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Z2-gradings

Alonso Castillo-Ramirez∗and Justin McInroy†

February 13, 2018

Abstract

A code algebraAC is a non-associative commutative algebra defined
via a binary linear code C. We study certain idempotents in code
algebras, which we call small idempotents, that are determined by a
single non-zero codeword. For a general code C, we show that small
idempotents are primitive and semisimple and we calculate their fusion
table. If C is a projective code generated by a conjugacy class of
codewords, we show that AC is generated by small idempotents and
so is, in fact, an axial algebra. Furthermore, we classify when the
fusion table is Z2-graded. In doing so, we exhibit an infinite family of
Z2 × Z2-graded axial algebras - these are the first known examples of
axial algebras with more than a Z2-grading.

1 Introduction

Both code algebras and axial algebras provide a way of axiomatising im-
portant features of vertex operator algebras (VOAs). These were first con-
sidered by physicists in connection with 2D conformal field theory, but also
later by mathematicians. The most famous example is the Moonshine VOA
V ♮, which has the Monster simple sporadic group as its automorphism group
and was instrumental in Borcherd’s proof of monstrous moonshine.

Code algebras are a new class of commutative non-associative algebras
introduced in [1]. They are an axiomatisation of code VOAs, a class of VOAs
where the representation theory is governed by two linear codes. Moreover,
in every framed VOA V , such as V ♮, there exists a unique code sub VOA
W and V is a simple current extension of W [5].
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Given a binary linear code C of length n, a code algebra AC(a, b, c) is a
commutative non-associative algebra over a field F of characteristic 0 with
basis

ti i = 1, . . . , n

eα α ∈ C∗ := C \ {α,αc}

where a, b and c are structure constants in F that determine the products
ti ·e

α, eα ·eβ and eα ·eα, respectively. Roughly speaking, the ti represent the
support of the code, the eα represent the codewords and the multiplication
reflects this. For further details see Definition 2.6.

In this paper, we explore when code algebras are also axial algebras and
classify when these have a particularly symmetric multiplicative structure,
namely that the fusion table is Z2-graded. Axial algebras are a new class of
commutative non-associative algebras introduced by Hall, Rehren and Sh-
pectorov in [2]. The class includes several interesting algebras, in particular,
subalgebras of the Greiss algebra, Majorana algebras, Jordan algebras and
Matsuo algebras. The defining feature of an axial algebra is that it is gener-
ated by F-axes. These are primitive semisimple idempotents which satisfy
the fusion rules F . More explicitly, the adjoint action of a on the algebra
decomposes it into a direct sum of eigenspaces

A =
⊕

λ∈F

Aλ

where Aλ is the λ-eigenspace, A1 is 1-dimensional and elements of the
eigenspaces multiply according to the fusion rules F (see Definition 2.3 for
details).

To show that a code algebra AC is an axial algebra, we must identify
enough idempotents to generate the algebra and show that they are all
primitive, semisimple and, in particular, satisfy the same fusion rules F .
One way to find idempotents is to use the s-map construction introduced in
[1, Proposition 5.2].

Given a linear subcode D of C and a vector v ∈ F
n
2

s(D, v) := λ
∑

i∈supp(D)

ti + µ
∑

α∈D

(−1)(α,v)eα

is an idempotent of AC , where λ and µ satisfy a linear and quadratic equa-
tion respectively (see Proposition 2.7). In particular, when D = {0, α}, for
some α ∈ C⋆, the s-map construction gives us two idempotents, which we
call small idempotents:

e± := λtα ± µeα

where tα =
∑

i∈supp(α) ti.
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In [1], the eigenvalues, eigenvectors and fusion rules were calculated for
the small idempotents in the case where C is a constant weight code, that is
all non-constant codewords have the same weight. In this paper, we remove
this restriction. We show that the resulting eigenvalues are 1, 0, λ, λ − 1

2
and νp±, for p = (m, |α| − m) that correspond to partitions of the weight
of α. We give explicit vectors which form a basis of each eigenspace (see
Table 2). In particular, the 1-eigenspace is 1-dimensional and the algebra
decomposes as a sum of eigenspaces, so e± is a primitive semisimple idem-
potent. Furthermore, we calculate its fusion table F , as given in Table 3.
This allows us to prove the following theorem.

Theorem 1. Let C be a projective code and α ∈ C such that the set

S := {α1, . . . , αl} of conjugates of α under the action of Aut(C) generates

C. Then, the non-degenerate code algebra AC(a, b, c) is an axial algebra

generated by the small idempotents corresponding to the codewords in S.

We actually show a more general version of this theorem where we allow
a wider choice of structure constants; this is Theorem 5.1. For some codes
C and special values of the structure constants, the fusion table may have
a Z2-grading. If this is the case, for each axis a, we get a decomposition
A = A+ ⊕A−. Moreover, we may then define an algebra automorphism τa
given by the linear extension of

v 7→

{

v if v ∈ A+

−v if v ∈ A−

The group generated by the set of all τa, for each axis a, is called the
Miyamoto group. Hence, such graded fusion tables are of particular interest.
For the code axial algebras given by Theorem 1, we classify when their fusion
table is Z2-graded.

Theorem 2. Let AC be a code algebra satisfying the assumptions of The-

orem 1. Then the fusion table of the small idempotents is Z2-graded if and

only if

1. |α| = 1, C = F
n
2 , where n = 3, or n = 1, 2 and a = −1.

2. |α| = 2, and C =
⊕

Ci is the direct sum of even weight codes of length

m ≥ 3.

3. |α| > 2, and D := projα(C) has a codimension one linear subcode D+

which is the union of weight sets of D and 1 ∈ D+.

In this case, we have

A+ = A1 ⊕A0 ⊕Aλ ⊕Aλ− 1
2
⊕

⊕

m∈wt(D+)

A
ν
(m,|α|−m)
±

A− =
⊕

m∈wt(D)−wt(D+)

A
ν
(m,|α|−m)
±
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The explicit code algebras and fusion rules obtained in cases 1 and 2 are
given in Sections 5.1 and 5.2, respectively. Moreover, for some special values
of structure constants in case 2, we get an infinite family of Z2 ×Z2-graded
axial algebras. These are the first known examples of axial algebras with
more than a Z2-grading.

The structure of the paper is as follows. In Section 2, we introduce code
algebras and axial algebras and review all the relevant preliminary results
we will need. The eigenvalues and eigenvectors of small idempotents are
calculated in Section 3, hence showing that small idempotents are primitive
and semisimple. Section 4 deals with their fusion table. In Section 5, we
prove Theorem 1 and give some examples of code algebras which are axial
algebras. In particular, we do the examples where |α| is 1, or 2, which are
Z2-graded, and also the Z2×Z2-graded example. The classification of when
the fusion table is Z2-graded is completed in Section 6.

We would like to thank the Mexican Academy of Sciences for a grant
under the Newton Fund/CONACYT for a visit of the second author to the
first author in Guadalajara where the majority of this work was done.

2 Background

We begin by reviewing some facts about codes and fixing notation, before
giving the definition and some brief details about axial and code algebras.

2.1 Binary linear codes

Let F2 be the field with two elements. Recall that a rank k binary linear code
C of length n is a k-dimensional subspace of Fn

2 . For any α = (α1, . . . , αn) ∈
F
n
2 , denote its support by

supp(α) := {i = 1, . . . , n : αi = 1},

and its Hamming weight by |α| := |supp(α)|. The support of the code C
itself is defined to be supp(C) :=

⋃

α∈C supp(α) and the set of weights of
the codewords in C is denoted wt(C) := {|α| : α ∈ C}.

A weight set of C is the set

Ww(C) = {α ∈ C : |α| = w}

of all codewords in C of weight w.
Two codes C and D are similar if there exists g ∈ Sn such that Cg = D,

where Sn acts naturally on C by permuting the coordinates of the codewords.
We define the automorphism group of C as Aut(C) := {g ∈ Sn : Cg = C}.

We write C∗ for the non-constant codewords in C; that is, all codewords
which are not 0 := (0, . . . , 0) or 1 := (1, . . . , 1). If 1 ∈ C, then every α ∈ C

4



has a complement, denoted by αc := 1 + α. Conversely, if some α ∈ C has
a complement, then 1 ∈ C and every codeword in C has a complement.

A generating matrix for a rank k, length n binary linear code C is a
k × n matrix M whose rows are a basis of C. Note that two codes C and
D are similar if a generating matrix for C is permutationally similar to a
generating matrix for D.

Given two codes C and D, the direct sum C ⊕ D is the binary linear
code whose generating matrix is given by the block diagonal matrix where
the two blocks are the generating matrices of C and D. A code is called
indecomposable if it is not similar to the direct sum of two non-trivial binary
linear codes.

The dual code C⊥ of C is the set of all v ∈ F
n
2 such that (v,C) = 0,

where (·, ·) is the usual inner product.

