
                          McGillivray, I. (2018). An isoperimetric inequality in the plane with a log-
convex density. Ricerche di Matematica, 1-58.
https://doi.org/10.1007/s11587-018-0382-z

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1007/s11587-018-0382-z

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Springer at
https://doi.org/10.1007/s11587-018-0382-z . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/158371509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s11587-018-0382-z
https://doi.org/10.1007/s11587-018-0382-z
https://research-information.bris.ac.uk/en/publications/an-isoperimetric-inequality-in-the-plane-with-a-logconvex-density(d24c0644-981c-49b2-9b50-a0f4bae067be).html
https://research-information.bris.ac.uk/en/publications/an-isoperimetric-inequality-in-the-plane-with-a-logconvex-density(d24c0644-981c-49b2-9b50-a0f4bae067be).html


Ricerche mat.
https://doi.org/10.1007/s11587-018-0382-z

An isoperimetric inequality in the plane
with a log-convex density

I. McGillivray1

Received: 20 September 2017 / Revised: 28 February 2018
© The Author(s) 2018

Abstract Given a positive lower semi-continuous density f on R2 the weighted vol-
ume V f := fL 2 is defined on the L 2-measurable sets in R

2. The f -weighted
perimeter of a set of finite perimeter E in R

2 is written Pf (E). We study minimisers
for the weighted isoperimetric problem

I f (v) := inf
{
Pf (E) : E is a set of finite perimeter in R2 and V f (E) = v

}

for v > 0. Suppose f takes the form f : R2 → (0,+∞); x �→ eh(|x |) where
h : [0,+∞) → R is a non-decreasing convex function. Let v > 0 and B a centred
ball in R

2 with V f (B) = v. We show that B is a minimiser for the above variational
problem and obtain a uniqueness result.

Keywords Isoperimetric problem · Log-convex density ·Generalised mean curvature

Mathematics Subject Classification 49Q20

1 Introduction

Let f be a positive lower semi-continuous density onR2. The weighted volume V f :=
fL 2 is defined on the L 2-measurable sets in R

2. Let E be a set of finite perimeter
in R2. The weighted perimeter of E is defined by
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I. McGillivray

Pf (E) :=
∫

R2
f d|DχE | ∈ [0,+∞]. (1.1)

We study minimisers for the weighted isoperimetric problem

I f (v) := inf
{
Pf (E) : E is a set of finite perimeter in R2 and V f (E) = v

}
(1.2)

for v > 0. To be more specific we suppose that f takes the form

f : R2 → (0,+∞); x �→ eh(|x |) (1.3)

where h : [0,+∞) → R is a non-decreasing convex function. Our first main result is
the following. It contains the classical isoperimetric inequality (cf. [9,12]) as a special
case; namely, when h is constant on [0,+∞).

Theorem 1.1 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Let v > 0 and B a centred ball in R

2 with V f (B) = v. Then B is a
minimiser for (1.2).

For x ≥ 0 and v ≥ 0 define the directional derivative of h in direction v by

h′+(x, v) := lim
t↓0

h(x + tv)− h(x)

t
∈ R

and define h′−(x, v) similarly for x > 0 and v ≤ 0. We introduce the notation

ρ+ := h′+(·,+1), ρ− := −h′+(·,−1) and ρ := (1/2)(ρ+ + ρ−)

on (0,+∞). The function h is locally of bounded variation and is differentiable a.e.
with h′ = ρ a.e. on (0,+∞). Our second main result is a uniqueness theorem.

Theorem 1.2 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing convex
function. Suppose that R := inf{ρ > 0} ∈ [0,+∞) and set v0 := V (B(0, R)). Let
v > 0 and E a minimiser for (1.2). The following hold:

(i) if v ≤ v0 then E is a.e. equivalent to a ball B in B(0, R) with V (B) = V (E);
(ii) if v > v0 then E is a.e. equivalent to a centred ball B with V (B) = V (E).

Theorem 1.1 is a generalisation of Conjecture 3.12 in [24] (due to K. Brakke) in
the sense that less regularity is required of the density f : in the latter, h is supposed to
be smooth on (0,+∞) as well as convex and non-decreasing. This conjecture springs
in part from the observation that the weighted perimeter of a local volume-preserving
perturbation of a centred ball is non-decreasing ([24] Theorem 3.10). In addition,
the conjecture holds for log-convex Gaussian densities of the form h : [0,+∞) →
R; t �→ ect

2
with c > 0 ([3,24] Theorem 5.2). In subsequent work partial forms of the

conjecture were proved in the literature. In [19] it is shown to hold for large v provided
that h is uniformly convex in the sense that h′′ ≥ 1 on (0,+∞) (see [19] Corollary
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6.8). A complemen tary result is contained in [11] Theorem 1.1 which establishes the
conjecture for small v on condition that h′′ is locally uniformly bounded away from
zero on [0,+∞). The above-mentioned conjecture is proved in large part in [7] (see
Theorem 1.1) in dimension n ≥ 2 (see also [4]). There it is assumed that the function h
is of class C3 on (0,+∞) and is convex and even (meaning that h is the restriction of
an even function onR to [0,+∞)). A uniqueness result is also obtained ( [7] Theorem
1.2). We obtain these results under weaker hypotheses in the 2-dimensional case and
our proofs proceed along different lines.

We give a brief outline of the article. In Sect. 2 we discuss some preliminary
material. In Sect. 3 we show that (1.2) admits an open minimiser E with C1 boundary
M (Theorem 3.8). The argument draws upon the regularity theory for almost minimal
sets (cf. [27]) and includes an adaptation of [21] Proposition 3.1. In Sect. 4 it is
shown that the boundary M is of class C1,1 (and has weakly bounded curvature).
This result is contained in [21] Corollary 3.7 (see also [8]) but we include a proof for
completeness. This Section also includes the result that E may be supposed to possess
spherical cap symmetry (Theorem 4.5). Section 5 contains further results on spherical
cap symmetric sets useful in the sequel. The main result of Sect. 6 is Theorem 6.5
which shows that the generalised (mean) curvature is conserved along M in a weak
sense. In Sect. 7 it is shown that there exist convex minimisers of (1.2). Sections 8 and
9 comprise an analytic interlude and are devoted to the study of solutions of the first-
order differential equation that appears in Theorem 6.6 subject to Dirichlet boundary
conditions. Section 9 for example contains a comparison theorem for solutions to a
Ricatti equation (Theorem 9.15 and Corollary 9.16). These are new as far as the author
is aware. Section 10 concludes the proof of our main theorems.

2 Some preliminaries

Geometric measure theory. We use | · | to signify the Lebesgue measure on R
2 (or

occasionally L 2). Let E be a L 2-measurable set in R
2. The set of points in E with

density t ∈ [0, 1] is given by

Et :=
{
x ∈ R

2 : lim
ρ↓0

|E ∩ B(x, ρ)|
|B(x, ρ)| = t

}
.

As usual B(x, ρ) denotes the open ball in R
2 with centre x ∈ R

2 and radius ρ > 0.
The set E1 is the measure-theoretic interior of E while E0 is the measure-theoretic
exterior of E . The essential boundary of E is the set ∂�E := R

2\(E0 ∪ E1).
Recall that an integrable function u on R

2 is said to have bounded variation if
the distributional derivative of u is representable by a finite Radon measure Du (cf.
[1] Definition 3.1 for example) with total variation |Du|; in this case, we write u ∈
BV(R2). The set E has finite perimeter if χE belongs to BVloc(R

2). The reduced
boundary F E of E is defined by

F E :=
{
x ∈ supp|DχE | : νE (x) := lim

ρ↓0
DχE (B(x, ρ))

|DχE |(B(x, ρ))

exists in R
2 and |νE (x)| = 1

}
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I. McGillivray

(cf. [1] Definition 3.54) and is a Borel set (cf. [1] Theorem 2.22 for example). We use
H k (k ∈ [0,+∞)) to stand for k-dimensional Hausdorff measure. If E is a set of
finite perimeter in R2 then

F E ⊂ E1/2 ⊂ ∂∗E and H 1(∂∗E\F E) = 0 (2.1)

by [1] Theorem 3.61.
Let f be a positive locally Lipschitz density onR2. Let E be a set of finite perimeter

andU a bounded open set inR2. The weighted perimeter of E relative toU is defined
by

Pf (E,U ) := sup
{ ∫

U
div( f X) dx : X ∈ C∞c (U,R2), ‖X‖∞ ≤ 1

}
.

By the Gauss–Green formula ( [1] Theorem 3.36 for example) and a convolution
argument,

Pf (E,U ) = sup
{ ∫

R2
f 〈νE , X〉 d|DχE | : X ∈ C∞c (R2,R2),

supp[X ] ⊂ U, ‖X‖∞ ≤ 1
}

= sup
{ ∫

R2
f 〈νE , X〉 d|DχE | : X ∈ Cc(R

2,R2),

supp[X ] ⊂ U, ‖X‖∞ ≤ 1
}

=
∫

U
f d|DχE | (2.2)

where we have also used [1] Propositions 1.47 and 1.23.

Lemma 2.1 Let ϕ be a C1 diffeomeorphism of R2 which coincides with the identity
map on the complement of a compact set and E ⊂ R

2 with χE ∈ BV(R2). Then

(i) χϕ(E) ∈ BV(R2);
(ii) ∂�ϕ(E) = ϕ(∂�E);
(iii) H 1(Fϕ(E)Δϕ(F E)) = 0.

Proof Part (i) follows from [1] Theorem3.16 asϕ is a proper Lipschitz function. Given
x ∈ E0 we claim that y := ϕ(x) ∈ ϕ(E)0. Let M stand for the Lipschitz constant of
ϕ and L stand for the Lipschitz constant of ϕ−1. Note that B(y, r) ⊂ ϕ(B(x, Lr)) for
each r > 0. As ϕ is a bijection and using [1] Proposition 2.49,

|ϕ(E) ∩ B(y, r)| ≤ |ϕ(E) ∩ ϕ(B(x, Lr)|
= |ϕ(E ∩ B(x, Lr))| ≤ M2|E ∩ B(x, Lr)|.
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This means that

|ϕ(E) ∩ B(y, r)|
|B(y, r)| ≤ (LM)2

|E ∩ B(x, Lr)|
|B(x, Lr)|

for r > 0 and this proves the claim. This entails that ϕ(E0) ⊂ [ϕ(E)]0. The reverse
inclusion can be seen using the fact thatϕ is a bijection. In summaryϕ(E0) = [ϕ(E)]0.
The corresponding identity for E1 can be seen in a similar way. These identities entail
(ii). From (2.1) and (ii) we may writeFϕ(E) ∪ N1 = ϕ(F E) ∪ ϕ(N2) forH 1-null
sets N1, N2 in R2. Item (iii) follows. ��
Curves with weakly bounded curvature. Suppose the open set E inR2 hasC1 boundary
M . Denote by n : M → S

1 the inner unit normal vector field. Given p ∈ M we
choose a tangent vector t (p) ∈ S

1 in such a way that the pair {t (p), n(p)} forms a
positively oriented basis for R2. There exists a local parametrisation γ1 : I → M
where I = (−δ, δ) for some δ > 0 of class C1 with γ1(0) = p. We always assume
that γ1 is parametrised by arc-length and that γ̇1(0) = t (p) where the dot signifies
differentiation with respect to arc-length. Let X be a vector field defined in some
neighbourhood of p in M . Then

(Dt X)(p) := d

ds

∣∣∣
s=0(X ◦ γ1)(s) (2.3)

if this limit exists and the divergence divM X of X along M at p is defined by

divM X := 〈Dt X, t〉 (2.4)

evaluated at p. Suppose that X is a vector field in C1(U,R2) where U is an open
neighbourhood of p in R2. Then

div X = divM X + 〈DnX, n〉 (2.5)

at p. If p ∈ M\{0} let σ(p) stand for the angle measured anti-clockwise from the
position vector p to the tangent vector t (p); σ(p) is uniquely determined up to integer
multiples of 2π .

Let E be an open set in R
2 with C1,1 boundary M . Let x ∈ M and γ1 : I → M

a local parametrisation of M in a neighbourhood of x . There exists a constant c > 0
such that

|γ̇1(s2)− γ̇1(s1)| ≤ c|s2 − s1|

for s1, s2 ∈ I ; a constraint on average curvature (cf. [10,18]). That is, γ̇1 is Lipschitz
on I . So γ̇1 is absolutely continuous and differentiable a.e. on I with

γ̇1(s2)− γ̇1(s1) =
∫ s2

s1
γ̈1 ds (2.6)
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I. McGillivray

for any s1, s2 ∈ I with s1 < s2. Moreover, |γ̈1| ≤ c a.e. on I (cf. [1] Corollary 2.23).
As 〈γ̇1, γ̇1〉 = 1 on I we see that 〈γ̇1, γ̈1〉 = 0 a.e. on I . The (geodesic) curvature k1
is then defined a.e. on I via the relation

γ̈1 = k1n1 (2.7)

as in [18]. The curvature k of M is defined H 1-a.e. on M by

k(x) := k1(s) (2.8)

whenever x = γ1(s) for some s ∈ I and k1(s) exists.We sometimeswrite H(·, E) = k.
Let E be an open set in R

2 with C1 boundary M . Let x ∈ M and γ1 : I → M a
local parametrisation of M in a neighbourhood of x . In case γ1 �= 0 let θ1 stand for
the angle measured anti-clockwise from e1 to the position vector γ1 and σ1 stand for
the angle measured anti-clockwise from the position vector γ1 to the tangent vector
t1 = γ̇1. Put r1 := |γ1| on I . Then r1, θ1 ∈ C1(I ) and

ṙ1 = cos σ1; (2.9)

r1θ̇1 = sin σ1; (2.10)

on I provided that γ1 �= 0. Now suppose that M is of class C1,1. Let α1 stand for
the angle measured anti-clockwise from the fixed vector e1 to the tangent vector t1
(uniquely determined up to integer multiples of 2π ). Then t1 = (cosα1, sin α1) on
I so α1 is absolutely continuous on I . In particular, α1 is differentiable a.e. on I
with α̇1 = k1 a.e. on I . This means that α1 ∈ C0,1(I ). In virtue of the identities
r1 cos σ1 = 〈γ1, t1〉 and r1 sin σ1 = −〈γ1, n1〉 we see that σ1 is absolutely continuous
on I and σ1 ∈ C0,1(I ). By choosing an appropriate branch we may assume that

α1 = θ1 + σ1 (2.11)

on I . We may choose σ in such a way that σ ◦ γ1 = σ1 on I .
Flows. Recall that a diffeomorphism ϕ : R2 → R

2 is said to be proper if ϕ−1(K )

is compact whenever K ⊂ R
2 is compact. Given X ∈ C∞c (R2,R2) there exists a 1-

parameter group of proper C∞ diffeomorphisms ϕ : R×R
2 → R

2 as in [20] Lemma
2.99 that satisfy

∂tϕ(t, x) = X (ϕ(t, x)) for each (t, x) ∈ R× R
2;

ϕ(0, x) = x for each x ∈ R
2.

(2.12)

We often use ϕt to refer to the diffeomorphism ϕ(t, ·) : R2 → R
2.

Lemma 2.2 Let X ∈ C∞c (R2,R2) and ϕ be the corresponding flow as above. Then

(i) there exists R ∈ C∞(R× R
2,R2) and K > 0 such that

ϕ(t, x) =
{
x + t X (x)+ R(t, x) for x ∈ supp[X ];
x for x /∈ supp[X ];
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where |R(t, x)| ≤ Kt2 for (t, x) ∈ R× R
2;

(ii) there exists R(1) ∈ C∞(R× R
2, M2(R)) and K1 > 0 such that

dϕ(t, x) =
{
I + td X (x)+ R(1)(t, x) for x ∈ supp[X ];
I for x /∈ supp[X ];

where |R(1)(t, x)| ≤ K1t2 for (t, x) ∈ R× R
2;

(iii) there exists R(2) ∈ C∞(R× R
2,R) and K2 > 0 such that

J2dϕ(t, x) =
{
1+ t div X (x)+ R(2)(t, x) for x ∈ supp[X ];
1 for x /∈ supp[X ];

where |R(2)(t, x)| ≤ K2t2 for (t, x) ∈ R× R
2.

Let x ∈ R
2, v a unit vector in R2 and M the line though x perpendicular to v. Then

(iv) there exists R(3) ∈ C∞(R× R
2,R) and K3 > 0 such that

J1d
Mϕ(t, x) =

{
1+ t (divM X)(x)+ R(3)(t, x) for x ∈ supp[X ];
1 for x /∈ supp[X ];

where |R(3)(t, x)| ≤ K3t2 for (t, x) ∈ R× R
2.

Proof (i) First notice that ϕ ∈ C∞(R × R
2) by [16] Theorem 3.3 and Exercise 3.4.

The statement for x /∈ supp[X ] follows by uniqueness (cf. [16] Theorem 3.1); the
assertion for x ∈ supp[X ] follows from Taylor’s theorem. (ii) follows likewise: note,
for example, that

[∂t t dϕ]αβ |t=0 = Xα
,βδX

δ + Xα
,γ X

γ
,β

where the subscript , signifies partial differentiation. (iii) follows from (ii) and
the definition of the 2-dimensional Jacobian (cf. [1] Definition 2.68). (iv) Using
[1] Definition 2.68 together with the Cauchy–Binet formula [1] Proposition 2.69,
J1dMϕ(t, x) = |dϕ(t, x)v| for t ∈ R and the result follows from (ii). ��

Let I be an open interval inR containing 0. Let Z : I×R
2 → R

2; (t, x) �→ Z(t, x)
be a continuous time-dependent vector field on R

2 with the properties

(Z.1) Z(t, ·) ∈ C1
c (R

2,R2) for each t ∈ I ;
(Z.2) supp[Z(t, ·)] ⊂ K for each t ∈ I for some compact set K ⊂ R

2.

