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Abstract 11 

In 2009, the global Collaboratory for the Study of Earthquake Predictability (CSEP) 12 

launched three experiments to forecast the distribution of earthquakes in Italy in the 13 

subsequent five years. CSEP solicited forecasts for seismicity tomorrow, in the next three 14 

months, and for the entire five years. In those 5 years, INGV recorded 83 target 15 

earthquakes with local magnitude 3.95 ≤ 𝑀 < 4.95, and 14 larger shocks. The results 16 

show that: 1-day forecasts are consistent with the number and magnitudes of the target 17 

earthquakes, and one version of the ETAS model is also consistent with the spatial 18 

distribution; ensemble forecasts, which we created for the 1-day experiment, are 19 

consistent with the number, locations, and magnitudes of the target earthquakes, and they 20 

perform as well as the best model; none of the 3-month time-independent models produce 21 

consistent forecasts; the best 5-year models account for the fault distribution and the 22 

historical seismicity; and 5-year models based on instrumental seismicity and b-value 23 

spatial variation show poor forecasting performance. 24 
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Introduction 26 

The Collaboratory for the Study of Earthquake Predictability (CSEP; Jordan, 2006; Zechar et 27 

al., 2010a) is an international infrastructure that promotes assessing scientific hypotheses 28 

about earthquake occurrence within a standardized environment and following community-29 

endorsed procedures and metrics. CSEP conducts prospective (i.e., zero degrees of freedom) 30 

and reproducible experiments, which compare the forecasts of a set of models automatically 31 

running in a testing center with the observed seismicity in a testing region (Schorlemmer and 32 

Gerstenberger, 2007). To carry out reproducible and transparent experiments in a controlled 33 

environment, CSEP defines, a priori, unambiguous rules, such as: the definition of the testing 34 

region, characterized by high-quality seismic recordings; an exact description of the expected 35 

forecast format; and exact definition of the earthquake data (from an independent and 36 

authoritative source). The objective of these experiments is to quantify, for each forecast 37 

model, predictive skill (relative performance of a model with respect to others) and the 38 

consistency with the observations, with a broader goal of evaluating models and their 39 

underlying hypotheses about earthquakes.  40 

 41 

In 2009, Italy joined California, Japan, New Zealand, the Western Pacific, and the entire globe 42 

as a CSEP testing region.  This was feasible thanks to the high quality of seismic monitoring 43 

by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) (Schorlemmer et al., 2010a; 44 

2010b). The European CSEP testing center at ETH Zurich is conducting three prospective 45 

CSEP-Italy experiments, which began on August 1, 2009 with an expected first evaluation 46 

after five years (Marzocchi et al., 2010). Each model forecasts the expected number of target 47 

earthquakes (i.e., earthquakes with magnitude above a pre-defined threshold) in small time-48 

space-magnitude bins covering the CSEP Italy testing region (Schorlemmer et al., 2010a; 49 

2010b). The forecasts are based on—and tested against—observations provided by the official 50 

seismic bulletin of the INGV. Each CSEP-Italy experiment (or testing class) is distinguished 51 

by its forecast horizons:  52 

  53 

1. 5-year forecasts (19 models submitted): models forecast local magnitude M = 4.95 54 

and above. The experiment started January 1, 2010 and all forecasts were submitted to 55 

the testing center before this day and retrospectively evaluated by Werner et al. 56 

(2010a) for so-called "sanity checks."  57 

2. 3-month forecasts (3 models submitted): models forecast M = 3.95 and above, and the 58 

duration of each time bin is three months. The experiment started October 1, 2009. 59 

The models were implemented in the European CSEP testing center as software 60 

codes.  61 
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3. 1-day forecasts (4 models submitted): models forecast M = 3.95 and above, and the 62 

duration of each time bin is one day. The experiment started August 1, 2009, at 63 

midnight UTC. The 1-day models were also installed at the testing center as software 64 

codes. 65 

 66 

Here, we show the results of these first experiments and discuss the scientific lessons learned. 67 

Specifically, we explore the strengths and weaknesses of the forecasting models, their skill 68 

with respect to the other models, and the importance and the limitations of the model 69 

evaluations.  Besides the scientific interest, these results also have a significant practical 70 

impact. In particular, the seismic hazard center (Centro di Pericolosità Sismica, CPS) at INGV 71 

provides, as part of a pilot phase, operational earthquake forecasts for time windows of one 72 

week to the Department of Civil Protection (Marzocchi et al., 2014; 2017). This forecasting 73 

system (OEF_ITALY) is entirely based on models that are currently under test in CSEP testing 74 

centers. Hence, the results of these experiments are essential to assess the current forecasting 75 

capabilities of models that may be applied for practical purposes.  76 

 77 

Finally, we discuss the forecasting performance of different flavors of ensemble models for 78 

the 1-day testing class. Ensemble models are an emerging field of research applied to many 79 

different kinds of forecasts (e.g. Ranjan and Gneiting, 2010); their main goal is to improve the 80 

forecasting skill by combining available models. In seismology, ensemble modeling is used by 81 

OEF_ITALY (Marzocchi et al., 2014). In this paper we use the three different types of 82 

ensembles introduced by Marzocchi et al. (2012a), namely the Bayesian model averaging 83 

(BMA), score model averaging (SMA), and generalized score model averaging (gSMA). In 84 

short, BMA, gSMA and SMA ensembles (in this order) weight the models with decreasing 85 

emphasis on past forecasting performance (see equations 16, 20, and 18 in Marzocchi et al., 86 

2012a, respectively).  87 

Models and data  88 

The models under evaluation are summarized in Table 1. They are described in detail in a 89 

special issue of the Annals of Geophysics (references in Table 1); here, we only mention the 90 

main features. Marzocchi et al. (2010) showed maps of the 16 5-year forecasts (their Figure 91 

2).   92 

 93 

Table 1. List of models under test in the first CSEP experiment in Italy.  94 
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Model name Testing  

class 

Main features Reference 

ETAS_LM 1-day Epidemic-type aftershocks sequence (ETAS) model that was 
calibrated using the Italian instrumental catalog from 2005 to 
2009, both for the background and triggering part. 

Lombardi and 
Marzocchi, 
2010a 

STEP_NG, 
STEP_LG 

1-day Short-term earthquake probability (STEP) model with specific 
parametrization for Italy (NG) and original global parameters 
(LG). For the triggering part, these models use a spatial 
extension of the Reasenberg and Jones aftershock model. 
The model was calibrated on a merged Italian instrumental 
catalog, covering the period from 1981 to 2007.  

Woessner et 
al., 2010 

ETES 1-day ETAS model with a spatial decay of the triggering activity 
independent from the magnitude of the shock, and with the 
aftershock productivity parameter α fixed to 1. The model was 
calibrated on a merged Italian instrumental catalog from 1987 
to 2009. 

Falcone et al., 
2010 

TripleS_CPTI, 
TripleS_CSI, 
TripleS_Hyb 

3-month, 
5-years 

Time-independent smoothed seismicity, using a historical, 
instrumental and merged (hybrid) catalog, respectively; 
catalogs are not declustered. The models use a two-
dimensional isotropic Gaussian smoothing kernel with a single 
parameter, re-estimated for each forecast generation. 
TripleS_CSI is used for 3-month and 5-year forecasts, while 
TripleS_CPTI and TripleS_Hyb only contribute 5-year forecasts. 

Zechar and 
Jordan, 2010 

RI_L, RI_S, RI 3-month, 
5-year 

Time-independent smoothed seismicity model, which 
assumes that future earthquakes are more likely to occur 
where historical seismicity has been relatively high. The 
different versions refer to a different smoothing parameter 
(RI_L is smoother than RI_S). All versions use a spatially 
uniform b-value equal to 1.2. The models were calibrated on 
two merged instrumental catalogs, from 1985 to 2002 and 
from 2005 to 2009. 

