582

can be written583

S(R) =

(
δ − v′(û)

δ + v′(û)

)
R+

2δ(ûv′(û)− v(û))

δ + v′(û)
,(25a)584

R(X) = Ae

√
θ

δ+v′(û)X +Be
−
√

θ
δ+v′(û)X(25b)585

+ v(û) +
αδ

θ
+ v′(û)

(α
θ
− û
)
,586

587
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where A and B are constants to be determined using the boundary conditions. Choosing for588

Zones I and III û = u0 = α/θ and û = u+ = (R0 + S+)/(2δ) respectively and using the589

aforementioned boundary conditions, an analytic approximation for the domain composed by590

the two outer problems is591

(26a) R(X) =


R1(X) = ζ(u0) + (R0 − ζ(u0)) cosh(σ(u0)(X+L))

cosh(σ(u0)(X∗+L)) X ∈ [−L, X∗],

R3(X) = ζ(u+) + (R0 − ζ(u+)) cosh(σ(u+)x)
cosh(σ(u+)X∗) X ∈ [X∗, 0]

592

and593

(26b) S(X) =


ϕ1(u0)R1(X) + ϕ0(u0) X ∈ [−L, X∗],

ϕ1(u+)R3(X) + ϕ0(u+) X ∈ [X∗, 0].

594

Where595

ζ(u) = v(u) +
αδ

θ
+ v′(u)

(α
θ
− u
)
, σ(u) =

√
θ

δ + v′(u)
,596

ϕ1(u) =
δ − v′(u)

δ + v′(u)
, ϕ0(u) =

2δ(uv′(u)− v(u))

δ + v′(u)
.597

598

This solution depends on the parameters {R0, S±, X
∗}. Nevertheless, given R0 we can find S±

through (21). Moreover, when the dependence between R and S is linear (25a), the matching
condition (23) is reduced to just the R component R′1(X)|X∗ = R′3(X)|X∗ . Replacing these
expressions from (26a) we obtain:

(R0 − ζ(u0))σ(u0)

(r0 − ζ(u+))σ(u+)
=

tanh(σ(u+)X∗)

tanh(σ(u0)(X∗ + L)
.

Additionally, approximating tanh(σ(u0)(X ∗ +L)) ≈ 1 and tanh(σ(u+)X∗) ≈ σ(u+)X∗, the599

condition is reduced to:600

(27) X∗ =
σ(u0)(R0 − ζ(u0))

σ(u+)2(R0 − ζ(u+))
.601

The set of equations (26) and (27) is an analytic approximation which is in good agreement602

with the numerical solution when R0 is provided (see Figure 12). However, as a consequence603

of assuming a linear dependence between R and S, the matching conditions for each compo-604

nent (23) becomes linearly dependent and therefore the matching condition for S is satisfied605

trivially. Therefore, we are unable to determine R0 using this method. We conjecture that a606

more accurate matching condition between the Zones I and III is required in order to uniquely607

determine R0.608

In what follows then, we have resorted to numerics to find R0. Numerically, R0 corresponds609

to the value of R at X∗, which corresponds to the minimum of R′. Using this method, in610
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Figure 11. Numerical determination of the asymptotic key quantities X∗ (a) and R0 (b) in (19) as a
function of δ, when ε = 10−5, γ = 14, η = 5.2, θ = 5.5, α = 1.5, L = 103.

Figure 11 we depicted the determined values of R0 and X∗ for a range of values of δ when611

the system is in the quasi-conservative regime (ε� 1). The rest of the parameters have been612

specified in the caption. From this figure we can appreciate how the values for R0, X
∗ vary613

continuously with the parameter and therefore they are well-defined.614

In the Figure 12 (a), we have plotted the numerical solution (points) superimposed on the615

analytical (line) when R0 is provided. The solution is illustrated for Zones I and III, for the616

R component. The same comparison for S can be obtained from R through (25a).617

In Figure 12(b), the difference between the numerical and the analytical solutions is de-618

picted as a function of ε . The value of ∆ is given by:619

∆ =

∫ x−

−L
|R1(x)−Rn(x)|+ |S1(x)− Sn(x)|dx+

∫ 0

x+

|R3(x)−Rn(x)|+ |S3(x)− Sn(x)|dx,620

where the subscripts 1, 3, n stand for Zones I, III and the numerical solutions respectively.621

