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Code algebras, axial algebras and VOAs
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July 24, 2018

Abstract

Inspired by code vertex operator algebras (VOAs) and their repre-
sentation theory, we define code algebras, a new class of commutative
non-associative algebras constructed from binary linear codes. Let C
be a binary linear code of length n. A basis for the code algebra AC

consists of n idempotents and a vector for each non-constant codeword
of C. We show that code algebras are almost always simple and, un-
der mild conditions on their structure constants, admit an associating
bilinear form. We determine the Peirce decomposition and the fusion
law for the idempotents in the basis, and we give a construction to
find additional idempotents, called the s-map, which comes from the
code structure. For a general code algebra, we classify the eigenvalues
and eigenvectors of the smallest examples of the s-map construction,
and hence show that certain code algebras are axial algebras. We give
some examples, including that for a Hamming code H8 where the code
algebra AH8

is an axial algebra and embeds in the code VOA VH8
.

1 Introduction

Vertex operator algebras (VOAs) were first considered by physicists in con-
nection with chiral algebras and 2D conformal field theory, and subsequently
by mathematicians who noticed intriguing links between finite simple groups
and modular functions, two apparently unrelated mathematical objects. Es-
sentially, a VOA is an infinite dimensional graded algebra with infinitely
many different products which are linked in an intricate way. The prototyp-
ical example is the moonshine VOA, denoted by V ♮, which has the Griess
algebra as the weight two graded part and the Monster sporadic simple
group M as the automorphism group. Despite their relevance, VOAs are
still mysterious objects: they have a deep theory and are quite difficult for
explicit calculations.

∗Departamento de Matematicas, Centro Universitario de Ciencias Exactas e Inge-

nierias, Universidad de Guadalajara, Mexico, email: alonso.castillor@academicos.udg.mx
†Heilbronn Institute for Mathematical Research, School of Mathematics, University of

Bristol, University Walk, Bristol, BS8 1TW, UK, email: justin.mcinroy@bristol.ac.uk

1

http://arxiv.org/abs/1707.07992v4


Introduced by Hall, Rehren and Shpectorov in [5], and extending earlier
work by Ivanov on Majorana algebras [8], axial algebras provide an ax-
iomatic approach to better understand some important properties of VOAs.
An axial algebra is a commutative non-associative algebra generated by semi-
simple primitive idempotents (i.e. the adjoint action decomposes the alge-
bra as a direct sum of eigenspaces and the 1-eigenspace is one-dimensional).
Furthermore, the eigenvectors for any of the given idempotents multiply to-
gether in a specific way as given by a table called the fusion law. Majorana
algebras are a special case of axial algebras, directly linked with the Griess
algebra and V ♮, in which all idempotents in the generating set have eigen-
values 1, 0, 1

4 and 1
32 , and satisfies a specific fusion law. Many axial algebras

(Majorana algebras in particular) also admit a symmetric bilinear form that
associates with the algebra product (i.e. (v, u ·w) = (v ·u,w) for all v, u,w);
this is called a Frobenius form.

Inspired by the axiomatic approaches to VOAs described above, we in-
troduce code algebras, a new class of commutative non-associative algebras
constructed from binary linear codes. Our construction is an axiomatisation
of the construction of code VOAs. These were first studied by Miyamoto
in [12, 13], and by Dong, Griess and Höhn in [4], and they form an impor-
tant class of VOAs whose representation theory is governed by two binary
linear codes. In [10], Lam and Yamauchi show that every framed VOA V
(such as V = V ♮) has a uniquely defined code sub VOA and V is a simple
current extension of its code sub VOA. Moreover, Miyamoto provides a new
construction of V ♮ in this way in [14]. Every code VOA has a code algebra
embedded in it, however code algebras are a wider class of algebras than
those embeddable in code VOAs.

Definition 1. Let C ⊆ Fn
2 be a binary linear code of length n, F a field and

Λ be a collection of structure parameters

Λ := {ai,α, bα,β, ci,α ∈ F : i ∈ supp(α), α, β ∈ C∗, β 6= α,αc} .

where C∗ := C−{0,1}. The code algebra AC(Λ) is the commutative algebra
over F with basis

{ti : i = 1, . . . , n} ∪ {eα : α ∈ C∗},

2



and multiplication given by

ti · tj = δi,jti

ti · e
α =







ai,α e
α if αi = 1

0 if αi = 0

eα · eβ =



















bα,β e
α+β if α 6= β, βc

∑

i∈supp(α)

ci,αti if α = β

0 if α = βc

One particularly nice choice of structure parameters is where a = ai,α,
b = bα,β and c = ci,α for all i ∈ supp(α), α, β ∈ C∗. We note that A = AC(Λ)
embeds into the corresponding code VOA if a = 1

4 and c = 4b2. We say the
algebra A is non-degenerate if supp(C) = {1, . . . , n}, |C∗| > 0 and the
structure parameters are all non-zero.

Code algebras are generically non-associative and they are almost always
simple. Indeed, the following is our first important result.

Theorem 1. A non-degenerate code algebra AC is simple unless C = {0,1,
α, αc}. In the latter case, the algebra has exactly two non-trivial proper

ideals.

A code algebra has some obvious idempotents, namely the tis. If ai,α 6= 1
for all α ∈ C∗, then ti is primitive and semi-simple and we completely
determine its fusion law which is given in Table 1 of Proposition 3.11. We
note that, when the structure parameters are (a, b, c) with a 6= 1 there are
exactly three eigenvalues, 1, 0 and a, and moreover the fusion law is the
same as for axial algebras of Jordan type [6]. Furthermore, we show that ti
satisfies the so-called Seress condition (i.e. A0Aλ ⊆ Aλ, for all eigenvalues
λ 6= 1) if and only if ti has exactly one eigenvalue not equal to 0 or 1.
(This is a small remainder of associativity in a non-associative setting, see
[5, Proposition 3.9].)

If ai,α 6= 1 for all α ∈ C∗ with αi = 1 and char(F) 6= 2, the fusion law for ti
induces a Z2-grading on the algebra, so we may define an involutory algebra
automorphism τi, called a Miyamoto involution. Provided the structure
parameters are regular (see Definition 3.5), the automorphism group Aut(C)
of the code also has a natural induced action on AC .

Theorem 2. Suppose char(F) 6= 2 and let AC be a non-degenerate code

algebra with regular structure parameters where ai,α 6= 1 for all i ∈ supp(α),
α ∈ C∗. Then,

G = M :Aut(C) ≤ Aut(AC)

where M = 〈τi : i = 1, . . . , n〉.
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We may also define Frobenius forms on code algebras.

Theorem 3. A non-degenerate code algebra AC admits a Frobenius form if

and only if conditions on the structure parameters (see Theorem 3.21) are

satisfied. If so, the form is uniquely defined up to scaling by a choice of λi,

i = 1, . . . , n, and is given by (ti, tj) = δi,jλi, (ti, e
α) = 0 and (eα, eβ) =

ci,α
ai,α

λiδα,β, where αi = 1, apart from one example with C = {0,1, α, αc}.

In comparison, Hall, Segev and Shpectorov show that axial algebras of
Jordan type admit a unique Frobenius form [7], but this is not known for
general axial algebras.

In order for a code algebra to be an axial algebra, we must have enough
idempotents to generate it. Inspired by the example of the Hamming code
VOA VH8

, we make the following definition of the s-map. Given a constant
weight subcode D of C (i.e. there is only one weight of codeword in D∗ :=
D − {0,1}) where the structure parameters supported on D∗ are constant
(a, b, c) and v ∈ Fn

2 , there exists an idempotent in AC of the form

s(D, v) := λ
∑

i∈supp(D)

ti + µ
∑

α∈D∗

(−1)(v,α)eα

where λ, µ ∈ F satisfy a linear and quadratic equation respectively which
are given in Proposition 4.2. We will assume that we have taken the field
large enough so that the quadratic equation has solutions.

All binary linear codes C possess a constant weight subcode D. In fact,
D = {0, α} for α ∈ C∗ is the smallest such example. So, we call s(D, v) a
small idempotent. For idempotents in general it is difficult to find even the
eigenvalues and eigenvectors, but for small idempotents we can do this.

Theorem 4. Let AC be a non-degenerate code algebra on a constant weight

code C with structure parameters satisfying the conditions in Theorem 4.7
and a 6= 1

2|α| ,
1

3|α| . Then, the small idempotents are

e± := λ
∑

i∈supp(α)

ti ± µeα

where λ = 1
2a|α| and µ2 = λ−λ2

c
. Furthermore, e± are primitive axes for the

fusion law given in Table 3.