By [16] Theorems I.1.1, I.2.1, I.3.1, I.3.3 there exists a unique flow ϕ : I ×R
2 → R

2

such that

(F.1) ϕ : I × R
2 → R

2 is of class C1;
(F.2) ϕ(0, x) = x for each x ∈ R

2;
(F.3) ∂tϕ(t, x) = Z(t, ϕ(x, t)) for each (t, x) ∈ I × R

2;
(F.4) ϕt := ϕ(t, ·) : R2 → R

2 is a proper diffeomorphism for each t ∈ I .
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Lemma 2.3 Let Z be a time-dependent vector field with the properties (Z .1)–(Z .2)
and ϕ be the corresponding flow. Then

(i) for (t, x) ∈ I × R
2,

dϕ(t, x) =
{
I + td Z0(x)+ t R(t, x) for x ∈ K ;
I for x /∈ K ;

where supK |R(t, ·)| → 0 as t → 0.

Let x ∈ R
2, v a unit vector in R2 and M the line though x perpendicular to v. Then

(ii) for (t, x) ∈ I × R
2,

J1d
Mϕ(t, x) =

{
1+ t (divM Z0)(x)+ t R(1)(t, x) for x ∈ K ;
1 for x /∈ K .

where supK |R(1)(t, ·)| → 0 as t → 0.

Proof (i)Wefirst remark that the flowϕ : I×R2 → R
2 associated to Z is continuously

differentiable in t, x in virtue of (Z.1) by [16] Theorem I.3.3. Put y(t, x) := dϕ(t, x)
for (t, x) ∈ I × R

2. By [16] Theorem I.3.3,

ẏ(t, x) = dZ(t, ϕ(t, x))y(t, x)

for each (t, x) ∈ I × R
2 and y(0, x) = I for each x ∈ R

2 where I stands for the
2× 2-identity matrix. For x ∈ K and t ∈ I ,

dϕ(t, x) = I + dϕ(t, x)− dϕ(0, x)

= I + t ẏ(0, x)+ t
{dϕ(t, x)− dϕ(0, x)

t
− ẏ(0, x)

}

= I + td Z(0, x)+ t
{ y(t, x)− y(0, x)

t
− ẏ(0, x)

}

= I + td Z0(x)+ t
{ y(t, x)− y(0, x)

t
− ẏ(0, x)

}
.

Applying the mean-value theorem component-wise and using uniform continuity of
the matrix ẏ in its arguments we see that

y(t, ·)− y(0, ·)
t

− ẏ(0, ·) → 0

uniformly on K as t → 0. This leads to (i). Part (ii) follows as in Lemma 2.2. ��
Let E be a set of finite perimeter in R

2 with V f (E) < +∞. The first variation of
weighted volume resp. perimeter along X ∈ C∞c (R2,R2) is defined by

δV f (X) := d

dt

∣∣∣
t=0V f (ϕt (E)), (2.13)
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δP+f (X) := lim
t↓0

Pf (ϕt (E))− Pf (E)

t
, (2.14)

whenever the limit exists. By Lemma 2.1 the f -perimeter in (2.14) is well-defined.
Convex functions. Suppose that h : [0,+∞) → R is a convex function. For x ≥ 0
and v ≥ 0 define

h′+(x, v) := lim
t↓0

h(x + tv)− h(x)

t
∈ R

and define h′−(x, v) similarly for x > 0 and v ≤ 0. For future use we introduce the
notation

ρ+ := h′(·,+1), ρ− := −h′(·,−1) and ρ := (1/2)(ρ+ + ρ−)

on (0,+∞). It holds that h is differentiable a.e. and h′ = ρ a.e. on (0,+∞). Define
[ρ] := ρ+ − ρ−. Then [ρ] ≥ 0 and vanishes a.e. on (0,+∞).

Lemma 2.4 Suppose that the function f takes the form (1.3) where h : [0,+∞) → R

is a convex function. Then

(i) the directional derivative f ′+(x, v) exists in R for each x ∈ R
2 and v ∈ R

2;
(ii) for v ∈ R

2,

f ′+(x, v) =
{

f (x)h′+(|x |, sgn〈x, v〉) |〈x,v〉||x | for x ∈ R
2\{0};

f (0)h′+(0,+1)|v| for x = 0;

(iii) if M is a C1 hypersurface inR2 such that cos σ �= 0 on M then f is differentiable
H 1-a.e. on M and

(∇ f )(x) = f (x)ρ(|x |) 〈x, ·〉|x |

forH 1-a.e. x ∈ M.

Proof The assertion in (i) follows from the monotonicity of chords property while
(ii) is straightforward. (iii) Let x ∈ M and γ1 : I → M be a C1-parametrisation of
M near x as above. Now r1 ∈ C1(I ) and ṙ1(0) = cos σ(x) �= 0 so we may assume
that r1 : I → r1(I ) ⊂ (0,+∞) is a C1 diffeomorphism. The differentiability set
D(h) of h has full Lebesgue measure in [0,+∞). It follows by [1] Proposition 2.49
that r−11 (D(h)) has full measure in I . This entails that f is differentiableH 1-a.e. on
γ1(I ) ⊂ M . ��

3 Existence and C1 regularity

We start with an existence theorem.
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Theorem 3.1 Assume that f is a positive radial lower-semicontinuousnon-decreasing
density on R2 which diverges to infinity. Then for each v > 0,

(i) (1.2) admits a minimiser;
(ii) any minimiser of (1.2) is essentially bounded.

Proof See [22] Theorems 3.3 and 5.9. ��
But the bulk of this section will be devoted to a discussion of C1 regularity.

Proposition 3.2 Let f be a positive locally Lipschitz density on R
2. Let E ⊂ R

2 be
a bounded set with finite perimeter. Let X ∈ C∞c (R2,R2). Then

δV f (X) =
∫

E
div( f X) dx = −

∫

F E
f 〈νE , X〉 dH 1.

Proof Let t ∈ R. By the area formula ( [1] Theorem 2.71 and (2.74)),

V f (ϕt (E)) =
∫

ϕt (E)

f dx =
∫

E
( f ◦ ϕt ) J2d(ϕt )x dx (3.1)

and

V f (ϕt (E))− V f (E) =
∫

E
( f ◦ ϕt )J2dϕt − f dx

=
∫

E
( f ◦ ϕt )(J2dϕt − 1) dx +

∫

E
f ◦ ϕt − f dx .

The density f is locally Lipschitz and in particular differentiable a.e. on R
2 (see [1]

2.3 for example). By the dominated convergence theorem and Lemma 2.2,

δV f (X) =
∫

E

{
f div(X)+ 〈∇ f, X〉

}
dx =

∫

E
div( f X) dx

= −
∫

F E
f 〈νE , X〉 dH 1

by the generalised Gauss–Green formula [1] Theorem 3.36. ��
Proposition 3.3 Let f be a positive locally Lipschitz density on R

2. Let E ⊂ R
2 be

a bounded set with finite perimeter. Let X ∈ C∞c (R2,R2). Then there exist constants
C > 0 and δ > 0 such that

|Pf (ϕt (E))− Pf (E)| ≤ C |t |

for |t | < δ.
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Proof Let t ∈ R. By Lemma 2.1 and [1] Theorem 3.59,

Pf (ϕt (E)) =
∫

R2
f d|Dχϕt (E)| =

∫

Fϕt (E)

f dH 1 =
∫

ϕt (F E)

f dH 1.

As F E is countably 1-rectifiable ( [1] Theorem 3.59) we may use the generalised
area formula [1] Theorem 2.91 to write

Pf (ϕt (E)) =
∫

F E
( f ◦ ϕt )J1d

F E (ϕt )x dH
1.

For each x ∈ F E and any t ∈ R,

|( f ◦ ϕt )(x)− f (x)| ≤ K |ϕ(t, x)− x | ≤ K‖X‖∞|t |

where K is the Lipschitz constant of f on supp[X ]. The result follows upon writing

Pf (ϕt (E))− Pf (E) =
∫

F E
( f ◦ ϕt )(J1d

F E (ϕt )x − 1)

+ [ f ◦ ϕt − f ] dH 1 (3.2)

and using Lemma 2.2. ��
Lemma 3.4 Let f be a positive locally Lipschitz density on R

2. Let E ⊂ R
2 be a

bounded set with finite perimeter and p ∈ F E. For any r > 0 there exists X ∈
C∞c (R2,R2) with supp[X ] ⊂ B(p, r) such that δV f (X) = 1.

Proof By (2.2) and [1] Theorem 3.59 and (3.57) in particular,

Pf (E, B(p, r)) =
∫

B(p,r)∩F E
f dH 1 > 0

for any r > 0. By the variational characterisation of the f -perimeter relative to B(p, r)
we can find Y ∈ C∞c (R2,R2) with supp[Y ] ⊂ B(p, r) such that

0 <

∫

E∩B(p,r)
div( f Y ) dx = −

∫

F E∩B(p,r)
f 〈νE ,Y 〉 dH 1 =: c

where we make use of the generalised Gauss–Green formula (cf. [1] Theorem 3.36).
Put X := (1/c)Y . Then X ∈ C∞c (R2,R2) with supp[X ] ⊂ B(p, r) and δV f (X) = 1
according to Proposition 3.2. ��
Proposition 3.5 Let f be a positive lower semi-continuous density on R

2. Let U be
a bounded open set in R

2 with Lipschitz boundary. Let E, F1, F2 be bounded sets in
R
2 with finite perimeter. Assume that EΔF1 ⊂⊂ U and EΔF2 ⊂⊂ R

2\U. Define

F :=
[
F1 ∩U

]
∪

[
F2\U

]
.
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Then F is a set of finite perimeter in R2 and

Pf (E)+ Pf (F) = Pf (F1)+ Pf (F2).

Proof The function χE |U ∈ BV(U ) and D(χE |U ) = (DχE )|U . We write χU
E for the

boundary trace of χE |U (see [1] Theorem 3.87); then χU
E ∈ L1(∂U,H 1 ∂U ) (cf.

[1] Theorem 3.88). We use similar notation elsewhere. By [1] Corollary 3.89,

DχE = DχE U + (χU
E − χ

R
2\U

E )νUH 1 ∂U + DχE (R2\U );
DχF = DχF1 U + (χU

F1 − χ
R
2\U

F2
)νUH 1 ∂U + DχF2 (R2\U );

DχF1 = DχF1 U + (χU
F1 − χ

R
2\U

E )νUH 1 ∂U + DχE (R2\U );
DχF2 = DχE U + (χU

E − χ
R
2\U

F2
)νUH 1 ∂U + DχF2 (R2\U ).

From the definition of the total variation measure ([1] Definition 1.4),

|DχE | = |DχE | U + |χU
E − χ

R
2\U

E |H 1 ∂U + |DχE | (R2\U );
|DχF | = |DχF1 | U + |χU

E − χ
R
2\U

E |H 1 ∂U + |DχF2 | (R2\U );
|DχF1 | = |DχF1 | U + |χU

E − χ
R
2\U

E |H 1 ∂U + |DχE | (R2\U );
|DχF2 | = |DχE | U + |χU

E − χ
R
2\U

E |H 1 ∂U + |DχF2 | (R2\U );

where we also use the fact that χU
F1
= χU

E as EΔF1 ⊂⊂ U and similarly for F2. The
result now follows. ��
Proposition 3.6 Assume that f is a positive locally Lipschitz density onR2. Let v > 0
and suppose that the set E is a bounded minimiser of (1.2). Let U be a bounded open
set in R2. There exist constants C > 0 and δ > 0 with the following property. For any
x ∈ U and 0 < r < δ,

P f (E)− Pf (F) ≤ C
∣∣V f (E)− V f (F)

∣∣ (3.3)

where F is any set with finite perimeter in R2 such that EΔF ⊂⊂ B(x, r).

Proof The proof follows that of [21] Proposition 3.1. We assume to the contrary that

(∀C > 0)(∀ δ > 0)(∃ x ∈ U )(∃ r ∈ (0, δ))(∃ F ⊂ R
2)

[
FΔE ⊂⊂ B(x, r) ∧ΔPf > C |ΔV f |

]
(3.4)

in the language of quantifiers where we have taken some liberties with notation.
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Choose p1, p2 ∈ F E with p1 �= p2. Choose r0 > 0 such that the open balls
B(p1, r0) and B(p2, r0) are disjoint. Choose vector fields X j ∈ C∞c (R2,R2) with
supp[X j ] ⊂ B(p j , r0) such that

δV f (X j ) = 1 and |Pf (ϕ
( j)
t (E))− Pf (E)| ≤ a j |t | for |t | < δ j and j = 1, 2

(3.5)

as in Lemma 3.4 and Proposition 3.3. Put a := max{a1, a2}. By (3.5),

V f (ϕ
( j)
t (E))− V f (E) = t + o(t) as t → 0 for j = 1, 2.

So there exist ε > 0 and 1 > η > 0 such that

t − η|t | < V f (ϕ
( j)
t (E))− V f (E) < t + η|t |;

|Pf (ϕ
( j)
t (E))− Pf (E)| < (a + 1)|t |; (3.6)

for |t | < ε and j = 1, 2. In particular,

|V f (ϕ
( j)
t (E))− V f (E)| > (1− η)|t |;

|Pf (ϕ
( j)
t (E))− Pf (E)| < 1+ a

1− η
|V f (ϕ

( j)
t (E))− V f (E)| for |t | < ε; (3.7)

for |t | < ε and j = 1, 2.
In (3.4) choose C = (1+ a)/(1− η) and δ > 0 such that

(a) 0 < 2δ < dist(B(p1, r0), B(p2, r0)),
(b) sup{V f (B(x, δ)) : x ∈ U } < (1− η) ε.

Choose x, r and F1 as in (3.4). In light of (a) wemay assume that B(x, r)∩B(p1, r0) =
∅. By (b),

|V f (F1)− V f (E)| ≤ V f (B(x, r)) ≤ V f (B(x, δ)) < (1− η) ε. (3.8)

From (3.6) and (3.8) we can find t ∈ (−ε, ε) such that with F2 := ϕ
(1)
t (E),

V f (F2)− V f (E) = −
{
V f (F1)− V f (E)

}
(3.9)

by the intermediate value theorem. From (3.4),

Pf (F1) < Pf (E)− C |V f (F1)− V f (E)| (3.10)

while from (3.7),

Pf (F2) < Pf (E)+ C |V f (F2)− V f (E)|. (3.11)
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Let F be the set

F :=
[
F1\B(p1, r0))

]
∪

[
B(p1, r0) ∩ F2

]
.

Note that EΔF2 ⊂⊂ B(p1, r0). By Proposition 3.5, F is a bounded set of finite
perimeter in R2 and

Pf (E)+ Pf (F) = Pf (F1)+ Pf (F2).

We then infer from (3.10), (3.11) and (3.9) that

Pf (F) = Pf (F1)+ Pf (F2)− Pf (E)

< Pf (E)− C |V f (F1)− V f (E)| + Pf (E)

+ C |V f (F2)− V f (E)| − Pf (E) = Pf (E).

On the other hand, V f (F) = V f (F1) + V f (F2) − V f (E) = V f (E) by (3.9). We
therefore obtain a contradiction to the f -isoperimetric property of E . ��

Let E be a set of finite perimeter in R
2 and U a bounded open set in R

2. The
minimality excess is the function ψ defined by

ψ(E,U ) := P(E,U )− ν(E,U ) (3.12)

where

ν(E,U ) := inf{P(F,U ) : F is a set of finite perimeter with FΔE ⊂⊂ U }

as in [27] (1.9). We recall that the boundary of E is said to be almost minimal in R2 if
for each bounded open setU in R2 there exists T > 0 and a positive constant K such
that for every x ∈ U and r ∈ (0, T ),

ψ(E, B(x, r)) ≤ Kr2. (3.13)

This definition corresponds to [27] Definition 1.5.

Theorem 3.7 Assume that f is a positive locally Lipschitz density on R
2. Let v > 0

and assume that E is a bounded minimiser of (1.2). Then the boundary of E is almost
minimal in R2.

Proof Let U be a bounded open set in R
2 and C > 0 and δ > 0 as in Proposition

3.6. The open δ-neighbourhood of U is denoted Iδ(U ). Let x ∈ U and r ∈ (0, δ). Put
V := I2δ(U ). For the sake of brevity write m := infB(x,r) f and M := supB(x,r) f .
Let F be a set of finite perimeter in R

2 such that FΔE ⊂⊂ B(x, r). By Proposition
3.6,
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P(E, B(x, r))− P(F, B(x, r))

≤ 1

m
Pf (E, B(x, r))− 1

M
Pf (F, B(x, r))

= 1

m

(
Pf (E, B(x, r))− Pf (F, B(x, r))

)
+

( 1

m
− 1

M

)
Pf (F, B(x, r))

≤ 1

m

(
Pf (E, B(x, r))− Pf (F, B(x, r))

)
+ M − m

m2 Pf (F, B(x, r))

≤ C

infV f
|V f (E)− V f (F)| + (2Lr)

supV f

(infV f )2
P(F, B(x, r))

≤ Cπr2
supV f

infV f
+ (2Lr)

supV f

(infV f )2
P(F, B(x, r))

where L stands for the Lipschitz constant of the restriction of f to V . We then derive
that

ψ(E, B(x, r)) ≤ Cπr2
supV f

infV f
+ (2Lr)

supV f

(infV f )2
ν(E, B(x, r)).

By [13] (5.14), ν(E, B(x, r)) ≤ πr . The inequality in (3.13) now follows. ��
Theorem 3.8 Assume that f is a positive locally Lipschitz density on R

2. Let v > 0
and suppose that E is a bounded minimiser of (1.2). Then there exists a set Ẽ ⊂ R

2

such that

(i) Ẽ is a bounded minimiser of (1.2);
(ii) Ẽ is equivalent to E;
(iii) Ẽ is open and ∂ Ẽ is a C1 hypersurface in R

2.