Moreover, as the limit is reached, the values of R0 and X∗ (the midpoint between x+ and622

x− in the ε-independent scale) attain quickly an almost constant value as ε tends to zero (cf.623

Figure 12 (c) and (d).624

Given x∗ = X∗/
√
ε, we can find numerically x± whether using (8) or by defining x+ (x−)625

as the first point to the right (to the left) of x∗, where the numerical solution (R,S) vanishes626

when is replaced into (21). From the numerical values of x± it is possible to measure the627

length of Zones I and III for several values of ε. In Figure 13 (a) and (b), the log− log plot628

of the length as function of ε is presented for both zones. The points show a linear behaviour629

whose slope is approximate −1/2, which is in good agreement with our assumption for the630

scaling (20). Moreover, Figure 13(c) depicts a comparison between the function v(u) (black631

continuous line) and the linear approximation (dashed green line) around the two values of632

û = u0, u+. This figure illustrates how reliable our linear approximation is to v(u) in Zones I633
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Figure 12. Summarising the asymptotic approximation in the case of a given R0. (a) comparison between
the analytical (continuous line) and the numerical solution (red points) of R when ε = 10−9, upper and lower
plots correspond to Zones I and III respectively. (b) Difference between the analytical approximation (given
by (26) and (27)) and numerical solutions as a function of ε. (c) Numerical value of the position of X∗ as
a function of ε. Numerical value of R in Zone II as a function of ε. The values of the parameters used are
δ = 2× 10−3, γ = 14, η = 5.2, θ = 6, α = 1.13.

and III.634

5.3. Finite domain effects. So far we have been dealing with a domain that is large635

enough for all ε-values considered, that the localised solution can reach the homogeneous636

equilibrium at the left-hand boundary (essentially, an infinite domain). In the conservative637

case (cf. section 2 and references therein) the front selection is a property of the total mass,638

which itself is greatly affected by the length of the domain. Hence, a description of the639

transition to the finite-length case is highly relevant.640

Taking the limit ε → 0 in (26), we obtain the conservative solution (7). In contrast, the641

asymptotic analysis for a long domain showed a slowly varying behaviour in the outer zones,642

with the amplitude (but not the rate) of the variation being essentially independent the value643

of ε. This analysis implicitly assumes that Zones I and III can grow to become infinitely long,644

under the scaling (20) as ε→ 0. Therefore, for a small enough value of L =
√
εL, size effects645

will destroy this picture and the description provided by (26) will no longer apply.646

The analytical solution (26) relies on the existence of a front solution for S which connects647
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Figure 13. (a) Size of Zone I as a function for ε (blue dots), the continuous line correspond to the linear
fit: m = −0.522, n = 0.934. (b) Size of Zone III as a function for ε (blue dots); the continuous line correspond
to the linear fit: m = −0.502, n = −3.225. (c) Superposition of v(u) using (24) and the linear approximation
around û (green dashed line). The range where u varies throughout the zone is highlighted in thick red. The
approximation on the left (right) corresponds to û = u0 (û = u+). The values of the parameters used are
δ = 2× 10−3, γ = 14, η = 5.2, ε = 10−9, θ = 6, α = 1.138.

S± at x± while R = R0 remains constant (Zone II). Beyond that point (Zones I and III), the648

solution presents a slow exponential-like behaviour whose exponents are proportional to
√
ε.649

Finally, at the borders, the derivatives of the solution must vanish. It must be underlined that650

our approximate solution (26) does not have any link with the homogeneous value at x = −L.651

Thus, whenever size effects are important, the solution at the left border assumes a differ-652

ent value from the homogeneous equilibrium and eventually reaches S = S− and R = R0 as653

ε→ 0. Zone III will increases its size until it is affected by the finite size effect of Zone I. At654

x = 0, the value of the solution diminishes (increases) in the S (R) component until it reaches655

S+ (R0). Through this process, the limit solution (26) becomes precisely the front solution656

without the slowly varying inner core or tail. As a final remark, this description explains how657

the homogeneous value at x = −L in the case ε = 0 can depend on the length of the domain.658

In the Figure 14, the above described transition is illustrated for the finite value L = 30.659

