
                          Sekiguchi, T., Tamura, K., & Masuda, N. (2018). Population changes in
residential clusters in Japan. PLoS ONE, 13(5), [e0197144].
https://doi.org/10.1371/journal.pone.0197144

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1371/journal.pone.0197144

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Public Library of
Science at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197144 . Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/158371652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1371/journal.pone.0197144
https://doi.org/10.1371/journal.pone.0197144
https://research-information.bris.ac.uk/en/publications/population-changes-in-residential-clusters-in-japan(72f6a23b-9d07-4d47-b65e-d2040d2c7417).html
https://research-information.bris.ac.uk/en/publications/population-changes-in-residential-clusters-in-japan(72f6a23b-9d07-4d47-b65e-d2040d2c7417).html


RESEARCH ARTICLE

Population changes in residential clusters in

Japan

Takuya Sekiguchi1,2, Kohei Tamura3, Naoki Masuda4*

1 National Institute of Informatics, Chiyoda-ku, Tokyo, Japan, 2 JST, ERATO, Kawarabayashi Large Graph

Project, c/o Global Research Center for Big Data Mathematics, NII, Chiyoda-ku, Tokyo, Japan, 3 Frontier

Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, Japan, 4 Department of

Engineering Mathematics, University of Bristol, Bristol, United Kingdom

* naoki.masuda@bristol.ac.uk

Abstract

Population dynamics in urban and rural areas are different. Understanding factors that con-

tribute to local population changes has various socioeconomic and political implications. In

the present study, we use population census data in Japan to examine contributors to the

population growth of residential clusters between years 2005 and 2010. The data set covers

the entirety of Japan and has a high spatial resolution of 500 × 500 m2, enabling us to exam-

ine population dynamics in various parts of the country (urban and rural) using statistical

analysis. We found that, in addition to the area, population density, and age, the shape of

the cluster and the spatial distribution of inhabitants within the cluster are significantly re-

lated to the population growth rate of a residential cluster. Specifically, the population tends

to grow if the cluster is "round" shaped (given the area) and the population is concentrated

near the center rather than periphery of the cluster. Combination of the present results and

analysis framework with other factors that have been omitted in the present study, such as

migration, terrain, and transportation infrastructure, will be fruitful.

Introduction

Population change is a central precondition to be considered in policy making and urban plan-

ning. In urban areas with high population concentrations, decentralization policies may be

designed to mitigate congestion and environmental problems [1]. In developing countries,

rapid growth of the number of urban dwellers is forecasted to exacerbate water shortage [2]. In

rural areas facing population aging and shrinkage, how to ensure convenience of public trans-

portation [3] and health care services [4] is a crucial issue.

The choice of the residential location is a main determinant of spatial patterns of population

changes over time. People have been suggested to choose the residential location by consider-

ing residential environment attributes such as the accessibility to workplace measured by com-

mute distance [5–7], school quality [8, 9], and the crime rate [8, 10]. Residential mobility is

also affected by the individual’s life course and household attributes such as age and income

[7, 10], job change [5], marital status [11], the numbers of children and drivers [10], and home

ownership [7, 11].
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In addition to these factors, spatial characteristics of the city and inhabited areas, which

shape socioeconomic and geographical environments, may also impact spatio-temporal pat-

terns of population changes. For example, urban sprawl is considered to be a consequence of

uncoordinated and unplanned urban development [12] and results in scattered spatial patterns

of employment and residences in suburban areas [13–16]. These spatial patterns would cause a

long commute time due to poor accessibility to workplaces [17]. In contrast, compact urban

growth and the diversity of land uses within the region enhance the accessibility to both work

and non-work activities [18, 19]. If the accessibility to workplaces and other activities influ-

ences residential decision-making, spatial patterns of inhabited regions are expected to affect

dynamics of population changes.

There have been studies relating the population size or its change to spatial patterns of

urban areas. For example, the population size of a region was shown to obey a power-law rela-

tionship with the area of the region in Norfolk in England [20] (also see [21] for an analysis of

approximately 70000 cities in the world). In 78 regions in Israel, the population growth rate in

sprawl regions was higher than in compact regions, where the sprawl and compact regions

were defined in part by the shape of their boundaries [22]. Fractal dimensions are also useful

tools for relating the population size/growth and spatial patterns of residential areas. For exam-

ple, the fractal dimension of the central part of Tel Aviv metropolis and its population size con-

comitantly increased over time, and the observed fractal dimension was larger than that of the

wider Tel Aviv [23]. In 20 urban areas in the US, the fractal dimension and the population size

were positively correlated [24].

To the best of our knowledge, past studies on the relationship between spatial characteris-

tics of regions and population changes examined a single or a small number of metropolitan

areas of interest. Therefore, it seems to be unknown whether the relationship between spatial

characteristics of regions and population changes can be generalized to a large number of met-

ropolitan and non-metropolitan areas, even within a country. To address this question, one

needs longitudinal data of population density with a high spatial resolution. Remote sensing

technologies and the recent prevalence of mobile phones offer promising data on population

dynamics at relatively low cost [25–27]. For example, the spatial distribution of the number of

workers estimated from mobile phone data closely matched the counterpart calculated from

the US census data [28]. The population density can also be estimated from the amount of

night-time lights in satellite imagery [29, 30]. Such data enable estimation of short-term

human mobility within a day or week [31, 32].