Proof By [13] Proposition 3.1 there exists a Borel set F equivalent to E with the
property that

∂F = {x ∈ R
2 : 0 < |F ∩ B(x, ρ)| < πρ2 for each ρ > 0}.

By Theorem 3.7 and [27] Theorem 1.9, ∂F is a C1 hypersurface in R2 (taking note of
differences in notation). The set

Ẽ := {x ∈ R
2 : |F ∩ B(x, ρ)| = πρ2 for some ρ > 0}

satisfies (i)–(iii). ��

4 Weakly bounded curvature and spherical cap symmetry

Theorem 4.1 Assume that f is a positive locally Lipschitz density on R
2. Let v > 0

and suppose that E is a bounded minimiser of (1.2). Then there exists a set Ẽ ⊂ R
2

such that

(i) Ẽ is a bounded minimiser of (1.2);
(ii) Ẽ is equivalent to E;
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(iii) Ẽ is open and ∂ Ẽ is a C1,1 hypersurface in R
2.

Proof Wemay assume that E has the properties listed in Theorem 3.8. Put M := ∂E .
Let x ∈ M and U a bounded open set containing x . Choose C > 0 and δ > 0 as in
Proposition 3.6. Let 0 < r < δ and X ∈ C∞c (R2,R2) with supp[X ] ⊂ B(x, r). Then

Pf (E)− Pf (ϕt (E)) ≤ C |V f (E)− V f (ϕt (E))|

for each t ∈ R. From the identity (3.2),

−
∫

M
( f ◦ ϕt )(J1d

M (ϕt )x − 1) dH 1 ≤ C |V f (E)− V f (ϕt (E))|

+
∫

M
[ f ◦ ϕt − f ] dH 1

≤ C |V f (E)− V f (ϕt (E))| + √2K‖X‖∞H 1(M ∩ supp[X ])t

where K stands for the Lipschitz constant of f restricted to U . On dividing by t and
taking the limit t → 0 we obtain

−
∫

M
f divM X dH 1 ≤ C

∣∣∣
∫

M
f 〈n, X〉 dH 1

∣∣∣
+ √2K‖X‖∞H 1(M ∩ supp[X ])

upon using Lemma 2.2 and Proposition 3.2. Replacing X by −X we derive that

∣∣∣
∫

M
f divM X dH 1

∣∣∣ ≤ C1‖X‖∞H 1(M ∩ supp[X ])

whereC1 = C‖ f ‖L∞(U )+
√
2K . Let γ1 : I → M be a localC1 parametrisation of M

near x . Suppose that Y ∈ C1
c (I,R

2) with supp[Y ] ⊂ I and that γ1(I ) ⊂ M ∩ B(x, r).
Note that there exists X ∈ C∞c (R2,R2)with supp[X ] ⊂ B(x, r) such that X ◦γ1 = Y
on I . The above estimate entails that

∣∣∣
∫

I
( f ◦ γ1)〈Ẏ , t〉 ds

∣∣∣ ≤ C1

∣∣∣supp[Y ]
∣∣∣‖Y‖∞.

This means that the function ( f ◦ γ1)t belongs to BV(I ) and this implies in turn that
t ∈ BV(I ). For s1, s2 ∈ I with s1 < s2,

|t (s2)− t (s1)| = |Dt ((s1, s2))| ≤ |Dt |((s1, s2))
= sup

{ ∫

(s1,s2)
〈t, Ẏ 〉 ds : Y ∈ C1

c ((s1, s2)) and ‖Y‖∞ ≤ 1
}

≤ c sup
{ ∫

(s1,s2)
( f ◦ γ1)〈t, Ẏ 〉 ds : Y ∈ C1

c ((s1, s2)) and ‖Y‖∞ ≤ 1
}

≤ cC1|s2 − s1|
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where 1/c = infU f > 0. It follows that M is of class C1,1. ��
We turn to the topic of spherical cap symmetrisation. Denote by S

1
τ the centred

circle in R
2 with radius τ > 0. We sometimes write S1 for S11. Given x ∈ R

2, v ∈ S
1

and α ∈ (0, π ] the open cone with vertex x , axis v and opening angle 2α is the set

C(x, v, α) :=
{
y ∈ R

2 : 〈y − x, v〉 > |y − x | cosα
}
.

Let E be anL 2-measurable set in R2 and τ > 0. The τ -section Eτ of E is the set
Eτ := E ∩ S

1
τ . Put

L(τ ) = LE (τ ) :=H 1(Eτ ) for τ > 0 (4.1)

and p(E) := {τ > 0 : L(τ ) > 0}. The function L isL 1-measurable by [1] Theorem
2.93. Given τ > 0 and 0 < α ≤ π the spherical cap C(τ, α) is the set

C(τ, α) :=
{
S
1
τ ∩ C(0, e1, α) if 0 < α < π;

S
1
τ if α = π;

and has H 1-measure s(τ, α) := 2ατ . The spherical cap symmetral Esc of the set E
is defined by

Esc :=
⋃

τ∈p(E)

C(τ, α) (4.2)

where α ∈ (0, π ] is determined by s(τ, α) = L(τ ). Observe that Esc is a L 2-
measurable set inR2 and V f (Esc) = V f (E). Note also that if B is a centred open ball
then Bsc = B\{0}. We say that E is spherical cap symmetric ifH 1((EΔEsc)τ ) = 0
for each τ > 0. This definition is broad but suits our purposes.

The result below is stated in [22] Theorem 6.2 and a sketch proof given. A proof
along the lines of [2] Theorem 1.1 can be found in [23]. First, let B be a Borel set in
(0,+∞); then the annulus A(B) over B is the set A(B) := {x ∈ R

2 : |x | ∈ B}.
Theorem 4.2 Let E be a set of finite perimeter in R

2. Then Esc is a set of finite
perimeter and

P(Esc, A(B)) ≤ P(E, A(B)) (4.3)

for any Borel set B ⊂ (0,∞) and the same inequality holds with Esc replaced by any
set F that isL 2-equivalent to Esc.

Corollary 4.3 Let f be a positive lower semi-continuous radial function on R
2. Let

E be a set of finite perimeter in R2. Then Pf (Esc) ≤ Pf (E).

Proof Assume that Pf (E) < +∞. We remark that f is Borel measurable as f is
lower semi-continuous. Let ( fh) be a sequence of simple Borel measurable radial
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functions on R
2 such that 0 ≤ fh ≤ f and fh ↑ f on R

2 as h → ∞. By Theorem
4.2,

Pfh (E
sc) =

∫

R2
fh d|DχEsc | ≤

∫

R2
fh d|DχE | = Pfh (E)

for each h. Taking the limit h → ∞ the monotone convergence theorem gives
Pf (Esc) ≤ Pf (E). ��
Lemma 4.4 Let E be an L 2-measurable set in R

2 such that E\{0} = Esc. Then
there exists an L 2-measurable set F equivalent to E such that

(i) ∂F = {x ∈ R
2 : 0 < |F ∩ B(x, ρ)| < |B(x, ρ)| for any ρ > 0};

(ii) F is spherical cap symmetric.

Proof Put

E1 := {x ∈ R
2 : |E ∩ B(x, ρ)| = |B(x, ρ)| for some ρ > 0};

E0 := {x ∈ R
2 : |E ∩ B(x, ρ)| = 0 for some ρ > 0}.

We claim that E1 is spherical cap symmetric. For take x ∈ E1 with τ = |x | > 0 and
|θ(x)| ∈ (0, π ]. Now |E ∩ B(x, ρ)| = |B(x, ρ)| for some ρ > 0. Let y ∈ R

2 with
|y| = τ and |θ(y)| < |θ(x)|. Choose a rotation O ∈ SO(2) such that OB(x, ρ) =
B(y, ρ). As E\{0} = Esc, |E ∩ B(y, ρ)| = |O(E ∩ B(x, ρ))| = |E ∩ B(x, ρ)| =
|B(x, ρ)| = |B(y, ρ)|. The claim follows. It follows in a similar way that R2\E0 is
spherical cap symmetric. It can then be seen that the set F := (E1 ∪ E)\E0 inherits
this property. As in [13] Proposition 3.1 the set F is equivalent to E and enjoys the
property in (i). ��
Theorem 4.5 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Then there exists
anL 2-measurable set Ẽ with the properties

(i) Ẽ is a minimiser of (1.2);
(ii) L Ẽ = L a.e. on (0,+∞);
(iii) Ẽ is open, bounded and has C1,1 boundary;
(iv) Ẽ\{0} = Ẽsc.

Proof Let E be a boundedminimiser for (1.2). Then E1 := Esc is a boundedminimiser
of (1.2) by Corollary 4.3 and LE = LE1 on (0,+∞). Now put E2 := F with F as in
Lemma 4.4. Then LE2 = L a.e. on (0,+∞) as E2 is equivalent to E1, E2 is a bounded
minimiser of (1.2) and E2 is spherical cap symmetric. Moreover, ∂E2 = {x ∈ R

2 :
0 < |E2 ∩ B(x, ρ)| < |B(x, ρ)| for any ρ > 0}. As in the proof of Theorem 3.8, ∂E2
is a C1 hypersurface in R2. Put

Ẽ := {x ∈ R
2 : |E2 ∩ B(x, ρ)| = |B(x, ρ)| for some ρ > 0}.

Then Ẽ is equivalent to E2 so that (ii) holds, and is a bounded minimiser of (1.2);
Ẽ is open and ∂ Ẽ = ∂E2 is C1. In fact, ∂ Ẽ is of class C1,1 by Theorem 4.1. As E2

123



An isoperimetric inequality in the plane with a log...

is spherical cap symmetric the same is true of Ẽ . But Ẽ is open which entails that
Ẽ\{0} = Ẽsc. ��

5 More on spherical cap symmetry

Let

H := {x = (x1, x2) ∈ R
2 : x2 > 0}

stand for the open upper half-plane in R
2 and

S : R2 → R
2; x = (x1, x2) �→ (x1,−x2)

for reflection in the x1-axis. Let O ∈ SO(2) represent rotation anti-clockwise through
π/2.

Lemma 5.1 Let E be an open set inR2 withC1 boundary M and assume that E\{0} =
Esc. Let x ∈ M\{0}. Then
(i) Sx ∈ M\{0};
(ii) n(Sx) = Sn(x);
(iii) cos σ(Sx) = − cos σ(x).

Proof (i) The closure E of E is spherical cap symmetric. The spherical cap symmetral
E is invariant under S from the representation (4.2). (ii) is a consequence of this last
observation. (iii) Note that t (Sx) = O�n(Sx) = O�Sn(x). Then

cos σ(Sx) = 〈Sx, t (Sx)〉 = 〈Sx, O�Sn(x)〉 = 〈x, SO�Sn(x)〉
= 〈x, On(x)〉 = −〈x, O�n(x)〉 = cos σ(x)

as SO�S = O and O = −O�. ��
We introduce the projection π : R2 → [0,+∞); x �→ |x |.

Lemma 5.2 Let E be an open set in R2 with boundary M and assume that E\{0} =
Esc.

(i) Suppose 0 �= x ∈ R
2\E and θ(x) ∈ (0, π ]. Then there exists an open interval I

in (0,+∞) containing τ and α ∈ (0, θ(x)) such that A(I )\S(α) ⊂ R
2\E.

(ii) Suppose 0 �= x ∈ E and θ(x) ∈ [0, π). Then there exists an open interval I in
(0,+∞) containing τ and α ∈ (θ(x), π) such that A(I ) ∩ S(α) ⊂ E.

(iii) For each 0 < τ ∈ π(M), Mτ is the union of two closed spherical arcs in S
1
τ

symmetric about the x1-axis.

Proof (i) We can find α ∈ (0, θ(x)) such that S1τ\S(α) ⊂ R
2\E as can be seen from

definition (4.2). This latter set is compact so dist(S1τ\S(α), E) > 0. This means that
the ε-neighbourhood of S1τ\S(α) is contained in R

2\E for ε > 0 small. The claim
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follows. (ii) Again from (4.2) we can find α ∈ (θ(x), π) such that S1τ ∩ S(α) ⊂ E
and the assertion follows as before.
(iii) Suppose x1, x2 are distinct points in Mτ with 0 ≤ θ(x1) < θ(x2) ≤ π . Suppose y
lies in the interior of the spherical arc joining x1 and x2. If y ∈ R

2\E then x2 ∈ R
2\E

by (i) and hence x2 /∈ M . If y ∈ E we obtain the contradiction that x1 ∈ E by (ii).
Therefore y ∈ M . We infer that the closed spherical arc joining x1 and x2 lies in Mτ .
The claim follows noting that Mτ is closed. ��
Lemma 5.3 Let E be an open set in R2 with C1 boundary M. Let x ∈ M. Then

lim inf
E�y→x

〈 y − x

|y − x | , n(x)
〉
≥ 0.

Proof Assume for a contradiction that

lim inf
E�y→x

〈 y − x

|y − x | , n(x)
〉
∈ [−1, 0).

There exists η ∈ (0, 1) and a sequence (yh) in E such that yh → x as h →∞ and

〈 yh − x

|yh − x | , n(x)
〉
< −η (5.1)

for each h ∈ N. Choose α ∈ (0, π/2) such that cosα = η. As M is C1 there exists
r > 0 such that

B(x, r) ∩ C(x,−n(x), α) ∩ E = ∅.

By choosing h sufficiently large we can find yh ∈ B(x, r)with the additional property
that yh ∈ C(x,−n(x), α) by (5.1). We are thus led to a contradiction. ��
Lemma 5.4 Let E be an open set inR2 withC1 boundary M and assume that E\{0} =
Esc. For each 0 < τ ∈ π(M),

(i) | cos σ | is constant on Mτ ;
(ii) cos σ = 0 on Mτ ∩ {x2 = 0};
(iii) 〈Ox, n(x)〉 ≤ 0 for x ∈ Mτ ∩ H
(iv) cos σ ≤ 0 on Mτ ∩ H;

and if cos σ �≡ 0 on Mτ then

(v) τ ∈ p(E);
(vi) Mτ consists of two disjoint singletons in S

1
τ symmetric about the x1-axis;

(vii) L(τ ) ∈ (0, 2πτ);
(viii) Mτ = {(τ cos(L(τ )/2τ),±τ sin(L(τ )/2τ)}.
Proof (i)By Lemma 5.2, Mτ is the union of two closed spherical arcs in S1τ symmetric
about the x1-axis. In case Mτ ∩ H consists of a singleton the assertion follows from
Lemma 5.1. Now suppose thatMτ ∩H consists of a spherical arc in S1τ with non-empty
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interior. It can be seen that cos σ vanishes on the interior of this arc as 0 = r ′1 = cos σ1
in a local parametrisation by (2.9). By continuity cos σ = 0 on Mτ . (ii) follows from
Lemma 5.1. (iii) Let x ∈ Mτ ∩ H so θ(x) ∈ (0, π). Then S(θ(x)) ∩ S

1
τ ⊂ E as E is

spherical cap symmetric. Then

0 ≤ lim
S(θ(x))∩S1τ�y→x

〈 y − x

|y − x | , n(x)
〉
= −〈Ox, n(x)〉

by Lemma 5.3. (iv) The adjoint transformation O� represents rotation clockwise
through π/2. Let x ∈ Mτ ∩ H . By (iii),

0 ≥ 〈Ox, n(x)〉 = 〈x, O�n(x)〉 = 〈x, t (x)〉 = τ cos σ(x)

and this leads to the result. (v) As cos σ �≡ 0 on Mτ we can find x ∈ Mτ ∩ H . We
claim that S1τ ∩ S(θ(x)) ⊂ E . For suppose that y ∈ S

1
τ ∩ S(θ(x)) but y /∈ E . We may

suppose that 0 ≤ θ(y) < θ(x) < π . If y ∈ R
2\E then x ∈ R

2\E by Lemma 5.2. On
the other hand, if y ∈ M then the spherical arc in H joining y to x is contained in M
again by Lemma 5.2. This arc also has non-empty interior in S

1
τ . Now cos σ = 0 on

its interior so cos(σ (x)) = 0 by (i) contradicting the hypothesis. A similar argument
deals with (vi) and this together with (v) in turn entails (vii) and (viii). ��
Lemma 5.5 Let E be an open set inR2 withC1 boundary M and assume that E\{0} =
Esc. Suppose that 0 ∈ M. Then

(i) (sin σ)(0+) = 0;
(ii) (cos σ)(0+) = −1.
Proof (i) Let γ1 be aC1 parametrisation of M in a neighbourhood of 0 with γ1(0) = 0
as above. Then n(0) = n1(0) = e1 and hence t (0) = t1(0) = −e2. By Taylor’s
Theorem γ1(s) = γ1(0) + t1(0)s + o(s) = −e2s + o(s) for s ∈ I . This means that
r1(s) = |γ1(s)| = s + o(s) and

cos θ1 = 〈e1, γ1〉
r1

= 〈e1, γ1〉
s

s

r1
→ 0

as s → 0 which entails that (cos θ1)(0−) = 0. Now t1 is continuous on I so t1 =
−e2 + o(1) and cosα1 = 〈e1, t1〉 = o(1). We infer that (cosα1)(0−) = 0. By (2.11),
cosα1 = cos σ1 cos θ1 − sin σ1 sin θ1 on I and hence (sin σ1)(0−) = 0. We deduce
that (sin σ)(0+) = 0. Item (ii) follows from (i) and Lemma 5.4. ��

The set

Ω := π
[
(M\{0}) ∩ {cos σ �= 0}

]
(5.2)

plays an important rôle in the proof of Theorem 1.1.

