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Summary 

This review aims to summarise the contemporary evidence for the presence and function of 

the parasympathetic innervation of the cerebral circulation with emphasis on the vertebral 

and basilar arteries (the posterior cerebral circulation). We consider whether the 

parasympathetic innervation of blood vessels could be used as a means to increase cerebral 

blood flow. This may have clinical implications for pathologies associated with cerebral 

hypoperfusion such as for stroke, dementia and hypertension. Relative to the anterior 

cerebral circulation little is known of the origins and neurochemical phenotypes of the 

parasympathetic innervation of the vertebrobasilar arteries. These vessels normally provide 

blood flow to the brainstem and cerebellum, but can via the Circle of Willis upon stenosis of 

the internal carotid arteries supply blood to the anterior cerebral circulation too. We review 

the multiple types of parasympathetic fibres and their distinct transmitter mechanisms and 

how these vary with age, disease and species. We highlight the importance of 

parasympathetic fibres for mediating the vasodilatory response to sympathetic activation. 

Current trials are investigating the possibility of electrically stimulating the postganglionic 

parasympathetic ganglia to improve cerebal blood flow to reduce the penumbra following 

stroke. We conclude that although there are substantial gaps in our understanding of the 

origins of parasympathetic innervation of the vertebrobasilar arteries, activation of this 

system under some conditions might bring therapeutic benefits.  
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List of abbreviations 

7-NI 7-nitroindazole 

ACA anterior cerebral artery  

AChE acetyl choline esterase 

AcoA  anterior communicating artery 

ADMA asymmetric dimethylarginin 

BBB blood brain barrier 

CBF cerebral blood flow 

CGRP  calcitonin gene related peptide  

ChAT  choline-acetyl-transferase 

CMG carotid mini-ganglia 

DBH dopamine β-hydroxylase  

ECA external carotid artery 

eNOS endothelial nitric oxide synthase 

ICA internal carotid artery 

iNOS induceable nitric oxide synthase 

L-NA NG-nitro-L-arginine 

NAChR nicotinic acetylcholine receptor 

NAPDH nicotinamide adenine dinucleotide phosphate 

nNOS neuronal nitric oxide synthase 

NO nitric oxide 

NOS nitric oxide synthase 

NPR-C  natriuretic peptide clearance receptor 

NPY neuropeptide Y  

PACAP pituitary adenylate cyclase-activating peptide 

PCA posterior cerebral artery  

PCoA posterior communicating artery 

PGF2α  prostaglandin F2α 

PHI peptide histidine isoleucine 

PPG pterygopalatine ganglia 

RT-PCR  real time polymerase chain reaction 

SHR spontaneously hypertensive rat 

SMC smooth muscle cell 

SP substance P 

SPG  sphenopalatine ganglia  

SSN superior salivatory nucleus 

TH tyrosine hydroxylase 

VAChT vesicular acetyl choline transferase 

VIP vasoactive intestinal peptide  

VPAC VIP receptor 

WGA-HRP wheat germ agglutinin-horse radish peroxidase 
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Introduction 

 

Innervation of the cerebral vasculature was described by Willis as early as 1664, but not 

until advances in histochemical and immunofluorescent techniques and electrophysiological 

and pharmacological investigations in the 20th century, did we begin to learn about its 

origins and function. Innervation of the anterior cerebral circulation, which supply the 

cerebral hemispheres and deliver the majority of blood to the brain, has been described in 

detail in several reviews (Purves, 1972); Dahl (1973); (Bevan et al., 1981; Edvinsson, 1987; 

Bleys & Cowen, 2001; Gulbenkian et al., 2001; Lee et al., 2001; Hamel, 2006; Owman, 2011; 

Goadsby, 2013). Our aim is to provide an up to date account of the parasympathetic 

innervation of the posterior vessels (e.g vertebral and basilar), which have received far less 

attention and whose normal physiological function is still largely unknown.  

 

Clinically, there is a strong interest in cerebral blood flow regulation because of the 

devastating personal and socio-economic consequences of long term hypo-perfusion and 

stroke. As the brainstem controls the most essential brain functions for life, the 

consequences of reduced blood flow in this part of the brain are devastating. Thus, 

understanding the control of blood flow to the posterior circulation of the brain is critically 

important and any vasodilating mechanisms highly relevant clinically as it may provide a 

novel therapeutic target. In the context of ischemic stroke, the parasympathetic innervation 

to the vertebral and basilar arteries that supply blood flow to the brainstem (and 

cerebellum) are of great interest and have not been reviewed systematically. 
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Gross anatomy of cerebral arteries 

The brain is one of the most metabolic demanding tissues in the body and it is not surprising 

therefore that the main cerebral arteries possess several specialisations that make them 

different from other arteries in the body enabling them to meet the high demand on blood 

flow. Their organisation is unique such that multiple feed arteries are interconnected with 

anastomoses forming a ring like structure: the Circle of Willis (Fig 1). The unique blood 

vessel organisation of the Circle of Willis acts as a distribution centre permitting blood to 

flow in any direction to meet increased demand and overcome stenosis. However, under 

normal circumstances blood flow distribution is normally well demarcated with little mixing 

from the different feeder arteries (McDonald & Potter, 1951). Thus, in the human and rat 

cerebral blood flow is mainly provided by the internal carotid arteries (ICA) whereas the 

vertebral and spinal arteries supply the brainstem. 