Nanjo, 2010 

HAZFX_BPT 5-year Time-dependent model based on Brownian-Passage-Time 
recurrence on the Italian individual seismogenic sources and 
well-constrained macroseismic sources. A time-independent 
background seismicity was added by smoothing the historical 
seismicity. 

Marzocchi et 
al., 2012b 

MPS04, 
MPS04_AFTER 

5-year Official time-independent model of the national seismic hazard 
model for Italy, and the same model corrected for clustering: 
the total original rate was multiplied by a factor 1.25 to adjust 
for local magnitude rates. These models are composed by 
different sub-regions, each one with its own b-value and 
seismic rate (spatially uniform inside the sub-region). 

MPS Working 
Group, 2004 

HRSS_m1, 
HRSS_m2 

5-year Time-independent smoothed seismicity calibrated on 
instrumental seismicity since 1981, and merged historical/ 
instrumental seismicity since 1900, respectively. The models 
use an adaptive power-law kernel to smooth the seismicity, 
and a tapered Gutenberg-Richter. 

Werner et al., 
2010b 
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DBM 5-year Time-dependent two-layer clustering model, based on the idea 
that there are two branching processes that describe the 
seismicity: a short-term one (that lasts days to months) and a 
long term one (typically a few decades). 

Lombardi and 
Marzocchi, 
2010b 

HZA_TI, HZA_TD 5-year Time-independent and time-dependent versions of a 
smoothed seismicity model, which also includes Coulomb 
Failure Stress interaction among faults and a rate-and-state 
friction law. The time-dependent seismicity rate changes were 
estimated by the rate-and-state model, which considers all 
M4+ earthquakes that occurred since 2007.  

Chan et al., 
2010 

LTST 5-years Time-dependent recurrence model on faults with Coulomb 
Failure Stress interaction computed for the Italian individual 
seismogenic sources added to time-independent background 
seismicity for the cells without seismogenic sources; the 
smoothed seismicity was computed using the Frankel (1995) 
method. 

Falcone et al., 
2010 

HALM, ALM, 
ALM_IT 

5-year Different parametrizations of the time-independent model with 
spatial variations of the b-value. These models assume that 
small-scale spatial variations in the b-value of the Gutenberg-
Richter relationship are useful to recognize the zones with 
bigger probability to have major events in the future. Then, 
lower b-values characterize asperities, where future 
mainshocks are more likely to occur.   

Gulia et al., 
2010 

PHM_GRID, 
PHM_ZONE 

5-years Spatial grid and tectonic zonation applied to a time-dependent 
clustering model. These models uses a common empirical 
time clustering decay, which is independent of the magnitude 
of the earthquakes.  

Faenza and 
Marzocchi, 
2010 

HAZGRIDX 5-year Time-independent smoothed seismicity based both on 
historical and instrumental catalogs; this model use an 
isotropic spatial smoothing kernel and the Weichert (1980) 
method to estimate b-values and seismic rates.  

Akinci et al., 
2010 

 95 

 96 

FIGURE 1 HERE 97 

 98 

Figure 1. Target earthquakes in the five years CSEP experiments in Italy. Yellow dots 99 

are earthquakes of magnitude 3.95 ≤ 𝑀 < 4.95, red dots for 𝑀 ≥ 4.95. The inset 100 

shows a zoom for the 2012 Emilia seismic sequence. 101 

The target earthquakes that occurred during the testing period are shown in Figure 1, and in 102 

Table S1 in the electronic supplement. During the five years of the experiments, 97 target 103 

earthquakes (83 earthquakes with magnitude in the range 3.95 ≤ M < 4.95, and 14 with 104 

magnitude M ≥ 4.95) were recorded, including a significant sequence in the Emilia region in 105 

2012, which caused 27 fatalities and severe disruption to one of the most economically 106 

productive areas in Italy. The CSEP Italy experiment participants decided against declustering 107 

target earthquakes (Schorlemmer et al., 2010a).  108 
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Model evaluation 109 

The CSEP testing methods are continuously evolving and strengthening. Changes to the suite 110 

of tests do not impair the validity of the CSEP experiments that are rooted in the principles of 111 

transparency and reproducibility. Whenever a new test becomes available, the experiment can 112 

be re-run at any time without weakening the principle of the independence between the data 113 

used for testing and the forecasts of the models because the models were submitted before the 114 

start of the testing period. Certainly, some modelers might balk at having unanticipated 115 

metrics applied to their forecasts; analogously, basketball player Wilt Chamberlain, well-116 

known for chasing individual stats rather than wins, would have played basketball differently 117 

if he had foreseen the advanced metrics used in today’s NBA. But CSEP introduces metrics to 118 

provide new insights into model strengths and weaknesses, and not for the purpose of 119 

penalizing models.  120 

 121 

The suite of tests used by CSEP are described in detail in Schorlemmer et al. (2007), Zechar et 122 

al. (2010b), Rhoades et al. (2011), and Zechar and Zhuang (2014); below, we summarize the 123 

main features of the tests. The consistency tests assess if (i) the observed number of 124 

earthquakes (N-test), (ii) their spatial distribution (S-test), and (iii) their magnitude distribution 125 

(M-test), are consistent with a forecast. If the P-value of a test is below a preselected 126 

threshold, the model "fails" to describe satisfactorily the observed data. We interpret such 127 

occurrences as a potentially meaningful discrepancy between a forecast and observations.  128 

 129 

The N-test evaluates if the sum of predicted earthquakes in all time-space-magnitude bins 130 

(Nfore) is consistent with the number of target earthquakes observed (Nobs) over the entire 131 

testing region, over any set of forecasting time windows (one forecasting time window for the 132 

5-year experiment; the sum of all time windows for the cumulative N-test of the 1-day 133 

experiment), and of any magnitude above the threshold used to define the target earthquakes. 134 

The (two-tailed) P-value of the test is calculated assuming that the target earthquakes follow 135 

the Poisson distribution with average Nfore and a two-tailed hypothesis test is appropriate.  136 

 137 

The S-test evaluates the consistency of the spatial occurrence of target earthquakes regardless 138 

of their magnitudes with a model’s normalized spatial forecast, isolating the spatial 139 

component of the forecast. After normalizing the forecast with the total number of observed 140 

target earthquakes, the S-test is summarized by a quantile score, 𝜁, which is also the P-value 141 

of the test. This quantile score is the fraction of simulated synthetic catalogs of target 142 

earthquakes with spatial log-likelihoods smaller than the observed spatial log-likelhood 143 

calculated with the observed target earthquakes; a small P-value means the model is fitting the 144 
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data less well than expected if the model were generating the data. The M-test checks if the 145 

observed magnitude distribution is consistent with the magnitude distribution forecast by the 146 

model. This test is analogous to the S-test, but it isolates the magnitude distribution of target 147 

earthquakes and normalizes it to the observed number, hereby neglecting the spatial 148 

distribution. Here we show the results of the cumulative tests, while the plot of the 149 

incremental N- and S-tests are reported in Figure S1 in the electronic supplement. 150 

 151 

All of these tests are based on the Poisson assumption that earthquakes occur in time and 152 

space independently from previous earthquakes, a distribution characterized only by one 153 

parameter that is the forecast of the model in each space-time-magnitude bin. This assumption 154 

has been largely discussed in the literature (e.g. Werner and Sornette, 2008; Lombardi and 155 

Marzocchi, 2010c): it only roughly approximates the earthquake occurrence distribution, in 156 

particular for earthquakes with a small-to-moderate minimum magnitude. In general, the 157 

number of target earthquakes is expected to follow overdispersed distributions (e.g. Kagan, 158 