When ε = 1 (highest and smallest values of R and S respectively in Figure 14(a) and (b)), the660

solution corresponds to a homoclinic orbit (depicted in half of the domain). As ε is diminished,661

the exponential-like behaviour in Zone I decreases its exponent according to (26). On the other662

hand, due to the size restriction and the boundary conditions, the values of the components663

change as (R(x), S(x))x=−L → (R0, S−). Moreover, for a certain value of ε (in this case664

ε ≈ 10−3) the S−component becomes a pure front (see the black frame region in Figure 14(b)).665

When the front is established, Zone III can be distinguished and further decreasing of ε will666

displace the front to the left, increasing the size of Zone III while (R(x), S(x))x=0 → (R0, S+).667

Eventually the front stops its drift, due to the conservation of the total mass ((2c)). In668

Figure 14, we can observe how the solutions converge to a front for the S component and a669
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Figure 14. Effect of domain size on the homoclinic to heteroclinic transition as ε→ 0, showing the (a) the
R-component and (b) the S component, in the latter case illustrating the inner zone where the front develops.
(c) A zoom of (b). The values of the parameters used are δ = 2 × 10−3, γ = 14, η = 5.2, α = 1.5, θ = 5.5,
ε = {0} ∪ {10−n}10n=0.

homogeneous solution for R. The last solution corresponds to ε = 0.670

6. Conclusion. The results of this investigation can be collected into three main conclu-671

sions672

First, we studied the wave pinning model, a popular proposed mechanism for cell polarisa-673

tion. By introducing the new (R,S) coordinates we have added a simpler explanation of how674

the wave-pinning works from a mathematical point of view. Specifically we can then see that675

the four-dimensional spatial system is essentially degenerate in that it can be represented as a676

two-dimensional systems with a free parameter R∗. This enables a simple mechanical analogy,677

the identification of a Maxwell region and an expression for the front solution in closed form678

up to quadrature for any local kinetic function F that has a bistable character. In certain679

special cases, an analytic function for the front can be obtained.680

Second, motivated by biological systems where there is production and recycling of G-681

proteins, we have studied the effects of when the mass conservation present in the original682

wave-pinning model is relaxed. The addition of generic source and loss terms give rise to683

several equilibrium solutions such as homogeneous equilibria, periodic patterns, localised pat-684

terns, and isolated spikes. Moreover, through a combination of linear stability analysis and685

numerical continuation we have been able to delineate how these states are organised in a686

two-parameter diagram as the diffusion ratio and nonlinear driving parameter are varied,687

which relies on the theory of so-called homoclinic snaking. Within this analysis we identified688

the importance of a codimension-two bifurcation at which the pattern formation (or Turing)689

bifurcation changes from sub- to super-critical and the existence of what we have termed a690

Belyakov-Devaney transition in which the pattern precursor is lost.691

Finally, we have studied the crucial question of how these two very distinct kinds of692

behaviour relate to each other by taking the limit ε → 0, in which the source and loss693

terms disappear. We have shown how the so-called localisation region becomes filled with694

spike solutions and the localised pattern states disappear. Moreover we have highlighted the695

delicate asymptotics of how these spike solutions morph into wave-pinned fronts. In particular696

this has involved multiple-scale asymptotic analysis, in which there are three zones, two outer697

zones and an inner one. It is only within the inner zone that the front solution appears. The698

behaviour in the outer zones is more subtle and depends crucially on the domain size.699
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It might also be interesting to make some more general remarks about the implication700

of these results. Although the model under study is inspired by the phenomenon of cell701

polarisation, the mathematical findings in this manuscript might be relevant beyond this702

context. The model (1) is a reaction-diffusion system which accounts for a broad spectrum of703

phenomena. On the other hand, similar models to (1) have been proposed in a rather different704

context such as Rho proteins of plants (ROP) (for example [31, 2]). We think that the general705

analysis performed could shed light on the particular contexts where models similar to (1) are706

used to describe the dynamics.707

The analysis we have presented, intended to be general and is independent of the specific708

form of the local kinetics embodied in the function F . We have simply used the specific709

expression (3c) in order to illustrate the analysis. More generally, a particular result we710

have found is the way that the BD transition causes a non-local bifurcation between localised711

pattern solutions and spike solutions. In effect, the homoclinic snake is annihilated by the BD712

