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Abstract: Easily processed materials with the ability to transport excitons over length scales of 

more than 100 nm are highly desirable for a range of light-harvesting and optoelectronic devices. 

We describe the preparation of organic semiconducting nanofibers comprising a crystalline 

poly(di-n-hexylfluorene) core and a solvated, segmented corona consisting of polyethylene 

glycol in the center and polythiophene at the ends. These nanofibers exhibit exciton transfer from 

the core to the lower-energy polythiophene coronas in the end-blocks, which occurs in the 

direction of the interchain π-π stacking with very long diffusion lengths (> 200 nm) and a large 

diffusion coefficient (0.5 cm2/s). This is made possible by the uniform exciton energetic 

landscape created by the well-ordered, crystalline nanofiber core. 



 

 2 

One Sentence Summary: Sequential crystallization of copolymers from solution yields 

nanofibers possessing remarkably long exciton diffusion lengths. 

Main Text: The ability to transport excitation energy over length scales comparable to the 

optical absorption depth (100 nm and beyond) is central to the function of a range of devices, 

including solar cells. Most thin-film organic semiconductor structures, such as those formed 

from conjugated polymers, show short exciton diffusion lengths (LD) of around 10 nm (1) that 

are primarily constrained by energetic disorder. As a result, these are fabricated as blends of 

electron donor and acceptor materials with length scales for the partly de-mixed materials 

targeted around 10 nm, so that all excitons can reach the charge-generating heterointerface (1, 2). 

In contrast, diffusion ranges for singlet excitons in purified single crystals are known to be 

considerably larger (up to 220 nm) (1, 3–6). However, in these cases the materials are generally 

polydisperse in dimensions and problematic to incorporate into useful devices. Device 

development is thus dependent on the ability to develop uniform nanostructures that are 

amenable to processing and able to support long range exciton diffusion. Self-assembly of 

molecular and polymeric amphiphiles in solution has recently emerged as a promising route to 

core-corona nanoparticles (micelles) that possess many of these attributes. For instance, long 

range exciton diffusion has been observed in dye molecule H and J fiber-like aggregates by 

single molecule spectroscopy (7, 8), and more detailed investigations performed on single 

conjugated polymers isolated in matrices or dilute solution (9, 10). These latter studies, however, 

necessarily exclude the role of inter-chain transport on exciton diffusion. Such transport is 

possible in solution-processed bulk conjugated polymers, which have been reported to show a 

singlet exciton diffusion length of 70 nm (11), but still short of the lengths exhibited in molecular 

crystals. Herein, we report the formation of uniform nanofibers from the seeded solution self-
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assembly of block copolymers with a crystallizable -conjugated poly(di-n-hexylfluorene) 

(PDHF) block that show exceptional exciton diffusion ranges. 

 In order to facilitate the study of exciton diffusion within π-conjugated, crystalline 

poly(di-n-hexylfluorene) (PDHF), we prepared segmented nanofibers comprising a continuous 

PDHF core with a discrete region of energy accepting, quaternized polythiophene (QPT) 

covalently attached as a corona at each end (Fig. 1B). The central segment contained an 

electronically insulating poly(ethylene glycol) (PEG) corona, and the length of his region was 

varied to afford a size series of nanofibers. These segmented nanostructures were prepared using 

living crystallization-driven self-assembly, a recently developed, seeded growth method to both 

1- and 2-D objects of controlled dimensions (12, 13). The resulting structures are generally 

typified by highly crystalline cores, which can comprise a number of building blocks (14–17). 

We and Faul have previously demonstrated the use of this method with polythiophene-containing 

block copolymers to yield fibers with a -conjugated core, which form ensembles with 

promising transport properties, but weak fluorescence due to aggregation-induced quenching 

(18). 

 

Figure 1 near here 

 

PDHF exhibits bright blue fluorescence in the solid state (19), electrospun microfibers 

(20), and polydisperse nanofibers self-assembled from triblock copolymers in solution (21). The 

uniform examples employed in the present study, however, were prepared in a multistep 

approach, so as to achieve the desired segmented coronal structure and varied length of the PEG 
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component. Initially, ca. 5 - 10 micron long nanofibers, derived from the block copolymer 

PDFH14-b-PEG227 (where the numbers refer to the number-average degree of polymerization of 

each block, see Fig. S1, S3-S5 and S10), were prepared by homogenous nucleation in 

THF:MeOH (10:8) (Fig. S1). Analysis by TEM, AFM, and wide-angle X-ray scattering (WAXS) 

revealed the presence of a crystalline PDHF core with a rectangular cross-section (number-

average width, Wn = 12.9 nm and height = 4.5 nm) surrounded by a PEG corona (Fig. S10-S12). 