Definition 2.1. A binary linear code C is projective if the minimum weight
of a codeword in C⊥ is at least three.

Let M be a generating matrix for C. Note that C⊥ has a codeword of
weight 1 if and only if M has a column equal to zero, and C⊥ has a codeword
of weight 2 if and only if two columns of M are equal. Thus, C is projective
if and only if M has no column equal to zero and its columns are pairwise
distinct.

Lemma 2.2. Let C be a binary linear code. Then C is projective if and

only if for all i ∈ 1, . . . , n, there exists a set of codewords S such that

{i} =
⋂

α∈S

supp(α)

Proof. Suppose that the above property holds. Then, for all i, there exists
a codeword α ∈ C with αi = 1 and hence C⊥ has no codewords of weight
1. Moreover, for all i 6= j, there exists α ∈ C such that αi 6= αj . Hence, C

⊥

has no codeword of weight 2 and C is projective.
Conversely, suppose that the above property does not hold for some

i = 1, . . . , n. Either there does not exist a codeword in C supported on i,
and hence C⊥ contains a codeword of weight one, or there exists i 6= j such
that for every codeword α ∈ C, αi = αj, and hence C⊥ has a codeword of
weight two. In any case, C is not projective.

Let S be a subset of {1, . . . , n} and denote by projS : C → F
n−|S|
2 the

usual projection map. Then, the projection projS(C) is a binary linear code.
Note that it is the same as the code formed by puncturing the code at all
places in Sc. For α ∈ C, we write projα for projsupp(α). By considering the
generating matrices, it is easy to see that, if C is a projective code, then
projS(C) is also a projective code.
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2.2 Axial algebras

In this section, we will review the basic definitions related to axial algebras.
For further details, see [2, 3]. Let F be a field not of characteristic two,
F ⊆ F a subset, and ⋆ : F × F → 2F a symmetric binary operation. We
call the pair (F , ⋆) fusion rules over F.

Let A be a non-associative (i.e. not-necessarily-associative) commutative
algebra over F. For an element a ∈ A, the adjoint endomorphism ad(a) is
defined by ad(a)(v) := av, ∀v ∈ A. Let Spec(a) be the set of eigenvalues of
ad(a), and for λ ∈ Spec(a), let Aλ(a) be the λ-eigenspace of ad(a). Where
the context is clear, we will write Aλ for Aλ(a).

Definition 2.3. Let (F , ⋆) be fusion rules over F. An element a ∈ A is an
F-axis if the following hold:

1. a is idempotent (i.e. a2 = a),

2. a is semisimple (i.e. the adjoint ad(a) is diagonalisable),

3. a is primitive (i.e. A1 is the linear span of a),

4. Spec(a) ⊆ F and AλAµ ⊆
⊕

γ∈λ⋆µ Aγ , for all λ, µ ∈ Spec(a).

Definition 2.4. A non-associative commutative algebra is an F-axial alge-

bra if it is generated by F-axes.

When the fusion rules are clear from context we drop the F and simply
use the term axial algebra. The Monster fusion rules are given by and

1 0 1
4

1
32

1 1 1
4

1
32

0 0 1
4

1
32

1
4

1
4

1
4 1, 0 1

32

1
32

1
32

1
32

1
32 1, 0, 14

Table 1: Monster fusion rules

are exhibited by the 2A-axes in the Griess algebra. A Majorana algebra

is an axial algebra with the Monster fusion rules which also satisfies some
additional axioms (see [4] for details). These kinds of algebra generalise
subalgebras of the Griess algebra.

Definition 2.5. The fusion rules F are G-graded, where G is a finite abelian
group, if there exist a surjective map gr : F → G such that for all λ, µ ∈ F
and γ ∈ λ ⋆ µ,

gr(γ) = gr(λ)gr(µ)
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In particular, it follows that gr(γ) = gr(δ), for all γ, δ ∈ λ ⋆ µ, λ, µ ∈ F
and hence gr(λ ⋆ µ) is well-defined. For g ∈ G, we define

Fg := gr−1(g) = {λ ∈ F : gr(λ) = g}

Let A be an algebra and a ∈ A an F-axis (note that we do not require A to
be an axial algebra). If F is G-graded, then the axis a defines a G-grading

gra : A → G on A where the g-graded subspace Ag of A is

Ag =
⊕

λ∈Fg

Aλ(a)

When F is G-graded we may define some automorphisms of the algebra.
Let G∗ denote the linear characters of G. That is, the homomorphisms from
G to F

×. We define a map αa : G∗ → Aut(A) by

vαa(χ) = χ
(

gr(λ)
)

v

where v ∈ Aλ(a), χ ∈ G∗ and extend linearly. Or equivalently

vαa(χ) = χ
(

gra(v)
)

v

The subgroup Im(αa) is called the axial subgroup corresponding to a.
We are particularly interested in Z2-graded fusion rules. In this case, we

identify Z2 with the group {+,−} equipped with the usual multiplication
of signs. For example, the Monster fusion rules F are Z2-graded where
F+ = {1, 0, 14} and F− = { 1

32}.
When the fusion rules are Z2-graded and char(F) 6= 2, then G∗ =

{χ1, χ−1}, where χ1 is the trivial character on G = Z2. Here, the axial
subgroup contains just one non-trivial automorphism, αa(χ−1). We write
this as τa : A → A and call it the Miyamoto involution associated to a. It is
defined by the linear extension of

vτa =

{

v if v ∈ A+

−v if v ∈ A−

For a set S of F-axes, the group generated by the τa for a ∈ S is called the
Miyamoto group. When A is an axial algebra and S is the generating set of
axes, we write Miy(A) for the Miyamoto group.

2.3 Code algebras

We define code algebras as non-associative algebras that generalise some
properties of code VOAs.

7



Definition 2.6. Let C ⊆ F
n
2 be a binary linear code of length n, F a field

of characteristic 0 and Λ ⊆ F be a collection of structure constants

Λ := {ai,α, bα,β , ci,α ∈ F : i = 1, . . . , n, α, β ∈ C∗} .

The code algebra AC(Λ) is the free commutative algebra over F on the basis

{ti : i = 1, . . . , n} ∪ {eα : α ∈ C∗},

modulo the relations

ti · tj = δi,j

ti · e
α =







ai,α e
α if αi = 1

0 if αi = 0

eα · eβ =



















bα,β e
α+β if α 6= β, βc

∑

i∈supp(α)

ci,αti if α = β

0 if α = βc

We say that a code algebra AC is non-degenerate if all the structure
constants in Λ are non-zero. In this paper, we will always assume code
algebras are non-degenerate. We will call the basis elements ti toral elements

and the eα codewords elements.
A code algebra AC has some obvious idempotents ti. We can also con-

struct additional idempotents using the s-map construction. We say that
a code D has constant weight if all non-constant codewords have the same
weight. That is, all codewords in D∗ have the same weight. Suppose that
D is a linear subcode of C of constant weight. The number of ordered ways
of obtaining β ∈ D∗ as an ordered sum of elements of D∗ is

e = 2|D∗| − |D|

Proposition 2.7. [1, Proposition 5.2] Suppose that D is a constant weight

subcode of C and the structure constants supported on D∗ are constant

(a, b, c). Then, for v ∈ F
n
2 , there exists an idempotent of the form

s(D, v) := λtD + µ
∑

α∈D∗

(−1)(v,α) eα,

with µ, λ ∈ F, if and only if

λ =
1− beµ

2ad

and µ satisfies the equation
(

b2e2 + 4a2c|D∗|
d3

m

)

µ2 + 2be(ad− 1)µ + 1− 2ad = 0

where d is the weight of the codewords in D∗ and m := |supp(D)|.

8



It is clear that we may always extend the field F so that the quadratic
splits.

Fix α ∈ C∗. The subcode spanned by α, D = 〈α〉, clearly satisfies the
conditions above and so, by Proposition 2.7, the following are idempotents

e± := λtα ± µeα,

where

λ :=
1

2aα|α|
and µ2 :=

λ− λ2

cα
.

Note that these coefficients are real if aαcα > cα
2|α| . We call these small

idempotents. In [1], their eigenvalues, eigenvectors and fusion table were
calculated in the case where C itself was a constant weight code. This
paper generalises those results to an arbitrary code C.

3 Eigenvalues and eigenvectors

In this section, we will calculate the eigenvalues and eigenvectors of a small
idempotent e±, show that they span the whole algebra and therefore that
e± is semisimple. Throughout this section we will fix α ∈ C∗ and let e = e+
be the small idempotent defined by the s-map. We begin by defining some
notation.

Notation. Throughout the paper, we write statements involving 1 ∈ C, or
the complement αc of a codeword α. We do not assume that 1 ∈ C, or
complements exist, just that if they do, then these statements should hold.

