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Normal form analysis of stator rub in rotating machinery

Alexander Shaw1,�, Alan Champneys2, and Michael Friswell1

1College of Engineernig, Swansea Uninversity, United Kingdom
2Department of Engineering Mathematics, The University of Bristol, United Kingdom

Abstract. This work considers analysis of sustained impacting cycles of rotating shafts with potentially many
disks. The insight that this is an internal resonance phenomena makes this an ideal system to be studied with
the method of normal forms. However, the presence of arbitrary non smooth nonlinearities due to impact and
rub mean that the method must be extended by incorporating an Alternating Frequency/Time (AFT) step to
capture nonlinear forces. The process results in an elegant formulation that can model a very wide variety of
rotor systems and is demonstrated by comparing against simulation of a contacting overhung rotor.

1 Introduction

Contact between rotating machinery and surrounding sta-
tors is an issue that can effect a wide variety of engineered
systems, from pumps to turbines and drilling rigs. It has
also been shown to lead to some highly complex dynami-
cal behaviour [1–3] including internal resonance [4]. Re-
cent work by the authors identified that sustained bouncing
cycles can be seen as an internal resonance that is iden-
tifiable in the rotating coordinate system [5], unlike the
phenomena in [4], which are explained in the stationary
frame.

The work in [5] offers a useful insight for analysis of
such asynchronous bouncing motions, because it identifies
that bouncing cycles can primarily be seen as an interac-
tion between just two modes of the system; this suggests
that analysis can be performed by reducing the system
to just its resonant modes. The method of normal forms
[6] embodies this approach, because it works by reducing
systems to just the resonant components; all nonresonant
components are held within a near-identity transformation.
The systems under consideration have the following form
in a coordinate system that rotates with the shaft:

Mq̈ + ΩGq̇ +Kq + Cq̇ +Kcq + nq(q, q̇) = b (1)

However after transformation into complex modal rotat-
ing system coordinates, and then the normal forms trans-
formation, the system typically becomes represented by
just two complex modal amplitudes, which are solved with
two transformed harmonic balance equations. Hence this
is a very powerful and elegant method to reduce nonlin-
ear problems in rotating shafts that can potentially handle
large problems with complex nonlinearities.
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2 Solution overview

Firstly, system (1) is transformed into first order form:

ẏ = Ay + ny(y) (2)

where y = {q, q̇}T , A contains the underlying linear con-
servative terms, and therefore all nonconservative and non-
linear terms are contained within ny(y). The system is then
transformed to complex modal form using the eigensolu-
tions of A:

ṗ = Λp + np(p) (3)

where Λ is a diagonal matrix of eigenvalues and y =
� (Φp) and Φ contains eigenvalues. Note that this sys-
tem has the same number of degrees of freedom as system
(1) because only one of each conjugate pair of eigensolu-
tions is used. Furthermore, the retained eigenvalues have
form ± ωi where it is important that the sign reflects the
direction of the physical whirling i.e. positive if it is the
same as the shaft rotation.

The method of normal forms seeks a near-identity
transformation p = u + h(u) such that the variable u re-
sults in a system

u̇ = Λu + nu(u) (4)

that is much simpler equation than (3) to solve, and can
be solved exactly. Note that form of the actual form of
the transformation is decided in the frequency domain as
a trial solution is implemented. If we subtract (4) from (3)
we obtain:

ṗ − u̇ = ḣ = Λh + np(p) − nu(u) (5)

A problem occurs in trying to eliminate p from this equa-
tion; this has to be done by approximation. Many texts
apply the approximation np(p) ≈ np(u) to accuracy O(h).
In this method the more accurate approximation

np(p) ≈ np(u + h−1) = np(p−1) (6)
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may be used with accuracy of O(h0 − h−1) where h−1 is an
estimate from a previous iteration or initial guess and h0 is
the true value for h. After incorporating this approxima-
tion equation can be rearranged to

ḣ − Λh − np(u + h−1) + nu(u) = 0 (7)