A solution of micelle seeds (number-average length, Ln = 30 nm; polydispersity, Lw/Ln = 1.03, 

where Lw is the weight-average length; and height = 4.5 nm) was then prepared by sonication of 

the multi-micron long fibers (Fig. S13A-B and S14A). Subsequent addition of different volumes 

of a solution of unimeric (molecularly dissolved) PDHF14-b-PEG227 copolymer in THF led to the 

formation of uniform nanofibers of controlled length (Fig. 1A, S14 and S15). 

To create nanofibers with a segmented corona an all -conjugated donor-acceptor diblock 

copolymer, PDHF14-b-QPT22, comprising the same PDHF core-forming block and a quaternized 

polythiophene (QPT) corona-forming block was prepared (Fig. S2, S6-S9). This material was 

added in a molecularly dissolved unimeric state (in THF:MeOH 3:1) to the PDHF14-b-PEG227 

nanofibers in THF:MeOH 1:1, leading to growth from the two PDHF core termini. The resulting 

uniform nanofibers had a B-A-B structure of controlled overall and segment length with a 

crystalline PDHF core present over the entire length, but with a -conjugated corona-forming 

block located only on the terminal (B) segments (Fig. 1A). This was used to produce a size series 

of near uniform nanofibers with Ln = 180±40, 300±70, 505±100, 945±240, and 1840±540 nm 

with each QPT segment comprising between 35 and 120 nm of this length, as measured by TEM 

and supported by AFM (Fig. S13C-D, S16 and S17; Table S1). The dimensional control is 

illustrated further in Figure 2A (and Fig. S18), which shows a laser scanning confocal 
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microscopy (LSCM) image of model nanofibers with central A-segments of 1.6 µm and QPT-

corona-containing segments of 1.8 µm in length. 

 

Figure 2 near here 

 

The absorption and photoluminescence (PL) spectra of unsegmented PDHF14-b-PEG227 

nanofibers, the absorption spectrum of the QPT homopolymer (see Fig. S19 for emission 

spectrum), and the energy levels of the two conjugated species are shown in Figure 1C. The 

significant overlap of absorption and emission in the PDHF indicates a small Stokes shift, while 

the PL illustrates a high degree of vibronic structure. The good overlap of QPT absorption and 

PDHF emission gives a PDHF to QPT Förster transfer radius of 4 nm. 

We performed further steady state optical measurements on the PDHF14-b-PEG227 as both 

nanofiber (of average length 435 nm) and unimer to probe the nature of exciton transport in the 

PDHF core. The nanofibers show significantly more vibrational structure (Fig. 1C) than the 

unimer (Fig. S20), and there is no pronounced red or blue shift upon aggregation. This is 

consistent with a π-stacked polymer possessing a transition dipole along the polymer backbone 

(22), which would be expected to exhibit both H and J like aggregate characteristics (23, 24). 

The ratio of the I0-0 to I0-1 PL bands is significantly larger in the nanofiber than in the unimer 

(Fig. S20), indicating a decreased Huang-Rhys parameter and hence smaller configurational 

relaxation in the excited state (19). 

We studied the energy transfer from PDHF to QPT for the aforementioned size series of 

segmented nanofibers, and Figure 2B shows the normalised PL when the PDHF is selectively 
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excited (at 380 nm). We observe significant quenching of the PDHF peak compared to the QPT 

peak for average A-segment lengths below 775±150 nm. This indicates energy transfer from the 

A-segment PDHF core to the B-segment QPT corona, although reabsorption of the PDHF PL is 

expected at this concentration. Further evidence for energy transfer comes from the excitation PL 

scan (Fig. S21), which maps the absorption (Fig. S22), and the change in PL quantum efficiency 

with A-segment length (Fig. S23). The latter matches that of pure QPT (13±5%) below the 

critical length (775 nm), and approaches that for the unsegmented structure (73±10%: a very 

high value) beyond this length.  

Time-resolved PL measurements enable better quantification of energy transfer, as donor 

quenching kinetics are not affected by reabsorption effects. We used time correlated single 

photon counting (TCSPC - instrument response time ~300 ps) to access low excitation density 

regimes, and transient grating PL spectroscopy to probe the 1 to 100 ps timescale (see 

Supplementary Information for details). 

From TCSPC, the predominant natural lifetime of the unsegmented PDHF14-b-PEG227 

nanofibers (with average length 435 nm) in solution is 430 ps (Fig. S24), shorter than for the 

corresponding unimer (700 ps), as expected for a J-aggregate. Figure 3A shows the transient 

grating PL time slices of the segmented nanofiber with an A-segment core length of 775 nm. We 

see a reduction of the PDHF emission (~480 nm) and a concurrent rise in the broader QPT 

emission at longer wavelengths (530-630 nm). Figure 3B shows the kinetics of this transfer. We 

note that the QPT emission must be integrated over a broad wavelength range to account for the 

slow energy transfer that excitations undergo within the QPT itself (Fig. S25).  