Lemma 5.6 Let E be an open set inR2 withC1 boundary M and assume that E\{0} =
Esc. Then Ω is an open set in (0,+∞).
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Proof Suppose 0 < τ ∈ Ω . Choose x ∈ Mτ ∩ {cos σ �= 0}. Let γ1 : I → M be a
local C1 parametrisation of M in a neighbourhood of x such that γ1(0) = x as before.
By shrinking I if necessary we may assume that r1 �= 0 and cos σ1 �= 0 on I . Then
the set {r1(s) : s ∈ I } ⊂ Ω is connected and so an interval in R (see for example [25]
Theorems 6.A and 6.B). By (2.9), r ′1(0) = cos σ1(0) = cos σ(p) �= 0. This means
that the set {r1(s) : s ∈ I } contains an open interval about τ . ��

6 Generalised (mean) curvature

Given a set E of finite perimeter in R
2 the first variation δV f (Z) resp. δP+f (Z) of

weighted volume and perimeter along a time-dependent vector field Z are defined as
in (2.13) and (2.14).

Proposition 6.1 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Let E be a bounded open set in R2 with C1 boundary M. Let Z be a
time-dependent vector field. Then

δP+f (Z) =
∫

M
f ′+(·, Z0)+ f divM Z0 dH

1

where Z0 := Z(0, ·) ∈ C1
c (R

2,R2).

Proof The identity (3.2) holds for each t ∈ I with M in place of F E . The assertion
follows on appealing to Lemma 2.3 and Lemma 2.4 with the help of the dominated
convergence theorem. ��

Given X,Y ∈ C∞c (R2,R2) let ψ resp. χ stand for the 1-parameter group of C∞
diffeomorphisms of R2 associated to the vector fields X resp. Y as in (2.12). Let I be
an open interval in R containing the point 0. Suppose that the function σ : I → R is
C1. Define a flow via

ϕ : I × R
2 → R

2; (t, x) �→ χ(σ(t), ψ(t, x)).

Lemma 6.2 The time-dependent vector field Z associated with the flow ϕ is given by

Z(t, x) = σ ′(t)Y (χ(σ (t), ψ(t, x)))+ dχ(σ(t), ψ(t, x))X (ψ(t, x)) (6.1)

for (t, x) ∈ I × R
2 and satisfies (Z.1) and (Z.2).

Proof For t ∈ I and x ∈ R
2 we compute using (2.12),

∂tϕ(t, x) = (∂tχ)(σ (t), ψ(t, x))σ ′(t)+ dχ(σ(t), ψ(t, x))∂tψ(t, x)

and this gives (6.1). Put K1 := supp[X ], K2 := supp[Y ] and K := K1 ∪ K2. Then
(Z .2) holds with this choice of K . ��
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Let E be a bounded open set in R2 with C1 boundary M . Define Λ := (M\{0}) ∩
{cos σ = 0} and

Λ1 := {x ∈ M :H 1(Λ ∩ B(x, ρ)) =H 1(M ∩ B(x, ρ)) for some ρ > 0}. (6.2)

For future reference put Λ±1 := Λ1 ∩ {x ∈ M : ±〈x, n〉 > 0}.
Lemma 6.3 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing convex
function. Let E be a bounded open set in R2 with C1,1 boundary M and suppose that
E\{0} = Esc. Then

(i) Λ1 is a countable disjoint union of well-separated open circular arcs centred at
0;

(ii) H 1(Λ1\Λ1) = 0;
(iii) f is differentiable H 1-a.e. on M\Λ1.

The term well-separated in (i) means the following: if Γ is an open circular arc in
Λ1 with Γ ∩ (Λ1\Γ ) = ∅ then d(Γ,Λ1\Γ ) > 0.

Proof (i) Let x ∈ Λ1 and γ1 : I → M a C1,1 parametrisation of M near x . By
shrinking I if necessary we may assume that γ1(I ) ⊂ M ∩ B(x, ρ) with ρ as in
(6.2). So cos σ = 0H 1-a.e. on γ1(I ) and hence cos σ1 = 0 a.e. on I . This means that
cos σ1 = 0 on I as σ1 ∈ C0,1(I ) and that r1 is constant on I by (2.9). Using (2.10) it can
be seen that γ1(I ) is an open circular arc centred at 0. By compactness of M it follows
that Λ1 is a countable disjoint union of open circular arcs centred on 0. The well-
separated property flows from the fact that M is C1. (ii) follows as a consequence of
this property. (iii) Let x ∈ M\Λ1 and γ1 : I → M aC1,1 parametrisation of M near x
with properties as before.We assume that x lies in the upper half-plane H . By shrinking
I if necessary we may assume that γ1(I ) ⊂ (M\Λ1) ∩ H . Let s1, s2, s3 ∈ I with
s1 < s2 < s3. Then y := γ1(s2) ∈ M\Λ1. SoH 1(M∩{cos σ �= 0}∩B(y, ρ)) > 0 for
each ρ > 0. This means that for small η > 0 the set γ1((s2−η, s2+η))∩{cos σ �= 0}
has positiveH 1-measure. Consequently, r1(s3)−r1(s1) =

∫ s3
s1

cos σ1 ds < 0 bearing
inmind Lemma 5.4. This shows that r1 is strictly decreasing on I . So h is differentiable
a.e. on r1(I ) ⊂ (0,+∞) in virtue of the fact that h is convex and hence locally
Lipschitz. This entails (iii). ��
Proposition 6.4 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be aminimiser of (1.2). Assume that E is a bounded
open set in R

2 with C1 boundary M and suppose that E\{0} = Esc. Suppose that
M\Λ1 �= ∅. Then there exists λ ∈ R such that for any X ∈ C1

c (R
2,R2),

0 ≤
∫

M

{
f ′+(·, X)+ f divM X − λ f 〈n, X〉

}
dH 1.

Proof Let X ∈ C∞c (R2,R2). Let x ∈ M and r > 0 such that M ∩ B(x, r) ⊂ M\Λ1.
Choose Y ∈ C∞c (R2,R2) with supp[Y ] ⊂ B(x, r) as in Lemma 3.4. Let ψ resp. χ

stand for the 1-parameter group ofC∞ diffeomorphisms ofR2 associated to the vector
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fields X resp. Y as in (2.12). For each (s, t) ∈ R
2 the set χs(ψt (E)) is an open set in

R
2 with C1 boundary and ∂(χs ◦ ψt )(E) = (χs ◦ ψt )(M) by Lemma 2.1. Define

V (s, t) := V f (χt (ψs(E)))− V f (E),

P(s, t) := Pf (χt (ψs(E))),

for (s, t) ∈ R
2. We write F = (χt ◦ ψs)(E). Arguing as in Proposition 3.2,

∂t V (s, t) = lim
h→0

(1/h){V f (χh(F))− V f (F)} =
∫

F
div( f Y ) dx

=
∫

E
(div( f Y ) ◦ χt ◦ ψs) J2d(χt ◦ ψs)x dx

with an application of the area formula (cf. [1] Theorem 2.71). This last varies con-
tinuously in (s, t). The same holds for partial differentiation with respect to s. Indeed,
put η := χt ◦ ψs . Then noting that J2d(η ◦ ψh) = (J2dη) ◦ ψh J2dψh and using the
dominated convergence theorem,

∂sV (s, t) = lim
h→0

(1/h)
{
V f (η(ψh(E)))− V f (η(E))

}

= lim
h→0

(1/h)
{ ∫

E
( f ◦ η ◦ ψh)J2d(η ◦ ψh)x dx −

∫

E
( f ◦ η)J2dηx dx

}

= lim
h→0

(1/h)
{ ∫

E
[( f ◦ η ◦ ψh)− ( f ◦ η)]J2d(η ◦ ψh)x dx

+
∫

E
( f ◦ η)[(J2dη ◦ ψh − J2dη]J2dψh dx

+
∫

E
( f ◦ η)J2dη[J2dψh − 1] dx

}

=
∫

E
〈∇( f ◦ η), X〉J2dηx dx +

∫

E
( f ◦ η)〈∇ J2dη, X〉 dx

+
∫

E
( f ◦ η)J2dη div X dx

where the explanation for the last term can be found in the proof of Proposition 3.2. In
this regard we note that d(dχt ) (for example) is continuous on I×R

2 (cf. [1] Theorem
3.3 and Exercise 3.2) and in particular∇ J2dχt is continuous on I×R

2. The expression
above also varies continuously in (s, t) as can be seen with the help of the dominated
convergence theorem. This means that V (·, ·) is continuously differentiable on R

2.
Note that

∂t V (0, 0) =
∫

E
div( f Y ) dx = 1
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by choice of Y . By the implicit function theorem there exists η > 0 and a C1 function
σ : (−η, η) → R such that σ(0) = 0 and V (s, σ (s)) = 0 for s ∈ (−η, η); moreover,

σ ′(0) = −∂sV (0, 0) = −
∫

E

{
〈∇ f, X〉 + f div X

}
dx

= −
∫

E
div( f X) dx =

∫

M
f 〈n, X〉 dH 1

by the Gauss–Green formula (cf. [1] Theorem 3.36).
The mapping

ϕ : (−η, η)× R
2 → R

2; t �→ χ(σ(t), ψ(t, x))

satisfies conditions (F.1)–(F.4) above with I = (−η, η) where the associated time-
dependent vector field Z is given as in (6.1) and satisfies (Z.1) and (Z.2); moreover,
Z0 = Z(0, ·) = σ ′(0)Y + X . Note that Z0 = X on M\B(x, r).

The mapping I → R; t �→ Pf (ϕt (E)) is right-differentiable at t = 0 as can be
seen from Proposition 6.1 and has non-negative right-derivative there. By Proposition
6.1 and Lemma 6.3,

0 ≤ δP+f (Z) =
∫

M
f ′+(·, Z0)+ f divM Z0 dH

1

=
∫

M\Λ1

f ′+(·, Z0)+ f divM Z0 dH
1

+
∫

Λ1

f ′+(·, X)+ f divM X dH 1

=
∫

M\Λ1

σ ′(0)〈∇ f,Y 〉 + 〈∇ f, X〉

+ σ ′(0) f divMY + f divM X dH 1

+
∫

Λ1

f ′+(·, X)+ f divM X dH 1

=
∫

M
f ′+(·, X)+ f divM X dH 1

+ σ ′(0)
∫

M
f ′+(·,Y )+ f divMY dH 1. (6.3)

The identity then follows upon inserting the expression for σ ′(0) above with λ =
− ∫

M f ′+(·,Y )+ f divMY dH 1. The claim follows for X ∈ C1
c (R

2,R2) by a density
argument. ��
Theorem 6.5 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be a minimiser of (1.2). Assume that E is a
bounded open set in R

2 with C1,1 boundary M and suppose that E\{0} = Esc.
Suppose that M\Λ1 �= ∅. Then there exists λ ∈ R such that
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(i) k + ρ sin σ + λ = 0 H 1-a.e. on M\Λ1;
(ii) ρ− − λ ≤ k ≤ ρ+ − λ on Λ+1 ;
(iii) −ρ+ − λ ≤ k ≤ −ρ− − λ on Λ−1 .

The expression k + ρ sin σ is called the generalised (mean) curvature of M .

Proof (i) Let x ∈ M and r > 0 such that M ∩ B(x, r) ⊂ M\Λ1. Choose
X ∈ C1

c (R
2,R2) with supp[X ] ⊂ B(x, r). We know from Lemma 6.3 that f is

differentiable H 1-a.e. on supp[X ]. Let λ be as in Proposition 6.4. Replacing X by
−X we deduce from Proposition 6.4 that

0 =
∫

M

{
〈∇ f, X〉 + f divM X − λ f 〈n, X〉

}
dH 1.

The divergence theorem on manifolds (cf. [1] Theorem 7.34) holds also for C1,1

manifolds. So
∫

M
〈∇ f, X〉 + f divM X dH 1 =

∫

M
∂n f 〈n, X〉 + 〈∇M f, X〉 + f divM X dH 1

=
∫

M
∂n f 〈n, X〉 + divM ( f X) dH 1

=
∫

M
∂n f 〈n, X〉 − H f 〈n, X〉 dH 1

=
∫

M
f u {∂n log f − H} dH 1

where u = 〈n, X〉. Combining this with the equality above we see that

∫

M
u f {∂n log f − H − λ} dH 1 = 0

for all X ∈ C1
c (R

2,R2). This leads to the result.
(ii) Let x ∈ M and r > 0 such that M ∩ B(x, r) ⊂ Λ+1 . Let φ ∈ C1(S1r ) with support
in S1r ∩ B(x, r). We can construct X ∈ C1

c (R
2,R2) with the property that X = φn on

M ∩ B(x, r). By Lemma 2.4,

f ′+(·, X) = f h′+(|x |, sgn〈x, X〉)|〈n, X〉| = f h′+(|x |, sgn φ〈x, n〉)|φ|

on Λ1. Let us assume that φ ≥ 0. As 〈·, n〉 > 0 on Λ+1 we have that f ′+(·, X) =
f φh′+(|x |,+1) = f φρ+ so by Proposition 6.4,

0 ≤
∫

M

{
f ′+(·, X)+ f divM X − λ f 〈n, X〉

}
dH 1

=
∫

M
f φ

{
ρ+ − k − λ

}
dH 1.
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We conclude that ρ+ − k − λ ≥ 0 on M ∩ B(x, r). Now assume that φ ≤ 0. Then
f ′+(·, X) = − f φh′+(|x |,−1) = f φρ− so

0 ≤
∫

M
f φ

{
ρ− − k − λ

}
dH 1

and hence ρ− − k − λ ≤ 0 on M ∩ B(x, r). This shows (ii).
(iii) The argument is similar. Assume in the first instance that φ ≥ 0. Then f ′+(·, X) =
f φh′+(|x |,−1) = − f φρ− so

0 ≤
∫

M
f φ

{
− ρ− − k − λ

}
dH 1.

We conclude that −ρ− − k − λ ≥ 0 on M ∩ B(x, r). Next suppose that φ ≤ 0. Then
f ′+(·, X) = − f φh′+(|x |,+1) = − f φρ+ so

0 ≤
∫

M
f φ

{
− ρ+ − k − λ

}
dH 1

and −ρ+ − k − λ ≤ 0 on M ∩ B(x, r). ��
Let E be an open set in R

2 with C1 boundary M and assume that E\{0} = Esc

and that Ω is as in (5.2). Bearing in mind Lemma 5.4 we may define

θ2 : Ω → (0, π); τ �→ L(τ )/2τ ; (6.4)

γ : Ω → M; τ �→ (τ cos θ2(τ ), τ sin θ2(τ )). (6.5)

The function

u : Ω → [−1, 1]; τ �→ sin(σ (γ (τ ))). (6.6)

plays a key role.

Theorem 6.6 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E
is open with C1,1 boundary M and that E\{0} = Esc. Suppose that M\Λ1 �= ∅ and
let λ be as in Theorem 6.5. Then u ∈ C0,1(Ω) and

u′ + (1/τ + ρ)u + λ = 0

a.e. on Ω .

Proof Let τ ∈ Ω and x a point in the open upper half-plane such that x ∈ Mτ .
There exists a C1,1 parametrisation γ1 : I → M of M in a neighbourhood of x with
γ1(0) = x as above. Put u1 := sin σ1 on I . By shrinking the open interval I if necessary
we may assume that r1 : I → r1(I ) is a diffeomorphism and that r1(I ) ⊂⊂ Ω . Note
that γ = γ1 ◦ r−11 and u = u1 ◦ r−11 on r1(I ). It follows that u ∈ C0,1(Ω). By (2.9),
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u′ = u̇1
ṙ1
◦ r−11 = σ̇1 ◦ r−11

a.e. on r1(I ). As α̇1 = k1 a.e. on I and using the identity (2.10) we see that σ̇1 =
α̇1 − θ̇1 = k1 − (1/r1) sin σ1 a.e on I . Thus,

u′ = k − (1/τ) sin(σ ◦ γ ) = k − (1/τ)u

a.e. on r1(I ). By Theorem 6.5 there exists λ ∈ R such that k + ρ sin σ + λ = 0
H 1-a.e. on M . So

u′ = −ρ(τ)u − λ− (1/τ)u = −(1/τ + ρ(τ))u − λ

a.e. on r1(I ). The result follows. ��
Lemma 6.7 Suppose that E is a bounded open set in R

2 with C1 boundary M and
that E\{0} = Esc. Then

(i) θ2 ∈ C1(Ω);
(ii) θ ′2 = − 1

τ
u√
1−u2 on Ω .

Proof Let τ ∈ Ω and x a point in the open upper half-plane such that x ∈ Mτ .
There exists a C1 parametrisation γ1 : I → M of M in a neighbourhood of x with
γ1(0) = x as above. By shrinking the open interval I if necessary we may assume
that r1 : I → r1(I ) is a diffeomorphism and that r1(I ) ⊂⊂ Ω . It then holds that

θ2 = θ1 ◦ r−11 and σ ◦ γ = σ1 ◦ r−11

on r1(I ) by choosing an appropriate branch of θ1. It follows that θ2 ∈ C1(Ω). By the
chain-rule, (2.10) and (2.9),

θ ′2 =
θ̇1

ṙ1
◦ r−11 =

(
1

r1
tan σ1

)
◦ r−11

= (1/τ) tan(σ ◦ γ )

on r1(I ). By Lemma 5.4, cos(σ ◦ γ ) = −√1− u2 on Ω . This entails (ii). ��

7 Convexity

Lemma 7.1 Let E be a bounded open set in R
2 with C1,1 boundary M and assume

that E\{0} = Esc. Put d := sup{|x | : x ∈ M} > 0 and b := (d, 0). Let γ1 : I → M
be a C1,1 parametrisation of M near b with γ1(0) = b. Then

lim
δ↓0

{
ess sup[−δ,δ]k1

}
≥ 1/d.
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Proof For s ∈ I ,

γ1(s) = de1 + se2 +
∫ s

0

{
γ̇1(u)− γ̇1(0)

}
du

and

γ̇1(u)− γ̇1(0) =
∫ u

0
k1n1 dv

by (2.6). By the Fubini–Tonelli Theorem,

γ1(s) = de1 + se2 +
∫ s

0
(s − u)k1(u)n1(u) du = de1 + se2 + R(s)

for s ∈ I . Assume for a contradiction that

lim
δ↓0

{
ess sup[−δ,δ]k1

}
< l < 1/d

for some l ∈ R. Then we can find δ > 0 such that k1 < l a.e. on [−δ, δ]. So

〈R(s), e1〉 =
∫ s

0
(s − u)k1(u)〈n1(u), e1〉 du > −(1/2)s2l(1+ o(1))

as s ↓ 0 and

r1(s)
2 − d2 = 2d〈R(s), e1〉 + s2 + o(s2)

> −dls2(1+ o(1))+ s2 + o(s2)

as s ↓ 0. Alternatively,

r1(s)2 − d2

s2
> 1− dl + o(1).