transition through the additional peaks disappearing to the edge of the domain. Given that713

both types of localised structures exist in several context, this transition must be somehow714

universal. Actually, through private communications, we have learnt that this transition715

takes place in models that have similar properties to (1) that arise in: ecological systems [40],716

optical systems [30] and in a crime wave model [21]. A complete description of the non-local717

bifurcation and how it organises localised pattern to spike transition will form the subject of718

future work.719

There also remain open questions regarding the asymptotic analysis of subsection 5.2. In720

that study, we fixed all the parameters except ε. In particular we fixed δ ∼ 10−3. Moreover,721

a necessary ingredient for observing non-homogeneous solutions is to consider a small value722

of δ ( see [27], where the asymptotic treatment is performed in the limit δ � 1). Actually,723

when we studied the conservative case in section 3, we found an analytical approximation for724

the front (7a), whose width ∆ (cf. (8)) depends on δ. Therefore, the asymptotic analysis725

for the transition of subsection 5.2, must be carried out considering both δ, ε � 1. This is726

the next natural step in a better characterisation of this phenomenon, which may lead to a727

combination of singular perturbation theory with the multiple scales asymptotics studied here.728

It may indeed be possible to use some of the methods from geometric singular perturbation729

theory to make rigorous statements on the existence of localised solutions in this limit (see730

[10, 11] and references therein).731

It should also be pointed out that we have not dealt with the stability of all of these732

solutions in the full PDE system in a systematic way. Instead we have relied on the persistence733

of these solutions observed in the numerical simulations of the PDE. An analytical treatment734

of the interaction of the fronts involved in the heteroclinic loop will be part of future work.735

As a final conclusion, it is interesting to note that our analysis suggests that there is no736

real distinction between the Turing mechanism, wave-pinning or homoclinic snaking as pattern737

formation mechanisms in systems of reaction diffusion equations. In fully parametrised models,738

each can be seen as different explanations that are valid in a different distinguished limits. In739

a sense, they are like three sides of the same coin.740
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Appendix A. Normal form calculation. The goal of this appendix is to determine analyt-829

ically the co-dimension-two point in the parameter space where the amplitude of the patterns830

bifurcates from being sub-critical to super-critical in the vicinity of the spatial instability in831

the model (28). In order to find this point, we will compute the amplitude equation for the832

patterns up to third order by means of a normal form procedure (see [15] for more details).833

The co-dimension-two point corresponds to the point, in the spatial instability, where the834

third order coefficient in the amplitude equation vanishes (see [37]). Our starting point is the835

model836

∂tu = δ∂xxu+ [F (u, v)− εθu],(28a)837

∂tv = ∂xxv − [F (u, v)− εα] x ∈ [−L,L] , ∂x(u, v)(±L) = 0,(28b)838

where F (u, v) =

(
γ

u2

1 + u2
+ 1

)
v − ηu = ψ(u)v − ηu.(28c)839

840

For sake the of completeness, let us recall the expressions obtained in subsection 4.1. The841

homogeneous equilibrium and the critical curve where the spatial instability takes place are842

u0 =
α

θ
, v0 = β0 + εβ1 =

ηu0

ψ(u0)
+ ε

α

ψ(u0)
,(29a)843

0 = εθψ(u0)− (ψ′(u0)v0 − (ψ(u0)δ + η + εθ))2

4δ
,(29b)844

845

when:846

k2
c =

ψ′(u0)v0 − (ψ(u0)δ + η + εθ)

2δ
> 0.847

The expression (29b) corresponds to (11) written in terms of ψ instead of the partial derivatives
∂uF, ∂vF . Evaluating the system (28) at the critical point (i.e. the parameters satisfying
(29b)) and translating the system through the change of variables

(u, v) = (u0, v0) + (U, V ),

we obtain the main equation of this appendix848

(30) ∂t

(
U
V

)
= [J + D∂xx]c

(
U
V

)
+

(
1
−1

)
NL(U, V ),849

where850

[J + D∂xx]c =

[
δ∂xx + ψ′(u0)v0 − (η + εθ) ψ(u0)

η − ψ′(u0)v0 ∂xx − ψ(u0)