Definition 3.1. Given β ∈ C∗, we define the weight partition to be the
unordered tuple

p(β) := (|α ∩ β|, |α ∩ (α+ β)|)

Note that p(β) = p(α+ β) = p(βc). Let

Cα(p) := {β ∈ C∗ \ {α,αc} : p(β) = p}

be the set of all β which give the weight partition p. We define

Pα := {p(β) : β ∈ C∗ \ {α,αc}}

to be the set of all weight partitions of α.

We make the following assumptions on the structure constants:

a := ai,β for all i ∈ supp(β), β ∈ C∗

bα,β = bα,γ for all β, γ ∈ Cα(p), p ∈ Pα

cα := ci,α for all i ∈ supp(α)

9



In order to give the eigenvectors, we first need to define some scalars which
will be their coefficients. For β ∈ C∗ \ {α,αc}, we define

ξ|α∩β| :=
1

4µbα,β

(

1−
2|α ∩ β|

|α|

)

θ
|α∩β|
± := −ξ|α∩β| ±

√

(ξ|α∩β|)2 + 1

Where α is understood, to simplify notation, we will write ξβ := ξ|α∩β|,

θβ± := θ
|α∩β|
± . We observe that ξ|α∩β| depends only on the size of the inter-

section of β with α, not on the codeword β itself.

Lemma 3.2. Let β, γ ∈ C∗ \ {α,αc} such that |α ∩ β| = |α ∩ γ|.

1. ξβ = ξγ

2. ξ|α|−|α∩β| = −ξ|α∩β|, in particular ξα+β = ξβc = −ξβ

3. θβ± = θγ±

4. θ
|α|−|α∩β|
± = −θ

|α∩β|
∓ , in particular θα+β

± = θβ
c

± = −θβ∓

5. θβ± are the two roots of

x2 + 2ξβx− 1 = 0

hence θβ+ + θβ− = −2ξβ and θβ+θ
β
− = −1

6. 1

θ
β
±

= −θβ∓

Proof. By our assumptions on the b structure constants and using the ob-
servation that α ∩ βc = α ∩ (α+ β), the first five parts are clear. The sixth
follows from the fifth.

We define

νp± :=
1

4
± µbα,β

√

(ξβ)2 + 1

which will turn out to be an eigenvalue. We note that νp± is well-defined.
Indeed, by the first two parts of Lemma 3.2, (ξβ)

2 is constant for β ∈ Cα(p).
So, by our assumptions on bα,β and since νp± depends only on (ξβ)

2, νp± is
constant for all β ∈ Cα(p).

Let p ∈ Pα be a weight partition and β ∈ Cα(p). We define

wβ
± := θβ±e

β + eα+β

which will be an eigenvector for νp±.

10



Lemma 3.3. Let p ∈ Pα and β ∈ Cα(p). Then,

wα+β
± = −θβ∓w

β
±

Proof. By Lemma 3.2, we have

wα+β
± = θα+β

± eα+β + eβ

= −θβ∓e
α+β + eβ

= −θβ∓(−
1

θ
β
∓

eβ + eα+β) = −θβ∓w
β
±

Since β and α + β define the same eigenvector up to scaling, we pick a
subset C ′

α(p) of Cα(p) such that for every β ∈ Cα(p), either β ∈ C ′
α(p), or

α + β ∈ C ′
α(p), but not both. We may now list the eigenvectors for e and

show that they form a basis for their eigenspaces.
From now on, we assume that the field F over which AC is defined

contains the roots
√

(ξβ)2 + 1, for all β ∈ C∗ \ {α,αc}.

Proposition 3.4. Suppose a 6= 1
2|α| ,

1
3|α| . The sets of eigenvectors for e = e+

given in Table 2 are a basis for their eigenspace. Moreover, e is primitive and

A decomposes as a direct sum of these eigenspaces, hence e is semisimple.

Eigenvalue Eigenvector

1 e = λtα + µeα

0
ti for i 6∈ supp(α)

eα
c

λ tj − tk for k ∈ supp(α), k 6= j

λ− 1
2 2µcαtα − eα

νp± wβ
± = θβ±e

β + eα+β for β ∈ C ′
α(p), p ∈ Pα

where j ∈ supp(α) is fixed

Table 2: Eigenspaces for small idempotents

This proposition will be proven via the two following lemmas.

Lemma 3.5. The vectors listed in Table 2 are eigenvectors for the given

eigenvalues.

Proof. It is clear that e is a 1-eigenvector because it is an idempotent. Ob-
serve that, for i 6∈ supp(α),

(λtα + µeα) · ti = 0

11



and
(λtα + µeα) · eα

c

= 0

Now, for i, j ∈ supp(α), we have

(λtα + µeα) · (ti − tj) = λti + µaeα − λtj − µaeα = λ(ti − tj)

Also,

(λtα + µeα) · (2µcαtα − eα) = (2λµcα − µcα)tα − (λa|α| − 2µ2cαa|α|)e
α

= (λ− 1
2)2µcαtα − (λa|α| − 2(λ− λ2)a|α|)eα

= (λ− 1
2)2µcαtα − (12 − (1− λ))eα

= (λ− 1
2)2µcαtα − (λ− 1

2)e
α

Now consider the element xeβ + eα+β, for β ∈ C∗ \ {α,αc} and some
x ∈ F

×. We have:

(λtα + µeα) · (xeβ + eα+β) =
(

λxaβ |α ∩ β|+ µbα,α+β

)

eβ

+
(

λaα+β |α ∩ (α+ β)|+ µxbα,β
)

eα+β

=
(

λxa|α ∩ β|+ µbα,β
)

eβ

+
(

λa|α ∩ (α+ β)|+ µxbα,β
)

eα+β

This element xeβ + eα+β is a ν-eigenvector, for some ν ∈ F, if and only if
we have the following:

xν = λxa|α ∩ β|+ µbα,β

ν = λa|α ∩ (α+ β)|+ µxbα,β

Eliminating ν, we get a quadratic in x:

0 = x2 +
λa

µbα,β
(|α ∩ (α+ β)| − |α ∩ β|) x− 1

= x2 + 2ξβx− 1

We note that this always has solutions and, by Lemma 3.2, these are

θβ± = −ξβ ±
√

(ξβ)2 + 1

We substitute to find

ν = λa|α ∩ (α+ β)|+ µbα,βθ
β
±

=
1

2|α|
(|α| − |α ∩ β|)

+ µbα,β

(

−1

4µbα,β

(

1−
2|α ∩ β|

|α|

)

±
√

(ξβ)2 + 1

)

=
1

2
−

|α ∩ β|

2|α|
−

1

4
+

|α ∩ β|

2|α|
± µbα,β

√

(ξβ)2 + 1

= 1
4 ± µbα,β

√

(ξβ)2 + 1 = νp±

12



Lemma 3.6. Suppose a 6= 1
3|α| . Then the eigenvectors listed in Table 2 are

a basis for A.

Proof. Suppose that 1 ∈ C, the proof for 1 /∈ C is similar. Let B be the set
of eigenvectors listed in Table 2. Counting we have the following:

|B| = 1 + (n− |α|) + 1 + (|α| − 1) + 1 + 2 · (
|C∗| − 2

2
) = n+ |C∗| = dim(A)

In order to show that B is linearly independent, we shall write the matrix
M consisting of the elements of B (in a slightly different order to the one
given above and with one element scaled) with respect to the ordered basis

{tj} ∪ {tk : k ∈ supp(α), k 6= j} ∪ {eα, eα
c

} ∪ {ti : i 6∈ supp(α)}

∪ {eβ , eα+β : β ∈ C ′
α(p), p ∈ Pα}

We have

M =

















































































λ λ . . . λ µ

1 1 . . . 1 − 1
2µcα

1 −1

. . .

1 . . . −1

1

1

. . .

1

θβ1
+ 1

θβ2
− 1

. . .

θβr

+ 1

θβr

− 1

















































































where the matrix has 0 in all the blank spaces. As θβ+ 6= θβ− and both are
non-zero for all β ∈ C ′

α(p), p ∈ Pα, we know that det(M) 6= 0 if and only
if the determinant of the top left block M ′ is nonzero. After using row
operations to simplify the first two rows, we see that

det(M ′) = µ|α|(−1)|α|−1 + 1
2µcα

λ|α|(−1)|α|−1

= |α|(−1)|α|−1
(

µ+ λ
2µcα

)
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This is zero if and only if 0 = λ + 2µ2cα = λ + 2(λ − λ2) = λ(3 − 2λ) and
hence λ = 3

2 which is equivalent to a = 1
3|α| .

Remark 3.7. We note that a = 1
2|α| and a = 1

3|α| , correspond to λ = 1 and

λ = 3
2 , respectively. The first of these implies that µ = 0 and hence the s

map idempotent just becomes a sum of ti. The second would collapse the
λ− 1

2 eigenspace into the 1-eigenspace. Since we only wish to consider the
case when e± different from the toral idempotents and primitive, from now
on we will rule out these two values for a.