-Insert Fig 1 here- 

(human angiogram and schematic of cerebral circulation) 

The Circle of Willis is formed from several inter-connecting arteries: including the posterior 

cerebral artery (PCA), posterior communicating artery (PCoA), anterior cerebral artery (ACA) 

and anterior communicating artery (AcoA); the latter does not exist in rats as the ACAs fuse 

to form the azygos anterior cerebral artery (Scremin, 2004). There is considerable variation 

to this organisation both inter- (Daniel et al., 1953; McFarland et al., 1979) and intra-species 

(Alpers et al., 1959; Brown, 1966; Frąckowiak & Jakubowski, 2008), as seen in Figure 2. In 

humans, monkeys and rodents the ICAs supply blood to the Circle of Willis with minimal 

contribution from the external carotid artery (ECA). In most other mammals including cats, 

dogs, pigs and sheep, a large proportion of brain blood flow originates from the external 



6 
 

carotid artery via a rete mirabili1 before joining the Circle of Willis with either no or a small 

contribution from the internal carotids (Daniel et al., 1953). In humans, primates, rabbits 

and rats there is no rete. 

-Insert Fig 2 here- 

(Species variation in cerebral artery organisation) 

A unique feature of cerebral arteries is that they are both conduit and resistance vessels and 

unlike other arteries constrict and dilate (Faraci & Heistad, 1990). Constriction can increase 

arterial pressure by ~40% in human (Dickinson & Paton, 2012) and rat (Baumbach & 

Heistad, 1983). This ability protects the brain from sudden rises in BP to prevent stroke (Bill 

& Linder, 1976; Edvinsson et al., 1976a; Beausang-Linder & Bill, 1981; Sadoshima et al., 

1981), whereas vasodilation can protect against ischemia (Santizo et al., 2000; Levi et al., 

2012). During constriction maintenance of blood flow to the brain then becomes dependent 

on compensatory vasodilatation in parenchymal arterioles (Baumbach & Heistad, 1983). 

 

-Insert Figure 3 here- 

(Arterial contribution to cerebral blood supply in different species) 

 

 

                                                           
1 A rete mirabili is a complex of arteries and veins in close proximity and built on a counter-current principle, 
which creates a gradient that enables exchange of heat, ions or gas between the vessels. The function of the 
rete mirabili varies between species and is controversial in others. Barnett CH & Marsden CD. (1961). 
Functions of the mammalian carotid rete mirabile. Nature 191, 88-89. It has been suggested it provide means 
to regulate the temperature of blood flowing to the brain in dogs, cats, sheep and goats. Baker MA. (1982). 
Brain cooling in endotherms in heat and exercise. Annual review of physiology 44, 85-85. In the dolphin an 
extensive rete provide means of pressure dampening of BP in the brain. Nagel EL, Morgane PJ, McFarland WL 
& Galllano RE. (1968). Rete mirabile of dolphin: its pressure-damping effect on cerebral circulation. Science 
161, 898-900. A similar function has been attributed to the rete mirabile in the giraffe. Lawrence WE & Rewell 
RE. (1948). The cerebral blood supply in the giraffidae. Proceedings of the Zoological Society of London 118, 
202-212..  
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Neural innervation of major cerebral vessels 

There are two sources of innervation controlling blood flow to cerebral vessels: extrinsic and 

intrinsic (Hamel, 2006). ‘Intrinsic’ innervation originating from local neurons within the CNS 

targeting arterioles to control blood flow in the brain parenchyma. Our focus is on the 

‘extrinsic’ innervation from peripheral ganglia that innervate all major cerebral arteries up 

to the Virchow-Robin space2, that is, before they enter the brain parenchyma.  