In some cases, the small idempotents generate the whole algebra and so
we obtain the following.

Corollary 1. Suppose C is a simplex or first order Reed-Muller code and

AC(a, b, c) is a non-degenerate code algebra with a 6= 1
2|α| ,

1
3|α| . Then A is

an axial algebra.
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The case of an arbitrary code (not constant weight) will be dealt with
in an upcoming paper [3].

The structure of the paper is as follows. In Section 2, we give some basic
results on linear codes and axial algebras. Code algebras are defined in Sec-
tion 3 and we investigate their algebra structure, including their simplicity,
automorphism group and Frobenius form, proving Theorems 1, 2 and 3. In
Section 4, we give the s-map construction and investigate small idempotents,
proving Theorem 4 and Corollary 1. We present some examples in Section
5. The most important of these is the code algebra AH8

for the extended
Hamming code H8: this is an axial algebra that coincides with the degree
2 piece of the code VOA of H8 [12, 13]. Finally, in Appendix A, we outline
the construction of code VOAs which provides part of the motivation for
the definition of code algebras.

Notation. Throughout the paper, we write statements involving 1 ∈ C,
or the complement αc of a codeword α. We do not assume that 1 ∈ C, or
complements exist, just that if they do, then these statements should hold.

We would like to acknowledge a Heilbronn Collaboration Grant which
made possible a visit to Bristol from the first and third authors and also
a Mexican Academy of Sciences grant under the Newton Fund/CONACYT
for a visit of the second author to Guadalajara. We would like to thank Tim
Burness for some helpful comments on a previous draft of this paper.

2 Background

We begin by reviewing some facts about codes and fixing notation, before
giving the definition and some brief details about axial algebras.

2.1 Binary linear codes

Let F2 be the field with two elements. A binary linear code C of length n and
dimension k is a k-dimensional subspace of Fn

2 . We write [n] := {1, . . . , n}.
For any α = (α1, . . . , αn) ∈ Fn

2 , denote its support by

supp(α) := {i ∈ [n] : αi = 1},

and its Hamming weight by |α| := |supp(α)|. The support of the code
C itself is defined to be supp(C) :=

⋃

α∈C supp(α) and the weights of the
codewords in C is denoted wt(C) := {|α| : α ∈ C}.

The (Hamming) distance between two codewords is d(α, β) = |α − β|.
The minimum distance of a code C is the minimum distance between any

two codewords. For a linear code C, this is equal to the minimum weight
of a codeword in C. A [n, k, d]-code is simply a k-dimensional binary linear
code of length n with minimum distance d.
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Two codes C and D are similar if there exists g ∈ Sn such that Cg = D,
where Sn acts naturally on C by permuting the coordinates of the codewords.
We define the automorphism group of C as Aut(C) := {g ∈ Sn : Cg = C}.

We write C∗ for the non-constant codewords in C; that is, all codewords
which are not 0 := (0, . . . , 0), or 1 := (1, . . . , 1). If 1 ∈ C, then every α ∈ C
has a complement, denoted by αc := 1+ α. Conversely, if some α ∈ C has
a complement, then 1 ∈ C and every codeword in C has a complement.

Consider the usual dot product (·, ·) : Fn
2 × Fn

2 → F2 given by (u, v) :=
∑n

i=1 uivi for u, v ∈ Fn
2 . For any v ∈ Fn

2 and k ∈ {0, 1}, we define

Ck(v) := {α ∈ C : (α, v) = k}.

When the v is clear, we write Ci instead of Ci(v). We define C∗
i := Ci −

{0,1}. Note that by definition we have α ∈ C(α,v).

Lemma 2.1. Let C ⊆ Fn
2 be a binary linear code of length n. Let v ∈ Fn

2

and Ck = Ck(v), for k ∈ {0, 1}. Then:

1. The map α 7→ (α, v) is a homomorphism from C to F2, viewed as

additive groups. Hence, C is the disjoint union of C0 and C1.

2. C0 is a binary linear code, so, in particular, it is non-empty.

3. If C1 is non-empty, then |C0| = |C1| =
|C|
2 .

Furthermore, if 1 ∈ C, then:

4. If v has odd weight, then the complements of codewords in C0 lie in

C1 and vice versa.

5. If v has even weight, then each Ck is closed under taking complements.

Proof. It is easy to see that the map given in part 1 is a homomorphism and
the remainder of the Lemma follows from this.

2.2 Axial algebras

In this section, we will review the basic definitions related to axial algebras.
For further details, see [5, 6]. Let F be a field not of characteristic two,
F ⊆ F a subset, and ⋆ : F × F → 2F a symmetric binary operation. We
call the pair (F , ⋆) a fusion law over F. The fusion law is G-graded, where
G is a finite abelian group, if there exist a partition {Fg}g∈G of F such that
a ⋆ b ⊆ Fgh for all a ∈ Fg, b ∈ Fh, g, h ∈ G.

Let A be a non-associative (i.e. not-necessarily-associative) commutative
algebra over F. For an element a ∈ A, the adjoint endomorphism ada is
defined by ada(v) := av, ∀v ∈ A. Let Spec(a) be the set of eigenvalues of
ada, and for λ ∈ Spec(a), let Aλ(a) be the λ-eigenspace of ada. Where the
context is clear, we will write Aλ for Aλ(a).

6



Definition 2.2. Let (F , ⋆) be a fusion law over F. An element a ∈ A is an
F-axis if the following hold:

1. a is idempotent (i.e. a2 = a),

2. a is semisimple (i.e. the adjoint ada is diagonalisable),

3. Spec(a) ⊆ F and AλAµ ⊆
⊕

γ∈λ⋆µ Aγ , for all λ, µ ∈ Spec(a).

We say that an F-axis a is primitive if A1 = 〈a〉.

Definition 2.3. An axial algebra is a pair (A,X), where A is a non-
associative commutative algebra and X is a set of F-axes that generate
A. We say the axial algebra is primitive if all the axes in X are primitive.

When the fusion law is clear from context we drop the F and simply use
the term axis and axial algebra. We will also abuse notation and just write
A for an axial algebra (A,X).

Definition 2.4. Let A be an F-axial algebra. A Frobenius form is a non-
zero bilinear form (·, ·) : A×A → F that associates. That is, for all x, y, z ∈
A,

(x, yz) = (xy, z)

Sometimes in the literature it is also required that (a, a) = 1 for each
a ∈ X, however we will not require this. In the context of VOAs, the value
1
2(a, a), where a is an F-axis, is called the central charge of A.

In particular, a Majorana algebra is an axial algebra over R with a posi-
tive definite Frobenius form, where F = {0, 1, 14 ,

1
32} with fusion law ⋆ given

by [9, Table 1]. These kinds of algebra generalise subalgebras of the Griess
algebra.

3 Code algebras

Inspired by code VOAs and Theorem A.6, we will now introduce our main
definition which is the subject of this paper.

Let C ⊆ Fn
2 be a binary linear code of length n and F a field. Recall

from Definition 1 that a collection of structure parameters is a subset of F

Λ := {ai,α, bα,β, ci,α ∈ k : i ∈ supp(α), α, β ∈ C∗, β 6= α,αc} .

The code algebra AC(Λ) is the commutative algebra over F with basis

{ti : i ∈ [n]} ∪ {eα : α ∈ C∗},

and multiplication given by in Definition 1.
The code algebra AC(Λ) has dimension n + |C∗|. Note that the set of

structure parameters defined above gives some of the structure constants

7



for the algebra, while the remaining structure constants are all zero. One
particularly nice choice of structure parameters are Λ = {ai,α = a, bα,β =
b, ci,α = c} which we will write (a, b, c). The basis elements ti and eα are
called toral and codeword elements, respectively. It will sometimes be con-
venient to abuse notation by writing tα =

∑

i∈supp(α) ti where α ∈ C∗.

Remark 3.1. Since the algebra is commutative by definition, we must have
bα,β = bβ,α for all α, β ∈ C∗. However, AC(Λ) is non-associative in general.
In fact, if AC(Λ) is associative, then all the a and c structure parameters
must be zero.

As the following example shows, the algebra AC(Λ) is not in general even
power associative.

Example 3.2. Suppose AC(a, b, c) is a code algebra and x = eα for some
α ∈ C∗. Then x2 = ctα

(x2)2 = ctα

x(x · x2) = ac2|α|tα

which is not equal in general and hence the algebra is not power associative.

We want to impose a non-degeneracy condition on code algebras.

Definition 3.3. A code algebra AC(Λ) is non-degenerate if supp(C) = [n],
|C∗| > 0 and none of the structure parameters in Λ are zero.