As 1− dl > 0 we can find s ∈ I with r1(s) > d, contradicting the definition of d. ��
Lemma 7.2 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing convex
function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E is
open with C1,1 boundary M and that E\{0} = Esc. Suppose that M\Λ1 �= ∅. Then
λ ≤ −1/d − ρ−(d) < 0 with λ as in Theorem 6.5.

Proof We write M as the disjoint union M = (M\Λ1) ∪ Λ1. Let b be as above.
Suppose that b ∈ Λ1. Then b ∈ Λ1; in fact, b ∈ Λ−1 . By Theorem 6.5, λ ≤ −ρ− − k
at b. By Lemma 7.1, λ ≤ −1/d − ρ−(d) upon considering an appropriate sequence
in M converging to b. Now suppose that b lies in the open set M\Λ1 in M . Let
γ1 : I → M be aC1,1 parametrisation of M near b with γ1(I ) ⊂ M\Λ1. By Theorem
6.5, k1 + ρ(r1) sin σ1 + λ = 0 a.e. on I . Now sin σ1(s) → 1 as s → 0. In light of
Lemma 7.1, 1/d + ρ(d−)+ λ ≤ 0 and λ ≤ −1/d − ρ−(d). ��
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Theorem 7.3 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E is
open with C1,1 boundary M and that E\{0} = Esc. Suppose that M\Λ1 �= ∅. Then
E is convex.

Proof The proof runs along similar lines as [22] Theorem 6.5. By Theorem 6.5,
k + ρ sin σ + λ = 0 H 1-a.e. on M\Λ1. By Lemma 7.2,

0 ≤ k + ρ−(d)+ λ ≤ k − 1/d

and k ≥ 1/d H 1-a.e. on M\Λ1. On Λ+1 , k ≥ ρ− − λ ≥ ρ− + ρ−(d) + 1/d > 0;
on the other hand, k < 0 on Λ+1 . So in fact Λ+1 = ∅. If b ∈ Λ−1 then k = 1/d. On
Λ−1 ∩ B(0, d), k ≥ −ρ+ − λ ≥ −ρ+ + ρ−(d)+ 1/d ≥ 1/d. Therefore k ≥ 1/d > 0
H 1-a.e. on M . The set E is then convex by a modification of [26] Theorem 1.8 and
Proposition 1.4. It is sufficient that the function f (here α1) in the proof of the former
theorem is non-decreasing. ��

8 A reverse Hermite–Hadamard inequality

Let 0 ≤ a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function on [a, b].
Let h be a primitive of ρ on [a, b] so that h ∈ C0,1([a, b]) and introduce the functions

f : [a, b] → R; x �→ eh(x); (8.1)

g : [a, b] → R; x �→ xf(x). (8.2)

Then

g′ = (1/x + ρ)g = f+ gρ (8.3)

a.e. on (a, b). Define

m = m(ρ, a, b) := g(b)− g(a)∫ b
a g dt

. (8.4)

If ρ takes the constant value R � λ ≥ 0 on [a, b] we use the notation m(λ, a, b) and
we write m0 = m(0, a, b). A computation gives

m0 = m(0, a, b) = A(a, b)−1 (8.5)

where A(a, b) := (a + b)/2 stands for the arithmetic mean of a and b.

Lemma 8.1 Let 0 ≤ a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Then m0 ≤ m.
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Proof Note that g is convex on [a, b] as can be seen from (8.3). By the Hermite-
Hadamard inequality (cf. [15,17]),

1

b − a

∫ b

a
g dt ≤ g(a)+ g(b)

2
. (8.6)

The inequality (b − a)(g(a)+ g(b)) ≤ (a + b)(g(b)− g(a)) entails

∫ b

a
g dt ≤ a + b

2
(g(b)− g(a))

and the result follows on rearrangement. ��
Lemma 8.2 Let 0 ≤ a < b < +∞ and λ > 0. Then m(λ, a, b) < λ+ A(a, b)−1.

Proof First suppose that λ = 1 and take h : [a, b] → R; t �→ t . In this case,

∫ b

a
g dt =

∫ b

a
tet dt = (b − 1)eb − (a − 1)ea

and

m(1, a, b) = beb − aea

(b − 1)eb − (a − 1)ea
.

The inequality in the statement is equivalent to

(a + b)(beb − aea) < ((b − 1)eb − (a − 1)ea)(2+ a + b)

which in turn is equivalent to the statement tanh[(b− a)/2] < (b− a)/2 which holds
for any b > a.

For λ > 0 take h : [a, b] → R; t �→ λt . Substitution gives

∫ b

a
g dt = (1/λ)2[(λb − 1)eλb − (λa − 1)eλa] and

g(b)− g(a) = (1/λ)[λbeλb − λaeλa]

so from above

m(λ, a, b) = λm(1, λa, λb) < λ
{
1+ A(λa, λb)−1

}
= λ+ A(a, b)−1.

��
Theorem 8.3 Let 0 ≤ a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Then
(i) m(ρ, a, b) ≤ ρ(b−)+ A(a, b)−1;
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(ii) equality holds if and only if ρ ≡ 0 on [a, b).

Proof (i) Define h := ∫ ·
a ρ dτ on [a, b] so that h′ = ρ a.e. on (a, b). Define h1 :

[a, b] → R; t �→ h(b)− ρ(b−)(b − t). Then h1(b) = h(b), h′1 = ρ(b−) ≥ ρ = h′
a.e. on (a, b) and hence h ≥ h1 on [a, b]. We derive

∫ b

a
g dt =

∫ b

a
teh(t) dt ≥

∫ b

a
teh1(t) dt =

∫ b

a
g1 dt

and

g(b)− g(a) = beh(b) − aeh(a) = beh1(b) − aeh(a)

≤ beh1(b) − aeh1(a) = g1(b)− g1(a)

with obvious notation. This entails that m(ρ, a, b) ≤ m(ρ(b−), a, b) and the result
follows with the help of Lemma 8.2.
(ii) Suppose that ρ �≡ 0 on [a, b). If ρ is constant on [a, b] the assertion follows from
Lemma 8.2. Assume then that ρ is not constant on [a, b). Then h �≡ h1 on [a, b] in the
above notation and

∫ b
a teh(t) dt >

∫ b
a teh1(t) dt which entails strict inequality in (i). ��

With the above notation define

m̂ = m̂(ρ, a, b) := g(a)+ g(b)∫ b
a g dt

. (8.7)

A computation gives

m̂0 := m̂(0, a, b) = 2

b − a
. (8.8)

Lemma 8.4 Let 0 ≤ a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Then m̂ ≥ m̂0.

Proof This follows by the Hermite-Hadamard inequality (8.6). ��
We prove a reverse Hermite-Hadamard inequality.

Theorem 8.5 Let 0 ≤ a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Then
(i) (b − a)m̂(ρ, a, b) ≤ 2+ aρ(a+)+ bρ(b−);
(ii) equality holds if and only if ρ ≡ 0 on [a, b).

This last inequality can be written in the form

g(a)+ g(b)

2+ aρ(a+)+ bρ(b−)
≤ 1

b − a

∫ b

a
g dt;

comparing with (8.6) justifies naming this a reverse Hermite-Hadamard inequality.
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Proof (i) We assume in the first instance that ρ ∈ C1((a, b)). We prove the above
result in the form

∫ b

a
g dt ≥ (b − a)

g(a)+ g(b)

2+ aρ(a)+ bρ(b)
. (8.9)

Put

w := (t − a)(g(a)+ g)

2+ aρ(a)+ tρ

for t ∈ [a, b] so that
∫ b

a
w′ dt = (b − a)

g(a)+ g(b)

2+ aρ(a)+ bρ(b)
.

Then using (8.3),

w′ = (g(a)+ g + (t − a)g′)(2+ aρ(a)+ tρ)− (t − a)(g(a)+ g)(ρ + tρ′)
(2+ aρ(a)+ tρ)2

= (g(a)− ag′ + (2+ tρ)g)(2+ aρ(a)+ tρ)− (t − a)(g(a)+ g)(ρ + tρ′)
(2+ aρ(a)+ tρ)2

= (2+ tρ)(2+ aρ(a)+ tρ)

(2+ aρ(a)+ tρ)2
g

+ (g(a)− ag′)(2+ aρ(a)+ tρ)− (t − a)(g(a)+ g)(ρ + tρ′)
(2+ aρ(a)+ tρ)2

≤ g − 2g(a)

(2+ aρ(a)+ bρ(b))2
(t − a)ρ

≤ g (8.10)

on (a, b) as

g(a)− ag′ = a(f(a)− (1/t + ρ)g) = a(f(a)− f− ρg) ≤ 0.

An integration over [a, b] gives the result.
Let us now assume that ρ ≥ 0 is a non-decreasing bounded function on [a, b].

Extend ρ to R via

ρ̃(t) :=
⎧⎨
⎩

ρ(a+) for t ∈ (−∞, a];
ρ(t) for t ∈ (a, b];
ρ(b−) for t ∈ (b,+∞);

for t ∈ R. Let (ψε)ε>0 be a family of mollifiers (see e.g. [1] 2.1) and set ρ̃ε := ρ̃ � ψε

on R for each ε > 0. Then ρ̃ε ∈ C∞(R) and is non-decreasing on R for each ε > 0.
Put ρε := ρ̃ε |[a,b] for each ε > 0. Then (ρε)ε>0 converges to ρ in L1((a, b)) by [1]
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2.1 for example. Note that hε :=
∫ ·
a ρε dt → h pointwise on [a, b] as ε ↓ 0 and that

(hε) is uniformly bounded on [a, b]. Moreover, ρε(a)→ ρ(a+) and ρε(b) → ρ(b−)

as ε ↓ 0. By the above result,

(b − a)m̂(ρε, a, b) ≤ 2+ aρε(a)+ bρε(b)

for each ε > 0. The inequality follows on taking the limit ε ↓ 0 with the help of the
dominated convergence theorem.
(ii)We now consider the equality case. We claim that

(b − a)
g(a)+ g(b)

2+ aρ(a+)+ bρ(b−)
≤

∫ b

a
g dt

− 2g(a)

(2+ aρ(a+)+ bρ(b−))2

∫ b

a
(t − a)ρ dt; (8.11)

this entails the equality condition in (ii). First suppose that ρ ∈ C1((a, b)). In this case
the inequality in (8.10) implies (8.11) upon integration. Now suppose that ρ ≥ 0 is a
non-decreasing bounded function on [a, b]. Then (8.11) holds with ρε in place of ρ

for each ε > 0. The inequality for ρ follows by the dominated convergence theorem.
��

9 Comparison theorems for first-order differential equations

Let L stand for the collection of Lebesgue measurable sets in [0,+∞). Define a
measure μ on ([0,+∞),L ) by μ(dx) := (1/x) dx . Let 0 ≤ a < b < +∞. Suppose
that u : [a, b] → R is an L 1-measurable function with the property that

μ({u > t}) < +∞ for each t > 0. (9.1)

The distribution function μu : (0,+∞) → [0,+∞) of u with respect to μ is given
by

μu(t) := μ({u > t}) for t > 0.

Note that μu is right-continuous and non-increasing on (0,∞) and μu(t) → 0 as
t →∞.

Let u be a Lipschitz function on [a, b]. Define

Z1 := {u differentiable and u′ = 0}, Z2 := {u not differentiable} and Z := Z1 ∪ Z2.

By [1] Lemma 2.96, Z ∩ {u = t} = ∅ for L 1-a.e. t ∈ R and hence N := u(Z) ⊂ R

isL 1-negligible. We make use of the coarea formula ( [1] Theorem 2.93 and (2.74)),

∫

[a,b]
φ|u′| dx =

∫ ∞

−∞

∫

{u=t}
φ dH 0 dt (9.2)
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for any L 1-measurable function φ : [a, b] → [0,∞].
Lemma 9.1 Let 0 ≤ a < b < +∞ and u a Lipschitz function on [a, b]. Then
(i) μu ∈ BVloc((0,+∞));
(ii) Dμu = −u�μ;
(iii) Dμa

u = Dμu ((0,+∞)\N );
(iv) Dμs

u = Dμu N;

(v) A :=
{
t ∈ (0,+∞) : L 1(Z ∩ {u = t}) > 0

}
is the set of atoms of Dμu and

Dμ
j
u = Dμu A;

(vi) μu is differentiable L 1-a.e. on (0,+∞) with derivative given by

μ′u(t) = −
∫

{u=t}\Z
1

|u′|
dH 0

τ

forL 1-a.e. t ∈ (0,+∞);
(vii) Ran(u) ∩ [0,+∞) = supp(Dμu).

The notation above Dμa
u, Dμs

u, Dμ
j
u stands for the absolutely continuous resp.

singular resp. jump part of the measure Dμu (see [1] 3.2 for example).

Proof For any ϕ ∈ C∞c ((0,+∞)) with supp[ϕ] ⊂ (τ,+∞) for some τ > 0,

∫ ∞

0
μuϕ

′ dt =
∫

[a,b]
ϕ ◦ u dμ

=
∫

[a,b]
χ{u>τ }ϕ ◦ u dμ (9.3)

by Fubini’s theorem; so μu ∈ BVloc((0,+∞)) and Dμu is the push-forward of μ

under u, Dμu = −u�μ (cf. [1] 1.70). By (9.2),

Dμu ((0,+∞)\N )(A) = −μ({u ∈ A}\Z)

= −
∫

A

∫

{u=t}\Z
1

|u′|
dH0

τ
dt

for any L 1-measurable set A in (0,+∞). In light of the above, we may identify
Dμa

u = Dμu ((0,+∞)\N ) and Dμs
u = Dμu N . The set of atoms of Dμu is

defined by A := {t ∈ (0,+∞) : Dμu({t}) �= 0}. For t > 0,

Dμu({t}) = Dμs
u({t}) = (Dμu N )(({t})

= −u�μ(N ∩ {t}) = −μ(Z ∩ {u = t})

and this entails (v). The monotone function μu is a good representative within its
equivalence class and is differentiable L 1-a.e. on (0,+∞) with derivative given by
the density of Dμu with respect to L 1 by [1] Theorem 3.28. Item (vi) follows from
(9.2) and (iii). Item (vii) follows from (ii). ��
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Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function on
[a, b]. Let η ∈ {±1}2. We study solutions to the first-order linear ordinary differential
equation

u′ + (1/x + ρ)u + λ = 0 a.e. on (a, b) with u(a) = η1 and u(b) = η2 (9.4)

where u ∈ C0,1([a, b]) and λ ∈ R. In case ρ ≡ 0 on [a, b] we use the notation u0.

Lemma 9.2 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Let η ∈ {±1}2. Then
(i) there exists a solution (u, λ) of (9.4) with u ∈ C0,1([a, b]) and λ = λη ∈ R;
(ii) the pair (u, λ) in (i) is unique;
(iii) λη is given by

−λ(1,1) = λ(−1,−1) = m; λ(1,−1) = −λ(−1,1) = m̂;

(iv) if η = (1, 1) or η = (−1,−1) then u is uniformly bounded away from zero on
[a, b].

Proof (i) For η = (1, 1) define u : [a, b] → R by

u(t) := m
∫ t
a g ds + g(a)

g(t)
for t ∈ [a, b] (9.5)

with m as in (8.4). Then u ∈ C0,1([a, b]) and satisfies (9.4) with λ = −m. For
η = (1,−1) set u = (−m̂ ∫ ·

a g ds + g(a))/g with λ = m̂. The cases η = (−1,−1)
and η = (−1, 1) can be dealt with using linearity. (ii)We consider the case η = (1, 1).
Suppose that (u1, λ1) resp. (u2, λ2) solve (9.4). By linearity u := u1 − u2 solves

u′ + (1/x + ρ)u + λ = 0 a.e. on (a, b) with u(a) = u(b) = 0

where λ = λ1 − λ2. An integration gives that u = (−λ
∫ ·
a g ds + c)/g for some

constant c ∈ R and the boundary conditions entail that λ = c = 0. The other cases
are similar. (iii) follows as in (i). (iv) If η = (1, 1) then u > 0 on [a, b] from (9.5) as
m > 0. ��

The boundary condition η1η2 = −1.
Lemma 9.3 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Let (u, λ) solve (9.4) with η = (1,−1). Then
(i) there exists a unique c ∈ (a, b) with u(c) = 0;
(ii) u′ < 0 a.e. on [a, c] and u is strictly decreasing on [a, c];
(iii) Dμs

u = 0.
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Proof (i)We first observe that u′ ≤ −m̂ < 0 a.e. on {u ≥ 0} in view of (9.4). Suppose
u(c1) = u(c2) = 0 for some c1, c2 ∈ (a, b) with c1 < c2. We may assume that
u ≥ 0 on [c1, c2]. This contradicts the above observation. Item (ii) is plain. For any
L 1-measurable set B in (0,+∞), Dμs

u(B) = μ({u ∈ B} ∩ Z) = 0 using Lemma
9.1 and (ii). ��
Lemma 9.4 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Let (u, λ) solve (9.4) with η = (1,−1). Assume that
(a) u is differentiable at both a and b and that (9.4) holds there;
(b) u′(a) < 0 and u′(b) < 0;
(c) ρ is differentiable at a and b.