However, the accuracy of data obtained with these technologies is unclear. Furthermore,

the population dynamics estimated by these methods may be susceptible to changes in the

accuracy and coverage of the technology over time. In the present study, we use population

census data of Japan with a high spatial resolution measured five years apart. To date, census

data are probably advantageous to mobile phone or satellite data in tracking long-term popula-

tion changes with a high accuracy. In fact, census data have been used for evaluating the accu-

racy of other techniques [28, 29].

We explore spatial factors that contribute to the population growth in local clusters of

inhabited areas. We hypothesize that the shape of the cluster of inhabited patches significantly

affects the population change in the cluster. To test the hypothesis, we carry out statistical

analysis to relate population changes in a cluster over five years, from 2005 to 2010, to the clus-

ter’s shape and other demographic and socioeconomic variables. We resolve the aforemen-

tioned limitations of the previous studies by exhaustively analyzing clusters of inhabited areas

across Japan and by using the census data with which the local populations are accurately

estimated.

Population changes in residential clusters
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Materials and methods

Data set

We used data obtained from the population census of Japan in 2005 and 2010; the census is

conducted every five years. The data consist of demographic information on a grid of cells of

500 m × 500 m covering the entire Japan [33–35]. There are 1,944,711 cells in total including

completely water-surface cells (e.g., sea and lake), of which 4,82,181 cells were populated in

2005 and 477,172 cells in 2010. The population was 127,767,994 in 2005 (65,419,017 females

and 62,348,977 males) and 128,057,352 in 2010 (65,729,615 females and 62,327,737 males).

The numbers of female inhabitants, that of male inhabitants, and the latitude and longitude of

the center of the cell are available for each cell. We denote the year (i.e., 2005 or 2010) by t.

City clustering algorithm

To determine the boundary of an inhabited area, we applied the city clustering algorithm [21,

36–38]. The algorithm calculates the connected components of populated cells, i.e., cells that

contain at least one inhabitant, where we have defined the adjacency of cells by the von Neu-

mann neighborhood (i.e., each cell has four neighbors in the north, south, east, and west). To

find the connected components, we used the “decompose.graph” function provided by the R

package ‘igraph’ [39]. This function takes a list of the pairs of connected cells and returns the

list of the connected components. We refer to each connected component as cluster. We

obtained 24165 and 24707 clusters in 2005 and 2010, respectively. In the following analysis, we

focused on population changes over time in the clusters identified in 2005, which we denote

by c. In other words, we compared the number of inhabitants in each cluster c between 2005

and 2010. It should be noted that we did not use the clusters identified in 2010.

Dependent variable

We denote by ni(t) the number of inhabitants in cell i at time t. We investigated dynamics of

the number of inhabitants in each cluster c identified in 2005 (Fig 1). To this end, we adopted

Fig 1. A hypothetical example of the population change in a cluster over five years. The number of inhabitants in a

cell is indicated for inhabited cells shown in gray. The bold lines indicate the boundary of cluster c observed in year

2005. This cluster has ncluster
c ð2005Þ ¼

P
i2cluster cnið2005Þ = 10 + 20 + 30 + 40 + 50 = 150 and ~ncluster

c ð2010Þ ¼
P

i2cluster cnið2010Þ = 10 + 15 + 60 = 85 inhabitants in 2005 and 2010, respectively. Although cluster c is split into

different clusters in 2010, each of which extends beyond the border of cluster c determined in 2005, we neglect the split

to calculate the population change in cluster c. Therefore, cluster c has lost 150–85 = 65 inhabitants in the five years.

https://doi.org/10.1371/journal.pone.0197144.g001
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regression models whose dependent variable is defined by

~ncluster
c ð2010Þ ¼

P
i2cluster cnið2010Þ: ð1Þ

In other words, ~ncluster
c ð2010Þ is the number of inhabitants in cluster c as of 2010. We used log

(ncluster
c (2005)), where

ncluster
c ð2005Þ ¼

P
i2cluster cnið2005Þ; ð2Þ

i.e., the number of inhabitants in cluster c as of 2005, as the offset variable (see Eq (7)). In this

manner, we aimed to compare ~ncluster
c ð2010Þ and ncluster

c ð2005Þ, i.e., the number of inhabitants at

two time points contained in each cluster c that existed in 2005.

Cells in a cluster c observed in 2005 may belong to different clusters recalculated in 2010.

Furthermore, some inhabited cells in 2010 do not belong to any cluster observed in 2005 (Fig

1). Reflecting the latter fact, the total population of Japan in 2005 is equal to
P

cn
cluster
c ð2005Þ =

127,767,994, whereas the sum
P

c~n
cluster
c ð2010Þ = 127,901,037 is smaller than the total popula-

tion of Japan in 2010, where the summation is taken over the clusters identified in 2005. The

present definition of cluster may discount the population growth of a cluster when it grew in

terms of both the area and the number of inhabitants. This is because the inhabitants that

emerged in the area that existed in 2010 but were absent in 2005 were not used in the

calculation.

Independent variables

We used the following independent variables for each cluster observed in 2005 to explain the

population change between 2005 and 2010.

First, the area of the cluster (denoted by S and referred to as Area) is defined by the number

of cells constituting the cluster. Second, the population density (referred to as Density) is equal

to the number of inhabitants in the cluster divided by S.