2017; Lombardi and Marzocchi, 2010c). For testing purposes, the Poisson assumption makes 159 

the tests more severe, i.e., it may lead to ‘rejecting’ models that would capture the 160 

overdispersed distributions, like most ETAS models (Lombardi and Marzocchi, 2010c). We 161 

account for this effect by using a significance level of 0.01, instead of the customary 0.05 162 

originally adopted by CSEP, and we show the P-value of the test, which is a graded measure 163 

of the strength of evidence against the null Poisson hypothesis (Amrhein et al., 2017). 164 

To evaluate the skill of the forecasts, we use three metrics: i) the log-likelihood per event 165 

(LLe); ii) the information gain (IG), which is the difference of the log-likelihood of a model 166 

and the log-likelihood of a reference model for Italy; and iii) the parimutuel gambling score 167 

(PGS), which compares the model and the reference Italian model in a gambling and betting 168 

framework. The larger the IG or PGS, the more skilled the model with respect to the reference 169 

model. Importantly, LLe, IG and PGS are proper scores (Gneiting and Raftery, 2007), 170 

meaning that they tend to maximize if the model is the data-generator (“true”). The use of 171 

different metrics like IG and PGS is justified by the fact that they are highlighting different 172 

aspects of the model performance. For example, PGS assumes that each model can win or 173 

loose almost the same amount with respect to the reference model. On the contrary, IG is 174 

based on log-likelihood which is heavily asymmetrical, because it has an upper bound (zero), 175 

but it does not have a lower bound (see Taroni et al., 2014, for more details). In practice, IG 176 

tends to reward models that never fail, while PGS tends to reward models that perform better 177 

on average than the reference model. 178 
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A common reference model for all testing classes allows us to compare how much better (or 179 

worse) any model (short-term or long-term) is with respect to the reference. For this 180 

experiment, we define the seismicity rate model of the national seismic hazard model, 181 

corrected for clustering (MPS04_AFTER), as reference model. This model has been submitted 182 

to the 5-year testing class with target earthquakes M4.95+. To extend this model as reference 183 

for IG and PGS in all other testing classes which consider target earthquakes M3.95+, we 184 

multiply the seismicity rate of MPS04_AFTER in each bin by ten (i.e. assuming a global b-185 

value equal to 1) and scale the rate to the length of the forecast horizon. We deem this 186 

approximation reasonable; in fact, MPS04_AFTER is based on a seismotectonic zonation with 187 

seismicity rates distributed according to truncated Gutenberg-Richter distributions, and the 188 

tests are focused on the average behavior of the model (so an average Gutenberg-Richter law 189 

is expected to hold), not on the behavior in each specific region. Conversely, this 190 

approximation precludes the possibility to consider the magnitude bins, so the log-likelihood 191 

accounts only for the spatial and temporal domains. (This choice is not critical in this 192 

experiment because 24 of 26 models pass the M-test.) Technically, the log-likelihood for the 193 

IG is calculated summing up all magnitude bins, and it is not the same log-likelihood used to 194 

calculate LLe; hence, they carry different information. 195 

Results for the 1-day models  196 

In the five years of the 1-day model experiment, 97 target earthquakes (M3.95+) were 197 

recorded. The forecasts are updated at 00:00 UTC of each day from August 1, 2009 (resulting 198 

in 1,826 1-day forecasts). In Table 2 we show the results of this experiment.     199 

Table 2. Cumulative results (P-value and rank) of the 1-day experiment. A white model 200 

cell indicates that all tests are passed (all P-values ≥ 0.01), light gray that two tests out 201 

of three have P-values ≥ 0.01, and dark gray otherwise. P-values in bold show values 202 

below 0.01. 203 

Model N-test  

(Nfore / Nobs) 

S-test M-test LLe 

(rank) 

IG  

(rank) 

PGS 

(rank) 

ETAS_LM 0.22 (1.14) 0.17 0.50 - 12.18 (1) 290.03 (1) 33.95 (1) 

STEP_NG 0.14 (0.86) 0.001 0.58 - 14.07 (2) 106.70 (2) 26.19 (2) 

STEP_LG 0.03 (1.24) <0.001 0.60 - 14.08 (3) 105.73 (3) 11.64 (3) 

ETES 0 (342) <0.001 0.81 - 348.03 (4) - 32291.30 (4) -14579.10 (4) 

 204 
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The ETAS_LM model passes all tests and leads in ranking according to all scoring metrics. 205 

The difference between the predicted and observed number of target earthquakes is +14% for 206 

ETAS_LM, -14% for STEP_NG and +24% for STEP_LG. The ETES model shows a significant 207 

overprediction. The spatial distribution is well captured only by the ETAS_LM model, while 208 

all other models fail the S-test. All models pass the M-test.  209 

The reason for the overprediction of the ETES model was recognized as a bug in the software 210 

code submitted to the testing center. Subsequently, the code was corrected during the Emilia 211 

sequence, but the rules of the CSEP experiments do not allow us to consider this new version 212 

for the present tests. Incidentally, the new ETES model codes seems to be performing well: 213 

this is supported by prospective applications during the two most recent major seismic 214 

sequences in Italy, the Emilia sequence in 2012 (Marzocchi et al., 2012c), and the Amatrice-215 

Norcia sequence in 2016-2017 (Marzocchi et al., 2017).   216 

 217 

FIGURE 2 HERE 218 

 219 

Figure 2. Upper panel: cumulative IG for the 1-day models and ensemble models 220 

shown in the legend. Lower panel: the daily number of target earthquakes. 221 

In Figure 2 we show the trend of IG as a function of time for the 1-day models and for BMA, 222 

SMA and gSMA ensemble models. We do not consider the ETES model because its log-223 

likelihood immediately goes out of scale. The figure shows that the ETAS_LM model 224 

outperforms the other models after few months. As expected, the biggest increase in IG for all 225 

models is in proximity of the beginning of the 2012 seismic sequence, because the (time-226 

independent) reference model cannot track the marked space-time evolution of the sequence. 227 

The performance of the ETAS_LM model is particularly better at the time of the Emilia 228 

sequence as shown by the larger increase in the cumulative IG. The STEP_NG and STEP_LG 229 

models perform similarly in terms of IG, but the STEP_NG model is more consistent and has 230 

greater skill measured by PGS, in agreement to what was found in the retrospective analysis 231 

(Woessner et al., 2010). Finally, we notice that the model ranking with time is stable, and that 232 

all models outperform the reference time-independent model MPS04_AFTER.   233 

 234 

FIGURE 3 HERE 235 

 236 

Figure 3. The left panels show the daily number of earthquakes of the STEP_NG model 237 

in the time bins with at least one target earthquake (63 days). Red bars denote S-test 238 
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failures and green bars denote S-test passes. The right panel shows the histogram of 239 

simulated spatial loglikelihood scores of the STEP_NG model, and the vertical red bar 240 

is the observed spatial log-likelihood; the vertical dashed line is the value of the 241 

spatial log-likelihood associated with the significance level of the test (0.01).     242 

The STEP_NG model does not describe the spatial distribution of earthquakes well because its 243 

spatial aftershock distribution decays too quickly. In Figure 3, we show the S-test results for 244 

the STEP_NG model on days with at least one earthquake. The STEP_NG model fails the S-245 

test on particularly active days; the same holds also for the STEP_LG model. The reason can 246 

be seen in Figure 4, which shows the 1-day forecast for May 29, 2012, when the second large 247 

peak of the Emilia sequence occurred. The figure shows that the forecast in the aftershock 248 

zone of both STEP models decays much faster than the forecast of the ETAS_LM model. The 249 

STEP models’ spatial clustering zone is too small with respect to the observed triggering.  250 