]
c

,(31)851

NL(U, V ) = ψ′(u0)UV + (v0 + V )
∞∑
n=2

ψ(n)(u0)

n!
Un.(32)852

853

Here, the sub-index c in the linear operator stands for the critical values of the parameters854

when one of them is fixed through (29b). In the remainder we will drop this sub-index assuming855
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that we are at the critical point. Using (31) and (32), we will compute the amplitude equation856

by using the normal form procedure. More precisely, we will look for the amplitude equation857

(33b), and the change of variables (33a) (which transforms from the original variables (u, v)858

into the new variable A) at the same time. This is respectively859 (
U
V

)
= W [1] +W [2] + . . . ,(33a)860

∂tA = ∂tA
[1] + ∂tA

[2] + . . . ,(33b)861862

where the superscript accounts for the order in A (in the remainder we will refer to this as863

“the order”). Formally, this equation must be solved at each order until it saturates (until the864

first coefficient obtained is negative in the region of parameters of interest). At that point, the865

amplitude equation is obtained at the critical point. An extra step, the unfolding, is necessary866

in order to allow the critical parameter to present a small variation around its critical value.867

Since we are only interested in the change of sign in the third coefficient, we will limit our868

calculations to that order. We are now in conditions to start the normal form procedure869

Order 1870

At order 1, (30) is871

∂AW
[1]∂tA

[1] + c.c. = [J + D∂xx]W [1],872

here c.c. stands for complex conjugate. This abbreviation will be used in the rest of the
appendix. Since we are interested in constructing a correction to the pattern solution, the
first order corresponds to the linear approximation. This is equivalent to consider ∂tA

[1] = 0.
Replacing the following ansatz

W [1] =

(
w1

w2

)
(Aeikcx + Āe−ikcx),

and keeping in mind that the linear operator at the critical point is singular, the solution for873

W [1] is874

(34) W [1] =

(
ψ(u0)

δk2
c − ψ′(u0)v0 + η + εθ

)
(Aeikcx + c.c.).875

This expression is the same as (13).876

End of Order 1.877

Order 2878

At order 2, (30) is879

∂AW
[1]∂tA

[2] + c.c. = [J + D∂xx]W [2] +

(
1
−1

)
((|A|2 + c.c.)b20 + (A2e2ikcx + c.c)b22),

(35a)

880

b20 =
1

2
w1

(
v0ψ

′′(u0)w1 + 2ψ′(u0)w2

)
= b22.(35b)881

882
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Since in the nonlinear terms there are not secular terms (terms which are proportional to the883

kernel of the linear operator (34)), we can take ∂tA
[2] = 0. Actually, this is the case for every884

even order (i.e. ∂tA
[2n] = 0). Taking into account this assumption, we can solve the equation885

at this order by proposing the following ansatz886

(36) W [2] = ϕ20(|A|2 + c.c.) + ϕ22(A2e2ikcx + c.c.).887

In the remainder, we will carry out an analogous procedure for the different orders. Hence,
it is useful to introduce the following notation to make the steps more clear. At the different
orders, the scalar quantity multiplying different powers of A will be denoted by bi,j (see for
example b20 in (35b)), where the first sub-index stands for the order and the second for the
multiple of kc in the exponent. The same labels are used in our ansatz (36) for the vectors
ϕi,j . At this order, the uncoupled linear systems obtained are

Jϕ20 = b20

(
−1
1

)
,

[J− 4k2
cD]ϕ22 = b22

(
−1
1

)
.

Solving these equations, we obtain the first correction in the change of variables (33a).888

End of Order 2.889

Order 3890

Using the same notation introduced in the previous order, at order 3 the equation (30) is891

[J + D∂xx]W [3] =

(
−1
1

)
[b31(|A|2Aeikcx + c.c.) + b33(A3e3ikcx + c.c.)]892

+ (∂AW
[1]∂tA

[3] + c.c),(37)893894

with the coefficients895

b31 =
1

6

{
3v0ψ

(3)(u0)w3
1 + 12v0ψ

′′(u0)w1ϕ
1
20 + 6v0ψ

′′(u0)w1ϕ
1
22 + 9ψ′′(u0)w2w

2
1896

+12ψ′(u0)w1ϕ
2
20 + 12ψ′(u0)w2ϕ

1
20 + 6ψ′(u0)w1ϕ

2
22 + 6ψ′(u0)w2ϕ

1
22

}
,897

b33 =
1

6

(
v0ψ

(3)(u0)w3
1 + 6v0ψ

′′(u0)w1ϕ
1
22 + 3ψ′′(u0)w2w

2
1

)
+ ψ′(u0)w1ϕ

2
22 + ψ′(u0)w2ϕ

1
22.898

899

In contrast with the previous case, here we can notice the existence of secular terms (this900