We quantified the shape of the cluster by the following two indices. We defined what we

refer to as Roundness, originally proposed in Ref. [40], as S divided by the area of the circle

whose diameter is equal to the longest Euclidean distance between two cells belonging to the

cluster. We measured the position of a cell by the two-dimensional coordinate of the center of

the cell. For example, the clusters shown in Fig 2 have four cells and have the longest Euclidean

distance equal to
ffiffiffi
5
p

(in the unit of the linear length of a cell), yielding a Roundness value of

1.019. A cluster whose shape is close to a circle yields a large Roundness value. For a given S,

the line-shaped cluster yields the smallest Roundness value. Roundness can be regarded as a

simplified variant of the box-counting fractal dimension [41]. The second shape-related index,

Fig 2. Three clusters, each composed of four cells (i.e., S = 4) and eight inhabitants. The number of inhabitants in

each cell is indicated.

https://doi.org/10.1371/journal.pone.0197144.g002
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Irregularity, is defined by

2logL
logS

ð3Þ

where L is the perimeter of the cluster. For a fixed S, Irregularity is small when the cluster is

close to square-shaped. The perimeter was used for characterizing spatial patterns of urban

regions [20]. Frenkel and Ashkenazi [22] applied Eq (3) to quantify the level of urban sprawl.

We note that measures similar to Irregularity were proposed decades ago [42, 43]. Because of

the scaling relation S = L2/Irregularity, Irregularity can be interpreted as the fractal dimension of

the cluster [44, 45].

We quantified the hypothesized efficiency of communication or transportation within a

cluster by the following two indices. We defined the expected distance between uniformly ran-

domly selected two inhabitants in the cluster by

P
i�j:i;j2cluster cnið2005Þnjð2005Þdij

nclusterc ð2005Þ

2

� � ð4Þ

where dij is the distance between cells i and j, and the denominator of Eq (4) is a binomial coef-

ficient. It should be noted that ni 2005ð Þnj 2005ð Þ= nclusterc ð2005Þ

2

� �
is the probability that randomly

selected two inhabitants in cluster c belong to cells i and j. Because Eq (4) has the dimension of

the length, it may give rise to multicollinearity with S in multivariate regression. To mitigate

this potential problem, we divided Eq (4) by
ffiffiffi
S
p

, which has a dimension of the length, to

define

P
i�j:i;j2cluster cnið2005Þnjð2005Þdij

nclusterc ð2005Þ

2

� � =
ffiffiffi
S
p

ð5Þ

We have assumed the normalization factor of
ffiffiffi
S
p

to make Eq (5) dimensionless if clusters are

two-dimensional (with a large Roundness and/or small Irregularity value). In fact, clusters may

be line-shaped or fractal-like, in which case Eq (5) would have a dimension of the length to

some power. However, we expect that Eq (5) is less correlated with S than Eq (4) is. Therefore,

we adopted Eq (5) as a dependent variable and referred to it as characteristic length (CL). We

also adopted the coefficient of variation, which is defined by the standard deviation divided by

the mean, of the number of inhabitants in a cell belonging to the focal cluster. This index quan-

tifies spatial heterogeneity in the distribution of inhabitants within the cell and is referred to as

Heterogeneity.

Fig 2 illustrates the difference among Density, CL, and Heterogeneity. The three clusters

shown in the figure have the same Area (= 4) and Density (= 2.00). However, Heterogeneity for

the clusters shown in Fig 2(A) and 2(B) (= 1.00) is larger than that for the cluster shown in Fig

2(C) (= 0.00). CL is smaller for the cluster shown in Fig 2(B) (= 0.623) than that shown in Fig 2

(A) (= 0.747), because in Fig 2(B) the most populated cell is located in the center of the cluster.

Note that the distribution of the number of inhabitants in a cluster is the same between Fig 2

(A) and 2(B). CL is the largest for the cluster shown in Fig 2(C) (= 0.874). The distance

between the uppermost and the bottom-right cells is equal to
ffiffiffi
5
p

.

We used the following two demographic dependent variables. First, Gender refers to the

fraction of female inhabitants in the cluster. Second, we estimated the average age of the inhab-

itants in a cluster, referred to as Age, as follows. Because the data set did not contain the aver-

age age for each cell, we approximated it by the average age of inhabitants in the prefecture to

Population changes in residential clusters
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which a cluster belongs. The average age of inhabitants in each prefecture is available from the

prefecture-level population census data carried out in 2005 [46]. The prefecture of a cluster

was defined as the prefecture to which the cell with the largest closeness centrality [47, 48] in

the cluster belongs. In the calculation of the closeness centrality, we regarded the cluster as a

network in which a cell was a node and two nodes were adjacent if they shared a side. Using

the R packages ‘rjson’[49] and ‘RCurl’[50], we submitted the latitude and longitude of the cell

with the largest closeness centrality to the reverse geocoding service provided by National

Agriculture and Food Research Organization, Japan [51] and detected the prefecture in which

the cell was located. When the reverse geocoding service returned no output because the sub-

mitted cell was located in the sea or for other reasons, we used a different data set with which

one can determine the prefecture to which cells of 1 km × 1 km belong [52]. The 1 km × 1 km

cells in this data set and the 500 m × 500 m cells in the census data were coaligned with each

other in the sense that the division of a 1 km × 1 km cell into four cells yielded four 500 m ×
500 m cells in the census data. If the 1 km × 1 km cell to which the 500 m × 500 m cell in ques-

tion belonged to multiple prefectures, we plotted the latitude/longitude of the 500 m × 500 m

cell on the map provided by Geospatial Information Authority of Japan [53] and visually deter-

mined the prefecture. If multiple cells had the same largest closeness centrality value, we used

the average latitude and longitude of these cells to determine the cluster’s prefecture.