 

Figure 3 near here 
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We modeled the kinetics of the PDHF and QPT PL with a 1-D diffusion model (25) that includes 

a contribution from Förster resonance energy transfer at the ends of the PDHF nanofiber into the 

QPT (see Supplementary Materials). For the TCSPC data (Fig. S26) on the 775 nm A-segment 

length nanofiber solution, the best fit gives a diffusion length of 𝐿𝐷 =  210 ± 100 nm and a 

diffusion constant of 𝐷 =  𝐿𝐷
2 2𝜏 = 0.5⁄  ± 0.2 cm2s-1, with errors estimated from the 

polydispersity of the nanofiber solution and robustness of the fit. Such an exciton diffusion 

constant is higher than any currently reported for organic semiconductors (1). 

 

Figure 4 near here 

 

Figures 4A and 4B show the transient grating PL kinetics for the PDHF and QPT for a 

range of shorter segmented nanofibers, as a function of A-segment length. We see significantly 

faster quenching of PDHF emission and faster rises in the QPT emission as the A-segment length 

is decreased. To fit the transient grating data, and hence a larger sample of quenching lengths 

than available to TCSPC measurements, a time-dependent exciton-exciton annihilation term is 

added to the diffusion model (see Supplementary Materials, and Figs. S27, S28) to account for 

second-order decay at the higher excitation densities used in this measurement (between ~ 

5x1017 cm-3 and ~10x1017 cm-3). Using a global fit over multiple PDHF14-b-PEG227 segment 

lengths and fluences (Fig S29), we obtain a best fit to our data for an exciton diffusion length of 

380 nm. A residual analysis (Fig. S30) confirms the robustness of these values for LD greater 

than ~150  and less than ~600 nm. This agrees within error with the TCSPC result, adding 
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support to our initial observation of large diffusion coefficients. We consider that the diffusion 

length most likely falls towards the smaller end of these values, due to the possibility of a small 

amount of exciton-charge annihilation in the higher fluence measurements, as well as the 

potential for a small amount of intermolecular energy transfer (Fig. S31). Nonetheless, these 

results taken together indicate an exceptional diffusion constant for a conjugated polymer 

structure. 

In conjugated polymers efficient exciton diffusion is correlated with an increased degree 

of structural order (4). Our results are consistent with this, as corroborated by the wide-angle X-

ray scattering (WAXS) data (Fig. S12), which shows appreciable structural order in the 

unsegmented PDHF14-b-PEG227 nanofibers. This is supported by the pronounced vibronic 

structure and narrow spectral linewidths in the PL. Ultrafast transient grating PL measurements 

show evidence of both excitonic movement (during the instrument response time ~200 fs) and 

some small degree of localization (in the first 700 fs after photoexcitation (Fig. 4C, Fig S32)).  

We believe that this arises from rapid migration of excitons from the disordered to the ordered 

regions (evident from the WAXS data), and that exciton diffusion then occurs within these 

ordered regions in the nanofiber core. 

Further understanding can be gained from the self-Förster radius, which is a useful tool 

for quantifying exciton diffusion lengths (26, 27), although the description has limitations (28, 

29). We calculate a self-Förster radius in our PDHF fibers of 2.5±0.2 nm (see Supporting 

Information). This is large in part because the parallel alignment of polymer chains gives ideal 

dipolar orientations for energy transfer (we have set κ2 - our dipole orientation factor - to 1). 

From this radius we can calculate (27) a diffusion length, 𝐿𝐷 =  
𝑅0

3

𝑑2  = 75±15 nm, where d is the 

nearest neighbor distance of 0.46 nm (Fig S.12). Applying a Förster theory beyond the point-
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dipole approximation (29) would likely reduce this number slightly, however this gives an 

estimate of expected exciton diffusion length for an incoherent, nearest neighbor hopping 

regime. The fact that we measure diffusion lengths beyond this value is clear evidence that 

excitons are not hindered by the presence of localization sites, or local energy minima (30) in 

their transport. This provides evidence of a remarkably uniform energy landscape in these 

materials enabled by their structural order. This uniformity would also benefit transport 

properties through a narrowing of the excitonic density of states (31). 

That we measure a diffusion length greater than our estimate for nearest neighbor Förster 

transport implies we must look beyond this picture to explain our data. An example of a model 

that includes some degree of coherence, but reduces to diffusive Förster transport as a limiting 

case is that proposed by Barford et al. (31). This uses a modified Redfield equation to show that 

a degree of interchain coherence in a polyfluorene film leads to an increase in the mean exciton 

hopping range, and hence gives a larger diffusion length. This requires inter-chain overlap, and 

the factor of 2.5 increase we require to account for our measured diffusion range requires a 

physically reasonable energy transfer integral of around 20 meV.  Our measured exciton 

diffusion rate is high therefore due to a combination of a physical packing structure optimizing 

the self-Förster radius, a lack of energetic trap sites, and a coherent component to exciton 

motion. 