Example 3.4 (Code VOA example). The algebra described in Theorem
A.6 is a non-degenerate code VOA with structure parameters (a, b, c) =
(14 , λ, 4λ

2). We will call such a choice of structure parameters code VOA

structure parameters.

Some algebras with specific choices of structure parameters will be more
interesting than others. In particular, we will be interested in algebras with a
large automorphism group and this will impose restrictions on the structure
parameters. One obvious place the automorphisms may come from is from
the code itself. We first need a definition.

Definition 3.5. Let G ≤ Aut(C). The structure parameters Λ are called
G-regular if for all g ∈ G

1. ai,α = aig,αg for all i ∈ supp(α), α ∈ C∗

2. bα,β = bαg,βg for all, α, β ∈ C∗, β 6= α,αc

3. ci,α = cig,αg for all i ∈ supp(α), α ∈ C∗

They are regular if they are Aut(C)-regular.

8



Note that Λ being G-regular just means that bα,β is constant on G-orbits
of C × C and ai,α and ci,α are both constant on G-orbits of Fn

2 × C.
Let G ≤ Aut(C) and consider the mapping ϕ : G → Aut(AC), where for

each g ∈ G, ϕ(g) is the linear extension to AC of

tgi := tig−1

(eα)g := eαg
−1

Lemma 3.6. Let G ≤ Aut(C). The above mapping ϕ : G → Aut(AC) is

a well-defined group homomorphism (i.e. an algebra representation of G on

AC) if and only if the structure parameters are G-regular. Moreover, when

this representation is defined it is faithful.

Proof. Since G has a well-defined action on the codewords of C, and so C∗,
and also on Fn, it is clear that ϕ is a group homomorphism. It remains
to check whether, for all g ∈ G, ϕ(g) respects multiplication in the algebra.
Checking this, we find that the above are necessary and sufficient conditions.
When the action is defined it is clear that it is faithful as Aut(C) acts
faithfully on Fn.

We note that the code VOA example satisfies these conditions.

3.1 Subalgebras and simplicity

A subalgebra of AC(Λ) which has a basis of idempotents that pairwise mul-
tiply to 0 is called a torus; clearly, this is always associative. The subalgebra
〈ti : i ∈ [n]〉 is an example of such a torus; we call it the standard torus. It
is easy to see that it is maximal. Indeed, suppose there exists a non-zero
idempotent x ∈ AC which could be added to the standard torus. If it is
supported on any ti, or any eα where αi = 1, then tix 6= 0, a contradiction.
However, this includes all basis elements, so x = 0 and the standard torus
is maximal. In the context of Majorana algebras, maximal tori have been
studied and classified for low-dimensional cases [2].

It is easy to see that there are some other subalgebras of AC which are
induced from subcodes of C.

Lemma 3.7. Let AC be an arbitrary code algebra and D a subcode of C.

Then D defines a subalgebra

〈ti, e
α : α ∈ D, i ∈ supp(D)〉.

Proof. We just need to check that the multiplication of the generators of the
subalgebra is closed. Any toral element multiplied by a codeword element
is either zero or is a multiple of the same codeword element. Since D is a
subcode, multiplication of two distinct codeword elements is closed. Finally,
since we include all the toral support for each codeword, multiplication of a
codeword element by itself is also closed.

9



Recall that an algebra A is simple if it has no non-trivial proper ideals.

Theorem 3.8. A non-degenerate code algebra AC is simple unless C =
{0,1, α, αc}.

Proof. Let I be a non-trivial ideal of A. Let x ∈ I such that x 6= 0. We
write x =

∑

i∈[n] λiti +
∑

α∈C∗ λαe
α. There are two cases.

Suppose λα 6= 0 for some α ∈ C∗. We may choose α so that there does
not exist β ∈ C∗ with supp(β) % supp(α) and λβ 6= 0. Then,

(tj1(. . . (tjkx)) . . . ) = aj1,α . . . ajk,αλαe
α ∈ I

where supp(α) = {j1, . . . , jk}. Hence e
α ∈ I. Observe that, for any β ∈ C−

{0,1,α, αc}, we have eβ ∈ I because eα+βeα = bα+β,βe
β ∈ I. Furthermore,

as αc = β + (β + αc), where β, β + αc ∈ C − {0, 1, α, αc}, we also have
eα

c
= 1

bβ+αc,β
eβ+αc

eβ ∈ I. So, eβ ∈ I for all β ∈ C∗. Observe that (eβ)2 =
∑

i∈supp(β) ci,βti for any β ∈ C∗. Hence, for all j ∈ [n] we may find β ∈ C∗

such that j ∈ supp(β), so tj =
1

ci,β
tj(e

β)2 ∈ I. Therefore, I = A.

Now suppose λα = 0 for all α ∈ C∗, then λi 6= 0 for some i ∈ [n]. It is
easy to see that ti =

1
λi
tix ∈ I. Now, eβ = 1

ai,α
tie

β ∈ I for any β ∈ C∗ with

i ∈ supp(β). Therefore, x′ = eβ is as in the case above and we conclude
that I = A.

We now see that the condition on the above proposition was indeed
necessary.

Lemma 3.9. If C = {0,1,α, αc}, then a non-degenerate code algebra AC

has exactly two non-trivial proper ideals

〈
∑

i∈supp(α)

ti, e
α〉, 〈

∑

i∈supp(αc)

ti, e
αc

〉.

Proof. This is an easy calculation.

3.2 Idempotents

Code algebras are constructed in such a way that there are some obvious
idempotents. Throughout this section we assume that A = AC(λ) is non-
degenerate.

Recall from Section 2 the adjoint transformation and the notation

Aµ(v) := {w ∈ A : adv(w) = µw}.

Where it is clear from the context, we will write Aµ for Aµ(v).

10



Lemma 3.10. For any i ∈ [n], adti is semisimple with eigenvalues 1, 0 and

the set {ai,α : i ∈ supp(α), α ∈ C∗} and if ai,α 6= 1 for all α ∈ C∗ with

αi = 1 then

A = A1 ⊕A0 ⊕
⊕

Aai,α ,

where A1 = 〈ti〉, A0 = 〈tj, e
α : j ∈ [n], j 6= i, αi = 0〉 and Aai,α = 〈eβ : βi =

1, aj,β = ai,α〉. Moreover, A0 has dimension
|C|
2 + n− 2.

Proof. The subspaces are clear from the definition of code algebras. By
Lemma 2.1, we see that the number of α ∈ C∗ such that αi = 0 is |C|

2 −1.

We note that the 1-eigenspace is spanned by ti. That is, ti is a prim-
itive idempotent. We can now give the fusion law for ti. In the table,
rows and columns correspond to eigenspaces and the entries are the sum of
the eigenspaces in which the product of two elements in the corresponding
eigenspaces lies. We label the eigenspaces by their eigenvalues and adopt
the convention that an empty entry represents a zero product.

Proposition 3.11. Suppose that the eigenvalues of ti are {1, 0, a1, . . . , ak}
and that if ai,α 6= 1 for all α ∈ C∗ with αi = 1. Then the fusion law with

respect to ti is given by Table 1.

1 0 a1 . . . ak

1 1 a1 . . . ak

0 0 a1, . . . , ak . . . a1, . . . , ak

a1 a1 a1, . . . , ak 1, 0 0 0

...
...

... 0
. . . 0

ak ak a1, . . . , ak 0 0 1, 0

Table 1: Fusion law with respect to ti.

Proof. The first row and column is clear since ti is a primitive idempotent.
For the row corresponding to A0 = 〈tj , e

α : j ∈ [n], j 6= i, αi = 0〉, observe
that the product of any two toral elements from here gives either the same
toral element or zero. The product of two codeword elements gives another
with a 0 in the ith position and the product of a toral and codeword element
gives a multiple of the same codeword element. Any codeword element eα

in Aaj has αi = 1, so its product with a codeword element in A0 will also
have a 1 in the ith position. Hence, it will be a non-zero eigenvector for ti,
but not necessarily for aj. The product of e

α with a toral element in A0 will
either be a scalar multiple of eα, or zero.

11



Finally, let eα ∈ Aaj and eβ ∈ Aak . If j 6= k, then eαeβ is either bα,βe
α+β

or 0. Since αi = βi = 1, the ith position of α + β is 0, hence the product is
in the zeroth eigenspace. If j = k, then either α 6= β and the product is in
the zeroth eigenspace as above, or α = β and the product is the sum of the
toral elements in supp(α), one of which is ti.