 

Extrinsic innervation consists of the sensory system and efferent motor-fibres from the 

autonomic (sympathetic and parasympathetic) nervous system. Numerous proteins have 

been associated with functionally different subsets of nerve fibres that can be detected 

using immunocytochemistry. Examples relevant to the cerebral circulation include: acetyl 

cholinesterase (AChE), vesicular acetyl choline transferase (VAChT) and vasoactive intestinal 

peptide (VIP) within parasympathetic fibres; tyrosine hydroxylase (TH), dopamine -

hydroxylase (DBH), and neuropeptide Y (NPY) in sympathetic nerves, and calcitonin gene 

related peptide (CGRP) as a marker of sensory afferents. In basilar arteries from human 

cadaveric foetuses both noradrenergic and AChE containing fibres first appear around the 

12th gestational week whereas NPY and VIP synchronously appeared a month later at 16th 

gestational week (Kawamura & Takebayashi, 1994). Interestingly, with aging, there was a 

decrease in the expression of vasoconstrictor neurotransmitters (e.g. TH) in cerebrovascular 

nerves, whereas the expression of vasodilator neurotransmitters (VIP and CGRP) in 

                                                           
2 Virchow Robin spaces are perivascular spaces or canals surrounding arteries and veins at the point where 
they leave the subarachnoid on the surface of brain and turn into the parenchyma. See figure in Hamel E. 
(2006). Perivascular nerves and the regulation of cerebrovascular tone. Journal of applied physiology 100, 
1059-1064.  

javascript:void(0);
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perivascular nerve fibres supplying the rat cerebral arteries increased with age (Mione et al., 

1988). 

 

Stimulation of sympathetic nerves is generally considered to result in vasoconstriction 

(D'Alecy & Feigl, 1972; Lee et al., 1976; Baumbach & Heistad, 1983), whereas stimulation of 

parasympathetic nerves is vasodilatory (D'Alecy & Rose, 1977; Talman et al., 2007). As we 

shall see later, there are exceptions to this rule. Sensory neurons are a heterogeneous 

population of either fast transmitting Aδ fibres (being purely afferent) or slowly conducting 

capsaicin sensitive fibres expressing a range of co-transmitters. Exceptionally, these fibres 

can also affect cerebrovascular tone due to their additional efferent role; these fibres are 

referred to as “sensory-motor nerves”(Rubino & Burnstock, 1996) and contain, for example, 

substance P (SP) and calcitonin gene related peptide (CGRP), a very potent vasodilator. 

 

Extrinsic nerve plexuses and bundles are located on the periphery of the adventitia, mostly 

run in the longitudinal direction along the vessel and have a smooth (‘string like’) 

appearance, whereas single fibres and terminals tend to be located in the deeper layers of 

the adventitia, running circumferential/perpendicular to the vessel and close to the smooth 

muscle cells (SMC) (Bleys et al., 1996b; Taktakishvili et al., 2010). The fine terminal nerve 

fibres are characterised by varicosities and have a ‘pearl-on-a string’ appearance (Yoshida et 

al., 1993). These structures contain the highest vesicle numbers and neurotransmitter 

contents. Autonomic and sensory nerve fibres can be in close proximity to smooth muscle 

cells (80-100nm) and to each other (Iwayama et al., 1970; Matsuyama et al., 1985). 

However, on basilar arteries close contacts between varicosities and smooth muscle cells 

are sparse and distances of 1-2μm are typical (Luff & McLachlan, 1989; Lee et al., 1990). The 
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functional significance of this is unclear but it may reduce efficacy of transmission in these 

structures. 

 

The parasympathetic innervation of posterior cerebral vessels 

Cerebral arteries are richly innervated with neuronal fibres of parasympathetic origin 

providing a most powerful vasodilatatory mechanism (Goadsby, 2013) . Parasympathetic 

fibres follow the sympathetic nerves along cerebral vessels. In comparison to peripheral 

arteries (femoral and common carotid), where parasympathetic innervation is negligible, it 

is generally 10-40 times higher in cerebral arteries (Duckles, 1981). The density of 

innervation is both species and cerebral artery location dependent. Using vasoactive 

intestinal peptide (VIP) immunopositive fibres as a marker for parasympathetic innervation, 

relatively low densities have been observed in mouse, rabbit and monkey, with 

intermediate levels in dog and guinea pig, whereas pig, rat and bat exhibited high levels 

(Edvinsson et al., 1980; Ando, 1988). In general, fibre densities are greater in the rostral part 

of the cerebral circulation, than in the caudal (Edvinsson et al., 1980; Kobayashi et al., 1983; 

Hara & Weir, 1986; Hara & Kobayashi, 1987). The exception is the bat, demonstrating dense 

VIP positive innervation of the vertebrobasilar arteries (Ando, 1988), In some animals (dogs, 

rabbits), either no or low parasympathetic innervation of the vertebrobasilar arteries has 

been reported (Florence & Bevan, 1979; Edvinsson et al., 1980; Saito et al., 1985). However, 

dogs have NOS positive fibre staining on vertebrobasilar arteries (Yoshida et al., 1993) that 

was shown not to be sensory, suggesting the presence of some ‘parasympathetic’ fibres.  
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Types of parasympathetic fibres innervating posterior cerebral vessels  

Classically, peripheral parasympathetic nerves are considered to be cholinergic, i.e. using 

acetylcholine (ACh) as a transmitter. However, it is clear that parasympathetic cells 

innervating cerebral arteries utilise a host of co-transmitters in addition or in preference to 

ACh. Some parasympathetic neurones in the cerebral arteries have lost the ability to 

produce ACh – thus giving rise to the term ‘non-cholinergic parasympathetic innervation’ 

(Minami et al., 1994).  