Although the procedure for calculating Age is complicated, we decided to include it in addi-

tion to Gender for two reasons. First, Gender and Age are not strongly correlated (see Correla-

tion coefficients section for the result). Second, these variables are likely to impact the birth

and death rates in a cell in different ways. As for Age, the birth rate is relatively high among

women in their twenties and thirties [54]. Therefore, a cluster having a large fraction of indi-

viduals in reproductive ages is expected to have a relatively large rate of population growth.

However, if the value of Age is even larger, the population growth rate within the cluster is

expected to be smaller because the death rate increases with age [55, 56]. The value of Gender
may reflect the efficiency of matching between male and female depending on the sex-ratio

balance. The extant results are mixed regarding whether a male-biased or female-biased sex

ratio drives marriage squeeze [57, 58]. However, to the least, marriage squeeze may negatively

impact the fertility rate [59] especially in countries such as Japan, where people tend to have

children after marriage. In fact, that percentage of children born out of wedlock in Japan has

been around 2% [60] and much lower than in other countries [61].

As a socioeconomic factor, we used the fraction of workers in the tertiary industry in the

prefecture to which the cluster belongs [46] and referred to it as Tertiary. We determined the

prefecture of a cluster in the same manner as in the case of Age.

Regression models

For analysis of count data, a Poisson regression model is often used (e.g., [62]). This model

assumes that the dependent variable (~ncluster
c ð2010Þ in the present case) obeys a Poisson distri-

bution given by

Prð~ncluster
c ð2010Þ ¼ kÞ ¼

expð� mcÞm
k
c

k!
ð6Þ

where the conditional mean μc is determined by

logðmcÞ ¼ logðncluster
c ð2005ÞÞ þ b0 þ b1logðAreacÞ þ b2logðDensitycÞ þ

P9

i¼3
biXi;c ð7Þ

In Eq (7), Eq (2) is used as the offset variable, the logarithmic link function is used, β0 is the

intercept, βi (i = 1,. . ., 9) is a regression coefficient, Xi (i = 3,. . ., 9) is the ith independent

Population changes in residential clusters
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variable (i.e., Roundness, Irregularity, CL, Heterogeneity, Gender, Age, and Tertiary), and sub-

script c on the right-hand side indicates that the values of the independent variables are for

cluster c.
In the Poisson regression model, the conditional mean of the dependent variable is assumed

to be equal to its conditional variance. However, as we will show in Descriptive statistics sec-

tion, the conditional variance of the dependent variable is considerably larger than its condi-

tional mean for the present data. This situation is called the overdispersion, which we tested by

running an overdispersion test [63, 64] (see also [65] for the usage of the R package ‘AER’).

The overdispersion test is carried out based on the statistic

PN
c¼1
ðð~ncluster

c ð2010Þ � m̂cÞ
2
� ~ncluster

c ð2010ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
PN

c¼1
m̂c

q 2
ð8Þ

which asymptotically obeys the normal distribution with mean 0 and standard deviation 1

under the assumption of the Poisson model. In Eq (8), m̂c is the maximum likelihood estimate

of the dependent variable under the Poisson model (i.e., the null hypothesis).

Because the null hypothesis was rejected (Descriptive statistics section), we used the nega-

tive binomial regression model. A negative binomial regression model [62] assumes that the

dependent variable obeys a negative binomial distribution given by

Prð~ncluster
c ð2010Þ ¼ kÞ ¼

Gðkþ yÞ

GðyÞGðkþ 1Þ

y

mc þ y

� �y
mc

mc þ y

� �k

ð9Þ

where Γ(�) is the gamma function, and θ is a parameter that is assumed to be the same for all

clusters. In Eq (9), the conditional mean, μc, is given by Eq (7). The variance of the distribution

given by Eq (9) is mc þ m2
c=y. To fit the model, we maximized the likelihood with respect to βi

(i = 0, . . ., 9) (Eq (7)) and θ using the glm.nb() function in the R package ‘MASS’ [66].

The Area and Density variables obeyed long-tailed distributions (Fig 3(A) and 3(C); also see

Descriptive statistics section). Therefore, in Eq (7), we logarithmically transformed Area and

Density to improve linearity between the dependent and independent variables. In fact, the

logarithm of Area obeyed a much less long-tailed distribution (Fig 3(B)), and the logarithm of

Density obeyed a distribution that roughly looks like a normal distribution (Fig 3(D)). For

these two independent variables, a 1% increase in Area (or Density) corresponds to a β1 (or β2)

% increase in the number of inhabitants in 2010 in a cluster observed in 2005. For Xi (i = 3, . . .,

9), an increase in Xi by one unit increases the number of inhabitants exp(βi) times. The distri-

butions of these independent variables are shown in Fig 3(E)–3(K). We used the same offset

term Eq (2) in the multivariate and univariate regressions.