Note that for a given code and structure parameters, the product of the
two eigenspaces may actually be a smaller set than that which is suggested
by the fusion law in Table 1. Also, if some ai,α = 1, then this just means
that two of the columns (and the corresponding rows) are merged in the
fusion table. This difficulty can be overcome by defining the fusion law to
be defined on a set of indeterminates F rather than the eigenvalues and then
having a map from F to the eigenvalues.

Corollary 3.12. If ai,α 6= 1 for all α ∈ C∗, then ti is a primitive F-axis,

where F is the fusion law given in Table 1.

Example 3.13 (Code VOA example). The structure parameters in the code
VOA example are (a, b, c) = (14 , λ, 4λ

2), so we have the fusion law given in
Table 2.

1 0 1
4

1 1 1
4

0 0 1
4

1
4

1
4

1
4 1, 0

Table 2: VOA fusion law with respect to ti.

Suppose that ai,α 6= 1 for all α ∈ C∗ with αi = 1. Then, we see from
Table 1 that the fusion law for ti is Z2-graded. So, this induces a Z2-grading
on A:

A = A+ ⊕A−,

where A+ := A0 ⊕A1 and A− :=
⊕

Aai,α . If char(F) 6= 2, there is a natural
algebra automorphism of order at most two, denoted by τi ∈ Aut(A), which
acts trivially on A+ and negates the vectors in A−. We call τi the Miyamoto

involution associated to ti. Note that when A is non-degenerate, A− is
non-empty and τi does indeed have order two.

We call the group M = 〈τi : i = 1, . . . , n〉 generated by the Miyamoto
involutions, the Miyamoto group.

Proposition 3.14. Suppose char(F) 6= 2 and let AC be a non-degenerate

code algebra with regular structure parameters where ai,α 6= 1 for all i ∈

12



supp(α), α ∈ C∗. Define G ≤ Aut(A) to be the group generated by Aut(C)
and the Miyamoto group M . Then

G = M :Aut(C)

is a semi-direct product of M = 〈τi : i = 1, . . . , n〉 by Aut(C).

Proof. By Lemma 3.6, Aut(C) has a well-defined faithful action on AC .
In particular, it acts faithfully on the ti by permuting the indices. As M
fixes all the indices, M ∩ Aut(C) = 1. Let α ∈ C and i = 1, . . . , n. Since
αi = (αg)ig for all g ∈ Aut(C), we see that

τig = gτig

In particular, we see that MAut(C) = Aut(C)M is a group and hence
G = MAut(C). Moreover, M is a normal subgroup of G and so we have a
semi-direct product.

The fusion law for an idempotent e satisfies the Seress condition if 1, 0 ∈
F and

A0Aλ ⊆ Aλ

for all eigenvalues λ 6= 1 (see [6, Section 2.2]).

Proposition 3.15. Suppose that ai,α 6= 1 for all i ∈ supp(α), α ∈ C∗.

Then, the fusion law for ti satisfies the Seress condition if and only if ti has
at most one eigenvalue which is not 0 or 1.

Proof. By Lemma 3.11, it is clear that the fusion table satisfies the Seress
condition if ti has at most one eigenvalue which is not 0 or 1. Conversely,
suppose that the fusion law for ti satisfies the Seress condition and there is
at least one eigenvalue λ 6= 0, 1. By Lemma 3.10, all eα such that αi = 0 are
in the 0-eigenspace. Let eβ ∈ Aλ. By assumption, the fusion law satisfies
the Seress condition and hence bα,βe

α+β = eβeα ∈ Aλ for all α ∈ C0(i) such

that α 6= βc. By Lemma 2.1, this has dimension at least |C|
2 − 1 if 1 ∈ C

and |C|
2 if 1 /∈ C. By Lemma 3.10, dimA1 ⊕A0 = n+ |C|

2 − 1. Since dimA
is n+ |C| − 2 if 1 ∈ C and n+ |C| − 1 if 1 /∈ C, by a counting argument we
see that λ can be the only non-trivial eigenvalue.

We note that if there is exactly one eigenvalue a of ti which is not equal
to 1 or 0, then the fusion law is the same as for axial algebras of Jordan
type a (see [6]). The following will be allow us to show when the algebra is
unital.

Lemma 3.16. Suppose AC is a non-degenerate code algebra. Then, there

exists an element t ∈ AC(λ) such that t · ti = ti and t ·eα is a scalar multiple

of eα for all i ∈ [n], α ∈ C∗. Moreover, there is a unique such element, it is

an idempotent and it is given by t =
n
∑

i=1
ti.

13



Proof. We write t =
n
∑

i=1
λiti+

∑

α∈C∗

λαe
α, for some λi, λα ∈ R. Suppose that

λβ 6= 0 for some β ∈ C∗. We calculate products:

teβ =
∑

i∈supp(β)

λiai,β e
β +

∑

α6=β,βc

λαbα,β e
α+β + λβ

∑

i∈supp(β)

ci,βti

By assumption this is some scalar multiple of eβ. So, by considering coef-
ficients of ti, we see that ci,β = 0 for all i ∈ [n], contradicting AC being
non-degenerate. Hence, λβ = 0 for all β ∈ C∗.

Considering the product with tj, we now see that

ttj =

n
∑

i=1

λititj = λjtj

and hence we see that λj = 1 for all j ∈ [n]. Therefore, when such a t

does exist it is
n
∑

i=1
ti and so is unique. It is easy to see that such a t is an

idempotent.

Corollary 3.17. Let AC be a non-degenerate code algebra such that for

every α ∈ C∗, ai,α = aj,α for all i, j ∈ supp(α). Then A has an identity if

and only if ai,α = 1
|α| for all i ∈ supp(α), α ∈ C∗.

Proof. By Lemma 3.16, the only candidate for an identity is t =
∑

ti. Since
for each α ∈ C∗, we have

teα =
∑

i∈supp(α)

ai,αe
α

it is clear that t is the identity if and only if ai,α = 1
|α| for all i ∈ supp(α).

3.3 Frobenius form

We now made the analogous definition for code algebras as for axial algebras
(see Definition 2.4).

Definition 3.18. A Frobenius form on a non-degenerate code algebra A is
a bilinear form (·, ·) : A×A → F such that the form associates. That is, for
all x, y, z ∈ A,

(x, yz) = (xy, z)

We now collect some basic facts about Frobenius forms. The following
is adapted from [5, Proposition 3.5].

Lemma 3.19. An associative bilinear form on a non-degenerate code alge-

bra A is symmetric.
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Proof. We need only show the result on a basis of A; we use the standard
basis consisting of t1, . . . , tn and eα, α ∈ C∗. We note that for each b in
the basis, b = b1b2 where b1, b2 are some scalar multiple of a basis element.
Explicitly, ti = titi and eα = ( 1

ai,α
ti)e

α where αi = 1. Now for some other

element c ∈ A we have

(b, c) = (b1b2, c) = (b1, b2c) = (b1, cb2) = (b1c, b2) = (cb1, b2) = (c, b).

Lemma 3.20. [5] Suppose A is a non-degenerate code algebra which admits

a Frobenius form. Then, the eigenspaces of a semisimple element of A are

perpendicular.

Proof. Let x ∈ Aλ
a, y ∈ Aµ

a , λ 6= µ, with respect to a semisimple element a.
We have

λ(x, y) = (xa, y) = (x, ay) = µ(x, y)

Since λ 6= µ, (x, y) = 0.

In particular, we may take the semisimple element to be an F-axis in
the above lemma.

Theorem 3.21. Let AC(Λ) be a non-degenerate code algebra. Then, AC(Λ)
admits a Frobenius form if and only if there exist constants λ1, . . . , λn ∈ F
such that

1. λα :=
ci,α
ai,α

λi is constant for all i ∈ supp(α).

2. bα,βλγ = bα,γλβ = bβ,γλα for all α, β, γ ∈ C∗ such that α+ β = γ.

Furthermore, when the Frobenius form does exist, it is given by

(ti, tj) = δi,jλi

(ti, e
α) =

{

λi,α if C = {0,1, α, αc}, |α| = 1, asupp(α),α = 1

0 otherwise

(eα, eβ) = λαδα,β

In the exceptional case, where C = {0,1, α, αc} with |α| = 1 and asupp(α),α =
1, the Frobenius form is uniquely defined (up to scaling) by the λi and λi,α

and otherwise it is uniquely defined (up to scaling) by the λi.