4 The Fusion Table

We now calculate the fusion table F = (F , ⋆) for the small idempotent
e = e+. Since AC is commutative, it suffices to calculate just the upper half
of F . Note that we already know the row for 1, as e is primitive and the
values of F are eigenvalues for e.

We restate our previous assumptions, making further assumptions on
the b and c structure constants.

a := ai,β for all i ∈ supp(β), β ∈ C∗

bα,β = bα,γ for all β, γ ∈ Cα(p), p ∈ Pα

bαc,β = bαc,γ for all β, γ ∈ Cα(p), p ∈ Pα

cβ := ci,β for all i ∈ supp(β), β ∈ C∗

So, the a structure constant is the same for the whole algebra, while the c
structure constant depends on the codeword and the b structure constant
for α and αc depends on the weight sets.

Recall that we also assume that a 6= 1
2|α| ,

1
3|α| .

Theorem 4.1. The fusion table for the above small idempotent e is given

in Table 3, where Pα = {p1, . . . pk}.

Remark 4.2. Note that entries of the fusion table could sometimes be
replaced by subsets of the entry given due to either some intersection prop-
erties of the code, or special values of some coefficients. Some of these special
cases will be useful for us later. For these we will explicitly give a case anal-
ysis of when the answer can be a subset of the generic answer. Where we
do not carry out such an analysis the answer is labelled as ‘generic’, which
means that answers which are subsets may still be possible.

The theorem will be proved via a series of calculations. Throughout, let
p ∈ Pα, β ∈ C ′

α(p).
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1 0 λ λ− 1
2 νp1± . . . νpk±

1 1 λ λ− 1
2 νp1± . . . νpk±

0 0 νp1± . . . νpk±

λ λ 1, λ, λ − 1
2 νp1+ , νp1− . . . νpk+ , νpk−

λ− 1
2 λ− 1

2 1, λ − 1
2 νp1+ , νp1− . . . νpk+ , νpk−

νp1± νp1± νp1± νp1+ , νp1− νp1+ , νp1− X1 N(p1, pk)
...

...
...

...
...

. . .

νpk± νpk± νpk± νpk+ , νpk− νpk+ , νpk− N(pk, p1) Xk

where

N(p, q) := {ν
p(β+γ)
+ , ν

p(β+γ)
− : β ∈ C ′

α(p), γ ∈ C ′
α(q), γ 6= β, α+ β, βc, α+ βc}

and Xi represents the table

νpi+ νpi−

νpi+ 1, 0, λ, λ − 1
2 , N(pi, pi) 1, 0, λ, λ − 1

2 , N(pi, pi)

νpi− 1, 0, λ, λ − 1
2 , N(pi, pi) 1, 0, λ, λ − 1

2 , N(pi, pi)

Table 3: Fusion table for small idempotents

Calculation of 0 ⋆

The 0-eigenspace has a basis ti such that i /∈ supp(α) and also eα
c
if 1 ∈ C.

Lemma 4.3. 0 ⋆ 0 = 0. In particular, 0 ⋆ 0 6= ∅.

Proof. We have titj = δijti and tie
αc

= aeα
c
.

Lemma 4.4. 0 ⋆ λ = ∅

Proof. Let i /∈ supp(α) and j, k ∈ supp(α). Then ti(tj − tk) = 0 and, by our
assumptions on the a structure constants, eα

c
(tj−tk) = a(eα

c
−eα

c
) = 0.

Lemma 4.5. 0 ⋆ λ− 1
2 = ∅

Proof. We have ti(2µcαtα − eα) = 0 and eα
c
(2µcαtα − eα) = 0.

Lemma 4.6. We have

0 ⋆ νp± =

{

∅ if 1 /∈ C and for all β ∈ Cα(p), α ∩ β = β

νp± otherwise
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Proof. Let i /∈ supp(α). Then i ∈ supp(β) if and only if i ∈ supp(α+ β).

ti(θ
β
±e

β + eα+β) =

{

0 if i /∈ supp(β)

a(θβ±e
β + eα+β) if i ∈ supp(β)

If 1 ∈ C, then we must also consider eα
c
. Since bαc,β = bαc,α+β and, by

Lemma 3.2, θβ± = θα+βc
, we have

eα
c

(θβ±e
β + eα+β) = bαc,βθ

β
±e

αc+β + bαc,α+βe
βc

= bαc,β(θ
αc+β
± eα+βc

+ eβ
c

)

By Lemma 3.3 this is also in the νp±-eigenspace.

Calculation of λ ⋆

Fixing i ∈ supp(α), the λ-eigenspace is spanned by ti−tj where j ∈ supp(α)\
{i}. Note that the λ-eigenspace only exists if |α| > 1.

Lemma 4.7. We have

λ ⋆ λ =

{

1, λ − 1
2 if |α| = 2

1, λ, λ − 1
2 otherwise

Proof. We have
(ti − tj)(ti − tk) = ti + δjktj

The eigenspace is spanned by just one vector, ti − tj, if and only if |α| = 2.
Then, the product ti + tj ∈ A1 ⊕ Aλ− 1

2
. However, otherwise we get the

product ti ∈ A1 ⊕Aλ ⊕Aλ− 1
2
.

Lemma 4.8. λ ⋆ λ− 1
2 = ∅

Proof. Since i, j ∈ supp(α), (ti − tj)(2µcαtα − eα) = 0.

Lemma 4.9. We have

λ ⋆ νp± =











∅ if p = (0, |α|)

νp∓ if p = ( |α|2 , |α|2 )

νp+, ν
p
− otherwise

Proof. Note that i, j ∈ supp(α). We get three cases:

(ti − tj)(θ
β
±e

β + eα+β) =











0 if i, j ∈ supp(β)

0 if i, j /∈ supp(β)

a(θβ±e
β − eα+β) if |{i, j} ∩ supp(β)| = 1
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The third case never occurs if and only if we always have α ∩ β = 0, or α,
which is equivalent to p = (0, |α|). Suppose this is not the case. Generically,

the third case is in Aν
p
+
⊕Aν

p
−
. However, it is in Aν

p
∓
if and only if θβ± = −θβ∓.

By lemma 3.2, ξβ = −1
2(θ

β
±+ θβ∓). From the definition of ξβ, it is zero if and

only if |α ∩ β| = |α|
2 . Note that, since ξβ ≥ 0, θβ± = −θβ± is impossible, and

hence the result cannot be in Aν
p
±
.

Calculation of λ− 1
2
⋆

Lemma 4.10. We have

λ− 1
2 ⋆ λ− 1

2 =















1 if a = − 1
|α|

λ− 1
2 if a = 1

|α|

1, λ− 1
2 otherwise

Proof.

(2µcαtα − eα)(2µcαtα − eα) = (4µ2c2α + cα)tα − 4µcα|α|ae
α

Generically this is in A1 ⊕Aλ− 1
2
.

The result is in Aλ− 1
2
if and only if for some ζ ∈ F,

ζ(2µcα) = 4µ2c2α + cα

−ζ = −4µcα|α|a

We eliminate the ζ and substitute µ2 = λ−λ2

cα
to get an equation in λ:

(1− λ)2 = 1
4

Recall that we do not allow λ = 3
2 . The remaining solution λ = 1

2 is
equivalent to a = 1

|α| .
Finally, the result is in A1 if and only if for some ζ ∈ F,

ζλ = 4µ2c2α + cα

ζµ = −4µcα|α|a

Since µ 6= 0, we may divide the second equation by µ and substitute into
the first to again eliminate ζ. Again, we substitute for µ2 to get

4λ2 − 4λ− 3 = 0

which has two solutions 3
2 and −1

2 . As above, the first of these is not allowed
and the second is equivalent to a = − 1

|α| .
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Lemma 4.11. Generically, λ − 1
2 ⋆ νp± = νp+, ν

p
−. However, if p = ( |α|2 , |α|2 )

then λ− 1
2 ⋆ νp± = νp±.

Proof. We have

(2µcαtα − eα)(θβ±e
β + eα+β) = (2µcαθ

β
±a|α ∩ β| − bα,α+β)e

β

+ (2µcαa|α ∩ (α+ β)| − bα,βθ
β
±)e

α+β

which is generically in Aν
p
+
⊕Aν

p
−
.

If p = ( |α|2 , |α|2 ), we may simplify the above to

2µcαa
|α|
2 (θβ±e

β + eα+β)− bα,β(θ
β
±e

α+β + eβ)

By Lemma 3.2 θβ± = −θα+β
∓ . However, since p = ( |α|2 , |α|2 ), ξβ = 0 and so

θβ± = ±1. Hence −θα+β
∓ = θα+β

± . By part one of Lemma 3.3, the above is in
Aν

p
±
.