 

Nitric oxide (NO), vasoactive intestinal peptide (VIP), and/or pituitary adenylate cyclase-

activating peptide (PACAP) have all been identified as co-transmitters in parasympathetic 

neurones and all are potent vasodilators (Bevan et al., 1984; McCulloch et al., 1986; Warren 

et al., 1991; Nozaki et al., 1993; Uddman et al., 1999) producing greater vasodilatation than 

ACh itself (Lee, 2000). Reviewing the evidence of vasodilation in large cerebral arteries, Lee 

(2002) concluded that the main effector for vasodilation is NO, with the other 

neurotransmitters, including ACh, acting as presynaptic modulators of NO release. These 

findings explained the initial confusion that existed after cholinergic nerves had been 

identified on cerebral arteries, but were found to be resistant to atropine/physostigmine 

vasodilation, leading to the misconception that these nerves were non-functional (Lee et al., 

1978; Lee, 1980, 1982). Thus, parasympathetic neurons innervating the posterior cerebral 

arteries consist of a heterogenous population of ACh-VIP-NO-, ACh-NO- and VIP-NO-positive 

neurons - but this list is not exhaustive (Minami et al., 1994; Kimura et al., 1997; Yu et al., 

1998). It is important to note, that NO and PACAP are also co-expressed in sensory neurones 

on cerebral arteries (Sundler et al., 1996). Therefore, immunocytochemical labelling of 

parasympathetic neurones is challenging and requires co-labelling. 
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Tract tracing studies of parasympathetic input to the cerebral arteries have employed a 

variety of antibodies including cholinergic markers: choline-acetyl-transferase (ChAT) or the 

vesicular-acetylcholine-transporter (VAChT), or VIP and the NO producing enzymes: NO 

synthetase (NOS) or NAPDH-diaphorase. Earlier immunohistochemical studies also used 

acetyl choline esterase (AChE)3, though this enzyme is less specific. AChE degrades ACh and 

was one of the first available cholinergic markers; however, it is not exclusive to cholinergic 

neurones and has been considered as a pan neuronal marker (Bleys et al., 1996b). 

 

The relative distribution of the different markers (ChAT, VAChT, NOS and VIP) and 

proportion of neurones expressing them has not been fully elucidated for the 

vertebrobasilar arteries and reports vary greatly partly due to species differences. ChAT has 

proven capricious in the periphery and in fine fibres due to low enzyme levels and hence its 

use underestimates the total cholinergic innervation (Schäfer et al., 1998; Bleys et al., 2001).  

 

Origin of parasympathetic fibres to the posterior cerebral arteries 

The origin of the parasympathetic innervation is characterised by a diffuse collection of 

small extra-cranial ganglia and small cell groups in both the arachnoid and at the base of the 

skull. 

-Insert Figure 4 here- 

(Overview of Parasympathetic innervation) 

                                                           
3 Acetylcholine esterase is an enzyme involved in the breakdown of ACh in the synaptic cleft. This was one of 

the first available cholinergic associated markers. In addition to cholinergic cells it also stains many adrenergic 
and sensory nerves (Bleys RL, Groen GJ & Hommersom RF. (1996a). Neural connections in and around the 
cavernous sinus in rat, with special reference to cerebrovascular innervation. The Journal of comparative 
neurology 369, 277-291.. 
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The anterior circulation is innervated by fibres from the pterygopalatine ganglia (PPG), also 

referred to as the sphenopalatine ganglia (SPG), the cavernous sinus, the otic and the 

internal carotid mini-ganglia (CMG) (Chorobski & Penfield, 1932; Kobayashi et al., 1983; 

Carvalho, 1985; Keller et al., 1985; Hara & Weir, 1986; Walters et al., 1986; Hara & 

Kobayashi, 1987; Suzuki et al., 1988; Edvinsson et al., 1989; Hara et al., 1989; Hardebo et al., 

1991; Suzuki & Hardebo, 1991; Nakai et al., 1993; Suzuki & Hardebo, 1993; Bleys et al., 

1996a; Toda et al., 2000a; Toda et al., 2000b; Bleys et al., 2001). The origin of 

parasympathetic innervation to the vertebrobasilar arteries is less well understood. In 

monkeys, PPG fibres appeared to be the source of NOS positive fibres to the anterior but 

not posterior cerebral arteries (Ayajiki et al., 2012) and in rats parasympathetic VIP- (Hara et 

al., 1989) and NOS- positive fibres (Nozaki et al., 1993) were found on caudal basilar and 

vertebral arteries following PPG extirpation, suggesting additional sources. Injecting the 

anterograde tracer wheat germ agglutinin-horse radish peroxidase (WGA-HRP) into the PPG, 

only stained parasympathetic fibres at the anterior end of the basilar artery (Hara et al., 