Proof. Consider a potential such form and define λi = (ti, ti) for all i ∈ [n].
By Lemma 3.20, the eigenspaces of a given F-axis are perpendicular. So,
(ti, tj) = 0 for i 6= j and, if ai,α 6= 1, (ti, e

α) = 0 also. Now, if |α| ≥ 2, then
there exists j ∈ supp(α) such that j 6= i. Since C is non-degenerate, eα and
ti are in different eigenspaces with respect to tj and so (ti, e

α) = 0.
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If α, β ∈ C∗ are distinct, then there is some position i such that i ∈
supp(α) and i 6∈ supp(β). So, eα and eβ lie in different eigenspaces with
respect to ti and hence (eα, eβ) = 0. Therefore, any Frobenius form is
diagonal with respect to our chosen basis, apart from possibly if |α| = 1 and
ai,α = 1. We write λα := (eα, eα).

Observe that

(ti · e
α, eβ) =

{

ai,αλα if α = β, αi = 1,

0 otherwise.

Whereas,

(ti, e
α · eβ) =

{

ci,αλi if α = β, αi = 1,

0 otherwise.

and so we see that we must have λα =
ci,α
ai,α

λi, for (·, ·) to be a Frobenius

form. This provides the first of our conditions.
We have

(eα, eβ · eγ) =











bβ,γλα if α = β + γ,
∑

i∈supp(β) ci,β(e
α, ti) if β = γ,

0 otherwise.

First we consider the case where |α| = 1. Let {i} = supp(α). We claim
that either there exists β ∈ C∗

i such that β 6= α, or C = {0,1, α, αc}.
Suppose we don’t have such a β; then, C∗

i = {α}. Now, either 1 /∈ C and so
Ci = C∗

i = {α} which implies C = {0, α = 1}, a contradiction. Or, 1 ∈ C,
Ci = {α,1} and so C = {0,1, α, αc}, proving the claim.

We consider the above with β = γ 6= α. If C = {0,1, α, αc}, then
β = αc and we have (eαeα

c

, eα
c

)0 = (eα, eα
c

eα
c

). Otherwise, there exists
β ∈ C∗

i such that α 6= β. Now, for the form to be Frobenius, we must have
0 = (eαeβ, eβ) = (eα, eβeβ) = ci,β(e

α, ti). Therefore (ti, e
α) = 0, as required.

Now, as the condition γ = α + β is equivalent to α = β + γ, we have
(eα · eβ, eγ) = (eα, eβ · eγ) and the form is indeed Frobenius only if bα,βλγ =
bβ,γλα. If this condition holds, as the form is symmetric, we also have
(eα ·eβ, eγ) = (eβ ·eα, eγ) = (eβ , eα ·eγ) and so we obtain the second condition.

Finally, we have (ti · tj, tk) = (ti, tj · tk) and (ti · tj, e
α) = (ti, tj · e

α).
So if C = {0,1, α, αc}, |α| = 1 and asupp(α),α = 1, there is no restriction of
(λi,α = (ti, e

α). This completes the uniqueness proof.

When we have the structure parameters Λ = (a, b, c) with a 6= 1, the
only possible choice which satisfies the above conditions is λ := λ1 = · · · =
λn. Therefore, apart from the exceptional case, AC(a, b, c) always admits a
unique Frobenius form up to scaling.
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Proposition 3.22. Let AC(Λ) be a non-degenerate code algebra with regu-

lar structure parameters which admits a Frobenius form and let G := M :
Aut(C) be the group generated by the Miyamoto involutions associated to

the ti, i ∈ [n], and Aut(C). Then the form is G-invariant if and only if

(ti, ti) = (tig, tig)

for all g ∈ G, i ∈ [n] and, if C = F2
2, λsupp(α),α = λsupp(αc),αc.

Proof. It is clear that the above is necessary for the form to be G-invariant,
so we must just show that it is sufficient. Since the structure parameters
are regular,

λαg =
cig,αg
aig,αg

λig =
ci,α
ai,α

λi = λα

for all α ∈ C∗.

Before we prove our next result we recall the following standard spectral
theorem which can be found, for example, in [15].

Theorem 3.23. Let V be a finite-dimensional vector space over R endowed

with a bilinear form which is positive definite and ϕ be an endomorphism of

V . Then ϕ satisfies (ϕ(x), y) = (x, ϕ(y)) for all x, y ∈ V if and only if ϕ
is orthogonally diagonalisable. That is, there is a basis of eigenvectors of ϕ
with are orthogonal with respect to the form (·, ·).

Proposition 3.24. Let AC be a code algebra over R with a Frobenius form

such that ai,α and ci,α have the same sign for all i ∈ [n] and α ∈ C∗. Then,

for any a ∈ A, ada is orthogonally diagonalisable over K. In particular, any

idempotent e ∈ A is semi-simple.

Proof. By Theorem 3.21, the Frobenius form is diagonal with positive co-
efficients on the diagonal. Hence, it is positive definite and so by Theorem
3.23, ada is orthogonally diagonalisable.

4 The s map

In this section we will describe a way to find other idempotents of the code
algebra. But before we do, we need one more fact about codes in addition
to those in Section 2.

Lemma 4.1. Let D be a binary linear code. The number of ordered ways

of obtaining α ∈ D as the sum β + γ where β, γ ∈ D is |D|.

Proof. Fix α ∈ D and consider the map β 7→ α+β. This map is a bijection
from D to D, so for γ ∈ D there is exactly one β such that α + β = γ.
Hence, considering all different α, we see that there are |D| ways to obtain
γ as an ordered sum.
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If we limit ourselves to D∗ = D−{0,1}, the number of ordered ways of
obtaining γ ∈ D∗ as an ordered sum is

e := |D| − 2(|D| − |D∗|) = 2|D∗| − |D|

We define a (sub)code D to be constant weight if all non-constant code-
words have the same weight, i.e. |wt(D∗)| = 1. (Note that this is a slightly
wider definition than is standard.) Observe that if D is a constant weight
subcode of C, then the sum of any two vectors in D∗ is either in D∗ or is 0
or 1.

We introduce the notation tD :=
∑

i∈supp(D) ti, where D is a subcode of
C and recall that tα =

∑

i∈supp(α) ti.

Proposition 4.2. Suppose that D is a constant weight subcode of C and

the structure parameters supported on D∗ are constant (a, b, c). Then, for

v ∈ Fn
2 , there exists an idempotent of the form

s(D, v) := λtD + µ
∑

α∈D∗

(−1)(v,α) eα,

with µ, λ ∈ F, if and only if

λ =
1− beµ

2ad

and µ satisfies the equation

(

b2e2 + 4a2c|D∗|
d3

m

)

µ2 + 2be(ad− 1)µ + 1− 2ad = 0

where d is the weight of the codewords in D∗ and m := |supp(D)|.

Remark 4.3. Note that whether an idempotent s(D, v) exists or not, does
not depend on v, but on the subcode D and the algebra A. However, we can
always extend the field of definition for A so that the two above equations
for λ and µ have solutions. In the following, we will often just assume that
the field has been taken to be large enough.

Proof of Proposition 4.2. Let s := s(D, v). We begin by multiplying:

s · s =

(

λtD + µ
∑

α∈D∗

(−1)(v,α)eα

)

·

(

λtD + µ
∑

α∈D∗

(−1)(v,α)eα

)

= λ2tD + 2λµa
∑

α∈D∗

(−1)(v,α)|α|eα + µ2c
∑

α∈D∗

tα

+ µ2b
∑

α∈D∗

∑

β∈D∗,β 6=α,αc

(−1)(v,α+β)eα+β
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The number of ordered ways of summing two codewords to get a given
codeword is e. Also, by part 3 of Lemma 2.1 and since D is constant weight,
∑

α∈D∗ tα = |D∗| dm tD. Hence, we get

s · s =

[

λ2 + µ2c|D∗|
d

m

]

tD +
[

2λµad+ µ2be
]

∑

α∈D∗

(−1)(v,α)eα.

So, s · s = s if and only if

λ = λ2 + µ2c|D∗|
d

m
, (1)

µ = 2λµad+ µ2be. (2)

As we may assume µ 6= 0, equation (2) implies

1 = 2λad+ µbe,

λ =
1− beµ

2ad
.

Substituting this value of λ in equation (1) we obtain the required quadratic
equation in µ.

Remark 4.4. Observe that s(D, v) = s(D,w) if and only if (v, α) = (w,α),
for all α ∈ D∗. That is, if v and w lie in the same coset of D⊥. Hence, if D
is a subcode for which s-map idempotents exist, for a choice of root µ, the
idempotents s(D,V ) are in bijection with the cosets of D⊥.