 251 

FIGURE 4 HERE 252 

 253 

Figure 4. 1-day forecasts for May 29, 2012. The left, central and right panels show the 254 

ETAS_LM, the STEP_NG, and the STEP_LG forecasts, respectively. The black points are 255 

the target earthquakes. The color palette on the right of the map shows the logarithm in 256 

base 10 of the expected number of target earthquake per each spatial cell. The lower 257 

panels are close-up versions of the corresponding upper panels. 258 
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Finally, for this testing class we also assess the performance of the BMA, SMA and gSMA 259 

ensemble models. In Figure 2 we show the evolution of the IG for all 1-day models and the 260 

different ensembles. We do not consider the ETES model, because the consistency tests have 261 

shown a bug in the code. Two ensemble models perform about as well as the best individual 262 

model (ETAS_LM), while the SMA ensemble has a slightly lower IG than the best individual 263 

model. This is due to the fact that BMA and gSMA, more than SMA, tend to have superior 264 

forecasting performances when one of the models outperform significantly all the others as in 265 

the present case (Marzocchi et al., 2012a); this is because BMA and gSMA weight the best 266 

performing model more strongly, as it can be seen in Figure 5. Moreover, all ensemble models 267 

pass the N- and S-tests. This result confirms the importance of ensemble modeling for 268 

practical purposes; in fact, we cannot know at the beginning of an experiment which model 269 

will be the best one, but increasing evidence from the scientific literature suggests that the 270 

ensemble model will perform about as well as the best individual model, and in some cases 271 

even better (e.g., Taroni et al., 2014). 272 

 273 

FIGURE 5 HERE 274 

 275 

Figure 5. Weight of each model as a function of time in the different ensembles. The 276 

BMA and gSMA ensembles give much greater weight to the best performing model 277 

(ETAS_LM) than the SMA ensemble. 278 

Results for the 3-month models  279 

This testing class considers the same target earthquakes of the 1-day class (93 M3.95+ 280 

earthquakes in the five years of the experiment). The models have been updated every three 281 

months, on 1 Jan., 1 Apr., 1 Jul., and 1 Oct. 282 

Table 3. As for Table 2, but for the 3-months experiment in Italy. 283 

Model 
N-test 

  (Nfore / Nobs) 
S-test M-test 

LLe 

(rank) 

IG  

(rank) 

PGS 

(rank) 

TripleS_CSI 0.01 (0.77) <0.001 0.51 - 10.91 (3) - 12.61 (3) 14.55 (3) 

RI_L 0.0002 (0.67) <0.001 0.005 - 10.77 (1) 4.85 (1)  17.46 (2) 

RI_S 0.0002 (0.67) <0.001 0.005 - 10.89 (2) - 6.79 (2)  19.40 (1) 

 284 
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From Table 3 we can see that the RI_L and RI_S 3-month models fail all consistency tests, 285 

while TripleS_CSI fails only the S-test.  The RI_L and RI_S models fail the M-test because 286 

they assume a b-value (1.2) for the Gutenberg-Richter distribution that is much higher than the 287 

b-value (0.97) of the observed earthquakes. The ranking is almost stable across the different 288 

metrics. The poor forecasting performance of all models can be explained by the fact that all 289 

models are (quasi) time-independent (Table 1), so they are not particularly suitable to track the 290 

evolution of seismic sequences. Only TripleS_CSI may partially do this, because, even though 291 

the model is time-independent, it re-estimated the parameters before each forecast, introducing 292 

an implicit capability to cope with time-dependency. However, this experiment is particularly 293 

challenging for forecasting, because the major seismic sequence occurred in late May and 294 

June of 2012, i.e., at the end of one forecasting time window, in a region of small long-term 295 

seismicity rate.  296 

Results for the 5-years models 297 

During the testing period, 14 M4.95+ target earthquakes occurred. Most of them (10 of 14) are 298 

related to the Emilia earthquake in 2012, and 5 out of 14 are in the same spatial bin, so this 299 

dataset clearly does not meet the Poisson assumption, and it may affect the outcomes of tests 300 

based on the Poisson hypothesis. Moreover, the limited number of target earthquakes suggests 301 

caution in interpreting the results (Strader et al., 2017). To strengthen the robustness of the 302 

results, CSEP already planned a new analysis for a 10-year experiment on January 1, 2020; 303 

this will allow a comparison of the results obtained after 5 and 10 years, and a check of the 304 

stability of the results. 305 

That said, we now outline the most interesting features of the results that are reported in Table 306 

4. No models fail the M-test. All models underpredict the number of target earthquakes, with 307 

some of them failing the N-test. The universal underprediction by all forecasts is due to the 308 

large percentage of triggered target earthquakes (9 of 14), i.e., to the large time clustering 309 

observed. The best performing model in this aspect is the MPS04 model after it has been 310 

corrected for declustering (Faenza et al., 2010; Marzocchi and Taroni, 2014).  311 

Several models fail the S-test, i.e., target earthquakes did not occur where expected by the 312 

models. The generally poor spatial performance is due to the fact that 5 out of 14 target 313 

earthquakes occur in a single spatial bin that has a small long-term seismicity rate and this is 314 

hardly accommodated by any model under the Poisson assumption. In Table S2 of the 315 

electronic supplement we show that some models fail the S-test due to very poor spatial 316 

forecasts for some target earthquakes (ALM, ALM_IT, HALM and PHM_ZONE), while others 317 

fail because of average poor performance in spatial bins where no target earthquakes occurred 318 
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(e.g. PHM_GRID). The best performing models in space take into account faults 319 

(HAZFX_BPT), and the historical seismicity (TRIPLES_CPTI); in particular, the T/W test 320 

(Rhoades et al., 2011) –which allows us to test the statistical significance of the IG difference 321 

of two models under the null hypothesis of models equally informative– shows that 322 

HAZFX_BPT outperforms all other models. Conversely, most models based on smoothing 323 

recent instrumental seismicity (e.g. TripleS_CSI, HRSS_m1, and HAZGRIDX) are among the 324 

worst performing. This can be explained by the fact that the large majority of target 325 

earthquakes occur in a low-seismicity area, and/or, more generally, by the fact that a short 326 

instrumental catalog cannot provide a good description of the spatial variability of the 327 

seismicity (Werner et al., 2010).  328 

Models using the variability of the b-value do not perform well (consistently with the 329 

retrospective tests carried out by Werner et al., 2010), even though the discrepancy in their 330 

PGS and IG scores seem to suggest that the HALM model does a good job in forecasting most 331 

target earthquakes, but fails severely in forecasting a few of them (see Table S1 in the 332 

electronic supplement).  333 

The models that inform the national seismic hazard model (MPS04 and MPS04_AFTER) 334 

perform well with respect to the other models (most of the models have negative IG and PGS 335 

with respect to MPS04_AFTER. In Table S1 (electronic supplement) we show that the poor 336 

spatial performance (S-test) of these two models is likely due to a poor performance of these 337 

models in spatial cells where no target earthquake occurred (i.e., given the number of 338 

earthquakes, the models would have placed greater likelihood in cells other than those in 339 

which earthquakes occurred). 340 

Finally, if we compare the log-likelihood per event (LLe) with the same quantity obtained for 341 

the CSEP experiment in California (Zechar et al., 2013; Strader et al., 2017), we notice that 342 

the average predictive skill of Italian models is worse in this first 5-year experiment; in fact, 343 

while in Table 4, the LLe ranges mostly from -9 and  -10, the same quantity is smaller in 344 