Calculation of ν
p
± ⋆

We begin by performing calculating the products of the basis elements here
as these calculations are needed for finding the fusion table, but will also be
useful elsewhere.

Lemma 4.12. Let β, γ ∈ C such that β 6= α,αc, γ 6= β, βc, α + β, α + βc

and ε, ι = ±.

1. wβ
εw

β
ι = θβε θ

β
ι cβtβ + cα+βtα+β + bβ,α+β(θ

β
ε + θβι )eα which is generically

in A1 ⊕A0 ⊕Aλ ∈ Aλ− 1
2

2. wβ
εw

βc

ι = (bβ,α+βcθβε − bβc,α+βθ
β
−ι)e

αc
∈ A0

3. wβ
εw

γ
ι = (θβε θ

γ
ι bβ,γ + bα+β,α+γ)e

β+γ + (θβε bβ,α+γ + θγι bα+β,γ)e
α+β+γ ,

which is generically in A
ν
p(β+γ)
+

⊕A
ν
p(β+γ)
−

Proof. These are straightforward calculations.

Lemma 4.13. Let p, q ∈ Pα be two different weight partitions of α and

ε, ι = ±. Generically we have the following:

1. νpε ⋆ νqι = N(p, q),

2. νpε ⋆ νpι = N(p, p) ∪ {1, 0, λ, λ − 1
2}.

where

N(p, q) := {ν
p(β+γ)
+ , ν

p(β+γ)
− : β ∈ C ′

α(p), γ ∈ C ′
α(q),

γ 6= β, βc, α+ β, α+ βc}.
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However, if bβ,α+βc = bβc,α+β and cβ = cα+β for all β ∈ Cα(p), then for

p = ( |α|2 , |α|2 ),

νpε ⋆ ν
p
ι =

{

N(p, p) ∪ {1, 0, λ − 1
2} if ε = ι

N(p, p) ∪ {λ} if ε = −ι

Proof. To begin, let γ 6= β, βc, α + β, α + βc. By Lemma 4.12, we have
N(p, q) ⊆ νpε ⋆ ν

q
ι generically.

We note that the remaining cases for γ all have p(γ) = p(β). Now, by

Lemma 3.3, wα+β
± is a scalar multiple of wβ

±, and wα+βc

± is a scalar multiple

of wβc

± . So we are left with two cases: γ = β and γ = βc. Again by Lemma
4.12, these are generically in {1, 0, λ, λ − 1

2}.
Now suppose that the conditions on the structure constants hold and

p = ( |α|2 , |α|2 ). So, by Lemma 3.2, θβε = ε. Consider wβ
εw

β
ι from part (1)

of Lemma 4.12. Note that tβ = tα∩β + tαc∩β and similarly for tα+β. So,
if ε = ι, the coefficients of the ti for i ∈ supp(α) are all equal. Hence, the
product is in A1 ⊕A0 ⊕Aλ− 1

2
.

Similarly, if ε = −ι, then, for all i /∈ supp(α), the ti and eα terms

cancel and we see that wβ
+1w

β
−1 is in Aλ. Again, by the assumptions on the

structure constants and part (2) of Lemma 4.12, we see that wβ
+1w

βc

−1 = 0,
therefore the result follows.

5 Axial algebras and examples

We wish to generate our code algebra AC by idempotents and hence show
that it is an axial algebra. In order to do this, we consider the small idem-
potents obtained from a set S = {α1, . . . , αl} of conjugates of α. Note
that, since the αj are conjugate, the weight sets Pαj

and Pαk
are equal for

j, k = 1, . . . l.

Theorem 5.1. Let C be a projective code and α ∈ C such that the set S =
{α1, . . . , αl} of conjugates of α under Aut(C) generates the code. Suppose

that the structure constants Λ = {ai,β, bβ,γ , ci,β} are such that

a := ai,β for all i ∈ supp(β), β ∈ C∗

bαj ,β = bαk,γ for all β ∈ Cαj
(p), γ ∈ Cαk

(p), p ∈ Pα

bαc
j ,β

= bαc
k
,γ for all β ∈ Cαj

(p), γ ∈ Cαk
(p), p ∈ Pα

cβ := ci,β for all i ∈ supp(β), β ∈ C∗

Then, the code algebra AC(Λ) is an axial algebra with respect to the small

idempotents and has fusion table given in Table 3.
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Proof. We have two small idempotents e± := λtα ± µeα defined by α. By
subtracting the two, we obtain (a scalar multiple of) the codeword element
eα. The set S generates the code, so by multiplying the eα where α ∈ S, we
can generate all codeword elements of AC . Since C is projective, by Lemma
2.2, for all i ∈ 1, . . . , n, there exists β1, . . . , βk ∈ C which are pairwise
distinct such that

{i} =

k
⋂

1

βj

Hence (eβ1)2 . . . (eβk)2 is a scalar multiple of ti. Since S is a set of conjugates
under the automorphism group of the code, the fusion tables for the small
idempotents are the same.

We now give some examples. Throughout, we assume that C is a pro-
jective code and S is a set of conjugates of some α ∈ C which generate the
code.

5.1 |α| = 1

If |α| = 1, and a set of conjugates S of α generate C, then C must be the
full vector space C = F

n
2 . It is clear that the only possible weight partition

of α is p = (0, 1). Moreover, this exists precisely when n ≥ 3. Indeed, when
n = 1, there is only one non-trivial codeword, α, and when n = 2, there are
only α and αc. So, in both these cases, there does not exists β ∈ C∗\{α,αc}
such that |α∩ β| = 0, 1. For n ≥ 3, such a β does exist. By Proposition 3.4,
the possible eigenvalues of a small idempotent e are 1, 0, λ− 1

2 , ν
p
+ and νp−

(note that λ does not appear as eigenvalue).
By Theorem 5.1 and Table 3, AC is an axial algebra with fusion rules

given by Table 4 when n ≥ 3. When n = 1, 2, the same table applies if we
ignore the νp±.

1 0 λ− 1
2 νp+ νp−

1 1 λ− 1
2 νp+ νp−

0 0 νp+ νp−

λ− 1
2 λ− 1

2 1, λ− 1
2 νp+, ν

p
− νp+, ν

p
−

νp+ νp+ νp+ νp+, ν
p
− 1, 0, λ − 1

2 , N(p, p) 1, 0, λ − 1
2 , N(p, p)

νp− νp− νp− νp+, ν
p
− 1, 0, λ − 1

2 , N(p, p) 1, 0, λ − 1
2 , N(p, p)

Table 4: Fusion table for |α| = 1

We wish to identify when the fusion rules are Z2-graded. It is easy to
see that 1 and 0 must both be in the positive part. We will assume two
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results which follow from Section 4, but which are proved later in Section
6. Firstly, λ− 1

2 is also in the positive part if n 6= 1, 2 and secondly that νp+
and νp− have the same grading (Lemma 6.7). Here we explore whether these
cases actually lead to a non-trivial grading. We begin by analysing the set
N(p, p).

Lemma 5.2. N(p, p) = ∅ if and only if n ≤ 3.

Proof. When n = 1, 2, the weight partition p does not occur. So, we may
assume that n ≥ 3. As there is only one partition for |α| = 1, we have
N(p, p) = ∅ if and only if there does not exist β, γ ∈ C⋆ \ {α,αc} such
that γ 6= β, βc, α + β, α + βc. This condition is satisfied if and only if
|C⋆ \ {α,αc}| ≤ 4, which happens if and only if n ≤ 3.

Proposition 5.3. The fusion rules given by Table 4 have a Z2-grading if

and only if n = 3, or n = 1, 2 and a = −1. In particular, if n = 3, the

Z2-grading is given by

A+ = A1 ⊕A0 ⊕Aλ− 1
2
and A− = Aν

p
+
⊕Aν

p
−
. (1)

If n = 1, 2 and a = −1, we have λ − 1
2 ⋆ λ − 1

2 = 1 and the Z2-grading is

given by

A+ = A1 ⊕A0 and A− = Aλ− 1
2
. (2)

Proof. As noted above, it is clear that 1 and 0 must be in the positive part.
We also assume that λ − 1

2 is in the positive part if n 6= 1, 2 and that νp+
and νp− have the same grading.