Remark 4.5. Using the previously introduced notation, Di := {α ∈ D :
(α, v) = i}, we can rewrite the idempotent coming from the s-map as

s(D, v) = λtD + µ
(

∑

α∈D∗
0

eα −
∑

β∈D∗
1

eβ
)

.

4.1 Small idempotents

While for any given specific choice of code C and subcode D ≤ C, we may
calculate the eigenvalues and eigenvectors for the idempotent s(D, v), and
hence its fusion law, it is difficult to give a general result. However, for
some subcodes D this is possible. In particular, we always have the subcode
D = 〈α〉 for some α ∈ C∗ and so, provided our field is large enough, we get
an idempotent s(D, v). We call this a small idempotent. Moreover, we show
that under some additional conditions on the code, the algebra is generated
by such small idempotents, making A an axial algebra.

Let D := {0, α} for some α ∈ C∗. We assume that the structure pa-
rameters supported on D do not depend on the toral or codeword elements.
Note that this just means that aα := ai,α = aj,α and cα := ci,α = cj,α for
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i ∈ supp(α). Now, e = 2|D∗| − |D| = 0, d = m = |α| and so the equations
in Proposition 4.2 are dramatically simplified. In particular, we find that

λ =
1

2aα|α|
and µ2 =

λ− λ2

cα

Provided the field is large enough, we get two idempotents e± := λtα±µeα.
If the field is R, then the discriminant in the quadratic for µ implies we have
solutions if aαcα > cα

2|α| . (Note that we write the inequality in such a way

to deal with the two cases cα > 0 and cα < 0 simultaneously.) Note that
if aα = 1

2|α| , then λ = 1, µ = 0 and so e± = tα. We wish to rule out this

degenerate case, so we will assume that aα 6= 1
2|α| for the remainder of this

section.
We get the following corollary to Proposition 4.2.

Corollary 4.6. Let AC be a non-degenerate code algebra. Suppose that S
is a generating set for the code C such for all α ∈ S the small idempotents

corresponding to α exist. Then A is generated by the idempotents ti, for

i ∈ [n], and the small idempotents corresponding to S.

Note that our main theorem below is for a constant weight code. The
more complicated case of an arbitrary code (not constant weight), will be
dealt with in an upcoming paper [3].

Theorem 4.7. Let AC be a non-degenerate code algebra on a constant

weight code C such that

a := ai,β for all i ∈ supp(β), β ∈ C∗

bα,β = bα,γ for all β, γ ∈ C∗ − {α,αc}

bαc,β = bαc,γ for all β, γ ∈ C∗ − {α,αc}

cβ := ci,β for all i ∈ supp(β), β ∈ C∗

Suppose that for α ∈ C∗, the small idempotents e± exist and a 6= 1
2|α| ,

1
3|α| .

Then, e± are primitive axes for the fusion law given in Table 3.

Remark 4.8. We note that generically, i.e. when the eigenvalues do not
coincide, the fusion table given in Table 3 satisfies the Seress condition.

The proof of Theorem 4.7 will proceed via a series of lemmas. Through-
out the remainder of this section, let e = λtα + µeα for some α ∈ C∗, where
λ = 1

2aα|α|
and µ2 = λ−λ2

cα
. We will list all the eigenvectors and eigenvalues

for e; we begin by writing down some obvious ones.

Lemma 4.9. For an arbitrary code C, we have the following eigenvectors

for e.

1. Eigenvalue 0:
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1 0 λ λ− 1
2 ν+ ν−

1 1 λ λ− 1
2 ν+ ν−

0 0 ν+ ν−

λ λ 1, λ, λ− 1
2 ν− ν+

λ− 1
2 λ− 1

2 1, λ− 1
2 ν+ ν−

ν+ ν+ ν+ ν− ν+ 1, 0, λ, λ − 1
2 , ν+, ν− 0, λ

ν− ν− ν− ν+ ν− 0, λ 1, 0, λ, λ − 1
2 , ν+, ν−

where ν± := 1
4 ± µb.

Table 3: Fusion table for small idempotents

i. ti such that i /∈ supp(α),

ii. eα
c

provided 1 ∈ C.

2. Eigenvalue λ:
ti − tj where i, j ∈ supp(α).

3. Eigenvalue λ− 1
2 :

2µcα tα − eα.

Proof. These are straightforward calculations.

Lemma 4.10. Suppose C is constant weight and let β ∈ C∗ such that

β 6= α,αc, aβ := ai,β for all i ∈ supp(β), aβ = aα+β, bα,β = bα,α+β. Then,

1. eβ − eα+β is a (
aβ
4aα

− µbα,β)-eigenvector for e

2. eβ + eα+β is a (
aβ
4aα

+ µbα,β)-eigenvector for e

Proof. We prove the first claim, the second is similar.

(λtα + µeα)(eβ − eα+β) = (λaβ|supp(α) ∩ supp(β)| − µbα,α+β)e
β

− (λaα+β|supp(α) ∩ supp(α+ β)| − µbα,β)e
α+β

Since C is constant weight and |α + β| = |α| + |β| − 2|supp(α) ∩ supp(β)|,
it is clear that all distinct codewords in C∗ which are not complements
intersect in a set of size |α|

2 . Using this and our assumptions on the structure
parameters, we see that the two coefficients are both

aβ
4aα

− µbα,β.

Proof of Theorem 4.7. The only two eigenvectors which could be scalar mul-
tiples of one another are e = λtα+µeα and 2µc tα−eα. This happens if and
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only if

λ = −2µ2c

= −2(λ− λ2)

0 = λ(2λ− 3)

which is equivalent to a = 1
3|α| . We note that this holds precisely when the

λ− 1
2 -eigenspace coincides with the 1-eigenspace.
Provided a 6= 1

3|α| , it is easy to see all the eigenvectors listed are linearly

independent. If 1 ∈ C, we have listed 1+(n2+1)+(n2−1)+1+ |C∗|−2
2 + |C∗|−2

2 =

n+ |C∗| elements and if 1 /∈ C, we have listed 1+ n
2 +(n2 − 1)+1+ |C∗|−1

2 +
|C∗|−1

2 = n + |C∗| elements. In both cases this is n + |C∗| which is the
dimension of the algebra.

It remains to calculate the fusion table for the small idempotents. This
is somewhat long, but easy calculation. As an example, we provide one such
calculation here for ν+ ⋆ ν+:

(eβ + eα+β)2 = cβtβ + cα+βtα+β + 2bα,α+βe
α

(eβ + eα+β)(eγ + eα+γ) = (bβ,γ + bα+β,α+γ)e
β+γ + (bα+β,γ + bα,α+γ)e

α+β+γ

the first of these is contained in A1 ⊕A0 ⊕Aλ ⊕Aλ− 1

2

, whilst the second is

contained in Aν+⊕Aν− . (Note that if bβ,γ = bα+β,γ for all β, γ ∈ C∗−{α,αc},
then the second expression above is in fact contained in ν+).

For A to be an axial algebra with axes equal to the small idempo-
tents, we need some additional conditions on the code C. We define the
m-fold juxtaposition of an [n, k, d]-code C with generating matrix G to be
the [mn, k,md]-code with generating matrix given by m copies of G:

(G| . . . |G) .

This is independent of the choice of generating matrix.

Lemma 4.11. Let C be a constant weight code.

1. If 1 /∈ C, then C is equivalent to the m-fold juxtaposition of a simplex

code (i.e. a dual of a Hamming code) with parameters [2r − 1, r, 2r−1].

2. If 1 ∈ C, then C is equivalent to the m-fold juxtaposition of a first

order Reed-Muller code with parameters [2r, r + 1, 2r−1].

Moreover, there is a bijection between the first and second types above.

Proof. The first part is the result from [16]. We describe the bijection from
which the second part will follow.
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Let C be a code of the first type. Then it has parameters [m(2r −
1), r,m2r−1]. We lengthen the code by adding m zero columns to the gener-
ating matrix and then augmenting by adding the 1 codeword. This produces
an [m2r, r + 1,m2r−1] code. Since the minimal distance is half the length
and it contains the 1 codeword, it must be of the second type. Conversely,
if C is a code of the second type of length n, then C0 is a code which does
not contain the 1 codeword and has one weight of codeword with weight n

2 .
After removal of an zero columns in the generating matrix, it must be of the
first type. We note that the bijection takes a simplex code to a first order
Reed-Muller code.

Definition 4.12. A binary linear code C ⊂ Fn
2 is called projective if C⊥

has minimum distance at least 3.