California ranging mostly from -7 and -9 (Tables 2 and 3 in Zechar et al., 2013), and even 345 

better in a more recent experiment (Strader et al., 2017). We conjecture this worse 346 

performance of the Italian experiment might be due to the marked clustering of target 347 

earthquakes in low-seismicity area. Moreover, whereas in California, the adaptive smoothing 348 

model by Helmstetter et al. (2007), calibrated on recent high quality locations of small to 349 

moderate events, performed better than other methods, here we observe a different trend: both 350 

the fixed-radius and adaptive smoothing methods (TripleS_CSI, HRSS_m1, respectively) 351 

calibrated to the modern era of the Italian network (mid 80s to mid/late 2000s) performed near 352 

the bottom of the group.  353 
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Table 4. Results (P-values) of the 5-year experiment in Italy. 354 

Model 
N-test 

(Nfore / Nobs) 
S-test M-test 

LLe 

(rank) 

IG 

(rank) 

PGS 

(rank) 

HAZFX_BPT 0.02 (0.54) 0.20 0.61 - 8.24 (1) 10.78 (1) 4.48 (1) 

MPS04_AFTER 0.51 (0.88) 0.001 0.66 - 9.07 (2) 0 (4) 0 (4) 

TripleS_CPTI 0.04 (0.58) 0.36 0.62 - 9.09 (3) - 0.84 (6) - 0.14 (6) 

MPS04 0.16 (0.71) 0.004 0.66 - 9.11 (4) - 0.7 (5) - 0.28 (7) 

HRSS_m2 0.06 (0.61) 0.06 0.62 - 9.12 (5) - 1.12 (7) - 0.42 (9) 

DBM 0.11 (0.67) 0.01 0.62 - 9.23 (6) - 2.80 (8) - 1.12 (12) 

RI 0.0004 (0.35) 0.02 0.58 - 9.34 (7) - 4.9 (10) - 0.56 (10) 

TripleS_Hyb 0.03 (0.56) 0.04 0.65 - 9.36 (8) - 4.48 (9) - 1.12 (13) 

HZA_TI 0.09 (0.65) 0.10 0.73 - 9.42 (9) 0.42 (2) 0.056 (3) 

HZA_TD 0.09 (0.65) 0.06 0.68 - 9.56 (12) 0.056 (3) - 0.056 (5) 

LTST 0.06 (0.62) <0.001 0.60 - 9.66 (13) - 8.68 (13) - 1.96 (17) 

HALM 0.05 (0.60) <0.001 0.72 - 12.05 (17) - 40.74 (17) 1.82 (2) 

ALM 0.04 (0.58) <0.001 0.72 - 12.96 (18) - 54.18 (18) - 3.92 (8) 

ALM_IT 0.06 (0.62) <0.001 0.56 - 20.70 (19) - 164.5 (19) - 3.08 (19) 

PHM_GRID 0.006 (0.46) 0.002 0.60 - 9.45 (10) - 0.41 (11) - 0.06 (11) 

HAZGRIDX 0.004 (0.44) <0.001 0.63 - 9.52 (11) - 0.50 (12) - 0.10 (14) 

HRSS_m1 0.004 (0.44) <0.001 0.62 - 9.71 (14) - 0.68 (14) - 0.11 (15) 

TripleS_CSI 0.002 (0.42) 0.002 0.63 - 9.78 (15) - 0.75 (15) - 0.12 (16) 

PHM_ZONE 0.004 (0.44) <0.001 0.63 - 10.29 (16) - 1.26 (16) - 0.15 (18) 

 355 

Discussion and conclusions   356 

We provided the results of the first CSEP experiments in Italy. The limited number of target 357 

earthquakes warrants caution in drawing firm conclusions from the 5-year experiment, but the 358 

results reported in this paper nonetheless provide some indications worth considering.    359 
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 The ranking of the 1-day models is stable in time (Figure 2), suggesting that testing 360 

1,826 1-day forecasts provides useful information about the consistency and skill of 361 

the models. 362 

 The 1-day models (other than ETES) are consistent with the number and magnitudes 363 

of the target earthquakes; ETAS_LM is also spatially consistent, while STEP models 364 

predict a triggering region that is too small to adequately model the 2012 Emilia 365 

sequence. The IG shows that 1-day models outperform the time-independent reference 366 

model even in times of low seismic activity (see the trend in Figure 2). These results 367 

are consistent with results of the prospective tests carried out during other seismic 368 

sequences in Italy (Marzocchi and Lombardi, 2009; Marzocchi et al., 2012c; 2017), 369 

and it vindicates the scientific robustness of these models for potential uses in an 370 

operational earthquake forecasting perspective (Jordan et al., 2011; Marzocchi et al., 371 

2014). 372 

 Ensemble models perform well in the 1-day testing class; they pass the consistency N- 373 

and S-tests and show IG comparable to the best performing model (ETAS_LM). 374 

 The 3-month models do not pass most of the consistency tests, showing that they were 375 

unable to track the space-time evolution of the seismicity.   376 

 Even though the clustering of large earthquakes can last for a few years, the best 377 

performing models in the 5-year testing class are time-independent. As shown also by 378 

Taroni et al. (2014) in testing 1-year models at global scale, time-dependent models 379 

may offer advantages only if the forecasts can be updated after significant earthquakes 380 

and/or sequences occur. This is not (currently) accommodated in CSEP experiments, 381 

so this testing framework is more suited to assessing the spatial skill of the forecasting 382 

models rather than the time dependence.  383 

 The 5-year experiment has only 14 target earthquakes, and they are strongly clustered. 384 

This is a very challenging feature for any forecasting model. The results show that 385 

models only based on instrumental seismicity fail to describe the spatial distribution 386 

of target earthquakes, while the inclusion of historical seismicity and the fault 387 

distribution improves the spatial forecasting significantly. Moreover, models based on 388 

the spatial variability of the b-value perform poorly in forecasting some target 389 

earthquakes, but at least one such model (HALM) forecasts the spatial distribution of 390 

the other target earthquakes well.  391 

Data and resources    392 

Data and models are available in the CSEP European testing center at ETH in Zurich.  393 
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Table S1 contains the list of the target earthquakes of the experiments. In Figure S1 we show 

the incremental N- and S-test results of the 1-day experiment (in the manuscript we show only 

the cumulative results); the aim is to show when models start failing the tests. In Table S2 we 

show the log-likelihood of each model in the spatial bins where target earthquakes occurred; 

the goal is to show which model (if any) misses the spatial occurrence of one or more target 

earthquakes.  

 

 

Table S1. Target earthquakes for the Italian experiment since 2009. In bold the target 

earthquakes for the 5-year experiment.  

 

Figure S1. The P-value of the incremental N- and S-tests for each 1-day model as a function 

of the day since August 1, 2009. ETES has been excluded for the reasons reported in the 

manuscript. The horizontal dashed line is the 0.01 significance level. From the figure we can 

see that STEP_NG and STEP_LG failed both tests at the time of the Emilia sequence (around 

day 1000). Afterwards the N-test recovers while the S-test does not (see Table 2 in the 

manuscript).  

 

Table S2. The log-likelihood of each 5-year model in the spatial bin where target earthquakes 

occurred. The number of target earthquakes that occurred in each spatial bin are reported in 

the first row. From the table we can notice that some models (ALM_IT, ALM; HALM; and 

PHM_zone) failed the S-test because they score very low log-likelihood (grey cells) in at least 

one spatial bin where target earthquakes occurred. Conversely, the other models that failed 

the S-test (see Table 4 in the paper) performed poorly in the spatial bins without target 

earthquakes. This can be noted, for example, by comparing the HZA_TD and PHM_grid 

models. The first model passes the consistency tests while the second one does not; however, 
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they have similar log-likelihoods in the spatial bins where target earthquakes occurred. 

Finally, we notice that MPS04 and MPS04_after models – which inform the seismicity rate 

model of the national seismic hazard model – do not perform well for the first and the second-

to-last target earthquakes, but the poor performance in the S-test is likely due to a poor 

performance on the spatial cells where no target earthquakes occurred.   