Put v := −u. Then
(i)

∫
{v=1}\Zv

1
|v′|

dH 0

τ
≥ ∫

{u=1}\Zu

1
|u′|

dH 0

τ
;

(ii) equality holds if and only if ρ ≡ 0 on [a, b).

Proof First, {u = 1} = {a} by Lemma 9.3. Further 0 < −au′(a) = 1+ a[m̂ + ρ(a)]
from (9.4). On the other hand {v = 1} ⊃ {b} and 0 < bv′(b) = −1 + b[m̂ − ρ(b)].
Thus

∫

{v=1}\Zv

1

|v′|
dH 0

τ
−

∫

{u=1}\Zu

1

|u′|
dH 0

τ

≥ 1

−1+ b[m̂ − ρ(b)] −
1

1+ a[m̂ + ρ(a)] .

By Theorem 8.5, 0 ≤ 2 + (a − b)m̂ + aρ(a)+ bρ(b), noting that ρ(a) = ρ(a+) in
virtue of (c) and similarly at b. A rearrangement leads to the inequality. The equality
assertion follows from Theorem 8.5. ��
Theorem 9.5 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Suppose that (u, λ) solves (9.4) with η = (1,−1) and set v := −u.
Assume that u > −1 on [a, b). Then

(i) −μ′v ≥ −μ′u for L 1-a.e. t ∈ (0, 1);
(ii) if ρ �≡ 0 on [a, b) then there exists t0 ∈ (0, 1) such that−μ′v > −μ′u forL 1-a.e.

t ∈ (t0, 1);
(iii) for t ∈ [−1, 1],

μu0(t) = log
{−(b − a)t +√

(b − a)2t2 + 4ab

2a

}

and μv0 = μu0 on [−1, 1];
in obvious notation.

Proof (i) The set

Yu := Z2,u ∪
(
{u′ + (1/x + ρ)u + λ �= 0}\Z2,u

)
∪ {ρ not differentiable} ⊂ [a, b]
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(in obvious notation) is a null set in [a, b] and likewise for Yv . By [1] Lemma 2.95 and
Lemma 2.96, {u = t}∩(Yu∪Z1,u) = ∅ for a.e. t ∈ (0, 1) and likewise for the function
v. Let t ∈ (0, 1) and assume that {u = t}∩(Yu∪Z1,u) = ∅ and {v = t}∩(Yv∪Z1,v) =
∅. Put c := max{u ≥ t}. Then c ∈ (a, b), {u > t} = [a, c) by Lemma 9.3 and u is
differentiable at c with u′(c) < 0. Put d := max{v ≤ t} = max{u ≥ −t}. As u is
continuous on [a, b] it holds that a < c < d < b. Moreover, u′(d) < 0 as v(d) = t
and d /∈ Zv . Put ũ := u/t and ṽ := v/t on [c, d]. Then

ũ′ + (1/τ + ρ)̃u + m̂/t = 0 a.e. on (c, d) and ũ(c) = −ũ(d) = 1;
ṽ′ + (1/τ + ρ)̃v − m̂/t = 0 a.e. on (c, d) and − ṽ(c) = ṽ(d) = 1.

By Lemma 9.4,

∫

{v=t}\Zv

1

|v′|
dH 0

τ
≥

∫

[c,d]∩{v=t}\Zv

1

|v′|
dH 0

τ

= (1/t)
∫

[c,d]∩{̃v=1}\Zv

1

|̃v′|
dH 0

τ

≥ (1/t)
∫

[c,d]∩{̃u=1}\Zu

1

|̃u′|
dH 0

τ

=
∫

{u=t}\Zu

1

|u′|
dH 0

τ
.

By Lemma 9.1,

−μ′u(t) =
∫

{u=t}\Zu

1

|u′|
dH 0

τ

forL 1-a.e. t ∈ (0, 1) and a similar formula holds for v. The assertion in (i) follows.
(ii) Assume that ρ �≡ 0 on [a, b). Put α := inf{ρ > 0} ∈ [a, b). Note that max{v ≤
t} → b as t ↑ 1 as v < 1 on [a, b) by assumption. Choose t0 ∈ (0, 1) such that
max{v ≤ t0} > α. Then for t > t0,

a < max{u ≥ t} < max{u ≥ −t0} = max{v ≤ t0} < max{v ≤ t} < d;

that is, the interval [c, d]with c, d as described above intersects (α, b]. So forL 1-a.e.
t ∈ (t0, 1),

∫

{v=t}\Zv

1

|v′|
dH 0

τ
>

∫

{u=t}\Zu

1

|u′|
dH 0

τ
.

by the equality condition in Lemma 9.4. The conclusion follows from the representa-
tion of μu resp. μv in Lemma 9.1.
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(iii) A direct computation gives

u0(τ ) = 1

b − a

{
− τ + ab

τ

}

for τ ∈ [a, b]; u0 is strictly decreasing on its domain. This leads to the formula in (iii).
A similar computation gives

μv0(t) = log
{ 2b

(b − a)t +√
(b − a)2t2 + 4ab

}

for t ∈ [−1, 1]. Rationalising the denominator results in the stated equality. ��
Corollary 9.6 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Suppose that (u, λ) solves (9.4) with η = (1,−1) and set v := −u.
Assume that u > −1 on [a, b). Then

(i) μu(t) ≤ μv(t) for each t ∈ (0, 1);
(ii) if ρ �≡ 0 on [a, b) then μu(t) < μv(t) for each t ∈ (0, 1).

Proof (i) By [1] Theorem 3.28 and Lemma 9.3,

μu(t) = μu(t)− μu(1) = −Dμu((t, 1])
= −Dμa

u((t, 1])− Dμs
u((t, 1])

= −
∫

(t,1]
μ′u ds

for each t ∈ (0, 1) as μu(1) = 0. On the other hand,

μv(t) = μv(1)+ (μv(t)− μv(1)) = μv(1)− Dμv((t, 1])
= μv(1)−

∫

(t,1]
μ′v ds − Dμs

v((t, 1])

for each t ∈ (0, 1). The claim follows from Theorem 9.5 noting that Dμs
v((t, 1]) ≤ 0

as can be seen from Lemma 9.1. Item (ii) follows from Theorem 9.5 (ii). ��
Corollary 9.7 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Suppose that (u, λ) solves (9.4) with η = (1,−1). Assume that
u > −1 on [a, b). Let ϕ ∈ C1((−1, 1)) be an odd strictly increasing function with
ϕ ∈ L1((−1, 1)). Then
(i)

∫
{u>0} ϕ(u) dμ < +∞;

(ii)
∫ b
a ϕ(u) dμ ≤ 0;

(iii) equality holds in (ii) if and only if ρ ≡ 0 on [a, b).

In particular,

(iv)
∫ b
a

u√
1−u2 dμ ≤ 0 with equality if and only if ρ ≡ 0 on [a, b).
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Proof (i) Put I := {1 > u > 0}. The function u : I → (0, 1) is C0,1 and u′ ≤ −m̂
a.e. on I by Lemma 9.3. It has C0,1 inverse v : (0, 1) → I, v′ = 1/(u′ ◦ v) and
|v′| ≤ 1/m̂ a.e. on (0, 1). By a change of variables,

∫

{u>0}
ϕ(u) dμ =

∫ 1

0
ϕ(v′/v) dt

from which the claim is apparent. (ii) The integral is well-defined because ϕ(u)+ =
ϕ(u)χ{u>0} ∈ L1((a, b), μ) by (i). By Lemma 9.3 the set {u = 0} consists of a
singleton and has μ-measure zero. So

∫ b

a
ϕ(u) dμ =

∫

{u>0}
ϕ(u) dμ+

∫

{u<0}
ϕ(u) dμ

=
∫

{u>0}
ϕ(u) dμ−

∫

{v>0}
ϕ(v) dμ

where v := −u as ϕ is an odd function. We remark that in a similar way to (9.3),

∫ 1

0
ϕ′μu dt =

∫

{u>0}

{
ϕ(u)− ϕ(0)

}

dμ =
∫

{u>0}
ϕ(u) dμ

using oddness of ϕ and an analogous formula holds with v in place of u. Thus we may
write

∫ b

a
ϕ(u) dμ =

∫ 1

0
ϕ′μu dt −

∫ 1

0
ϕ′μv dt

=
∫ 1

0
ϕ′

{
μu − μv

}
dt ≤ 0

by Corollary 9.6 as ϕ′ > 0 on (0, 1). (iii) Suppose that ρ �≡ 0 on [a, b). Then
strict inequality holds in the above by Corollary 9.6. If ρ ≡ 0 on [a, b) the equality
follows from Theorem 9.5. (iv) follows from (ii) and (iii) with the particular choice
ϕ : (−1, 1) → R; t �→ t/

√
1− t2. ��

The boundary condition η1η2 = 1. Let 0 < a < b < +∞ and ρ ≥ 0 be a non-
decreasing bounded function on [a, b]. We study solutions of the auxilliary Riccati
equation

w′ + λw2 = (1/x + ρ)w a.e. on (a, b) with w(a) = w(b) = 1; (9.6)

with w ∈ C0,1([a, b]) and λ ∈ R. If ρ ≡ 0 on [a, b] then we write w0 instead of w.
Suppose (u, λ) solves (9.4) with η = (1, 1). Then u > 0 on [a, b] by Lemma 9.2 and
we may set w := 1/u. Then (w,−λ) satisfies (9.6).
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Lemma 9.8 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Then
(i) there exists a solution (w, λ) of (9.6) with w ∈ C0,1([a, b]) and λ ∈ R;
(ii) the pair (w, λ) in (i) is unique;
(iii) λ = m.

Proof (i) Define w : [a, b] → R by

w(t) := g(t)

m
∫ t
a g ds + g(a)

for t ∈ [a, b].

Then w ∈ C0,1([a, b]) and (w,m) satisfies (9.6). (ii) We claim that w > 0 on [a, b]
for any solution (w, λ) of (9.6). For otherwise, c := min{w = 0} ∈ (a, b). Then
u := 1/w on [a, c) satisfies

u′ +
(
1

τ
+ ρ

)
u − λ = 0 a.e. on (a, c) and u(a) = 1, u(c−) = +∞.

Integrating, we obtain

gu − g(a)− λ

∫ ·

a
g dt = 0 on [a, c)

and this entails the contradiction that u(c−) < +∞. We may now use the uniqueness
statement in Lemma 9.2. (iii) follows from (ii) and the particular solution given in (i).

��
We introduce the mapping

ω : (0,∞)× (0,∞) → R; (t, x) �→ −(2/t) coth(x/2).

For ξ > 0,

|ω(t, x)− ω(t, y)| ≤ cosech2[ξ/2](1/t)|x − y| (9.7)

for (t, x), (t, y) ∈ (0,∞) × (ξ,∞) and ω is locally Lipschitzian in x on (0,∞) ×
(0,∞) in the sense of [16] I.3. Let 0 < a < b < +∞ and set λ := A/G > 1. Here,
A = A(a, b) stands for the arithmetic mean of a, b as introduced in the previous
Section while G = G(a, b) := √|ab| stands for their geometric mean. We refer to
the inital value problem

z′ = ω(t, z) on (0, λ) and z(1) = μ((a, b)). (9.8)

Define

z0 : (0, λ) → R; t �→ 2 log
{λ+√λ2 − t2

t

}
.
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Lemma 9.9 Let 0 < a < b < +∞. Then

(i) w0(τ ) = 2Aτ
G2+τ 2

for τ ∈ [a, b];
(ii) ‖w0‖∞ = λ;
(iii) μw0 = z0 on [1, λ);
(iv) z0 satisfies (9.8) and this solution is unique;

(v)
∫
{w0=1}

1
|w′0|

dH 0

τ
= 2 coth(μ((a, b))/2);

(vi)
∫ b
a

1√
w2
0−1

dx
x = π .

Proof (i) follows as in the proof of Lemma 9.8 with g(t) = t while (ii) follows by
calculus. (iii) follows by solving the quadratic equation tτ 2 − 2Aτ + G2t = 0 for
τ with t ∈ (0, λ). Uniqueness in (iv) follows from [16] Theorem 3.1 as ω is locally
Lipschitzianwith respect to x in (0,∞)×(0,∞). For (v) note that |aw′0(a)| = 1−a/A
and |bw′0(b)| = b/A − 1 and

2 coth(μ((a, b))/2) = 2(a + b)/(b − a).

(vi)We may write

∫ b

a

1√
w2
0 − 1

dτ

τ
=

∫ b

a

ab + τ 2√
(a + b)2τ 2 − (ab + τ 2)2

dτ

τ

=
∫ b

a

ab + τ 2√
(τ 2 − a2)(b2 − τ 2)

dτ

τ
.

The substitution s = τ 2 followed by the Euler substitution (cf. [14] 2.251)

√
(s − a2)(b2 − s) = t (s − a2)

gives

∫ b

a

1√
w2
0 − 1

dτ

τ
=

∫ ∞

0

1

1+ t2
+ ab

b2 + a2t2
dt = π.

��
Lemma 9.10 Let 0 < a < b < +∞. Then

(i) for y > a the function x �→ by−ax
(y−a)(b−x) is strictly increasing on (−∞, b];

(ii) the function y �→ (b−a)y
(y−a)(b−y) is strictly increasing on [G, b];

(iii) for x < b the function y �→ by−ax
(y−a)(b−x) is strictly decreasing on [a,+∞)

Proof The proof is an exercise in calculus. ��
Lemma 9.11 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Let (w, λ) solve (9.6). Assume
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(i) w is differentiable at both a and b and that (9.6) holds there;
(ii) w′(a) > 0 and w′(b) < 0;
(iii) w > 1 on (a, b);
(iv) ρ is differentiable at a and b.

Then

∫

{w=1}\Zw

1

|w′|
dH 0

τ
≥ 2 coth(μ((a, b))/2)

with equality if and only if ρ ≡ 0 on [a, b).

Proof At the end-points x = a, b the condition (i) entails that w′ + m − ρ = 1/x =
w′0 + m0 so that

w′ − w′0 = m0 − m + ρ at x = a, b. (9.9)

We consider the four cases

(a) w′(a) ≥ w′0(a) and w′(b) ≥ w′0(b);
(b) w′(a) ≥ w′0(a) and w′(b) ≤ w′0(b);
(c) w′(a) ≤ w′0(a) and w′(b) ≥ w′0(b);
(d) w′(a) ≤ w′0(a) and w′(b) ≤ w′0(b);

in turn.

(a) Condition (a) together with (9.9) means that m0 − m + ρ(a) ≥ 0; that is, m −
ρ(a) ≤ m0. By (i) and (ii), bm−bρ(b)−1 = −bw′(b) > 0; orm−ρ(b) > 1/b.
Therefore,

0 < 1/b < m − ρ(b) ≤ m − ρ(a) ≤ 1/A

by (8.5). Put x := 1/(m − ρ(b)) and y := 1/(m − ρ(a)). Then

a < A ≤ y ≤ x < b.

We write

aw′(a) = −(m − ρ(a))a + 1 = −(1/y)a + 1 > 0;
bw′(b) = −(m − ρ(b))b + 1 = −(1/x)b + 1 < 0.

Making use of assumption (iii),

∫

{w=1}\Zw

1

|w′|
dH 0

x
= 1

−(1/y)a + 1
− 1

−(1/x)b + 1

= by − ax

(y − a)(b − x)
.
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By Lemma 9.10 (i) then (ii),

∫

{w=1}
1

|w′|
dH 0

x
≥ (b − a)y

(y − a)(b − y)
≥ (b − a)A

(A − a)(b − A)

= 2
a + b

b − a
= 2 coth(μ((a, b))/2).

If equality holds then ρ(a) = ρ(b) and ρ is constant on [a, b]. By Theorem 8.3
we conclude that ρ ≡ 0 on [a, b).

(b) Condition (b) together with (9.9) entails that 0 ≤ m0 − m + ρ(a) and 0 ≤
−m0 +m − ρ(b) whence 0 ≤ ρ(a)− ρ(b) upon adding; so ρ is constant on the
interval [a, b] by monotonicity. Define x and y as above. Then x = y and y ≥ A.
The result now follows in a similar way to case (a).

(c) In this case,

1

aw′(a)
− 1

bw′(b)
≥ 1

aw′0(a)
− 1

bw′0(b)
= 2 coth(μ((a, b))/2)

by Lemma 9.9. If equality holds then w′(b) = w′0(b) so that m0−m+ρ(b) = 0
and ρ vanishes on [a, b] by Theorem 8.3.

(d) Condition (d) together with (9.9) means that m0 − m + ρ(b) ≤ 0; that is, m ≥
ρ(b)+m0. On the other hand, by Theorem 8.3,m ≤ ρ(b)+m0. In consequence,
m = ρ(b)+ m0. It then follows that ρ ≡ 0 on [a, b] by Theorem 8.3. Now use
Lemma 9.9.

��
Lemma 9.12 Let φ : (0,+∞) → (0,+∞) be a convex non-increasing function with
inf(0,+∞) φ > 0. Let Λ be an at most countably infinite index set and (xh)h∈Λ a
sequence of points in (0,+∞) with

∑
h∈Λ xh < +∞. Then

∑
h∈Λ

φ(xh) ≥ φ

(∑
h∈Λ

xh

)

and the left-hand side takes the value +∞ in case Λ is countably infinite and is
otherwise finite.