Suppose that n = 1, 2. Then, the p = (0, 1) partition doesn’t occur. The
only possible grading is when λ− 1

2 is in the negative part and hence n must
be either 1, or 2. By Lemma 4.10, λ − 1

2 ∈ λ − 1
2 ⋆ λ − 1

2 if and only if
a 6= − 1

|α| = −1. Hence, we also must have a = −1 and the grading is that

given in (2).
For n = 3, N(p, p) = ∅ by Lemma 5.2, and it is routine to check that (1)

is a Z2-grading.
Finally, if n ≥ 4, then generically N(p, p) 6= ∅. However, we must check

whether special values of the structure constants could give νp± /∈ νpε ⋆ νpι
and hence a valid grading. Assume for a contradiction that they do. In
particular, for all distinct β, γ ∈ Cα(p), we must have wβ

+w
γ
− = 0. However,

since n ≥ 4, there exists distinct β, γ ∈ Cα(p) such that |β| = |γ| = 2 and
|α ∩ β| = |α ∩ γ| = 1. From Lemma 4.12, we have

wβ
+w

γ
− = (θβ+θ

γ
−bβ,γ + bα+β,α+γ)e

β+γ + (θβ+bβ,α+γ + θγ−bα+β,γ)e
α+β+γ

Since we assume this is zero, in particular we require θβ+bβ,α+γ + θγ−bα+β,γ =
0. However, α + β and α + γ both have weight 1 and hence are conjugate
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to α. Moreover, since n ≥ 4, γ 6= α + β, α + βc and so γ ∈ Cα+β(p);
similarly β ∈ Cα+γ(p). So, by our assumptions on the structure constants,
bα+β,γ = bα+γ,β and we have

0 = bα+β,γ(θ
β
+ + θγ−) = −2ξβbα+β,γ

since |α ∩ β| = |α ∩ γ| = 1. However, ξβ 6= 0, a contradiction. Hence for
n ≥ 4, there is no non-trivial Z2-grading.

5.2 C is a direct sum of even weight codes

Let C be a direct sum of even weight subcodes Ci and |α| = 2. That is,
the Ci are the codimension one subcodes of some F

mi

2 which contain all the
codewords of even length. Since we are assuming that C is generated by
conjugates of α, the the lengths mi of the Ci must all be the same. Let this
be m and n = mr. Thus,

C =

r
⊕

i=1

Ci where Ci all have length m

Since we also assume that C is projective, this means that n ≥ m ≥ 3.
Clearly, the partition (1, 1) always exists. The partition (0, 2) generally ex-
ists, but there are some small degenerate cases in which it does not. Namely,
when n = m = 3, 4 and the only weight partition of α is (1, 1). Apart from
this degenerate case, we have m ≥ 3 and n ≥ 5 and exactly two weight parti-
tions, (0, 2) and (1, 1). For ease of notation, we will label these by 0 = (0, 2)
and 1 = (1, 1)

We now consider what the sets N(p, q) are for the different weight par-
titions p and q.

Lemma 5.4. Generically, we have

N(1, 1) =

{

∅ if n = m = 3, 4

ν0+, ν
0
− n ≥ 5

Proof. If n = m = 3, then |C ′
α(1)| = 1 and soN(1, 1) = ∅. When n = m = 4,

|C ′
α(1)| = 2, but the sum of the two distinct codewords in C ′

α(1) is α, or
αc. Hence again N(1, 1) = ∅. If neither of these cases hold, then n ≥ 5 and
there exist two distinct codewords β, γ ∈ C ′

α(1) such that β + γ 6= α,αc.
Their sum β + γ has weight partition (0, 2).

Lemma 5.5. Generically, we have

N(0, 0) = ν0+, ν
0
−

N(1, 0) = ν1+, ν
1
−.

22



Proof. If the (0, 2) weight partition exists, then n ≥ 5 and m ≥ 3 and there
exist two distinct codewords β, γ ∈ C ′

α(0). Since their sum also has weight
partition (0, 2), N(0, 0) = ν0+, ν

0
−. The second claim is clear.

Now that we know the N(p, q) sets generically, we calculate the fusion
table for the νp±. We do this in a careful way since some choices of the
structure constants will yield a more symmetric table.

Lemma 5.6. Let ε, ι = ±1, we have

ν0ε ⋆ ν
0
ι = 1, 0, λ − 1

2 , ν
0
+, ν

0
−

Proof. By Lemmas 4.12 and 5.5, we just need to consider wβ
εw

β
ι for β ∈

Cα(p)

(θβε e
β + eα+β)(θβι e

β + eα+β) = θβε θ
β
ι cβtβ + cα+βtα+β + bβ,α+β(θ

β
ε + θβι )e

α

which generically is in A1⊕A1⊕Aλ⊕Aλ− 1
2
. However, if p = (0, 2), without

loss of generality, we may assume that |α∩β| = 0. So, tα+β = tα+tβ. Hence
the coefficients for each ti where i ∈ supp(α) are the same. Therefore, the
above product is in fact contained in A1 ⊕A1 ⊕Aλ− 1

2
.

Lemma 5.7. Generically, we have

ν1ε ⋆ ν
1
ι =

{

1, 0, λ, λ − 1
2 , ν

0
+, ν

0
− if n ≥ 5

1, 0, λ, λ − 1
2 if n = m = 3, 4

If bβ,γ = bα+β,γ and cβ = cα+β for all β, γ ∈ Cα(1) then,

ν1ε ⋆ ν1ι =











1, 0, λ − 1
2 , ν

0
+, ν

0
− if ε = ι and n ≥ 5

1, 0, λ − 1
2 if ε = ι and n = m = 3, 4

λ if ε = −ι

Proof. The generic product follows directly from Lemmas 4.13 and 5.4. For
the special case, using our assumptions on the b structure constants, observe
that

bβ,α+βc = bα+β,α+βc = bα+β,βc

So, by the special case of Lemma 4.13, most of the above result follows. It
remains to check wβ

εw
γ
−ε, where γ 6= β, α+ β, βc, α+ βc. Recall that θβε = ε

for β ∈ Cα(1). By Lemma 4.12 and our assumptions on the bβ,γ ,

(εeβ + eα+β)(−εeγ + eα+γ) = (−bβ,γ + bα+β,α+γ)e
β+γ

+ ε(bβ,α+γ − bα+β,γ)e
α+β+γ

= 0
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We have the usual result for ν1ε ⋆ ν0ι generically, but when we make
assumptions on the structure constants, we can get the following.

Lemma 5.8. If bβ,γ = bα+β,γ = bβ,α+γ for all β ∈ Cα(1), γ ∈ Cα(0), then
for ε, ι = ±1,

ν1ε ⋆ ν
0
ι = ν1ε

Proof. Let β ∈ Cα(1) and γ ∈ Cα(0). Then

(εeβ + eα+β)(θγι e
γ + eα+γ) = (εθγι bβ,γ + bα+β,α+γ)e

β+γ

+ (εbβ,α+γ + θγι bγ,α+β)e
α+β+γ

= (θγι + ε)bβ,γ(εe
β+γ + eα+β+γ)

by our assumptions on bβ,γ . Since β + γ ∈ Cα(1), the above product is in
Aν1ε

.

Proposition 5.9. Let C =
⊕r

i=1 Ci be the direct sum of even weight codes

Ci all of length m, n = mr such that n ≥ 5 and m ≥ 3. Then, AC is a

Z2-graded axial algebra with

A+ = A1 ⊕A0 ⊕Aλ ⊕Aλ− 1
2
⊕Aν0+

⊕Aν0−

A− = Aν1+
⊕Aν1−

and fusion table given by Table 5.

1 0 λ λ− 1
2 ν1+ ν1− ν0+ ν0−

1 1 λ λ− 1
2 ν1+ ν1− ν0+ ν0−

0 0 ν1+ ν1− ν0+ ν0−

λ λ 1, λ− 1
2 ν1− ν1+

λ− 1
2 λ− 1

2 1, λ− 1
2 ν1+ ν1− ν0+, ν

0
− ν0+, ν

0
−

ν1+ ν1+ ν1+ ν1− ν1+ X,λ X, λ ν1+, ν
1
− ν1+, ν

1
−

ν1− ν1− ν1− ν1+ ν1− X,λ X, λ ν1+, ν
1
− ν1+, ν

1
−

ν0+ ν0+ ν0+ ν0+, ν
0
− ν1+, ν

1
− ν1+, ν

1
− X X

ν0− ν0− ν0− ν0+, ν
0
− ν1+, ν

1
− ν1+, ν

1
− X X

where X = 1, 0, λ − 1
2 , ν

0
+, ν

0
−

Table 5: Fusion table for |α| = 2
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Proof. The fusion table is the same as for the general case given in Table 3
except for the following entries. By Lemma 4.7, we have λ ⋆ λ = 1, λ − 1

2 ,
by Lemma 4.9, we have λ ⋆ νp± and by Lemma 4.11 we have λ− 1

2 ⋆ ν
1
±. By

Lemmas 5.5, 5.6 and 5.7, we have the values for the νp±. Once we have the
table, it is easy to observe the grading.

If in addition we make some assumptions about the structure constants,
we get a stronger result.