Lemma 4.13. Let C be a binary linear code. Then C is projective if and

only if for all i ∈ 1, . . . , n, there exists a set of codewords S such that

{i} =
⋂

α∈S

supp(α)

Proof. Suppose that the above property holds. Then, for all i, there exists
a codeword α ∈ C with αi = 1 and hence C⊥ has no codewords of weight
1. Moreover, for all i 6= j, there exists α ∈ C such that αi 6= αj . Hence, C

⊥

has no codeword of weight 2 and C is projective.
Conversely, suppose that the above property does not hold for some

i = 1, . . . , n. Either there does not exist a codeword in C supported on i,
and hence C⊥ contains a codeword of weight one, or there exists i 6= j such
that for every codeword α ∈ C, αi = αj, and hence C⊥ has a codeword of
weight two. In any case, C is not projective.

Note that a constant weight code C is projective if and only if it is not
a m-fold juxtaposition. That is, if and only if it is a simplex or first order
Reed-Muller code.

Theorem 4.14. Let C be a simplex or first order Reed-Muller code and

AC(a, b, c) be a non-degenerate code algebra with a 6= 1
2|α| ,

1
3|α| . Suppose that

the field is large enough so that the small idempotents exist. Then, A is an

axial algebra with respect to the small idempotents λtα ± µeα, α ∈ C∗, with

fusion law given in Table 3.

Proof. By Theorem 4.7, the small idempotents e± are primitive and semi-
simple. Clearly, eα and tα are in the span of e± = λtα ± µeα. As C is a
projective code, there exist α1, . . . , αn ∈ C∗, such that

ti = tα1
. . . tαn

So, the small idempotents generate the algebra.
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We note that the fusion law in Table 3 may be simplified when some of the
eigenvalues coincide. If the fusion law degenerate into those of the ti, then we
may drop the requirement for the code to be a simplex or a first-order Reed-
Muller code and instead require it to be an arbitrary constant weight code
(i.e. not necessarily projective). On the other hand, for a projective code C
which does not have constant weight, the s-map construction will give other
types of idempotent depending on the subcode D. Given such a subcode
D, provided the conjugates of the subcode contain enough codewords to
generate the code, the corresponding idempotents will generate the algebra
then one has a theorem as above and the algebra is an axial algebra.

5 Examples

In this section we give some examples, the most important of which is the
Hamming code example. We wrote a package in magma [1] to assist in some
of the calculations for this section. All of the examples we give here are over
R.

5.1 The complete code F2
2

Let C = F2
2. Let the structure parameters Λ = (a, b, c), with a, b, c 6= 0,

not depend on the codeword or toral element. Then A := AC(a, b, c) is a
non-degenerate code algebra. We note that if D = {0,1,α, αc} is a code (or
a subcode of some code D′), then the code algebra AD is similar to AC and
differs by the possible addition of some extra toral idempotents.

Let α = (1, 0) and so αc = (0, 1). By Theorem 3.21, A has a Frobenius
form whose Gram matrix is diag(1, 1, ac ,

a
c ), with respect to the standard

basis {t1, t2, e
α, eα

c

}.
As noted in Lemma 3.9, A has precisely two non-trivial ideals and it is

easy to see that these are orthogonal with respect to the form, giving us a
decomposition

A = 〈t1, e
α〉 ⊕ 〈t2, e

αc

〉

This is also orthogonal in the sense that elements from the two different
ideals multiply to give 0. So, to find any other idempotents in A it is
enough to consider idempotents which lie in either of the two isomorphic
ideals, as any idempotent e of A is a sum of one idempotent from each ideal
e = e1 + e2, where we allow ei = 0.

Lemma 5.1. The idempotents of the subalgebra A1 := 〈t1, e
α〉 are t1 and,

when 2ac > c,

e± := 1
2a

(

t1 ±

√

(2a−1)
c

eα
)

.
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Furthermore, e± have a 1−a
2a -eigenvector given by

v± := ± 1
a

√

(2a− 1)c t1 − eα.

Proof. It is a simple calculation to show that the only idempotents must be
of the form above and these can only exist when the expression under the
square root is a positive real. That is, when 2ac > c. Indeed, the fact that
these are idempotents follows from Section 4.1. Using Lemma 4.9, we see
that v± are the required eigenvectors.

Corollary 5.2. In the subalgebra A1 := 〈t1, e
α〉, e± has the same fusion law

as t1 if and only if a = −1 and c < 0. In this case, A1 is a 2-dimensional

axial algebra with three idempotents.

Proof. We require the eigenvalue 1−a
2a = a, giving 2a2 +a− 1 = (2a− 1)(a+

1) = 0. Since a = 1
2 would imply that e± = t1, we are left with a = −1.

Then, for e± to exists, we require c < 0.

5.2 Even weight vectors in F3
2

Consider the even weight code in F3
2

C = {(0, 0, 0) , (0, 1, 1) , (1, 0, 1) , (1, 1, 0)}

and let A := AC be the code algebra with non-zero structure parameters
(a, b, c). Then A is a non-degenerate code algebra with a Frobenius form
with Gram matrix diag(1, 1, 1, c

a
, c
a
, c
a
) in the usual basis.

Using Proposition 4.2, we see that, in addition to the small idempotents
we can get from the three subcodes of the form {0, α}, we can get s-map
idempotents from the code C. In particular, if we pick (a, b, c) = (12 ,

1
2 , 1)

then the fusion law for the small idempotents degenerates to be the same as
for the toral idempotents ti. Since these idempotents generate the algebra,
A is an axial algebra. Moreover, it is an axial algebra of Jordan type 1

2 (i.e.
the eigenvalues are 1, 0, 1

2 ). There are 6 such small idempotents given by

e±α := 1
2tα ± 1

2e
α

Moreover, the s-map idempotents from C also have the same fusion law.
In total, we have four primitive such idempotents coming from choosing v
to be (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). Other choices of v give the same
results. These are given by

s(C, v) = 1
3t+

1
3

∑

α∈C∗

(−1)(v,α)eα

where t =
∑3

i=1 ti.
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The group spanned by the Miyamoto involutions associated with these
13 involutions generate an infinite group. Indeed the composition of any
two of the Miyamoto involutions associated to s(C, v) coming from the code
C gives an element g of infinite order. The orbit of, for example, t1 under
g is an infinite set of idempotents. If however, we restrict to the ti and
small idempotents, then these 9 axes are closed under the action of their
associated Miyamoto involutions.

In fact, this example is an example of the Jordan algebra of symmetric
matrices with the product a ◦ b = 1

2(ab − ba). To see this, let Ei,j be the
matrix which is all zero except for a 1 in the i, j position and observe that
ti 7→ Ei,i and eα 7→ Ei,j + Ej,i, where {i, j} = supp(α) gives the desired
map. This also works when C is the even code of length n = 4, but not for
larger n.

5.3 Hamming code

Let C = H8 be the extended Hamming code of length 8 and pick (a, b, c) =
(14 ,

1
2 , 1) to be the structure parameters. Then, A := AC is a 22-dimensional

non-degenerate code algebra with a Frobenius form. We note that the struc-
ture parameters are the same as those which come from a VOA.

Again, using Proposition 4.2, we get more idempotents which are of the
form

s(C, v) = 1
8t+

1
8

∑

α∈C∗

(−1)(v,α)eα

where t =
∑8

i=1 ti. By choosing v ∈ F8
2 − C to have odd weight, we get a

set of eight mutually orthogonal idempotents. That is, a torus. Similarly,
we obtain another torus by using even weight vectors in F8

2 − C. Together
with the standard torus, this gives three distinct tori. Moreover, all these
idempotents have the same fusion law and they generate the algebra, show-
ing that A is an axial algebra of Jordan type 1

4 . Since they also span the
algebra, A is 1-closed.

The Miyamoto involution associated with the the axis in one torus per-
mutes the other two tori. In particular, in this example, unlike the even
code example above, the set of 24 axes is closed under the action of their
Miyamoto involutions.

The automorphism group of the code acts strongly transitively, hence its
action is induced faithfully on A. The automorphism group of the Hamming
code is 23:PSL3(2). Together with the Miyamoto involutions we see a group
with shape

G := 26:(PSL3(2)× S3).

By Theorem A.6, we see that A can be embedded in the VOA VH8
con-

structed from the Hamming code H8. Moreover, the non-zero elements of
A lie in the weight 2 graded part of VH8

. We note that the automorphism
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group G ≤ Aut(AH8
) is the same group as the full automorphism group of

VH8
[11].

A Appendix: Links to VOAs

In this appendix, we outline the construction of code VOAs which provides
part of the motivation for the definition of code algebras. For more details
we refer the reader to [12]. We do not attempt to define Virasoro algebras
or VOAs. Throughout, let C ⊆ Fn

2 be an even binary linear code of length
n (i.e. all codewords in C have even weight).