The general solution of (4) is assumed to be of form:

u =
n f /2−1∑
i=−n f /2

Uiei ωr t = Ut (8)

i.e. a summation of vectors multiplied by exponential time
functions, so that each transformed modal variable is com-
plex Fourier series with unknown fundamental frequency
ωr and signed harmonics. In the matrix form Ut, U will
have dimensions N × n f where n f indicates the length of
the Fourier transform, and t will be a vector of all the terms
ei ωr t with length n f . The aim is a system where u is sim-
ple, and therefore it is desirable that U is as sparse as pos-
sible. Similar representations are made for all other vari-
ables:

h = Ht , nu(u) = Nut , np(u + h−1) = Npt ,
h−1 = H−1t , p−1 = P−1t (9)

Differentiation can also be achieved by noting that

ḣ = Hṫ = HΨt (10)

where Ψ is an n f × n f diagonal matrix where the diagonal
entries are all of form i ωr. Thus equation (7) may be
written:

HΨt − ΛHt − Npt + Nut = 0 (11)

In order to evaluate the trial nonlinear frequency com-
ponents Np an Alternating Frequency/Time (AFT) is used.
This consists of firstly approximating the time series of p
at all time steps using p = (U +H−1) t (obtained from
using the forms of (9) in (6)). Then, all nonlinear and non-
conservative forces np(p) are evaluated based on this time
series. Finally a Fast Fourier Transform is used to return
the frequency components of the forces Np = F(np(p)).
Note that because our state variables give velocity as well
as displacement, there is no need to know ωr to evaluate
this stage. Note that U is to be very sparse, whereas H−1
is a matrix of constants from a previous solution or initial
guess, and is in general full except where U is nonzero.

The corresponding elements k, � of the matrices in (11)
can be compared separately because they each relate to a
different harmonic of a different modal variable. Hence
equation (11) (with t eliminated) can be considered term
by term:

Hk,�Ψ�,� − Λk,kHk,� − Np(k,�) + Nu(k,�) = 0 (12)

In general, because we want to simplify equation (4),
equation (12) is solved by choosing:

Nu(k,�) = 0 , Hk,� =
Np(k,�)

Ψ�,� − Λk,k
(13)

However, if Ψ�,� ≈ Λk,k, this will cause Hk,� to be large, vi-
olating the assumption of a near identity transformation.

These terms are known as resonant terms and must be
solved by choosing:

Nu(k,�) = Np(k,�) , Hk,� = 0 (14)

Typically interesting solutions (i.e. not simply syn-
chronous whirling in or out of contact) occur when exactly
two modes become internally resonant [5]. Therefore, ex-
pressing the harmonic components of the resonant equa-
tion of motion (4) will give a harmonic balance problem
of the form:

Ui, jΨ j, j − Λi,iUi, j − Nu(i, j) = 0
Uk,�Ψ�,� − Λk,kUk,� − Nu(k,�) = 0 (15)

Hence our system of N degrees of freedom results in this
greatly reduced form. Equation (15) has 5 unknowns;
the real and imaginary parts of Ui, j and Uk,� and also
the unknown fundamental frequency ωr which is within
Ψ j, j and Ψ�,� (see the definition of Ψ following equation
(10)). However, we may impose that one of the trans-
formed modal variables is purely real; this constrains the
phase of this modal variable and therefore locks the solu-
tion in time. Therefore, with this imposition equation (15)
is solvable.

The method outlined is very general with regard to the
form of nonlinearity in nq(q, q̇) due to the use of the AFT
step. Furthermore, it is also very general with regard to
the size of the system matrices, so should scale to rotor
systems with many degrees of freedom with appropriate
modal truncations.

3 A Snubbed Overhung Rotor

3.1 System description

As shown in Fig. 1 (a), a disc of mass m, polar moment of
inertia Ip, and diametral moment inertia Id, is mounted on
an inertialess rigid shaft of length �. The shaft is pinned
at point O, and rotations around this point are resisted by
a linear isotropic rotational viscously damped spring, with
rate k and damping coefficient c. The disc rotates at a con-
stant angular speed Ω about its centre point C; however
imperfections in its geometry cause its centre of mass M
to be at a distance ε from C, resulting in out of balance
forces. This rotor has two degrees of freedom which are
the displacements of the centre point u and v as shown in
Fig. 1 (b), which are directly coupled to rotations ψ and θ
assuming small angles.