1993). Similar injections to the otic ganglia did not result in labelling on the vertebrobasilar 

arteries in rats (Shimizu, 1994). However, using retrograde tract tracing with fluoro-gold 

applied to the middle portion of the basilar artery resulted in neurone labelling in both the 

otic ganglia and PPG (Kadota et al., 1996). Labelling in the PPG was also seen following 

WGA-HRP application to the middle and caudal part of the BAs in cats (Keller et al., 1985). 

Bleys and Cowen (2001) suggested that PPG, otic and CMG innervation is restricted to the 

anterior end of the basilar artery with no observable innervation to the caudal basilar and 

vertebral arteries. Gibbins et al. (1984a) lists otic, PPG, submandibular and sublingual 

ganglia as possible contributions to rostral basilar artery VIP containing fibres. The 

inconsistencies may be explained by the differences in techniques and species used. Studies 
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where NOS immunocytochemistry has been performed will not be able to delineate 

between parasympathetic and sensory nerves. Hence, many of the suggested sources of 

parasympathetic innervation to the posterior cerebral arteries based on NOS 

immunochemistry, which included the glossopharygeal and vagal nerves, and upper cervical 

root ganglia (Suzuki et al., 1988; Hardebo et al., 1991), are all likely to be of sensory origin 

(Arbab et al., 1986).  

 

Despite evidence for parasympathetic innervation of vertebrobasilar arteries, and the 

existence of: VAChT (E. Roloff & JFR Paton, personal observation), ChAT and VIP positive 

fibres in rat (Suzuki et al., 1988; Suzuki et al., 1990c), cat (Gibbins et al., 1984b) and dog 

(Seki et al., 1995), we have found sparse information regarding the source(s) of these 

specific parasympathetic inputs. This clearly needs further clarification. 

 

Pre-ganglionic parasympathetic neurones destined for the cerebral vasculature 

The location of preganglionic neurones projecting to the PPG of rats has been determined 

by retrograde transneuronal pseudorabies virus labelling (Spencer et al., 1990). Neuronal 

labelling was obtained in the ipsilateral superior salivatory nucleus (SSN). Pharmacological 

stimulation of the greater petrosal nerve cell group within the SSN reduces ipsilateral 

cerebral vascular resistance. The effect can be countered by PPG section but not with 

systemic muscarinic antagonism; another confirmation that the vasodilatory mechanism (via 

the PPG) is mediated by a non-cholinergic mechanism in the cerebral arteries (Nakai et al., 

1993). The following nuclei were also labelled and most likely upstream of the SSN: the 

nucleus tractus solitarii and the dorso medial part of the spinal trigeminal nucleus and 

giganto cellular reticular nucleus as well as pontine structures of the parabrachial nucleus, 
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A5 catecholaminergic cells, and sub coeruleus region of the pons. Midbrain areas included 

the lateral, dorsomedial and paraventricular hypothalamic nuclei, lateral preoptic area. The 

bed nucleus of the stria terminalis, substantia innominata and the amygdalopiriform were 

also labelled in the forebrain. Given this extensive convergent connectivity it underpins the 

importance of the vasodilatory role of the SSN and those regions that may influence it. 

There is scant information regarding sources of input to the other parasympathetic ganglia 

innervating cerebral arteries. Gibbins et al. (1984) and Gibbins & Morris (1988) reported the 

SSN was also a source of input to the otic ganglia and CMG.  

 

Functional role of the parasympathetic transmitters and receptors 

The transmitters and receptors are presented in order of importance as vasodilatory 

mechanisms. 

 

(i) Nitrergic: NO is the main vasodilator in the cerebral arteries (Lee, 2002). It has an 

estimated diffusion range of up to 300µm and an estimated half-life of 5-15s in the cerebral 

circulation (Ignarro, 1991; Garthwaite & Boulton, 1995). Nerve fibres with NO production 

capabilities on cerebral arteries include pure nitrergic, VIPergic and/or cholinergic 

parasympathetic neurones as well as sensory neurones (Minami et al., 1994; Kimura et al., 

1997; Edvinsson et al., 2001). Note that there are multiple additional sources of NO that 

could produce vasodilation in the vertebrobasilar arteries such as endothelial cells, 

astrocytes, neurones (Bredt et al., 1990; Faraci & Brian, 1994) and immune cells (Hibbs Jr et 

al., 1988; Bogdan, 2001). The distribution of NO containing fibres in the cerebral arteries is 

highly variable in terms of exact location on the cerebral arteries and species. In rats, 

although present on the basilar artery, the densest NOS/NADPH-diaphorase positive fibre 
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staining occurred on the anterior part of the cerebral circulation, whereas in humans NOS 

immuno-reactivity was predominantly on posterior cerebral arteries, especially the basilar 

artery (Iadecola et al., 1993; Nozaki et al., 1993; Minami et al., 1994; Edvinsson et al., 2001; 

Taktakishvili et al., 2010). 