Long Lat Year Month Day Hour Minute Second Magnitude Depth 

13.67 41.65 2009 8 6 15 36 44.44 4.2 15.7 

14.04 38.73 2009 9 7 21 26 29.69 4.5 25.5 

11.28 44.02 2009 9 14 20 4 31.3 4.3 7 

13.35 42.45 2009 9 24 16 14 57.56 4.1 16.3 

9.772 44.81 2009 10 19 10 8 49.64 4.0 23.6 

14.56 37.85 2009 11 8 6 51 16.41 4.4 7.6 

12.27 43.01 2009 12 15 13 11 58.98 4.3 8.8 

14.95 37.77 2009 12 19 5 36 28.79 4.3 24.7 

14.97 37.78 2009 12 19 9 1 16.46 4.4 26.9 

13.45 43.12 2010 1 10 8 33 35.64 4.0 16.9 

13.45 43.12 2010 1 12 8 25 11.32 4.1 17.1 

13.43 43.13 2010 1 12 13 35 45.29 4.2 18.1 

15.15 37.8 2010 4 2 20 4 45.1 4.0 3.4 

14.92 38.41 2010 8 16 12 54 47.5 4.2 16.9 

12.65 42.83 2010 8 28 7 8 3.25 4.1 6.7 

14.26 45.57 2010 9 15 2 23 13.75 4.0 10 

15.62 41.47 2010 9 17 12 20 17.75 4.5 6 

12.38 44.2 2010 10 13 22 43 14.74 4.2 26.5 

14.9 35.83 2011 4 24 13 2 12.3 4.3 9.7 

14.96 37.79 2011 5 6 15 12 35.5 4.2 28.1 

14.78 38.06 2011 6 23 22 2 46.71 4.4 7.3 

11.86 43.93 2011 7 12 6 53 22.47 4.0 7.6 

11.86 43.93 2011 7 12 7 15 8.33 4.0 8.2 

11.37 45.01 2011 7 17 18 30 27.31 4.8 2.4 

7.365 45.02 2011 7 25 12 31 20.46 4.3 11 

9.393 44.52 2011 10 20 6 11 18.86 4.0 5.1 

14.67 38.27 2011 11 15 4 59 0.36 4.2 8.4 

10.51 44.87 2012 1 25 8 6 37.9 5.0 29 
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6.759 44.5 2012 2 26 22 37 55.92 4.3 10.4 

9.354 44.49 2012 3 5 15 15 6.99 4.2 10.8 

13.3 38.34 2012 4 13 6 21 32.63 4.1 9.2 

11.25 44.91 2012 5 19 23 13 25.62 4.1 9.3 

11.26 44.9 2012 5 20 2 3 50.17 5.9 9.5 

11.12 44.88 2012 5 20 2 6 12.5 4.8 5 

11.16 44.91 2012 5 20 2 6 26.47 4.8 4.3 

11.27 44.87 2012 5 20 2 7 28.95 5.0 6.1 

11.34 44.83 2012 5 20 2 9 48.35 4.3 4.9 

11.34 44.86 2012 5 20 2 11 45.55 4.3 10.9 

11.22 44.87 2012 5 20 2 12 40.47 4.3 6.7 

10.95 44.85 2012 5 20 2 20 56.52 4.2 5 

11.12 44.89 2012 5 20 2 21 50.49 4.1 4.9 

11.48 44.83 2012 5 20 2 35 32.44 4.0 25.9 

11.23 44.88 2012 5 20 2 39 7.41 4.0 6.6 

11.15 44.86 2012 5 20 3 2 47.9 5.0 9.1 

11.24 44.87 2012 5 20 9 13 18.49 4.2 7.2 

11.44 44.81 2012 5 20 13 18 1.77 5.1 3.4 

11.35 44.83 2012 5 20 13 21 5.31 4.1 8.3 

11.31 44.87 2012 5 20 17 37 14.14 4.6 5.4 

11.25 44.88 2012 5 20 17 38 14.38 4.6 3.7 

11.31 44.87 2012 5 21 16 37 31.36 4.1 3.6 

16.1 39.87 2012 5 28 1 6 26.83 4.3 8.3 

11.07 44.84 2012 5 29 7 0 2.88 5.8 8.1 

10.99 44.85 2012 5 29 7 7 20.91 4.0 3.5 

10.95 44.87 2012 5 29 8 25 51.48 5.0 7.9 

11.04 44.88 2012 5 29 8 27 22.65 4.6 6 

10.97 44.87 2012 5 29 8 40 57.44 4.2 4.1 

10.95 44.88 2012 5 29 8 41 42.33 4.1 6.5 



11 44.88 2012 5 29 9 29 37.9 4.1 6.4 

11.1 44.86 2012 5 29 10 3 25.76 4.0 2.5 

10.98 44.87 2012 5 29 10 55 56.55 5.3 4.4 

10.94 44.86 2012 5 29 11 0 1.68 5.0 8.7 

10.98 44.87 2012 5 29 11 0 22.99 5.1 7.2 

11.03 44.89 2012 5 29 11 7 4.63 4.0 8 

10.95 44.89 2012 6 3 19 20 43.39 5.1 8.7 

12.49 46.18 2012 6 9 2 4 56.6 4.4 6.9 

10.92 44.89 2012 6 12 1 48 36.14 4.9 8.3 

16.25 41.73 2012 8 12 1 21 36.8 4.2 29.1 

13.73 38.53 2012 8 13 7 30 51.89 4.0 26.8 

14.92 41.18 2012 9 27 1 8 22.65 4.2 10.3 

9.67 44.78 2012 10 3 14 41 29.36 4.5 23.8 

16.02 39.88 2012 10 25 23 5 24.73 5.0 9.7 

14.96 37.8 2012 11 22 9 10 41.53 4.0 24.4 

14.96 37.8 2012 11 22 11 25 51.67 4.1 27.3 

14.79 46.19 2012 12 3 4 36 0.66 4.1 7.3 

13.66 42.91 2012 12 5 1 18 20.29 4.0 17.5 

14.72 37.88 2013 1 4 7 50 6.8 4.3 15.1 

10.45 44.16 2013 1 25 14 48 18.27 4.8 19.8 

14.63 46.46 2013 2 2 13 35 34.28 4.4 10 

13.57 41.71 2013 2 16 21 16 9.29 4.7 17.1 

14.83 45.78 2013 6 16 20 5 0 4.2 10 

10.06 44.09 2013 6 21 10 33 56.7 5.3 5.7 

10.14 44.16 2013 6 21 12 12 39.66 4.0 8.1 

10.2 44.17 2013 6 23 15 1 33.86 4.4 9.2 

10.19 44.16 2013 6 30 14 40 8.48 4.4 6.1 

13.72 43.51 2013 7 21 1 32 24.24 4.9 7.9 

13.72 43.5 2013 7 21 3 7 24.44 4.0 8.6 



14.91 38.16 2013 8 15 23 4 58.47 4.2 25.6 

14.91 38.16 2013 8 15 23 6 51.2 4.2 24.8 

13.72 43.54 2013 8 22 6 44 51.58 4.4 8.9 

15.08 36.71 2013 8 24 17 18 18.77 4.0 8.7 

15.03 36.67 2013 12 15 3 57 34.1 4.1 10.5 

12.52 43.38 2013 12 22 10 6 35.69 4.0 8.6 

14.43 41.4 2013 12 29 17 8 43.23 5.0 20.4 

14.45 41.37 2014 1 20 7 12 40.1 4.3 17.2 

14.9 45.67 2014 3 13 17 31 59.48 4.3 8.3 

6.707 44.5 2014 4 7 19 26 59.79 4.7 11.1 

14.25 45.62 2014 4 22 8 58 27.42 4.7 10 

 