We also searched the multivariate regression model that minimized the Akaike information

criterion (AIC) among the models that had any of the independent variables as main effects

and any of pairwise interaction terms between the independent variables. To avoid large vari-

ance inflation factor (VIF) values due to the pairwise interaction terms, we normalized all

independent variables to have a zero mean [67]. We used the stepwise backward elimination

method to find the best model, i.e., by sequentially excluding the least significant term in terms

of the AIC [68].

Results

Descriptive statistics

Statistics of the dependent, offset, and independent variables are shown in Table 1. We find

that the area of a cluster, S, the number of inhabitants in a cluster, and the population density
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in a cluster are heterogeneously distributed, as suggested by large coefficient of variation (CV)

values for these variables. Moreover, the skewness for these variables is large. This observation

is confirmed by long-tailed distributions of these quantities shown in Fig 4.

In the following statistical analysis, we restricted ourselves to the clusters whose areas are at

least ten cells because the geometry of smaller clusters would be strongly affected by the spatial

discreteness.

We ran the overdispersion test to confirm that the assumption of the Poisson distribution

of the dependent variable was violated (p< 0.001). Therefore, in the following we report the

result of the negative binomial regression model.

Correlation coefficients

The Pearson, Spearman, and Kendall correlation coefficients between pairs of independent

variables are shown in Tables 2–4, respectively. The signs of almost all of the correlation coeffi-

cients are consistent across the three types of correlation coefficient.

Table 2 indicates that log(Area) and Irregularity are strongly correlated (Pearson correlation

coefficient = –0.794). This result is consistent with the positive correlation previously observed

Fig 3. Distributions of the independent variables. (a) Area. (b) log(Area). (c) Density. (d) log(Density). (e)

Roundness. (f) Irregularity. (g) Characteristic length (CL). (h) Heterogeneity. (i) Gender. (j) Age. (k) Tertiary. The

clusters whose Area was less than 10 were omitted from the calculation of the distributions. Some of the distributions

are truncated for a visibility reason. The curve shown in each panel represents the normal distribution with the sample

mean and standard deviation.

https://doi.org/10.1371/journal.pone.0197144.g003
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between the city size and the spatial compactness of the city measured by a fractal dimension

[24, 69]. However, we concluded that the multicollinearity problem was not present because

the VIF values were sufficiently small (4.206 and 3.247 for log(Area) and Irregularity, respec-

tively). In general, VIF values for independent variables should be less than 10, preferably less

than 5, for multivariate regression analysis to be justified [70, 71].

Regression analysis

The results of the negative binomial regression are shown in Table 5. The contributions of log

(Area) and log(Density) were significant at the 0.1% level, Irregularity and Age at the 1% level,

and CL at the 10% level. The other variables (i.e., Roundness, Heterogeneity, Gender, and Ter-
tiary) were not significant. Table 5 also indicates that a 1% increase in Area and Density is asso-

ciated with an increase in the number of inhabitants in a cluster in 2010 (as compared to 2005)

by 0.0113% and 0.0227%, respectively. An increase in Irregularity, Age, and CL by 1% is associ-

ated with a decrease in the number of inhabitants in a cluster by 3.27 × 10−4 (= 1–exp(–

0.0327×0.01)) times, 2.40×10−5 (= 1–exp(–0.0024×0.01)) times, and 3.62×10−4 (= 1–exp(–

0.0362×0.01)) times, respectively. Because the total population in Japan only changed by 0.23%

between 2005 and 2010 (Data set section), the contribution of these factors to the population

change is non-negligible.

The results for univariate regressions are also shown in Table 5. The signs of all the signifi-

cant regression coefficients in the multivariate regression (i.e., negative binomial regression)

were consistent with the results for the univariate regression, lending support to the results

obtained from the multivariate analysis.

We carried out the model selection in terms of the Akaike Information Criterion (AIC)

among the negative binomial regression models that were allowed to include any main effects

and pairwise interaction terms. The regression coefficients of the selected model are shown in

Table 1. Descriptive statistics for the clusters composed of at least ten cells.

Min Max Median Mean SD CV Skewness

Dependent variable

~ncluster
c ð2010Þ 22 42492718 623 47193.57 964925.07 20.446 35.962

Offset

ncluster
c ð2005Þ 39 41403322 696 47086.07 946332.04 20.098 35.551

Independent variables

log(Area) 2.303 11.187 2.944 3.256 1.070 0.329 2.375

log(Density) 1.291 7.684 3.509 3.526 0.977 0.277 0.172

Roundness 0.066 1.273 0.397 0.434 0.200 0.460 0.877

Irregularity 1.746 2.685 2.336 2.327 0.181 0.078 –0.181

CL 0.110 0.720 0.296 0.301 0.078 0.260 0.710

Heterogeneity 0.342 3.190 1.052 1.119 0.387 0.346 1.308

Gender 0.236 0.694 0.523 0.520 0.027 0.051 –1.179

Age 39.1 47.1 44.4 44.6 1.240 0.028 –0.803

Tertiary 0.570 0.774 0.653 0.653 0.045 0.070 0.185

Area 10 72194 19 160.50 1896.4 11.816 26.795

Density 3.636 2172.5 33.40 56.19 86.59 1.541 10.636

There are N = 2689 clusters. The clusters whose Area was less than 10 were omitted from the calculation of the statistics shown in the table. By definition, all

independent variables are calculated for the data in 2005. SD represents the standard deviation. CV represents the coefficient of variation. The non-standardized Area
and Density variables are not used in the regression models but shown for completeness.