is the case for every odd order). In order to ensure the solvability of this equation we make use901

of the solvability condition (or Fredholm Alternative theorem)[15]. Considering the following902

inner product903

(38) 〈~v0f(x)|~w0g(x)〉 =
1

X

∫ y+X

y
f∗(x)g(x)dx~v0 · ~w0,904

the adjoint of the linear operator is:

[J + D∂xx]† = [Jt + D∂xx],
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and therefore the kernel of this operator is:

W † =

(
w†1
w†2

)
(eikcx + e−ikcx) =

(
ψ′(u0)v0 − η

−δk2
c + ψ′(u0)v0 − η − εθ

)
(eikcx + e−ikcx).

Hence, according to the solvability condition, it is enough to ensure the orthonormality be-905

tween the right hand side of (37) and the kernel of the adjoint operator to ensure the solvability906

of problem (37).907

Moreover, under the scalar product given by (38), the following orthonormality relation
is satisfied

1

X

∫ y+X

y
e−imkcxeinkcxdx = δn,m.

Then, the solvability condition is reduced in this case to the following expression

∂tA
[3]〈
(
w1

w2

)
|

(
w†1
w†2

)
〉+ 〈

(
−1
1

)
|

(
w†1
w†2

)
b31〉|A|2A = 0,

solving for ∂tA
[3]

∂tA
[3] =

〈
(

1
−1

)
|

(
w†1
w†2

)
〉

〈
(
w1

w2

)
|

(
w†1
w†2

)
〉
b31|A|2A = C3|A|2A.

By imposing this condition in (37), we can solve the equation at this order by introducing
the ansatz

W [3] = ϕ31(|A|2Aeikcx + c.c.) + ϕ33(A3e3ikcx + c.c.)

The uncoupled solvable linear systems are908

[J− k2
cD]ϕ31 =

(
w1

w2

)
C3 +

(
−1
1

)
b31909

[J− 9k2
cD]ϕ33 =

(
−1
1

)
b33910

911

By solving these systems we obtain the change of variables at this order912

End of Order 3.913
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Figure 15. Determination of the co-dimension-two point for the parameter values ε = 1, γ ∈ [11, 35], δ ∈
[0, 0.12], η = 5.2, θ = 5.5, α = 1.5 a) The critical curve has been parameterised as Γ(δ). In b), a plot of C3 as
a function of the critical curve is presented. The existence of a zero (light blue dot) changes the nature of the
amplitude equation from sub-critical (red) and super-critical (blue).

Now that an analytic expression for cubic coefficient C3 has been determined, we can look914

for a change of sign along the critical curve.915

All the corrections and coefficients obtained throughout this procedure depend on the previous916

orders. Even though obtaining closed-form expressions is possible, it is in general cumbersome.917

Hence, the use of a symbolic algebra software is strongly recommended. In order to illustrate918

our calculations, Figure 15 shows the existence of a co-dimension-two point in the parameter919

space. Allowing δ and γ to vary and fixing the rest of the parameters as in subsection 4.1, we920

parameterise the critical curve (29b) (blue and red line in Figure 15 (a)) as a function Γ(δ)).921

Hence, C3(Γ(δ), δ) is a single variable function which presents one zero (light blue dot in922

Figure 15), changing the nascence of spatial patterns from being super-critical (blue) to sub-923

critical (red). The existence of a region where a sub-critical amplitude take place guarantee924

the existence of a bi-stability region between homogeneous equilibrium and spatial patterns.925

Within that region, a sub-region where localised structures exist could be found. Therefore,926

a point in the parameter space below the critical curve and in the sub-critical region is an927

educated guess of a starting point in the search for localised structures. As a final remark,928

when the sub-critical bifurcation for the amplitude takes place, as we pointed out above, a929

higher order correction must stabilise the spatial patterns. From the numerics on the full930

model, we know that the patterns are stable and therefore, this further correction have not931

been computed.932
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