 

 

Model Name 

#1 

2012/ 

1/25 

Ml 5.0 

#2 

2012/ 

5/20; 

Ml 5.9  

Ml 5.0 

#1 

2012/ 

5/20; 

Ml 5.0 

#1 

2012/ 

5/20; 

Ml 5.1 

#1 

2012/ 

5/29; 

Ml 5.8 

#5 

4 2012/5/29; 

1 2012/6/30; 

  Ml 5.3 

2 Ml 5.1 

2 Ml 5.0 

#1 

2012/ 

10/25; 

Ml 5.0 

#1 

2013/ 

6/21; 

Ml 5.3 

#1 

2013/ 

12/29; 

Ml 5.0 

HAZGRIDX -9.6 -24 -11.6 -12.8 -13.6 -51.5 -11 -12.2 -10.8 

HAZFX_BPT -10.2 -21.5 -10.1 -12.2 -12 -45.1 -9.9 -10.8 -8.9 

HZA_TD -10.8 -24.1 -11.8 -11.9 -13.7 -51.3 -13.6 -12.2 -10.9 

HZA_TI -10.7 -23.9 -11.6 -11.7 -13.7 -50.5 -13.3 -12.1 -10.7 

LTST -9.9 -25.7 -12.6 -10.1 -14.7 -53 -11.3 -12.7 -11.4 

PHM_grid -11.4 -23.9 -11.6 -11.5 -13.3 -51.6 -10.6 -11.9 -10.7 

PHM_zone -16.9 -25.3 -12.3 -13.6 -14.1 -55.9 -10.1 -10.5 -9.2 

ALM -11 -22.5 -10.6 -12.3 -14.1 -102.8 -12.5 -10.7 -10.6 

HALM -11.1 -20.6 -9.8 -11.5 -13.1 -95.1 -12.5 -10.7 -10.4 

DBM -10.7 -23.7 -11.5 -11.9 -13.3 -50.9 -11.3 -11.3 -11.2 

MPS04 -13.8 -22.9 -10.9 -11.2 -13 -49.3 -10.4 -12.4 -10.4 

MPS04_after -13.8 -22.9 -10.9 -11.2 -13 -49.3 -10.4 -12.4 -10.4 

RI -10.4 -24.2 -11 -12.6 -13 -48.3 -11 -11.5 -10.6 

ALM_IT -37.6 -26.4 -11.2 -12.9 -13.8 -182.8 -9.4 -12.3 -9.6 

HRSS_m1 -10.9 -23.7 -11.5 -12.3 -13.6 -53.3 -11 -12.2 -11.4 

HRSS_m2 -10.9 -23.2 -11.2 -11.6 -13 -49.7 -11.7 -11.4 -11 

TripleS_CPTI -11.1 -22.8 -11.1 -11.3 -12.9 -49.8 -11.2 -12 -10.8 

TripleS_CSI -11.8 -23.9 -11.7 -11.8 -13.5 -52.9 -11 -12.6 -11.2 

TripleS_Hyb -11.4 -23.3 -11.3 -11.5 -13.2 -51.2 -11.1 -12.3 -11.1 
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Long Lat Year Month Day Hour Minute Second Magnitude Depth 
13.67 41.65 2009 8 6 15 36 44.44 4.2 15.7 