https://doi.org/10.1371/journal.pone.0197144.t001
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Table 6. The selected model contained all independent variables. The result that the main

effects of log(Area), log(Density), and CL are significant is consistent with that for the multivar-

iate regression. However, the main effects of Irregularity and Age, which were significant in the

Fig 4. Complementary cumulative distributions for three properties of a cluster. (a) Number of inhabitants. (b) Area. (c) Population density. Differently from Fig 3,

we used all the clusters to calculate the distributions.

https://doi.org/10.1371/journal.pone.0197144.g004
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Table 2. Pearson correlation coefficient between the independent variables for the clusters with at least ten cells observed in 2005.

log(Area) log(Density) Roundness Irregularity CL Heterogeneity Gender Age VIF

log(Area) – 4.206

log(Density) 0.431��� – 1.536

Roundness –0.479��� –0.167��� – 2.163

Irregularity –0.794��� –0.494��� 0.230��� – 3.247

CL 0.232�� –0.132��� –0.594��� 0.009 – 2.353

Heterogeneity 0.516��� 0.361��� –0.215��� –0.460��� –0.265��� – 1.943

Gender 0.062 0.172�� –0.051�� –0.067��� 0.003 0.056�� – 1.065

Age –0.002�� –0.068��� –0.014 0.010 0.008 0.007 0.160��� – 1.153

Tertiary –0.004 –0.111 0.042�� –0.007 –0.135��� 0.149��� –0.068��� –0.291��� 1.190

N = 2689.

��p< 0.01

���p< 0.001.

https://doi.org/10.1371/journal.pone.0197144.t002

Table 4. Kendall rank correlation coefficient between the independent variables for the clusters with at least ten cells observed in 2005.

log(Area) log(Density) Roundness Irregularity CL Heterogeneity Gender Age
log(Area) –

log(Density) 0.260��� –

Roundness –0.395��� –0.138��� –

Irregularity –0.700��� –0.318��� 0.181��� –

CL 0.151��� –0.115��� –0.446��� 0.033�� –

Heterogeneity 0.333��� 0.297��� –0.146��� –0.323��� –0.210��� –

Gender 0.057��� 0.129��� –0.032�� –0.058��� –0.014 0.067��� –

Age 0.017 –0.016 –0.003 –0.016 –0.007 0.028�� 0.110��� –

Tertiary 0.002 –0.079��� 0.026† –0.002 –0.079��� 0.063��� –0.010 –0.171���

N = 2689.
†p< 0.1

��p< 0.01

���p< 0.001.

https://doi.org/10.1371/journal.pone.0197144.t004

Table 3. Spearman rank correlation coefficient between the independent variables for the clusters with at least ten cells observed in 2005.

log(Area) log(Density) Roundness Irregularity CL Heterogeneity Gender Age
log(Area) –

log(Density) 0.373��� –

Roundness –0.560��� –0.204��� –

Irregularity –0.870��� –0.456��� 0.273��� –

CL 0.219��� –0.173��� –0.616��� 0.049�� –

Heterogeneity 0.473��� 0.437��� –0.218��� –0.466��� –0.307��� –

Gender 0.084��� 0.192��� –0.047�� –0.089��� –0.022 0.101��� –

Age 0.024 –0.022 –0.003 –0.023 –0.012 0.044�� 0.162��� –

Tertiary 0.002 –0.113��� 0.037† –0.003 –0.115��� 0.092��� –0.020 –0.224���

N = 2689.
†p< 0.1

��p< 0.01

���p< 0.001.

https://doi.org/10.1371/journal.pone.0197144.t003
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multivariate regression, were not significant in the selected model, while some interaction

effects between other variables and Irregularity or Age were significant. This result implies that

the effects of Irregularity and Age qualitatively depend on other variables. Lastly, the main

effect of Heterogeneity, which was not significant in the multivariate regression, was significant

in the selected model.

On the basis of the results for the multivariate regression, univariate regression, and model

selection, we conclude that the main effects of Area, Density, and CL are significant according

to the different criteria. In other words, the population growth of a cluster is associated with an

Table 5. Coefficients of multivariate and univariate negative binomial regressions.

Multivariable Univariate

Estimate CI Estimate CI

(Intercept) –0.0146 [–0.1419, 0.1126] – –

log(Area) 0.0113��� [0.0076, 0.0151] 0.0202��� [0.0183, 0.0222]

log(Density) 0.0227��� [0.0198, 0.0257] 0.0320��� [0.0294, 0.0347]

Roundness 0.0040 [–0.0128, 0.0208] –0.0414��� [–0.0549, –0.0279]

Irregularity –0.0327�� [–0.0552, –0.0101] –0.1428��� [–0.1565, –0.1292]

CL –0.0362† [–0.0762, 0.0039] –0.0302† [–0.0619, 0.0016]

Heterogeneity –0.0007 [–0.0084, 0.0070] 0.0375��� [0.0310, 0.0441]

Gender –0.0433 [–0.1442, 0.0576] 0.0821 [–0.0309, 0.1951]

Age –0.0024�� [–0.0043, –0.0005] –0.0039��� [–0.0059, –0.0018]

Tertiary –0.0098 [–0.0650, 0.0455] 0.0367 [–0.0221, 0.0956]

N = 2689. CI: 95% confidence interval.
†p< 0.1

��p< 0.01

���p< 0.001.

https://doi.org/10.1371/journal.pone.0197144.t005

Table 6. The selected model.