Proposition 5.10. Let C =
⊕r

i=1 Ci be the direct sum of even weight codes

Ci all of length m, n = mr such that n ≥ 5 and m ≥ 3. Let S be the set

of conjugates of a weight two codeword α and suppose that bβ,γ = bαi+β,γ

and cβ = cαi+β for all β ∈ Cαi
(1), αi ∈ S and γ ∈ C∗ \ {α,αc}. Then, the

axial algebra AC has fusion rules given by Table 6 and has a Z2×Z2-grading

given by

A(0,0) = A1 ⊕A0 ⊕Aλ− 1
2
⊕Aν0+

⊕Aν0−

A(1,0) = Aν1+

A(0,1) = Aν1−

A(1,1) = Aλ

1 0 λ λ− 1
2 ν1+ ν1− ν0+ ν0−

1 1 λ λ− 1
2 ν1+ ν1− ν0+ ν0−

0 0 ν1+ ν1− ν0+ ν0−

λ λ 1, λ− 1
2 ν1− ν1+

λ− 1
2 λ− 1

2 1, λ− 1
2 ν1+ ν1− ν0+, ν

0
− ν0+, ν

0
−

ν1+ ν1+ ν1+ ν1− ν1+ X λ ν1+ ν1+

ν1− ν1− ν1− ν1+ ν1− λ X ν1− ν1−

ν0+ ν0+ ν0+ ν0+, ν
0
− ν1+ ν1− X X

ν0− ν0− ν0− ν0+, ν
0
− ν1+ ν1− X X

where X = 1, 0, λ − 1
2 , ν

0
+, ν

0
−

Table 6: Fusion table for |α| = 2

Proof. The table is the same as Table 5, except for ν1ε ⋆ν
1
ι and ν1ε ⋆ν

0
ι which

follow from the special cases of Lemmas 5.7 and 5.8.
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It remains to consider the degenerate case where n = m = 3, 4 and
there is only one weight partition (1, 1). Here, the code algebra is an axial
algebra with fusion rules given by Tables 5 or 6, depending on the structure
constants, where the ν0± are ignored. We observe that such fusion rules are
still Z2- or Z2 × Z2-graded depending on the structure constants.

6 Z2-grading

In this section we examine the fusion tables of the code algebras which are
axial algebras more carefully. We will classify when the fusion table for the
small idempotents is Z2-graded.

Theorem 6.1. We assume the assumptions of Theorem 5.1. Then the

axial algebra AC has a Z2-graded fusion table if and only if it is one of the

following

1. C = F
n
2 , |α| = 1 and

(a) n = 1, 2, a = −1.

(b) n = 3.

2. C =
⊕

Ci is the direct sum of even weight codes all of the same weight

m, |α| = 2.

3. |α| > 2 where D = projα(C) is a projective code, 1 ∈ D and D has a

codimension one linear subcode D+, with 1 ∈ D+, which is the union

of weight sets of D.

In this case, we have

A+ = A1 ⊕A0 ⊕Aλ ⊕Aλ− 1
2
⊕

⊕

m∈wt(D+)

A
ν
(m,|α|−m)
±

A− =
⊕

m∈wt(D)−wt(D+)

A
ν
(m,|α|−m)
±

Moreover, the examples occurring in parts (1) and (2) are precisely those

given in Sections 5.1 and 5.2. For |α| = 2, the example in Section 5.2 is Z2×
Z2-graded if additional assumptions are made on the structure constants.

The restrictions on the code in the third case are fairly mild. Indeed,
it is not difficult to see that if D has even length and contains any odd
codewords, then the even weight codewords of D form a linear subcode D+

of codimension one and 1 ∈ D+. Other examples with D even also exist. It
remains then to extend D to a code C such that conjugates of 1D ∈ D in C
generate C and check that C is projective.
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Example 6.2. Consider the code C with generating matrix

















1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

















Since C is the even weight code, it is projective and Aut(C) ∼= S5. So
conjugates of α := (1, 1, 1, 1, 0) generate C. Then D = projα(C) ∼= F

4
2 and

D+ is the codimension one subcode of all even weight codewords in D. This
satisfies the conditions given in Case 3 of Theorem 6.1.

We will prove the theorem via a series of lemmas. We will deduce what
the necessary conditions on the code are and then show that these exam-
ples are indeed Z2-graded. Suppose that the fusion table F for a small
idempotent in A is Z2-graded and write F = F+ ⊔ F−.

Lemma 6.3. Let f ∈ F . If f ∈ f ⋆ f , then f ∈ F+.

Proof. If f were in F−, then f ∈ f ⋆ f ∈ F+, a contradiction.

Corollary 6.4. We have

1. 1, 0 ∈ F+

2. if |α| > 2 then λ ∈ F+

3. λ− 1
2 ∈ F+, except possibly when |α| = 1 and a = −1

Proof. Part one follows from Lemma 4.3 and the fact that this is the fusion
table of an idempotent. The second part follows from Lemma 4.7. By
Lemma 4.10, λ − 1

2 is in F+ unless a = − 1
|α| . However, provided |α| 6= 1,

then the eigenvalue λ exists. Now, since 1, λ − 1
2 ∈ λ ⋆ λ by Lemma 4.7,

λ− 1
2 must have the same grading as 1, which is in the positive part. Hence,

λ− 1
2 ∈ F+, except possibly when |α| = 1 and a = −1.

To complete the grading for λ − 1
2 we consider the one case remaining

from above. This is a somewhat fiddly calculation.

Lemma 6.5. If n 6= 1, 2 and a 6= −1, then λ− 1
2 ∈ F+.

Proof. For a contradiction, suppose that λ − 1
2 ∈ F− and so |α| = 1 and

a = −1. By assumption, the set of conjugates of α generate the code, so C
must be the whole code F

n
2 . Since n 6= 1, 2, C has a weight partition of α

which is p = (0, 1).
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Let β ∈ C ′
α(p); with loss of generality, we may assume that α ∩ β = ∅.

Considering λ− 1
2 ⋆ ν

p
ε we have

(2µcαtα − eα)(θβε e
β + eα+β) = −bα,βe

β + (−2µcα − bα,βθ
β
ε )e

α+β

This is contained in Aν
p
+
⊕Aν

p
−
and, since bα,β 6= 0, it is clear that it is not

zero. By assumption, λ − 1
2 ∈ F−. Hence, to preserve the grading, νp+ and

νp− must have different gradings and λ− 1
2 ⋆ νpε = νp−ε.

Now, consider νpε ⋆ ν
p
ε . By Lemma 4.12,

wβ
εw

β
ε = (θβε )

2cβtβ + cα+βtα+β + 2θβε bβ,α+γe
α

=
(

(θβε )
2cβ + cα+β

)

tβ + cα+βtα + 2θβε bβ,α+γe
α

By the grading, this must be positive, so the above must lie in A1 ⊕ A0.
Hence, for some x ∈ F

×,

λx = cα+β

µx = 2θβε bβ,α+γ

Eliminating for x, we find that

θβε =
µcα

2λbβ,α+β

However, this must hold for both ε = −1,+1, a contradiction. Hence, λ− 1
2

must be in the positive part.

We consider the grading of νp± for the weight partitions p of α.

Lemma 6.6. The eigenspaces νp+ and νp− have the same grading, except

possibly when p = ( |α|2 , |α|2 ).

Proof. Since we assume that p is a weight partition, we do not have |α| = 1,
n = 1, 2. Hence, by Lemma 6.5, λ − 1

2 ∈ F+. Let β ∈ Cα(p). By Lemmas
4.12 and 3.2,

wβ
+w

β
− = −cβtβ + cα+βtα+β − 2ξβbβ,α+βe

α

Since bβ,α+β 6= 0, the coefficient of eα in the above is non-zero if and only

if ξβ 6= 0. This happens precisely when p 6= ( |α|2 , |α|2 ). However, eα is in
A1 ⊕ Aλ− 1

2
and by Lemmas 6.4 and our assumptions this is in A+. Hence

the above product is always in A+ and the grading of νp+ and νp− is the
same.

Lemma 6.7. The eigenspaces νp+ and νp− have the same grading, except

possibly when |α| = 2 and p = ( |α|2 , |α|2 ).
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Proof. By Lemma 6.6, we only need to consider the case where p = ( |α|2 , |α|2 ).
This case does not occur when |α| = 1 and we assume |α| 6= 2, so we may
consider |α| > 2. Here, λ is an eigenvalue and so, by Lemma 4.9, λ⋆νp± = νp∓.
Since λ ∈ F+, this implies that they have the same grading.

From the above results, we have that 1, 0, λ are all in F+, λ− 1
2 is also

in F+ if |α| 6= 1, and νp+ and νp− have the same grading unless |λ| = 2. This
suggests the following split into cases:

1. |α| = 1

2. |α| = 2

3. |α| > 2

We now give some lemmas which will help determine the grading of the
weight partition (0, |α|).