 

(ii) Cholinergic: Cholinergic receptors have been located on endothelial cells, smooth muscle 

cells, and perivascular nerves on cerebral vessels (see Table 1). Electrical or pharmacological 

stimulation of cholinergic fibres on cerebral arteries can, depending on the species, the site 

of action, receptor subtype and concentration of ACh released, induce either vasodilatation 

or vasoconstriction (Edvinsson et al., 1977; Duckles, 1981; Miao & Lee, 1991; Dauphin & 

Mackenzie, 1995; Toda et al., 1997). In cats and dogs, low concentrations of ACh (10-6 to 10-5 

M) applied to cerebral arteries including the basilar caused vasodilation, whereas higher 

concentrations result in vasoconstriction (Tsukahara et al., 1986; Dauphin & Hamel, 1992). 

In humans, however, only vasodilation was observed (Edvinsson et al., 1976b; Tsukahara et 

al., 1986). ACh can exert its effects via either metabotropic muscarinic (M-) or ionotropic 

nicotinic (N-type) receptors.  

 

(a). Muscarinic receptors: Four sub types of muscarinic and one nicotinic receptor have been 

found in on cerebral arteries. Using isolated vessel preparations, Furchgott and Zawadzki 

(1980) demonstrated that the vasodilatory effect of ACh is endothelium-dependent. ACh 

acts on muscarinic receptors expressed on endothelial cells that stimulate endothelial NO-

synthase activity(eNOS), releasing NO, which then triggers vasodilatation (Figure 6; (Wahl & 

Schilling, 1993)).  
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The endogenous origin of ACh for this mechanism is unclear, as it is rapidly broken down by 

AChE in the blood. Release from perivascular nerves is a possibility, as tritiated ACh applied 

to the outside of intact vessels readily crossed the media and appeared in the luminal 

perfusion fluid (Gonzalez et al. (1997). An endothelial origin has also been suggested, as 

endothelial cells contain ChAT and can produce and release ACh (Parnavelas et al., 1985; 

Kawashima et al., 1990), but what controls this is unclear.  

-Insert Table 1 here- 

(ACh receptors) 

It is likely that muscarinic M3 receptors located on endothelial cells mediates the NO 

induced vasodilatation, at least in rabbits (Garcia-Villalon et al., 1991), cats (Dauphin & 

Hamel, 1990) and human (Dauphin & Hamel, 1992). In the absence of endothelium, ACh 

(exogenously applied or released by transmural stimulation) induces vasoconstriction via M1 

receptors located on the vascular smooth muscle cells (VSM). M1 receptors have been 

identified in VSM of cerebral arteries including basilar arteries of rats (Phillips et al., 1997) 

and in numerous other species including cat (Dauphin et al., 1991), pig (Garcia-Villalon et al., 

1991) and human (Dauphin & Hamel, 1992). Since M1 receptors have a lower affinity for 

ACh than M3 receptors, higher concentrations of ACh are required for their activation and 

this may provide a mechanism for the differential vasomotor actions of ACh. From a study of 

pial vessels in mice (Shimizu et al., 1993), there is evidence that the M1 receptor mechanism 

is uncoupled/non- functional in the presence of a functional endothelial M3 receptor, 

explaining the apparent dominance of M3 receptor induced vasodilation. 

 

Pre-junctional M2 receptors are located on nitrergic perivascular neurones and attenuate 

the vasodilation (or increase vasoconstriction) by inhibiting NO production and release. This 
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has been found in several species (pig, cat, monkey) and in various locations along the 

posterior (and anterior) cerebral arteries (van Charldorp & van Zwieten, 1989; Dauphin & 

Hamel, 1992; Phillips et al., 1997; Toda et al., 1997; Liu & Lee, 1999). In contrast, there is a 

total absence of M2 receptors in human cerebral arteries (Dauphin & Hamel, 1992), 

explaining the absence of ACh induced contraction in man mentioned above. 