Estimate Estimate

(Intercept) –0.1202��� log(Area) × log(Density) –0.0035��

log(Area) 0.0205��� log(Area) × Gender –0.4752���

log(Density) 0.0230��� log(Area) × Age 0.0022�

Roundness 0.0067 log(Area) × Tertiary 0.0834��

Irregularity –0.0127 Density × Gender –0.1239�

CL –0.0660�� Density × Age –0.0019

Heterogeneity –0.0100� Density × Tertiary –0.0537

Gender –0.0592 Roundness × Gender –1.0902���

Age –0.0008 Irregularity × Gender –1.2191�

Tertiary –0.0464 CL × Age –0.0316�

CL × Tertiary –1.1941���

Age × Tertiary –0.0638���

N = 2689. AIC = 29062.

�p< 0.05

��p< 0.01

���p< 0.001.

https://doi.org/10.1371/journal.pone.0197144.t006
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increase in Area, an increase in Density, and a decrease in CL. In addition, the main effects of

Irregularity and Age were also significant in the multivariate and univariate regression (but not

in the model selected by the AIC).

Discussion

Summary

We searched for potential drivers of population changes in terms of demographic, geometrical,

and other properties of a cluster of inhabited cells. Unsurprisingly, we found that the area and

the population density of the cluster were positively correlated with the population growth

rate.

In addition, we found that a shape parameter for the cluster, Irregularity, and the mean dis-

tance between inhabitants within the cluster, CL, had negative impacts on the population

growth. Age also had a negative impact on the population growth. In contrast, the fraction of

female inhabitants, Gender, and that of tertiary-industry workers, Tertiary, had no significant

contribution. The present results suggest that the population change is predictable to a certain

degree from spatial characteristics intrinsic to the cluster, irrespectively of demographic

factors.

Effects of variables characterizing the shape and heterogeneity of a cluster

Roundness was significantly correlated with Area. This result is inconsistent with the previous

result showing no significant correlation between the city size and the anisometry, where the

anisometry was defined by the ratio of the length of the major axis and that of the minor axis

of the ellipse including the city cluster [69] and hence similar to Roundness. This inconsistency

may originate from the different terrains in different cities and countries, the pattern of cen-

tralization of the population to urban areas of Japan such as Tokyo [72] in the present study,

or other reasons; we do not have a clear explanation. Because urban sprawl is often negatively

associated with the compact city [17, 22], it is intriguing to associate urban sprawl with Round-
ness or Irregularity. However, urban sprawl is not solely characterized by the shape of urban

areas but also by a discontinuous development of suburban areas, which may reduce the intra-

and inter-region accessibility [13]. To relate our approach to urban sprawl, we probably need

to consider relationships between different clusters and the role of each cluster in wider geo-

graphical regions.

CL had a negative impact on the population growth rate. By definition, CL is small when

highly populated cells are located near the geographical center of a cluster (Fig 2(B)) rather

than when they are located in the periphery of the cluster (Fig 2(A)). Therefore, our results

suggest that a cluster’s population tends to grow if many inhabitants are located near the center

of the cluster. A previous study showed that the values of indices characterizing urban regions

(e.g., Moran, Geary, and Gini coefficients) were sensitive to the distribution of inhabitants in a

confined region [73]. The present study suggests that the spatial distribution of inhabitants

may affect the population growth rate as well as such urban indices. Investigating this issue

warrants future work.

We did not pay attention to the change in the shape of the cluster over years. In fact, pro-

cesses of urban growth, which are characterized by, for example, the population size, economic

performance, and development of transportation systems, occur in tandem with changes in

the shape of urban areas (e.g., [23, 74, 75]). Socioeconomic factors reflected in the shape of

urban areas may influence inhabitants’ residential decision making, which may in turn change

the shape of urban areas.
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Effects of the population size of a cluster

We used the population of the cluster in 2005 as an offset variable, not independent variable.

We additionally analyzed the following linear regression model with the population of the clus-

ter in 2005 as an independent variable: logð~ncluster
c ð2010Þ=ncluster

c ð2005ÞÞ ¼ blogðncluster
c ð2005ÞÞ.

The population of the cluster in 2005 was positively correlated with the growth rate in the clus-

ter over the five years (β = 0.021, p< 0.001). This result is inconsistent with the previous studies

showing a smaller growth rate for clusters with a larger population [36] and the lack of correla-

tion between the population of administratively defined cities and their growth rate [76]. The

reason for this discrepancy is unclear. It may be because of the different definitions of the cluster

change in the two studies or the aforementioned centralization of the inhabitants to urban areas

of Japan.

Comparison with the gravity model

The gravity model and its variants explain spatio-temporal migration and population changes

in various data [77–79]. The statistical explanation of population changes that we have found

is different from the mechanisms implied by the gravity model and its variants.

First, let us assume that the unit of analysis is a cluster. Then, the gravity model assumes

that migratory population flows are influenced by the attractiveness (often identified with the

number of inhabitants) of the origin cluster and the destination cluster. In contrast, we ignored

any interaction between clusters. Therefore, in our statistical approach, the rate of population

change does not depend on the population of different clusters, differently from the prediction

obtained by the gravity model. We neglected effects of other clusters because we did not have

migration data. However, this decision does not imply that migration effects are unimportant

(see the Limitations section below for more discussion).