Lemma 6.8. Suppose that |α| 6= 1 and p = (0, |α|) ∈ Pα is a weight partition

of α. Then there exists a weight partition q 6= p.

Proof. Since C is projective and |α| 6= 1, there exists some β ∈ C such that
α ∩ β 6= 0, α. Hence, there exists some weight partition q = p(β) not equal
to p = (0, |α|).

Lemma 6.9. Suppose that p, q ∈ Pα are weight partitions of α and let

β ∈ Cα(p), γ ∈ Cα(q) with γ 6= β, βc, α+ β, α+ βc. If wβ
εw

γ
ι = 0, then

wβ
−εw

γ
ι 6= 0 6= wβ

εw
γ
−ι

Proof. If wβ
εw

γ
ι = 0, then by Lemma 4.12, θβε θ

γ
ι bβ,γ + bα+β,α+γ = 0. For

wβ
−εw

γ
ι to equal zero, we would also require θβ−εθ

γ
ι bβ,γ + bα+β,α+γ = 0 and

hence θβε = θβ−ε, a contradiction. Similarly wβ
εw

γ
−ι 6= 0.

Lemma 6.10. Suppose that |α| 6= 1, 2 and p = (0, |α|) ∈ Pα is a weight

partition of α. Then νp+ and νp− are in F+.

Proof. By Lemma 6.8, there exists another weight partition q 6= p. Let
β ∈ Cα(p), γ ∈ Cα(q). Since q 6= p, γ 6= β, βc, α + β, α + βc, so by Lemma

6.9, there exists ε, ι = ±1 such that wβ
εw

γ
ι 6= 0. However, it is clear that

p(β + γ) = p(γ) = q. So, νqδ ∈ νpεν
q
ι . Since |α| 6= 2, by Lemma 6.7, νq± have

the same grading and therefore νp± ∈ F+.
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6.1 |α| = 1

When |α| = 1, we do not have the eigenvalue λ. Also, it is clear that the
only possible weight partition of α is 0 := (0, 1) and this exists provided
n ≥ 3. As noted previously, since the conjugates of α generate C, the code
is the whole code F

n
2 , for some n.

First suppose that n = 1, 2. Then, 1, 0 ∈ F+ and the only other eigen-
value is λ− 1

2 . By Lemma 6.5, this can only be in F− when a = −1. It is
easy to see that the fusion table in this case is indeed Z2-graded and it is
described in Section 5.1.

Secondly, assume that n ≥ 3. Then, 1, 0, λ − 1
2 ∈ F+ and ν0+ and ν0−

have the same grading, so the only possible Z2-grading if where ν0+ and ν0−
are both in F−. This case is described in the example in Section 5.1 and a
Z2-grading is only possible if n = 3.

6.2 |α| = 2

Now suppose that |α| = 2. Recall that an indecomposable code is one which
is not the direct sum of two other codes. Equivalently, its generating matrix
is not similar to a block diagonal matrix.

Lemma 6.11. Let C be an indecomposable linear code which is generated

by weight two codewords. Then, C is the even weight code, which consists

of all even codewords.

Proof. We show this by induction on the length n. Clearly it is true for
length 2. So let C be length n and dimension k. We define a code C ′

from C by removing all codewords with a 1 in the last position and then
puncturing the code in the last position. So, C ′ has length n − 1 and is
dimension k − 1.

We claim that C ′ is indecomposable. Suppose not, then there exists
a generating matrix M ′ of C ′ which is permutationally similar to a block
diagonal matrix. Since C is generated by weight two codewords there exists
α ∈ C of weight two with a one in the last position. Hence the matrix
formed from M ′ by adding a column of zeroes and the adjoining α has rank
k and so generates C. However, by permutation of the columns it is of block
diagonal form, so C is decomposable, a contradiction.

Since C ′ is indecomposable and generated by weight two elements, by
induction, it is the even weight code. In particular, it has dimension n− 2.
Hence C is an even code of dimension n − 1 and so is the even weight
code.

Corollary 6.12. Let |α| = 2. Then, AC is the code algebra of a code

C which is a direct sum of indecomposable even weight codes all of length

m ≥ 3.
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Proof. By Lemma 6.11, C is a direct sum of codes of even weight. Since all
the codewords of S are conjugate under the automorphism of the code, the
length of each indecomposable subcode must be the same. In particular the
length cannot be 2 as then the code would not be projective.

Note that if C is the even code of length 3 or 4, then there is just one
weight partition 1 := (1, 1). In all other cases, there are two possible weight
partitions, 0 := (0, 2) and 1 := (1, 1).

Lemma 6.13. Suppose that n ≥ 5 and so 0 = (0, 2) ∈ Pα is a weight

partition of α. Then ν0+ and ν0− are in F+.

Proof. By Corollary 6.12, C =
⊕

Ci, where ci are indecomposable even
weight codes of length m ≥ 3. Since n ≥ 5, there exists β, γ ∈ Cα(0) such
that |α ∩ β| = |α ∩ γ|, |β| = |γ| = 2 and |β ∩ γ| = 1. In particular, this
implies that γ 6= β, βc, α+ β, α + βc. So, by Lemma 4.12,

wβ
+w

γ
− = (θβ+θ

γ
−bβ,γ + bα+β,α+γ)e

β+γ + (θβ+bβ,α+γ + θγ−bα+β,γ)e
α+β+γ

Since |β| = |γ| = 2 and |β ∩ γ| = 1, β, α + β ∈ Cγ(1) and γ, α + γ ∈ Cβ(1),
so by our assumptions on the b structure constant, bβ,α+γ = bα+β,γ . Also,

as |α ∩ β| = |α ∩ γ|, θγ− = θβ−, so the coefficient of eα+β+γ above is

bβ,α+γ(θ
β
+ + θβ−) = −2bβ,α+γξβ

Since p(β) = 0, the above is non-zero and so we have 0 6= ν0+ ⋆ ν0− ∈ ν0± and
hence ν0+ and ν0− are in F+.

By Lemmas 6.4, 6.5 and 6.10, the eigenvalues 1, 0, λ − 1
2 and, where

they exist, ν0+ and ν0− are all in F+, so the only possible members of F−

are λ, ν1+ and ν1−. We see in the example from Section 5.2 that in general,
λ ∈ F+ and ν1+, ν

1
− ∈ F−. However, if we make additional assumptions on

the structure constants, then we have a Z2 × Z2-grading, where the λ, ν1+
and ν1− represent the three involutions in Z2 × Z2.

6.3 |α| > 2

From now on we will assume that |α| > 2. Hence, 1, 0, λ, λ − 1
2 are all in

F+. By Lemma 6.7, we also have that the grading of νp+ is the same as that
of νp− for all p ∈ Pα. So we just need to determine the grading on the νp±.

We claim that the grading from the νp± eigenspaces induces a grading of
the code C. That is, we can define a map gr : C → Z2 by

β 7→ gr(wβ
±)

0, 1, α, αc 7→ 1

for β ∈ C∗ \{α,αc}, where gr(wβ
±) denotes the grading in the algebra of wβ

±.
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Lemma 6.14. Viewing C as an additive group, gr : C → Z2 is a homomor-

phism of groups.

Proof. First note that, by Lemma 6.7, the grading of νp+ is the same as that
of νp− for all p ∈ Pα. Hence the map is well-defined. For β, γ ∈ C∗ \ {α,αc}
and γ 6= β, βc, α+β, α+βc, the grading of the code follows from that of the
algebra.

So, suppose that γ = β, βc, α + β, α + βc, then p(β) = p(γ) and the

product wβ
±w

γ
± is in A1 ⊕ A0 ⊕ Aλ ⊕ Aλ− 1

2
⊂ A+. After checking the

remaining cases, we see that gr is a homomorphism.

We denote by C+ and C− the positively and negatively graded parts of
C, respectively. Note that, since gr is a homomorphism, the kernel, which
is C+, has the same size as C−.

Let D = projα(C). Since C is projective, D is too and projα(α) is the
1 ∈ D.

Lemma 6.15. We have gr(ker(projα)) = 1.

Proof. The kernel of the projection is

ker(projα) = {β : α ∩ β = ∅}

which is contained in Cα((0, |α|))∪{0, α
c}. By Lemma 6.10 and the definition

of the grading map, this is all in C+.

Corollary 6.16. The projection map induces a non-trivial grading on D.

C Z2

D

gr

proj gr

Note that a weight partition p = (m, |α|−m) of α corresponds to a union
of two weight sets of D, namely the set of all codewords of D of weights m,
or |α|−m. Hence, D+ is a union of weight spaces of D and it is closed under
taking complements, so 1 ∈ D+. Since it is also closed under addition and
|D+| = |D−|, it is also a codimension one subcode of D.

Conversely, if we have a code with the required properties, then it is
clear that it induces a grading on the fusion table. This completes the proof
of Theorem 6.1.
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