In summary, we have synthesised segmented nanofibers of controlled length with a 

PDHF core and containing a QPT corona at each terminus. Spectroscopic measurements in 

solution show that these nanostructures exhibit long-range exciton transport on the critical length 

scale comparable to the optical absorption length in conjugated polymers, and that this is enabled 

by the high degree of structural order in the PDHF core. In context, a 200 nm thick film (the 
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depth of our diffusion length) of conjugated polymer of average absorption coefficient (32) 

would absorb 98% of incoming photons. Such diffusion lengths could enable light harvesting 

devices that use these polymer structures as antennae coupled to photodetector materials of 

limited absorption (such as monolayer transition metal dichalcogenides (33)), as well as enabling 

much simpler bilayer design of organic photovoltaics compared to those based on the bulk 

heterojunction.  
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Figure Captions 

 

Fig. 1.  Formation of segmented PDHF nanofibers by multi-step self-assembly. (A) 

Schematic diagram illustrating the seeded growth process and the structures of PDHF14-b-PEG227 

and PDHF14-b-QPT22. (B) Illustration of the segmented B-A-B nanofiber structure with separate 

donor and acceptor domains. (C) Normalized absorption of QPT aggregates in THF:MeOH 

(orange dashes), and unsegmented PDHF nanofibers (Ln = 1605 nm), Photoluminescence (PL) 

emission of unsegmented PDHF nanofibers (Ln = 1605 nm) in the same solution (blue line). The 

I0-0  peak in the PL is at 425 nm and I0-1 at 455 nm. The inset shows the energy levels of the 

PDHF and QPT. 

 

Fig. 2. Photoluminescence of segmented PDHF B-A-B nanofibers in solution. (A) Laser 

scanning confocal microscopy (LSCM) image of the uniform segmented PDHF nanofibers with 

a crystalline PDHF core (blue emission) and two terminal segments with QPT coronas (orange 

emission). Ln for the central and terminal segments were 1.6 μm and 1.8 μm, respectively. (B) PL 

spectra of segmented PDHF nanofibers with different A-segment lengths, normalized to peak 

maxima. In each case, the solutions of segmented nanofibers (~0.5mg/mL) in THF:MeOH (1:1) 

were excited at the PDHF absorption peak of 380 nm. Emission arising from direct excitation of 

the QPT in the 1605 nm sample was unresolved. 

 

Fig. 3. Transient grating PL spectra and kinetics of segmented PDHF B-A-B nanofibers. 

(A) Transient grating PL timeslices of a segmented nanofiber solution (0.5 mg/mL) with an 
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average A-segment length of 775 nm, showing energy transfer from the PDHF to the QPT 

acceptor corona. There is a decay of the core PDHF I0-1 peak (which appears at 480 nm due to a 

filter cutting off the blue edge of the spectrum), due to exciton annihilation and quenching to the 

acceptor. There is a concurrent rise in the broad QPT PL peak from 550-630 nm in the first 10s 

of picoseconds (materials are excited with a 200 fs laser pulse at 400 nm with an equivalent 

excitation density of ~5x1017 cm-3 (B) Normalized PL kinetics of PDHF decay and rise of QPT 

signal for the spectra shown in Figure 3A. The green line shows the PDHF signal (integrated 

from 430 – 460 nm) and the blue line shows the QPT PL (integrated from 530 nm to 630 nm). 

 

Fig. 4. Size dependent transient PL kinetics and corresponding diffusion length model fits. 

(A) Transient grating photoluminescence kinetics (squares) of PDHF PL signal (integrated from 

430-460 nm) in segmented PDHF B-A-B nanofibers of different A-segment lengths. The PL 

decay time decreases with decreasing segment length, showing efficient transfer. Solid lines are 

example fits of a 1-D diffusion model with a diffusion length of LD = 340 nm. The system was 

excited with a 400 nm, 200 fs laser pulse, at ~1x1018 cm-3 equivalent excitation densities for the 

samples in solution. (B) The corresponding PL kinetics (squares) of the rise in the QPT signal in 

the segmented PDHF B-A-B nanofibers, fitted with the same 1-D exciton diffusion model (solid 

lines) and diffusion length in the PDHF of LD = 340 nm. (C) Transient grating spectra of PDHF-

b-PEG nanofibers in solution. Timeslices show spectra at early times after excitation with 

excitation density ~5x1017 cm-3. Spectral red-shifting is present until ~200 fs, and the ratio of the 

first and second vibronic peaks continues to reduce until ~700 fs (Fig. S32). 