Second, the proposed mechanism is also different from that provided by the gravity model

even if one uses a single cell as the unit of analysis and applies the gravity model to population

dynamics within a cluster. Given the shape of a cluster, we found that the CL negatively

impacted on the population growth rate. This result implies that the spatial distribution of

inhabitants within a cluster affects the population growth rate. In contrast, the gravity model

applied to population dynamics within a cluster would describe migration dynamics within a

cluster. Because intra-cluster migration implies that the number of inhabitants is preserved

over time, the gravity model applied to a cluster would not predict whether the population of

the cluster tends to increase or decrease. In sum, the present analysis is orthogonal to what the

gravity model aims to explain.

Limitations

An important limitation of the present study is that we did not have an access to migration

data. In general, the population change is decomposed into the natural increase (i.e., births

minus deaths) and the migratory increase (i.e., immigration minus emigration). Because the

census data used in the present study did not include the information about the population

flow, we could not distinguish between the natural and migratory increases. Another limita-

tion is that some dependent variables (i.e., Age and Tertiary) were estimated at the prefecture

level due to the lack of data at the level of single cells.

We did not consider other information such as land use as independent variables, either.

For example, steeper slopes and higher elevations negatively impact on urban expansion [80,

81]. Regarding transportation systems, the distance to highways and major roads negatively

impact on urban expansion [80]. Network structures of transportation systems are also related
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to the urbanization [74, 81]. For example, the treeness of street networks is negatively corre-

lated with the metropolitan population [81]. Urban planning is also an important factor driv-

ing urban expansion. For example, Ref. [82] evaluated effects of urban master plans on urban

expansion in Beijing between 1947 to 2008 and showed that the effects were positive in all peri-

ods. Further longitudinal analyses including any of these variables with an appropriate spatial

resolution will be valuable.
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77. Simini F, González MC, Maritan A, Barabási AL. A universal model for mobility and migration patterns.

Nature. 2012; 484: 96–100. https://doi.org/10.1038/nature10856 PMID: 22367540

Population changes in residential clusters

PLOS ONE | https://doi.org/10.1371/journal.pone.0197144 May 9, 2018 17 / 18

http://www.e-stat.go.jp/SG1/estat/ListE.do?bid=000001025191&cycode=0
http://www.ncbi.nlm.nih.gov/pubmed/14284290
https://www.finds.jp/rgeocode/index.html.en
http://www.stat.go.jp/data/mesh/m_itiran.htm
http://www.stat.go.jp/data/mesh/m_itiran.htm
https://maps.gsi.go.jp/
https://www.humanfertility.org
https://doi.org/10.1016/S0140-6736(12)61719-X
http://www.ncbi.nlm.nih.gov/pubmed/23245603
https://www.stat.go.jp/data/nenkan/back64/zuhyou/y0226000.xls
https://www.stat.go.jp/data/nenkan/back64/zuhyou/y0226000.xls
https://doi.org/10.1371/journal.pone.0160320
http://www.ncbi.nlm.nih.gov/pubmed/27556401
https://www.e-stat.go.jp/dbview?sid=0003214687
http://www.oecd.org/els/family/SF_2_4_Share_births_outside_marriage.pdf
http://www.oecd.org/els/family/SF_2_4_Share_births_outside_marriage.pdf
https://doi.org/10.1002/bimj.200610340
https://doi.org/10.1002/bimj.200610340
http://www.ncbi.nlm.nih.gov/pubmed/17638291
https://doi.org/10.1038/s41598-017-04242-2
http://www.ncbi.nlm.nih.gov/pubmed/28684850
http://www.stat.go.jp/data/kokusei/2015/kekka/pdf/gaiyou.pdf
https://doi.org/10.1038/nature10856
http://www.ncbi.nlm.nih.gov/pubmed/22367540
https://doi.org/10.1371/journal.pone.0197144


78. Masucci AP, Serras J, Johansson A, Batty M. Gravity versus radiation models: On the importance of

scale and heterogeneity in commuting flows. Phys Rev E. 2013; 88: 022812.

79. Batty M. The new science of cities. Cambridge, MA: MIT Press; 2013.

80. Li X, Zhou W, Ouyang Z. Forty years of urban expansion in Beijing: what is the relative importance of

physical, socioeconomic, and neighborhood factors? Appl Geogr. 2013; 38: 1–10.

81. Levinson D. Network structure and city size. PLoS One. 2012; 7: e29721. https://doi.org/10.1371/

journal.pone.0029721 PMID: 22253764

82. Long Y, Gu Y, Han H. Spatiotemporal heterogeneity of urban planning implementation effectiveness:

Evidence from five urban master plans of Beijing. Landscape Urban Plan. 2012; 108: 103–111.

Population changes in residential clusters

PLOS ONE | https://doi.org/10.1371/journal.pone.0197144 May 9, 2018 18 / 18

https://doi.org/10.1371/journal.pone.0029721
https://doi.org/10.1371/journal.pone.0029721
http://www.ncbi.nlm.nih.gov/pubmed/22253764
https://doi.org/10.1371/journal.pone.0197144