Proof Suppose 0 < x1 < x2 < +∞. By convexity φ(x1) + φ(x2) ≥ 2φ( x1+x22 ) ≥
φ(x1 + x2) as φ is non-increasing. The result for finite Λ follows by induction. ��
Theorem 9.13 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Let (w, λ) solve (9.6). Assume that w > 1 on (a, b). Then

(i) for L 1-a.e. t ∈ (1, ‖w‖∞),

− μ′w ≥ (2/t) coth((1/2)μw); (9.10)
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(ii) if ρ �≡ 0 on [a, b) then there exists t0 ∈ (1, ‖w‖∞) such that strict inequality
holds in (9.10) for L 1-a.e. t ∈ (1, t0).

Proof (i) The set

Yw := Z2,w ∪
(
{w′ + mw2 �= (1/x + ρ)w}\Z2,w

)

∪{ρ not differentiable} ⊂ [a, b]

is a null set in [a, b]. By [1] Lemma 2.95 and Lemma 2.96, {w = t}∩(Yw∩ Z1,w) = ∅
for a.e. t > 1. Let t ∈ (1, ‖w‖∞) and assume that {w = t}∩(Yw∩Z1,w) = ∅.Wewrite
{w > t} =⋃

h∈Λ Ih whereΛ is an at most countably infinite index set and (Ih)h∈Λ are
disjoint non-empty well-separated open intervals in (a, b). The term well-separated
means that for each h ∈ Λ, infk∈Λ\{h} d(Ih, Ik) > 0. This follows from the fact that
w′ �= 0 on ∂ Ih for each h ∈ Λ. Put w̃ := w/t on {w > t} so

w̃′ + (mt)w̃2 = (1/x + ρ)w̃ a.e. on {w > t} and w̃ = 1 on {w = t}.

We use the fact that the mapping φ : (0,+∞) → (0,+∞); t �→ coth t satisfies the
hypotheses of Lemma 9.12. By Lemmas 9.11 and 9.12,

(0,+∞] �
∫

{w=t}\Zw

1

|w′|
dH 0

x
= (1/t)

∫

{w̃=1}
1

|w̃′|
dH 0

τ

= (1/t)
∑
h∈Λ

∫

∂ Ih

1

|w̃′|
dH 0

τ

≥ (2/t)
∑
h∈Λ

coth((1/2)μ(Ih))

≥ (2/t) coth

(
(1/2)

∑
h∈Λ

μ(Ih)

)

= (2/t) coth((1/2)μ({w > t})))
= (2/t) coth((1/2)μw(t)).

The statement now follows from Lemma 9.1.
(ii) Suppose that ρ �≡ 0 on [a, b). Put α := min{ρ > 0} ∈ [a, b). Now that {w >

t} ↑ (a, b) as t ↓ 1 as w > 1 on (a, b). Choose t0 ∈ (1, ‖w‖∞) such that {w >

t0} ∩ (α, b) �= ∅. Then for each t ∈ (1, t0) there exists h ∈ Λ such that ρ �≡ 0 on Ih .
The statement then follows by Lemma 9.11. ��

Lemma 9.14 Let ∅ �= S ⊂ R be bounded and suppose S has the property that for
each s ∈ S there exists δ > 0 such that [s, s + δ) ⊂ S. Then S isL 1-measurable and
|S| > 0.
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Proof For each s ∈ S put ts := inf{t > s : t /∈ S}. Then s < ts < +∞, [s, ts) ⊂ S
and ts /∈ S. Define

C :=
{
[s, t] : s ∈ S and t ∈ (s, ts)

}
.

Then C is a Vitali cover of S (see [6] Chapter 16 for example). By Vitali’s Covering
Theorem (cf. [6] Theorem 16.27) there exists an at most countably infinite subset
Λ ⊂ C consisting of pairwise disjoint intervals such that

∣∣∣∣∣S\
⋃
I∈Λ

I

∣∣∣∣∣ = 0.

Note that I ⊂ S for each I ∈ Λ. Consequently, S = ⋃
I∈Λ I ∪ N where N is an

L 1-null set and hence S isL 1-measurable. The positivity assertion is clear. ��
Theorem 9.15 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Let (w, λ) solve (9.6). Assume that w > 1 on (a, b). Put T :=
min{‖w0‖∞, ‖w‖∞} > 1. Then

(i) μw(t) ≤ μw0(t) for each t ∈ [1, T );
(ii) ‖w‖∞ ≤ ‖w0‖∞;
(iii) if ρ �≡ 0 on [a, b) then there exists t0 ∈ (1, ‖w‖∞) such that μw(t) < μw0(t)

for each t ∈ (1, t0).

Proof (i) We adapt the proof of [16] Theorem I.6.1. The assumption entails that
μw(1) = μw0(1) = μ((a, b)). Suppose for a contradiction that μw(t) > μw0(t) for
some t ∈ (1, T ).

For ε > 0 consider the initial value problem

z′ = ω(t, z)+ ε and z(1) = μ((a, b))+ ε (9.11)

on (0, T ). Choose υ ∈ (0, 1) and τ ∈ (t, T ). By [16] Lemma I.3.1 there exists ε0 > 0
such that for each 0 ≤ ε < ε0 (9.11) has a continuously differentiable solution zε
defined on [υ, τ ] and this solution is unique by [16] Theorem I.3.1. Moreover, the
sequence (zε)0<ε<ε0 converges uniformly to z0 on [υ, τ ].

Given 0 < ε < η < ε0 it holds that z0 ≤ zε ≤ zη on [1, τ ] by [16] Theorem
I.6.1. Note for example that z′0 ≤ ω(·, z0)+ ε on (1, τ ). In fact, (zε)0<ε<ε0 decreases
strictly to z0 on (1, τ ). For if, say, z0(s) = zε(s) for some s ∈ (1, τ ) then z′ε(s) =
ω(s, zε(s))+ε > ω(s, z0(s)) = z′0(s) by (9.11);while on the other hand z′ε(s) ≤ z′0(s)
by considering the left-derivative at s and using the fact that zε ≥ z0 on [1, τ ]. This
contradicts the strict inequality.

Choose ε1 ∈ (0, ε0) such that zε(t) < μw(t) for each 0 < ε < ε1. Now μw is
right-continuous and strictly decreasing as μw(t)− μw(s) = −μ({s < w ≤ t}) < 0
for 1 ≤ s < t < ‖w‖∞ by continuity of w. So the set {zε < μw} ∩ (1, t) is open
and non-empty in (0,+∞) for each ε ∈ (0, ε1). Thus there exists a unique sε ∈ [1, t)
such that
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μw > zε on (sε, t] and μw(sε) = zε(sε)

for each ε ∈ (0, ε1). As zε(1) > μ((a, b)) it holds that each sε > 1. Note that
1 < sε < sη whenever 0 < ε < η as (zε)0<ε<ε0

decreases strictly to z0 as ε ↓ 0.
Define

S :=
{
sε : 0 < ε < ε1

}
⊂ (1, t).

We claim that for each s ∈ S there exists δ > 0 such that [s, s + δ) ⊂ S. This entails
that S is L 1-measurable with positive L 1-measure by Lemma 9.14.

Suppose s = sε ∈ S for some ε ∈ (0, ε1) and put z := zε(s) = μw(s). Put
k := cosech2(z0(t)/2). For 0 ≤ ζ < η < ε1 define

Ωζ,η :=
{
(u, y) ∈ R

2 : u ∈ (0, t) and zζ (u) < y < zη(u)
}

and note that this is an open set in R
2. We remark that for each (u, y) ∈ Ωζ,η there

exists a unique ν ∈ (ζ, η) such that y = zν(u). Given r > 0 with s + r < t set

Q = Qr :=
{
(u, y) ∈ R

2 : s ≤ u < s + r and |y − z| < ‖zε − z‖C([s,s+r ])
}
.

Choose r ∈ (0, t − s) and ε2 ∈ (ε, ε1) such that

(a) Qr ⊂ Ω0,ε1 ;
(b) ‖zε − z‖C([s,s+r ]) < sε/(2k);
(c) supη∈(ε,ε2)

‖zη − z‖C([s,s+r ]) ≤ ‖zε − z‖C([s,s+r ]);
(d) zη < μw on [s + r, t] for each η ∈ (ε, ε2).

We can find δ ∈ (0, r) such that zε < μw < zε2 on (s, s + δ) as zε2(s) > z; in other
words, the graph of μw restricted to (s, s + δ) is contained in Ωε,ε2 .

Let u ∈ (s, s + δ). Then μw(u) = zη(u) for some η ∈ (ε, ε2) as above. We
claim that u = sη so that u ∈ S. This implies in turn that [s, s + δ) ⊂ S. Suppose
for a contradiction that zη �< μw on (u, t]. Then there exists v ∈ (u, t] such that
μw(v) = zη(v). In view of condition (d), v ∈ (u, s + r). By [1] Theorem 3.28 and
Theorem 9.13,

μw(v)− μw(u) = Dμw((u, v]) = Dμa
w((u, v])+ Dμs

w((u, v])
≤ Dμa

w((u, v]) =
∫ v

u
μ′w dτ ≤

∫ v

u
ω(·, μw) dτ.

On the other hand,

zη(v)− zη(u) =
∫ v

u
z′η dτ =

∫ v

u
ω(·, zη) dτ + η(v − u).
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We derive that

ε(v − u) ≤ η(v − u) ≤
∫ v

u

{
ω(·, μw)− ω(·, zη)

}
dτ

≤ k
∫ v

u
|μw − zη| dμ

using the estimate (9.7). Thus

ε ≤ k
1

v − u

∫ v

u
|μw − zη| dμ

≤ (k/s)‖μw − zη‖C([u,v])
≤ (k/s)

{
‖μw − z‖C([s,s+r ]) + ‖zη − z‖C([s,s+r ])

}

≤ (2k/s)‖zε − z‖C([s,s+r ]) < ε

by (b) and (c) giving rise to the desired contradiction.
By Theorem 9.13,μ′w ≤ ω(·, μw) forL 1-a.e. t ∈ S. Choose s ∈ S such thatμw is

differentiable at s and the latter inequality holds at s. Let ε ∈ (0, ε1) such that s = sε.
For any u ∈ (s, t),

μw(u)− μw(s) > zε(u)− zε(s).

We deduce that μ′w(s) ≥ z′ε(s). But then

μ′w(s) ≥ z′ε(s) = ω(s, zε(s))+ ε > ω(s, μw(s)).

This strict inequality holds on a set of full measure in S. This contradicts Theorem
9.13.

(ii) Use the fact that ‖w‖∞ = sup{t > 0 : μw(t) > 0}.
(iii) Assume that ρ �≡ 0 on [a, b). Let t0 ∈ (1, ‖w‖∞) be as in Lemma 9.13. Then
for t ∈ (1, t0),

μw(t)− μw(1) = Dμw((1, t]) = Dμa
w((1, t])

+ Dμs
w((1, t]) ≤ Dμa

w((1, t])
=

∫

(1,t]
μ′w ds <

∫

(1,t]
ω(s, μw) ds

≤
∫

(1,t]
ω(s, μw0) ds = μw0(t)− μw0(1)

by Theorem 9.13, Lemma 9.9 and the inequality in (i).

��
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Corollary 9.16 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Suppose that (w, λ) solves (9.6). Assume that w > 1 on (a, b). Let
0 ≤ ϕ ∈ C1((1,+∞)) be strictly decreasing with

∫ b
a ϕ(w0) dμ < +∞. Then

(i)
∫ b
a ϕ(w) dμ ≥ ∫ b

a ϕ(w0) dμ;
(ii) equality holds in (i) if and only if ρ ≡ 0 on [a, b).

In particular,

(iii)
∫ b
a

1√
w2−1 dμ ≥ π with equality if and only if ρ ≡ 0 on [a, b).

Proof (i) Let ϕ ≥ 0 be a decreasing function on (1,+∞) which is piecewise C1.
Suppose that ϕ(1+) < +∞. By Tonelli’s Theorem,

∫

[1,+∞)

ϕ′μw ds =
∫

[1,+∞)

ϕ′
{ ∫

(a,b)
χ{w>s} dμ

}
ds

=
∫

(a,b)

{ ∫

[1,+∞)

ϕ′χ{w>s} ds
}
dμ

=
∫

(a,b)

{
ϕ(w)− ϕ(1)

}
dμ

=
∫

(a,b)
ϕ(w) dμ− ϕ(1)μ((a, b))

and a similar identity holds for μw0 . By Theorem 9.15,
∫ b
a ϕ(w) dμ ≥ ∫ b

a ϕ(w0) dμ.

Now suppose that 0 ≤ ϕ ∈ C1((1,+∞)) is strictly decreasing with
∫ b
a ϕ(w0) dμ <

+∞. The inequality holds for the truncated function ϕ ∧ n for each n ∈ N. An
application of the monotone convergence theorem establishes the result for ϕ.
(ii) Suppose that equality holds in (i). For c ∈ (1,+∞) put ϕ1 := ϕ ∨ ϕ(c) − ϕ(c)
and ϕ2 := ϕ ∧ ϕ(c). By (i) we deduce

∫ b

a
ϕ2(w) dμ =

∫ b

a
ϕ2(w0) dμ;

and hence by the above that

∫

[c,+∞)

ϕ′
{
μw − μw0

}
ds = 0.

This means that μw = μw0 on (c,+∞) and hence on (1,+∞). By Theorem 9.15
we conclude that ρ ≡ 0 on [a, b). (iii) flows from (i) and (ii) noting that the function
ϕ : (1,+∞) → R; t �→ 1/

√
t2 − 1 satisfies the integral condition by Lemma 9.9. ��

The case a = 0. Let 0 < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [0, b]. We study solutions to the first-order linear ordinary differential equation

u′ + (1/x + ρ)u + λ = 0 a.e. on (0, b) with u(0) = 0 and u(b) = 1 (9.12)
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where u ∈ C0,1([0, b]) and λ ∈ R. If ρ ≡ 0 on [0, b] then we write u0 instead of u.

Lemma 9.17 Let 0 < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function on
[0, b]. Then
(i) there exists a solution (u, λ) of (9.12) with u ∈ C0,1([0, b]) and λ ∈ R;
(ii) λ is given by λ = −g(b)/G(b) where G := ∫ ·

0 g ds;
(iii) the pair (u, λ) in (i) is unique;
(iv) u > 0 on (0, b].
Proof (i) The function u : [a, b] → R given by

u = g(b)

G(b)

G

g
(9.13)

on [0, b] solves (9.12) with λ as in (ii). (iii) Suppose that (u1, λ1) resp. (u2, λ2) solve
(9.12). By linearity u := u1 − u2 solves

u′ + (1/x + ρ)u + λ = 0 a.e. on (0, b) with u(0) = u(b) = 0

where λ = λ1 − λ2. An integration gives that u = (−λG + c)/g for some constant
c ∈ R and the boundary conditions entail that λ = c = 0. (iv) follows from the
formula (9.13) and unicity. ��
Lemma 9.18 Suppose −∞ < a < b < +∞ and that φ : [a, b] → R is convex.
Suppose that there exists ξ ∈ (a, b) such that

φ(ξ) = b − ξ

b − a
φ(a)+ ξ − a

b − a
φ(b).

Then

φ(c) = b − c

b − a
φ(a)+ c − a

b − a
φ(b)

for each c ∈ [a, b].
Proof Let c ∈ (ξ, b). By monotonicity of chords,

φ(ξ)− φ(a)

ξ − a
≤ φ(c)− φ(ξ)

c − ξ

so

φ(c) ≥ c − a

ξ − a
φ(ξ)− c − ξ

ξ − a
φ(a)

= c − a

ξ − a

{b − ξ

b − a
φ(a)+ ξ − a

b − a
φ(b)

}
− c − ξ

ξ − a
φ(a)

123



An isoperimetric inequality in the plane with a log...

= b − c

b − a
φ(a)+ c − a

b − a
φ(b)

and equality follows. The case c ∈ (a, ξ) is similar. ��
Lemma 9.19 Let 0 < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function on
[0, b]. Let (u, λ) satisfy (9.12). Then

(i) u ≥ u0 on [0, b];
(ii) if ρ �≡ 0 on [0, b) then u > u0 on (0, b).

Proof (i) The mappingG : [0, b] → [0,G(b)] is a bijection with inverseG−1. Define
η : [0,G(b)] → R via η := (tg) ◦ G−1. Then

η′ = (tg)′

g
◦ G−1 = (2+ tρ) ◦ G−1

a.e. on (0,G(b)) so η′ is non-decreasing there. This means that η is convex on
[0,G(b)]. In particular, η(s) ≤ [η(G(b))/G(b)]s for each s ∈ [0,G(b)]. For
t ∈ [0, b] put s := G(t) to obtain tg(t) ≤ (bg(b)/G(b))G(t). A rearrange-
ment gives u ≥ u0 on [0, b] noting that u0 : [0, b] → R; t �→ t/b. (ii)
Assume ρ �≡ 0 on [0, b). Suppose that u(c) = u0(c) for some c ∈ (0, b). Then
η(G(c)) = [η(G(b))/G(b)]G(c). By Lemma 9.18, η′ = 0 on (0,G(b)). This implies
that ρ ≡ 0 on [0, b). ��

Lemma 9.20 Let 0 < b < +∞. Then
∫ b
0

u0√
1−u20

dμ = π/2.

Proof The integral is elementary as u0(t) = t/b for t ∈ [0, b]. ��

10 Proof of main results

Lemma 10.1 Let x ∈ H and v be a unit vector in R
2 such that the pair {x, v} forms

a positively oriented orthogonal basis for R2. Put b := (τ, 0) where |x | = τ and
γ := θ(x) ∈ (0, π). Let α ∈ (0, π/2) such that

〈v, x − b〉
|x − b| = cosα.

Then

(i) C(x, v, α) ∩ H ∩ C(0, e1, γ ) = ∅;
(ii) for any y ∈ C(x, v, α)∩ H\B(0, τ ) the line segment [b, y] intersects S1τ outside

the closed cone C(0, e1, γ ).