 

The M5 receptor was the last muscarinic receptor to be identified in cerebral arteries and as 

with M1 and M3 receptors it is post-synaptically located. The receptor was found on both 

smooth muscle cells and endothelium (Phillips et al., 1997; Tayebati et al., 2003). The mRNA 

content for M5 in rat basilar artery was found to be equal to that of M2 and M3 receptors, 

and greater than M1 receptor mRNA (Phillips et al., 1997). Due to the lack of selective M5 

muscarinic receptor ligands, little is known of the functional significance of this receptor on 

cerebral arteries. To circumvent this problem, Yamada et al. (2001b) created a M5 receptor 

knock out mouse, in which large cerebral arteries and arterioles did not dilate following 

topical application of acetylcholine (both in in vivo and in organ bath preparation). The 

effect was specific to the cerebral blood vessels, as peripheral vessels retained the ability to 

dilate. It has been suggested that some of the effects previously ascribed to the M3 receptor 

may be mediated via the M5 receptor (Elhusseiny & Hamel, 2000).  

 

(b) Nicotinic ACh receptors: There is a dearth of evidence supporting a major role for 

nicotinic receptors on vertebrobasilar arteries. Though Dauphin and Hamel (1992) did not 

find nicotinic receptors in cat or human cerebral arteries, Edvinsson et al. (1977) found 

evidence of the α7-NACh receptor on adrenergic nerves of cat middle cerebral arteries. As 
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its function is relevant to modulation of adrenergic signalling, it will be described in the 

‘cross talk’ section (see below).  

  

(iii) Vasoactive Intestinal Peptide. VIP has been found to co-localise with ChAT in some 

parasympathetic nerves and ganglia innervating the cerebral vasculature (Gibbins & Morris, 

1988; Suzuki et al., 1990a; Hardebo et al., 1992; Uddman et al., 1999) including the basilar 

artery (Miao & Lee, 1990; Saito et al. 1985). In basilar arteries from cats, only 5% co-

localisation between VIP and ChAT positive fibres was found despite these running closely 

to each other (Miao & Lee, 1990). The density of VIP innervation of cerebral arteries is 

species dependent with highest densities in the cat, rat and rabbit (Duckles & Said, 1982; 

Gibbins et al., 1984b; Zhang et al., 1991) and relatively sparse in human (Edvinsson et al., 

1987; Edvinsson et al., 1994b). This confers with a study by White (1987) in which 87% of 

human basilar arteries pre-contracted with prostaglandin F2α(PGF2α) displayed a sustained 

concentration dependent vasodilatation when exposed to VIP. Despite the lack of VIP 

positive fibre staining on vertebral and basilar arteries in dogs (Edvinsson et al., 1980), the 

vascular conductance of vertebral arteries was increased by 100% on exposure to VIP (Blitz 

& Charbon, 1983). These data emphasise the importance of this peptide in mediating 

vasodilatation of vertebrobasilar arteries but the neural source remains to be ratified. 

 

There are two VIP receptors with similar affinity for VIP: VIP1 (VPAC1) and VIP2 (VPAC2). In 

addition to these, VIP can also act via the natriuretic peptide clearance receptor (NPR-C) 

(Akiho et al., 1995; Murthy et al., 2000; Grant et al., 2005). Immunohistochemical labelling 

for VPAC1 in rat cerebral arteries found it on the surface of smooth muscle cells in the 

medial layer only (Fahrenkrug et al., 2000). This was confirmed using in situ hybridization 
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mRNA, where VPAC1 and VPAC2 located into smooth muscles cells in posterior (and anterior) 

cerebral vessels (Baun et al., 2011). Similar results have been obtained in humans, using RT-

PCR against the two VPAC receptors (Knutsson & Edvinsson, 2002). In pig basilar arteries, 

mRNA is present for VPAC1, VPAC2 and NPR-C. Using immunocytochemistry, VPAC1 was 

found in the endothelium, VPAC2 on the outer layers of SMCs and endothelium and NPR-C 

throughout the artery including the perivascular nerves themselves (Grant et al., 2005).  

 

The vasodilatory effect of VIP may or may not involve a NO dependent mechanism. 

Denuded cerebral arteries from sheep and cow showed blunted VIP induced vasodilation, 

indicating the presence of a mechanism involving NO of endothelial origin (Gaw et al., 1991; 

Gonzalez et al., 1997). VIP stimulation of isolated rat basilar arteries results in vasodilation, 

which is inhibited by the nNOS selective antagonist: 7-nitroindazole (7-NI), indicating 

involvement NO from perivascular nitrergic nerves (Seebeck et al, 2002). VIP receptors 

present on SMC, however, induce vasodilation directly, via an NO independent mechanism, 

probably through the cAMP pathway (Grant et al., 2005). 

 

(iv) Pituitary adenylate cyclase-activating peptide (PACAP) belongs to the same family of 

glucagon/secretin neuropeptides as VIP and shares 68% amino acid sequence homology. 