The Virasoro algebra Vir with central charge 1
2 has three irreducible

lowest weight modules L(12 , 0), L(
1
2 ,

1
2) and L(12 ,

1
16) corresponding to the

three possible weights 0, 1
2 and 1

16 . Let

M = L(12 , 0)⊗ L(12 ,
1
2).

The fusion table of the lowest weight modules are known:

L(12 , 0)× L(12 , 0) = L(12 , 0),

L(12 , 0)× L(12 ,
1
2) = L(12 ,

1
2)× L(12 , 0) = L(12 ,

1
2),

L(12 ,
1
2)× L(12 ,

1
2) = L(12 , 0).

So, M has a natural Z2-grading. Since the two lowest weight modules are
also Z+-graded, M is 1

2Z
+-graded with M0̄ = L(12 , 0) and M1̄ = L(12 ,

1
2),

where 0̄ denotes the integer graded part and 1̄ denotes the half-integer graded
part. This makes M into a super vertex operator algebra (SVOA) with vertex
operator Y : M⊗M → M((z)), whereM((z)) is the space of formal Laurent
series with coefficients in M .

We denote by w the Virasoro element of M ; this lies in M0. We fix
a lowest weight vector q with respect to w for the eigenvalue 1

2 . So, by
definition, we have:

w1q = L0q = 1
2q,

wn+1q = Lnq = 0, for all n ≥ 1,

where Ln are the generators in the Virasoro algebra. By direct computation
[13, (4.9)], we obtain:

q−2q = 2w, q−1q = 0, q0q = 1,

q−11 = q, qnq = 0, for all n ≥ 1.

We now consider a tensor product of n copies of the SVOA M

M̂ := M1 ⊗ · · · ⊗Mn,
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where M i ∼= M . This produces a SVOA with vertex operator Ŷ given by

Ŷ (M̂, z) = Ŷ (M1 ⊗ · · · ⊗Mn, z) := Y 1(M1, z)⊗ · · · ⊗ Y n(Mn, z).

Given a codeword α ∈ C, set

M̂α :=

n
⊗

i=1

M i
αi
.

For example, M̂(0,...,0) = L(12 , 0) ⊗ · · · ⊗ L(12 , 0) and M̂(1,...,1) = L(12 ,
1
2) ⊗

· · · ⊗ L(12 ,
1
2). We have the following:

Lemma A.1. [13, Lemma 4.2] Let u ∈ M̂α, v ∈ M̂β with α, β ∈ C. Then,

umv ∈ M̂α+β, for all m ∈ Z.

Since M̂ is an SVOA, it has supercommutativity; however, we want
a VOA with commutativity of the operator. To correct this, we take a
central extension of C by ±1. Let νi := (0, . . . , 0, 1, 0, . . . , 0) with a 1 in
the ith position. We define formal elements eνi which satisfy eνieνi = 1 and
eνieνj = −eνjeνi for i 6= j. For words α = νj1 + · · ·+ νjk with j1 < · · · < jk,
define

eα = eνj1 . . . eνjk

Then, we have the following

Lemma A.2. [13, Lemma 4.4] For α and β,

eαeβ = (−1)(α,β)+|α||β|eβeα

where (·, ·) denotes the usual dot product.

Combining this with the previously defined SVOA, we obtain the VOA

MC :=
⊕

α∈C

Mα,

where Mα := (M̂α ⊗ eα), which has vertex operator

Y (v ⊗ eα, z) := Ŷ (v, z) ⊗ eα.

Theorem A.3. [13, Theorem 4.2] When C is an even binary linear code,

(MC , Y,w,1) is a simple VOA, with Virasoro element

w =

n
∑

i=1

(1⊗ · · · ⊗ 1⊗ wi ⊗ 1⊗ · · · ⊗ 1)⊗ e0

where wi is the Virasoro element for M i and vacuum element

1 = (1⊗ · · · ⊗ 1)⊗ e0.
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For our purposes, we want to consider certain elements of this VOA MC .
For 1 ≤ i ≤ n and α ∈ C, define

wi = (1⊗ · · · ⊗ 1⊗ wi ⊗ 1⊗ · · · ⊗ 1)⊗ e0

qα =

(

n
⊗

i=1

qαi

)

⊗ eα

where we understand q1 = q and q0 = 1. Note that, since q has grading 1
2 ,

qα has grading |α|
2 . In order to multiply certain elements in MC , we first

look at multiplication in M .

Lemma A.4. In (M,y, 1, w), we have

1. Y (1, z)1 = 1

2. Y (1, z)q = q

3. Y (q, z)1 = q +
∑

k≥1 q−k−11z
k

4. Y (q, z)q = 1z−1 + 2wz +
∑

k≥2 q−k−1qz
k

Using the above lemma, we can now calculate some products in MC .

Proposition A.5. Let α, β ∈ C. Then

1. wi
1w

j = 2wiδij

2. wi
1q

α =

{

1
2q

α if i ∈ supp(α)

0 otherwise

3. qα|α∩β|−1q
β = qα+β

4. qα|α|−3q
α = 2

∑

supp(α) w
i

5. qαnq
αc

= 0 for any n ≥ 0

Proof. The first part is obvious as w is a conformal vector, while the proofs
for the fourth and fifth parts are similar to the third.

For the second part, consider Y (wi, z)qα. If i /∈ supp(α), then in the ith

position we have w11 = 0 and hence the result follows. Suppose i ∈ supp(α).
Then in all positions j 6= i we have Y (1, z)u = u but in position i we have
Y (w, z)q = 1

2qz
−2 +

∑

k≥1 L−kqz
k−2. Suppose, without loss of generality,

that i = 1 and supp(α) = {1, . . . , k}, then we have:

Y (w1, z)qα = (12qz
−2 +

∑

k≥1

L−kqz
k−2)⊗ q ⊗ · · · ⊗ q ⊗ 1⊗ · · · ⊗ 1

= (12q ⊗ q ⊗ · · · ⊗ q ⊗ 1⊗ · · · ⊗ 1)z−2

+
∑

k≥1

(L−kq ⊗ q ⊗ · · · ⊗ q ⊗ 1⊗ · · · ⊗ 1)zk−2
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The 1-product is given by reading of the coefficient of the −1 − 1 = −2
power of z above, which is 1

2q
α.

For the third, consider Y (qα, z)qβ . In supp(α) − supp(β) positions we
have Y (q, z)1 = q+

∑

k≥1 q−k−11z
k, in supp(β)− supp(α) positions we have

Y (1, z)q = q and for the intersection supp(α) ∩ supp(β) we have Y (q, z)q =
1z−1+2wz+

∑

k≥2 q−k−1qz
k. Let I := |α|, J := |β| and K := |supp(α+β)|.

Without loss of generality, we assume that α has a 1 in the first I positions
and β has a 1 in positions I −K + 1 to I −K + J .

Y (qα, z)qβ =

I−K
⊗

i=1

(q +
∑

k≥1

q−k−11z
k)

⊗

K
⊗

i=1

(1z−1 + 2wz +
∑

k≥2

q−k−1qz
k)

⊗

(

J−K
⊗

i=1

q

)

⊗ 1⊗ · · · ⊗ 1

= (

I−K
⊗

i=1

q ⊗

K
⊗

i=1

1⊗

J−K
⊗

i=1

q ⊗ 1⊗ · · · ⊗ 1)z−K

+ higher order terms

So, we see that the K − 1 = |α ∩ β| − 1 product is qα+β as required.

Now that we have given some particular products in MC , we may give
the following motivating theorem. In Section 3, we will see that this gives
an example of a code algebra.

Theorem A.6. Let C be an even binary linear code of length n and M =
MC be the corresponding code VOA. Suppose A is a submodule spanned by

ti :=
1
2w

i

eα := λqα

where i ∈ 1, . . . , n and α ∈ C∗. We define a commutative multiplication

given by

titj = (ti)1tj = tiδij

tie
α = (ti)1e

α =

{

1
4e

α if i ∈ supp(α)

0 otherwise

eαeβ =















eα|α∩β|−1e
β = λeα+β if α 6= β, βc

eα|α|−3e
α = 4λ2

∑

supp(α) ti if β = α

qα1q
αc

= 0 if β = αc
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Then A is a finite-dimensional algebra which lies in

V2 ⊕
⊕

w∈wt(C)

Vw
2

Proof. This follows from Proposition A.5.

Note that the algebra A is contained in the weight 2 part of the MC if
and only if C∗ contains only weight 4 codewords.
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