A snubber ring with clearance δ exists at a distance a
along the shaft. This generates additional restoring forces
when the displacement at this point is greater than δ, rep-
resented by the nonlinear contact force Nx given by

Nx =


−ks

(
a
�

)2
(r − δ) {u, v}T /r, if r ≥ δ

{0, 0}T , if r < δ,
(16)

where ks is the stator contact stiffness, δ is the clearance of
the stator and r =

√
x2

c + y
2
c .

The system is nondimensionalised using the un-
damped natural frequency of the underlying nonrotating
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Figure 1. a) A snubbed overhung rotor. b) Assumed kinematics of point C.

system ωn =
√

k
me f f �

to scale time where me f f = m + Id
�2

is the effective inertia, and the displacement required to
make contact with the stator ∆ = δ�

a is used to scale dis-
placement:

τ = ωnt , û = u
∆
, v̂ = v

∆
, Îp =

Ip

me f f �2

Ω̂ = Ω
ωn
, f̂ = ε

∆
, ζ = c

2�2ωnme f f

(17)

This leads to equations of motion of the form of equa-
tion (1) with matrices as follows:

M = I2×2 , G = −(Îp − 2)J , K = (1 − Ω̂2(1 − Îp))I2×2

C = 2ζI2×2 , Kc = −2ζΩ̂J , b =
{
f̂ Ω̂2, 0

}T
(18)

and

Nq(q) =


−β(|q| − 1) {q1, q2}T /|q|, if |q| ≥ 1
{0, 0}T , if |q| < 1,

(19)

where β = ksa
k expresses the ratio of stator stiffness to the

underlying linear stiffness.

3.2 Results

The above analysis was performed for a system with β =
13.2, f̂ = 0.065, Îp = 0.14. The initial value for h−1 is
obtained from the linear synchronous whirl solution. The
solution was then iterated twice, each time using the cur-
rent values of U to refine the estimate for h−1 by using
equations (13) and (14). At each speed, four initial guesses
where chosen - with the 2nd resonant component at initial
phase differences of 0, π/2, π and 3π/2, and the amplitude
sufficient to give some contact. A 1024 point FFT was
used for the AFT stage.

Figure 2 presents the underlying linear whirl velocities
- although note that these are represented in the rotating
coordinate system and hence show a downward trend, due
to the subtraction of the drive speed. It can be seen that the
linear whirl speeds form a 2:1 ratio at Ω ≈ 3.3; hence this

is a good region in which to search for 2:1 internally reso-
nant solutions. Figure 3 shows the results of the analysis,
in terms of the amplitudes of the resonant components. At
slightly above the drive speed for the onset of internal res-
onance as found from Fig. 2, the nontrivial solutions begin
to be found.

These solution come in two branches, an upper and a
lower for each resonant component. Figure 4 allows us to
compare the two solutions at Ω̂ = 3.8. It may be seen from
Fig. 4 (a) that the upper branch solution is stable - the nu-
merical simulation, initiated with the analytical solution,
follows it perfectly (30 orbit cycles are simulated). Figure
4 shows that the lower branch solution is similar in magni-
tude and character to the upper branch, although the ‘loop’
in the orbit is oriented differently. However, while the nu-
merical simulation follows the analytical solution initially,
but then diverges away from it. This suggests that this so-
lution branch consists of unstable solutions.

4 Conclusions and future work

This work has shown how the insight of internal resonance
leads to the application of the method of normal forms
to rotor stator contact problems. The analysis has been
demonstrated for a simple rotor system, and it has been
shown to match time simulation data and find both stable
and unstable solutions. In principle the method extends to
more complex systems and this is the focus of future work.

This work has received funding from EPSRC grant
number EP/K003836 Engineering Nonlinearity.
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