14.04 38.73 2009 9 7 21 26 29.69 4.5 25.5 

11.28 44.02 2009 9 14 20 4 31.3 4.3 7 

13.35 42.45 2009 9 24 16 14 57.56 4.1 16.3 

9.772 44.81 2009 10 19 10 8 49.64 4.0 23.6 

14.56 37.85 2009 11 8 6 51 16.41 4.4 7.6 

12.27 43.01 2009 12 15 13 11 58.98 4.3 8.8 

14.95 37.77 2009 12 19 5 36 28.79 4.3 24.7 

14.97 37.78 2009 12 19 9 1 16.46 4.4 26.9 

13.45 43.12 2010 1 10 8 33 35.64 4.0 16.9 

13.45 43.12 2010 1 12 8 25 11.32 4.1 17.1 

13.43 43.13 2010 1 12 13 35 45.29 4.2 18.1 

15.15 37.8 2010 4 2 20 4 45.1 4.0 3.4 

14.92 38.41 2010 8 16 12 54 47.5 4.2 16.9 

12.65 42.83 2010 8 28 7 8 3.25 4.1 6.7 

14.26 45.57 2010 9 15 2 23 13.75 4.0 10 

15.62 41.47 2010 9 17 12 20 17.75 4.5 6 

12.38 44.2 2010 10 13 22 43 14.74 4.2 26.5 

14.9 35.83 2011 4 24 13 2 12.3 4.3 9.7 

14.96 37.79 2011 5 6 15 12 35.5 4.2 28.1 

14.78 38.06 2011 6 23 22 2 46.71 4.4 7.3 

11.86 43.93 2011 7 12 6 53 22.47 4.0 7.6 

11.86 43.93 2011 7 12 7 15 8.33 4.0 8.2 

11.37 45.01 2011 7 17 18 30 27.31 4.8 2.4 

7.365 45.02 2011 7 25 12 31 20.46 4.3 11 

9.393 44.52 2011 10 20 6 11 18.86 4.0 5.1 

14.67 38.27 2011 11 15 4 59 0.36 4.2 8.4 

10.51 44.87 2012 1 25 8 6 37.9 5.0 29 

6.759 44.5 2012 2 26 22 37 55.92 4.3 10.4 

9.354 44.49 2012 3 5 15 15 6.99 4.2 10.8 

13.3 38.34 2012 4 13 6 21 32.63 4.1 9.2 

11.25 44.91 2012 5 19 23 13 25.62 4.1 9.3 

11.26 44.9 2012 5 20 2 3 50.17 5.9 9.5 

11.12 44.88 2012 5 20 2 6 12.5 4.8 5 

11.16 44.91 2012 5 20 2 6 26.47 4.8 4.3 

11.27 44.87 2012 5 20 2 7 28.95 5.0 6.1 

11.34 44.83 2012 5 20 2 9 48.35 4.3 4.9 

11.34 44.86 2012 5 20 2 11 45.55 4.3 10.9 

11.22 44.87 2012 5 20 2 12 40.47 4.3 6.7 

10.95 44.85 2012 5 20 2 20 56.52 4.2 5 

11.12 44.89 2012 5 20 2 21 50.49 4.1 4.9 

11.48 44.83 2012 5 20 2 35 32.44 4.0 25.9 

11.23 44.88 2012 5 20 2 39 7.41 4.0 6.6 

11.15 44.86 2012 5 20 3 2 47.9 5.0 9.1 

11.24 44.87 2012 5 20 9 13 18.49 4.2 7.2 

11.44 44.81 2012 5 20 13 18 1.77 5.1 3.4 

11.35 44.83 2012 5 20 13 21 5.31 4.1 8.3 

11.31 44.87 2012 5 20 17 37 14.14 4.6 5.4 

11.25 44.88 2012 5 20 17 38 14.38 4.6 3.7 

11.31 44.87 2012 5 21 16 37 31.36 4.1 3.6 

16.1 39.87 2012 5 28 1 6 26.83 4.3 8.3 



11.07 44.84 2012 5 29 7 0 2.88 5.8 8.1 

10.99 44.85 2012 5 29 7 7 20.91 4.0 3.5 

10.95 44.87 2012 5 29 8 25 51.48 5.0 7.9 

11.04 44.88 2012 5 29 8 27 22.65 4.6 6 

10.97 44.87 2012 5 29 8 40 57.44 4.2 4.1 

10.95 44.88 2012 5 29 8 41 42.33 4.1 6.5 

11 44.88 2012 5 29 9 29 37.9 4.1 6.4 

11.1 44.86 2012 5 29 10 3 25.76 4.0 2.5 

10.98 44.87 2012 5 29 10 55 56.55 5.3 4.4 

10.94 44.86 2012 5 29 11 0 1.68 5.0 8.7 

10.98 44.87 2012 5 29 11 0 22.99 5.1 7.2 

11.03 44.89 2012 5 29 11 7 4.63 4.0 8 

10.95 44.89 2012 6 3 19 20 43.39 5.1 8.7 

12.49 46.18 2012 6 9 2 4 56.6 4.4 6.9 

10.92 44.89 2012 6 12 1 48 36.14 4.9 8.3 

16.25 41.73 2012 8 12 1 21 36.8 4.2 29.1 

13.73 38.53 2012 8 13 7 30 51.89 4.0 26.8 

14.92 41.18 2012 9 27 1 8 22.65 4.2 10.3 

9.67 44.78 2012 10 3 14 41 29.36 4.5 23.8 

16.02 39.88 2012 10 25 23 5 24.73 5.0 9.7 

14.96 37.8 2012 11 22 9 10 41.53 4.0 24.4 

14.96 37.8 2012 11 22 11 25 51.67 4.1 27.3 

14.79 46.19 2012 12 3 4 36 0.66 4.1 7.3 

13.66 42.91 2012 12 5 1 18 20.29 4.0 17.5 

14.72 37.88 2013 1 4 7 50 6.8 4.3 15.1 

10.45 44.16 2013 1 25 14 48 18.27 4.8 19.8 

14.63 46.46 2013 2 2 13 35 34.28 4.4 10 

13.57 41.71 2013 2 16 21 16 9.29 4.7 17.1 

14.83 45.78 2013 6 16 20 5 0 4.2 10 

10.06 44.09 2013 6 21 10 33 56.7 5.3 5.7 

10.14 44.16 2013 6 21 12 12 39.66 4.0 8.1 

10.2 44.17 2013 6 23 15 1 33.86 4.4 9.2 

10.19 44.16 2013 6 30 14 40 8.48 4.4 6.1 

13.72 43.51 2013 7 21 1 32 24.24 4.9 7.9 

13.72 43.5 2013 7 21 3 7 24.44 4.0 8.6 

14.91 38.16 2013 8 15 23 4 58.47 4.2 25.6 

14.91 38.16 2013 8 15 23 6 51.2 4.2 24.8 

13.72 43.54 2013 8 22 6 44 51.58 4.4 8.9 

15.08 36.71 2013 8 24 17 18 18.77 4.0 8.7 

15.03 36.67 2013 12 15 3 57 34.1 4.1 10.5 

12.52 43.38 2013 12 22 10 6 35.69 4.0 8.6 

14.43 41.4 2013 12 29 17 8 43.23 5.0 20.4 

14.45 41.37 2014 1 20 7 12 40.1 4.3 17.2 

14.9 45.67 2014 3 13 17 31 59.48 4.3 8.3 

6.707 44.5 2014 4 7 19 26 59.79 4.7 11.1 

14.25 45.62 2014 4 22 8 58 27.42 4.7 10 

 

Table S1. Target earthquakes for the Italian experiment since 2009. In bold the target 

earthquakes for the 5-year experiment.   



 

Figure S1. The P-value of the incremental N- and S-tests for each 1-day model as a function 

of the day since August 1, 2009. ETES has been excluded for the reasons reported in the 

manuscript. The horizontal dashed line is the 0.01 significance level. From the figure we can 

see that STEP_NG and STEP_LG failed both tests at the time of the Emilia sequence (around 

day 1000). Afterwards the N-test recovers while the S-test does not (see Table 2 in the 

manuscript).  

  



 
 

Model Name 

#1 
2012/ 
1/25 

Ml 5.0 

#2 
2012/ 
5/20; 
Ml 5.9  
Ml 5.0 

#1 
2012/ 
5/20; 
Ml 5.0 

#1 
2012/ 
5/20; 
Ml 5.1 

#1 
2012/ 
5/29; 
Ml 5.8 

#5 
4 2012/5/29; 
1 2012/6/30; 

  Ml 5.3 
2 Ml 5.1 
2 Ml 5.0 

#1 
2012/ 
10/25; 
Ml 5.0 

#1 
2013/ 
6/21; 
Ml 5.3 

#1 
2013/ 
12/29; 
Ml 5.0 

HAZGRIDX -9.6 -24 -11.6 -12.8 -13.6 -51.5 -11 -12.2 -10.8 

HAZFX_BPT -10.2 -21.5 -10.1 -12.2 -12 -45.1 -9.9 -10.8 -8.9 

HZA_TD -10.8 -24.1 -11.8 -11.9 -13.7 -51.3 -13.6 -12.2 -10.9 

HZA_TI -10.7 -23.9 -11.6 -11.7 -13.7 -50.5 -13.3 -12.1 -10.7 

LTST -9.9 -25.7 -12.6 -10.1 -14.7 -53 -11.3 -12.7 -11.4 

PHM_grid -11.4 -23.9 -11.6 -11.5 -13.3 -51.6 -10.6 -11.9 -10.7 

PHM_zone -16.9 -25.3 -12.3 -13.6 -14.1 -55.9 -10.1 -10.5 -9.2 

ALM -11 -22.5 -10.6 -12.3 -14.1 -102.8 -12.5 -10.7 -10.6 

HALM -11.1 -20.6 -9.8 -11.5 -13.1 -95.1 -12.5 -10.7 -10.4 

DBM -10.7 -23.7 -11.5 -11.9 -13.3 -50.9 -11.3 -11.3 -11.2 

MPS04 -13.8 -22.9 -10.9 -11.2 -13 -49.3 -10.4 -12.4 -10.4 

MPS04_after -13.8 -22.9 -10.9 -11.2 -13 -49.3 -10.4 -12.4 -10.4 

RI -10.4 -24.2 -11 -12.6 -13 -48.3 -11 -11.5 -10.6 

ALM_IT -37.6 -26.4 -11.2 -12.9 -13.8 -182.8 -9.4 -12.3 -9.6 

HRSS_m1 -10.9 -23.7 -11.5 -12.3 -13.6 -53.3 -11 -12.2 -11.4 

HRSS_m2 -10.9 -23.2 -11.2 -11.6 -13 -49.7 -11.7 -11.4 -11 

TripleS_CPTI -11.1 -22.8 -11.1 -11.3 -12.9 -49.8 -11.2 -12 -10.8 

TripleS_CSI -11.8 -23.9 -11.7 -11.8 -13.5 -52.9 -11 -12.6 -11.2 

TripleS_Hyb -11.4 -23.3 -11.3 -11.5 -13.2 -51.2 -11.1 -12.3 -11.1 

  

Table S2. The log-likelihood of each 5-year model in the spatial bin where target earthquakes 

occurred. The number of target earthquakes that occurred in each spatial bin are reported in 

the first row. From the table we can notice that some models (ALM_IT, ALM; HALM; and 

PHM_zone) failed the S-test because they score very low log-likelihood (grey cells) in at least 

one spatial bin where target earthquakes occurred. Conversely, the other models that failed 

the S-test (see Table 4 in the paper) performed poorly in the spatial bins without target 

earthquakes. This can be noted, for example, by comparing the HZA_TD and PHM_grid 

models. The first model passes the consistency tests while the second one does not; however, 

they have similar log-likelihoods in the spatial bins where target earthquakes occurred. 

Finally, we notice that MPS04 and MPS04_after models – which inform the seismicity rate 

model of the national seismic hazard model – do not perform well for the first and the second-

to-last target earthquakes, but the poor performance in the S-test is likely due to a poor 

performance on the spatial cells where no target earthquakes occurred.   

 

 