We point out that C(0, e1, γ ) is the open cone with vertex 0 and axis e1 which
contains the point x on its boundary. We note that cosα ∈ (0, 1) because
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〈v, x − b〉 = −〈v, b〉 = −〈(1/τ)Ox, b〉
= −〈Op, e1〉 = 〈x, O�e1〉 = 〈x, e2〉 > 0 (10.1)

and if |x−b| = 〈v, x−b〉 then b = x−λv for some λ ∈ R and hence x1 = 〈e1, x〉 = τ

and x2 = 0.

Proof (i) For ω ∈ S
1 define the open half-space

Hω := {y ∈ R
2 : 〈y, ω〉 > 0}.

We claim that C(x, v, α) ⊂ Hv . For given y ∈ C(x, v, α),

〈y, v〉 = 〈y − x, v〉 > |y − x | cosα > 0.

On the other hand, it holds that C(0, e1, γ ) ∩ H ⊂ H−v . This establishes (i).
(ii)By some trigonometry γ = 2α. Suppose thatω is a unit vector inC(b,−e1, π/2−
α). Then λ := 〈ω, e1〉 < cosα since upon rewriting the membership condition for
C(b,−e1, π/2− α) we obtain the quadratic inequality

λ2 − 2 cos2 αλ+ cos γ > 0.

For ω a unit vector in C(0, e1, γ ) the opposite inequality 〈ω, e1〉 ≥ cosα holds. This
shows that

C(b,−e1, π/2− α) ∩ C(0, e1, γ ) ∩ S
1
τ = ∅.

The set C(x, v, α)∩ H is contained in the open convex cone C(b,−e1, π/2− α).
Suppose y ∈ C(x, v, α) ∩ H\B(0, τ ). Then the line segment [b, y] is contained
in C(b,−e1, π/2 − α) ∪ {b}. Now the set C(b,−e1, π/2 − α) ∩ S

1
τ disconnects

C(b,−e1, π/2 − α) ∪ {b}. This entails that (b, y] ∩ C(b,−e1, π/2 − α) ∩ S
1
τ �= ∅.

The foregoing paragraph entails that (b, y] ∩ C(0, e1, γ ) ∩ S
1
τ = ∅. This establishes

the result. ��
Lemma 10.2 Let E be an open set in R

2 such that M := ∂E is a C1,1 hypersurface
in R2. Assume that E\{0} = Esc. Suppose

(i) x ∈ (M\{0}) ∩ H;
(ii) sin(σ (x)) = −1.
Then E is not convex.

Proof Let γ1 : I → M be a C1,1 parametrisation of M in a neighbourhood of x with
γ1(0) = x as above. As sin(σ (x)) = −1, n(x) and hence n1(0) point in the direction
of x . Put v := −t1(0) = −t (x). We may write

γ1(s) = γ1(0)+ st1(0)+ R1(s) = x − sv + R1(s)
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for s ∈ I where R1(s) = s
∫ 1
0 γ̇1(ts) − γ̇1(0) dt and we can find a finite positive

constant K such that |R1(s)| ≤ Ks2 on a symmetric open interval I0 about 0 with
I0 ⊂⊂ I . Then

〈γ1(s)− x, v〉
|γ1(s)− x | = 〈−sv + R1, v〉

| − sv + R1|
= 1− 〈(R1/s), v〉

|v − R1/s| → 1

as s ↑ 0. Let α be as in Lemma 10.1 with x and v as just mentioned. The above
estimate entails that γ1(s) ∈ C(x, v, α) for small s < 0. By (2.9) and Lemma 5.4
the function r1 is non-increasing on I . In particular, r1(s) ≥ r1(0) = |x | =: τ for
I � s < 0 and γ1(s) /∈ B(0, τ ).

Choose δ1 > 0 such that γ1(s) ∈ C(x, v, α) ∩ H for each s ∈ [−δ1, 0). Put
β := inf{s ∈ [−δ1, 0] : r1(s) = τ }. Suppose first that β ∈ [−δ1, 0). Then E is not
convex (see Lemma 5.2). Now suppose that β = 0. Let γ be as in Lemma 10.1. Then
the open circular arc S1τ\C(0, e1, γ ) does not intersect E : for otherwise, M intersects
S
1
τ\C(0, e1, γ ) and β < 0 bearing inmind Lemma 5.2. Choose s ∈ [−δ1, 0). Then the

points b and γ1(s) lie in E . But by Lemma 10.1 the line segment [b, γ1(s)] intersects
S
1
τ in S

1
τ\C(0, e1, γ ). Let c ∈ [b, γ1(s)] ∩ S

1
τ . Then c /∈ E . This shows that E is not

convex. But if E is convex then E is convex. Therefore E is not convex. ��
Theorem 10.3 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E
is open, M := ∂E is a C1,1 hypersurface in R

2 and E\{0} = Esc. Put

R := inf{ρ > 0} ∈ [0,+∞). (10.2)

Then Ω ∩ (R,+∞) = ∅ with Ω as in (5.2).

Proof Suppose that Ω ∩ (R,+∞) �= ∅. As Ω is open in (0,+∞) by Lemma 5.6
we may write Ω as a countable union of disjoint open intervals in (0,+∞). By a
suitable choice of one of these intervals we may assume that Ω = (a, b) for some
0 ≤ a < b < +∞ and that Ω ∩ (R,+∞) �= ∅. Let us assume for the time being that
a > 0. Note that [a, b] ⊂ π(M) and cos σ vanishes on Ma ∪ Mb.

Let u : Ω → [−1, 1] be as in (6.6). Then u has a continuous extension to [a, b]
and u = ±1 at τ = a, b. This may be seen as follows. For τ ∈ (a, b) the set Mτ ∩ H
consists of a singleton by Lemma 5.4. The limit x := limτ↓a Mτ ∩ H ∈ S

1
a ∩ H

exists as M is C1. There exists a C1,1 parametrisation γ1 : I → M with γ1(0) = x as
above. By (2.9) and Lemma 5.4, r1 is decreasing on I . So r1 > a on I ∩ {s < 0} for
otherwise the C1 property fails at x . It follows that γ1 = γ ◦ r1 and σ1 = σ ◦ γ ◦ r1 on
I ∩ {s < 0}. Thus sin(σ ◦ γ ) ◦ r1 = sin σ1 on I ∩ {s < 0}. Now the function sin σ1 is
continuous on I . So u → sin σ1(0) ∈ {±1} as τ ↓ a. Put η1 := u(a) and η2 := u(b).

Let us consider the case η = (η1, η2) = (1, 1). According to Theorem 6.5 the
generalised (mean) curvature is constantH 1-a.e. on M with value−λ, say. Note that
u < 1 on (a, b) for otherwise cos(σ ◦ γ ) vanishes at some point in (a, b) bearing in
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mind Lemma 5.4. By Theorem 6.6 the pair (u, λ) satisfies (9.4) with η = (1, 1). By
Lemma 9.2, u > 0 on [a, b]. Put w := 1/u. Then (w,−λ) satisfies (9.6) and w > 1
on (a, b). By Lemma 6.7,

θ2(b)− θ2(a) =
∫ b

a
θ ′2 dτ = −

∫ b

a

u√
1− u2

dτ

τ

= −
∫ b

a

1√
w2 − 1

dτ

τ
.

By Corollary 9.16, |θ2(b) − θ2(a)| > π . But this contradicts the definition of θ2 in
(6.4) as θ2 takes values in (0, π) on (a, b). If η = (−1,−1) then λ > 0 by Lemma
9.2; this contradicts Lemma 7.2.

Now let us consider the case η = (−1, 1). Using the same formula as above,
θ2(b) − θ2(a) < 0 by Corollary 9.7. This means that θ2(a) ∈ (0, π ]. As before the
limit x := limτ↓a Mτ ∩ H ∈ S

1
a ∩ H exists as M is C1. Using a local parametrisation

it can be seen that θ2(a) = θ(x) and sin(σ (x)) = −1. If θ2(a) ∈ (0, π) then E is
not convex by Lemma 10.2. This contradicts Theorem 7.3. Note that we may assume
that θ2(a) ∈ (0, π). For otherwise, 〈γ, e2〉 < 0 for τ > a near a, contradicting the
definition of γ (6.5). If η = (1,−1) then λ > 0 by Lemma 9.2 and this contradicts
Lemma 7.2 as before.

Suppose finally that a = 0. By Lemma 5.5, u(0) = 0 and u(b) = ±1. Suppose
u(b) = 1. Again employing the formula above, θ2(b) − θ2(0) < −π/2 by Lemma
9.19, the fact that the function φ : (0, 1) → R; t �→ t/

√
1− t2 is strictly increasing

and Lemma 9.20. This means that θ2(0) > π/2. This contradicts the C1 property at
0 ∈ M . If u(b) = −1 then then λ > 0 by Lemma 9.2 giving a contradiction. ��
Lemma 10.4 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Let v > 0.

(i) Let E be a bounded minimiser of (1.2). Assume that E is open, M := ∂E is a C1,1

hypersurface inR2 and E\{0} = Esc. Then for any r > 0with r ≥ R, M\B(0, r)
consists of a finite union of disjoint centred circles.

(ii) There exists a minimiser E of (1.2) such that ∂E consists of a finite union of
disjoint centred circles.

Proof (i) First observe that

∅ �= π(M) =
[
π(M) ∩ [0, r ]

]
∪

[
π(M) ∩ (r,+∞)

]
\Ω

by Lemma 10.3. We assume that the latter member is non-empty. By definition of
Ω, cos σ = 0 on M∩ A((r,+∞)). Let τ ∈ π(M)∩(r,+∞). We claim that Mτ = S

1
τ .

Suppose for a contradiction that Mτ �= S
1
τ . By Lemma 5.2, Mτ is the union of two

closed spherical arcs in S1τ . Let x be a point on the boundary of one of these spherical
arcs relative to S

1
τ . There exists a C1,1 parametrisation γ1 : I → M of M in a

neighbourhood of x with γ1(0) = x as before. By shrinking I if necessary we may
assume that γ1(I ) ⊂ A((r,+∞)) as τ > r . By (2.9), ṙ1 = 0 on I as cos σ1 = 0 on I
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because cos σ = 0 on M ∩ A((r,+∞)); that is, r1 is constant on I . This means that
γ1(I ) ⊂ S

1
τ . As the function sin σ1 is continuous on I it takes the value ±1 there. By

(2.10), r1θ̇1 = sin σ1 = ±1 on I . This means that θ1 is either strictly decreasing or
strictly increasing on I . This entails that the point x is not a boundary point of Mτ in
S
1
τ and this proves the claim.
It follows from these considerations that M\B(0, r) consists of a finite union of

disjoint centred circles. Note that f ≥ eh(0) =: c > 0 on R
2. As a result, +∞ >

Pf (E) ≥ cP(E) and in particular the relative perimeter P(E,R2\B(0, r)) < +∞.
This explains why M\B(0, r) comprises only finitely many circles.
(ii) Let E be a bounded minimiser of (1.2) such that E is open, M := ∂E is a C1,1

hypersurface in R
2 and E\{0} = Esc as in Theorem 4.5. Assume that R > 0. By (i),

M\B(0, R) consists of a finite union of disjoint centred circles. We claim that only
one of the possibilities

MR = ∅, MR = S
1
R, MR = {Re1} or MR = {−Re1} (10.3)

holds. To prove this suppose that MR �= ∅ and MR �= S
1
R . Bearing in mind Lemma

5.2 we may choose x ∈ MR such that x lies on the boundary of MR relative to S
1
R .

Assume that x ∈ H . Let γ1 : I → M be a local parametrisation of M with γ1(0) = x
with the usual conventions. We first notice that cos(σ (x)) = 0 for otherwise we obtain
a contradiction to Theorem 10.3. As r1 is decreasing on I and x is a relative boundary
point it holds that r1 < R on I+ := I∩{s > 0}.AsM\Λ1 is open inM wemay suppose
that γ1(I+) ⊂ M\Λ1. According to Theorem 6.5 the curvature k of γ1(I+)∩ B(0, R)

is a.e. constant as ρ vanishes on (0, R). Hence γ1(I+) ∩ B(0, R) consists of a line
or circular arc. The fact that cos(σ (x)) = 0 means that γ1(I+) ∩ B(0, R) cannot be
a line. So γ1(I+) ∩ B(0, R) is an open arc of a circle C containing x in its closure
with centre on the line-segment [0, x] and radius r ∈ (0, R). By considering a local
parametrisation, it can be seen that C ∩ B(0, R) ⊂ M . But this contradicts the fact
that E\{0} = Esc. In summary, MR ⊂ {±Re1}. Finally note that if MR = {±Re1}
then MR = S

1
R by Lemma 5.2. This establishes (10.3).

Suppose that MR = ∅. As both sets M and S
1
R are compact, d(M,S1R) > 0.

Assume first that S1R ⊂ E . Put F := B(0, R)\E and suppose F �= ∅. Then F is a set
of finite perimeter, F ⊂⊂ B(0, R) and P(F) = P(E, B(0, R)). Let B be a centred
ball with |B| = |F |. By the classical isoperimetric inequality, P(B) ≤ P(F). Define
E1 := (R2\B) ∩ (B(0, R) ∪ E). Then V f (E1) = V f (E) and Pf (E1) ≤ Pf (E).
That is, E1 is a minimiser of (1.2) such that ∂E1 consists of a finite union of disjoint
centred circles. Now suppose that S1R ⊂ R

2\E . In like fashion we may redefine E
via E1 := B ∪ (E\B(0, R)) with B a centred ball in B(0, R). The remaining cases
in (10.3) can be dealt with in a similar way. The upshot of this argument is that there
exists a m inimiser of (1.2) whose boundary M consists of a finite union of disjoint
centred circles in case R > 0.

Now suppose that R = 0. By (i), M\B(0, r) consists of a finite union of disjoint
centred circles for any r ∈ (0, 1). If these accumulate at 0 then M fails to be C1 at the
origin. The assertion follows. ��
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Lemma 10.5 Suppose that the function J : [0,+∞) → [0,+∞) is continuous non-
decreasing and J (0) = 0. Let N ∈ N ∪ {+∞} and {th : h = 0, . . . , 2N + 1} a
sequence of points in [0,+∞) with

t0 > t1 > · · · > t2h > t2h+1 > · · · ≥ 0.

Then

+∞ ≥
2N+1∑
h=0

J (th) ≥ J

(
2N+1∑
h=0

(−1)hth
)

.

Proof We suppose that N = +∞. The series
∑∞

h=0(−1)hth converges by the alter-
nating series test. For each n ∈ N,

2n+1∑
h=0

(−1)hth ≤ t0

and the same inequality holds for the infinite sum. As in Step 2 in [5] Theorem 2.1,

+∞ ≥
∞∑
h=0

J (th) ≥ J (t0) ≥ J

( ∞∑
h=0

(−1)hth
)

as J is non-decreasing. ��
Proof of Theorem 1.1 There exists a minimiser E of (1.2) with the property that ∂E
consists of a finite union of disjoint centred circles according to Lemma 10.4. As such
we may write

E =
N⋃

h=0
A((a2h+1, a2h))

where N ∈ N and +∞ > a0 > a1 > · · · > a2N > a2N+1 > 0. Define

f : [0,+∞) → R; t �→ eh(t);
g : [0,+∞) → R; t �→ tf(t);
G : [0,+∞) → R; t �→

∫ t

0
g dτ.

Then G : [0,+∞) → [0,+∞) is a bijection with inverse G−1. Define the strictly
increasing function

J : [0,+∞) → R; t �→ g ◦ G−1.

Put th := G(ah) for h = 0, . . . , 2N + 1. Then +∞ > t0 > t1 > · · · > t2N >

t2N+1 >> 0. Put B := B(0, r) where r := G−1(v/2π) so that V f (B) = v. Note that
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v = V f (E) = 2π
N∑

h=0

{
G(a2h)− G(a2h+1)

}

= 2π
2N+1∑
h=0

(−1)hth .

By Lemma 10.5,

Pf (E) = 2π
2N+1∑
h=0

g(ah) = 2π
2N+1∑
h=0

J (th)

≥ 2π J

(
2N+1∑
h=0

(−1)hth
)

= 2π J (v/2π) = Pf (B).

��

Proof of Theorem 1.2 Let v > 0 and E be a minimiser for (1.2). Then E is essentially
bounded by Theorem 3.1. By Theorem 4.5 there exists anL 2-measurable set Ẽ with
the properties

(a) Ẽ is a minimiser of (1.2);
(b) L Ẽ = LE a.e. on (0,+∞);
(c) Ẽ is open, bounded and has C1,1 boundary;
(d) Ẽ\{0} = Ẽsc.

(i) Suppose that 0 < v ≤ v0 so that R > 0. Choose r ∈ (0, R] such that V (B(0, r)) =
V (E) = v. Suppose that Ẽ\B(0, R) �= ∅. By Lemma 10.4 there exists t > R such
that S1t ⊂ M . As g is strictly increasing, g(t) > g(r). So Pf (E) = Pf (Ẽ) ≥ πg(t) >

πg(r) = Pf (B(0, r)). This contradicts the fact that E is a minimiser for (1.2). So
Ẽ ⊂ B(0, R) and L Ẽ = 0 on (R,+∞). By property (b), |E\B(0, R)| = 0. By
the uniqueness property in the classical isoperimetric theorem (see for example [12]
Theorem 4.11) the set E is equivalent to a ball B in B(0, R).
(ii) With r > 0 as before, V (B(0, r)) = V (E) = v > v0 = V (B(0, R)) so r > R.
If Ẽ\B(0, r) �= ∅ we derive a contradiction in the same way as above. Consequently,
Ẽ = B := B(0, r). Thus, LE = LB a.e. on (0,+∞); in particular, |E\B| = 0. This
entails that E is equivalent to B. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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