The two co-transmitters are expressed in different subpopulations of parasympathetic 

neurones. In addition, PACAP is also expressed by both trigeminal sensory neurones and 

sympathetic neurons making its association with the parasympathetic nervous system 

equivocal (Sundler et al., 1996). PACAP mRNA is expressed in most otic and PPG cells in the 

rat (Sundler et al., 1996). PACAP acts through 3 different G protein coupled receptors: the 

VIP receptors: VPAC1 & VPAC2, and PAC1, all increase adenylate cyclase activity. There is 
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evidence of vasodilatory effects of PACAP in rat basilar arteries mediated by nitregic nerves 

(Seebeck et al., 2002). Although PACAP is up to 100x more potent as a vasodilator than VIP 

(Kashimoto et al., 1996), PACAP fibre innervation of cerebral arteries is less dense than that  

of VIP and NO (Warren et al., 1991; Edvinsson et al., 2001). In pre-constricted rat basilar 

arteries a stronger vasodilatory capacity of VIP than PACAP was found, whereas VIP and 

PACAP acted similarly in the anterior vessel segments, which may indicate a differential 

receptor distribution between these arteries (Baun et al., 2011).  

 

(v) Peptide histidine isoleucine. VIP-like neuropeptides such as peptide histidine isoleucine 

(PHI) in rat and the human equivalent peptide histidine methionine (Linder et al., 1987) are 

also coexpressed in the VIP population of parasympathetic fibres on basilar arteries and 

have weaker vasodilatory properties relative to VIP (Suzuki et al., 1984; Uddman et al., 

1993).  

 

Cross talk between parasympathetic and sympathetic nerves  

Parasympathetic and sympathetic nerves are often intertwined on cerebral arteries (Owman 

et al., 1974) or run in parallel within the same perineural sheath (Iwayama et al., 1970; 

Edvinsson et al., 1972a). Axo-axonal contact distances between sympathetic and 

parasympathetic fibres can be as little as 25 nm, compared to the 100 nm seen for neuro-

muscular contacts in the same vessels (Edvinsson et al., 1972a). This close apposition 

suggests cross talk between parasympathetic and sympathetic nerve fibres.   

-Insert Figure 5 here- 

(Close apposition of NA and Ach nerves) 
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Support for interactions between the parasympathetic and sympathetic innervations to 

cerebral arteries is that they develop simultaneously in both mice and rats (Kobayashi et al., 

1981; Tsai et al., 1992) and human: (Kawamura & Takebayashi, 1994). In pre- and postnatal 

rats, parasympathetic and sympathetic fibres (visualised with VIP and NPY markers, 

respectively) show similar patterns of development in their distribution, density and pattern 

(Tsai et al., 1992). This close association in development was not observed for sensory fibres 

(visualised using CGRP), their development occurs after sympathetic innervation (Tsai et al., 

1989). There is not the same degree of close apposition between sensory fibres with either 

sympathetic or parasympathetic nerves (Tsai et al., 1989; Edvinsson et al., 1994a). 

Functional studies in basilar arteries from rat and pig have found that NA and ACh have 

limited vasoreactivity, yet adrenergic nerves express nicotinic α-7 NACh receptors, which 

upon stimulation, cause increases in intracellular calcium leading to noradrenaline release 

from their varicosities (Si & Lee, 2001; Si & Lee, 2002). This triggers vasodilatation via 

activation of β2-adrenergic receptors; vasoconstriction does not occur as there is paucity of 

-adrenoceptors. β2-adrenoceptors are located on the intertwined acetylcholinergic-

nitrergic fibres leading to NOS activation and NO production and stimulation of guanylyl 

cyclase (Fig 7). Removal of the endothelium does not affect the arteries ability to dilate, 

indicating the source of NO must be neuronal (Lee, 1980; Toda, 1982). Indeed, NO is stored 

and released with ACh. ACh acts on nitrergic neurones stimulating prejunctional M2 

receptors and inhibits NO synthesis, thus modulating NO release (Liu et al., 2002). Following 

unilateral excision of the superior cervical ganglion in rats, NO mediated vasodilation in 

cerebral arteries was reduced, indicating a dependence on an intact sympathetic 

innervation (Smith et al., 2002). 
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-Insert Figure 6 here- 

(Mechanism of crosstalk) 

 

Cross talk may have a role in the development and maintenance of autonomic fibres and 

their phenotype. For example, after sympathectomy: (i) parasympathetic fibres proliferate 

and make more direct contacts with vascular smooth muscle cells, whereas prior to 

sympathectomy they mainly contact sympathetic fibres (Smith et al., 2002); (ii) 

parasympathetic cells can display increased dopamine-β-hydroxylase (DBH) 

immunoreactivity (though this is functionally irrelevant), and this is matched by a similar 

decrease in the number of PPG neurones expressing parasympathetic markers (Mione et al., 

1991; Fan & Smith, 1993); (iii) both NOS and VIP activity in the PPG is decreased, resulting in 

a reduction in NOS dependent vasodilation in various target areas (Fan & Smith, 1993; Smith 

et al., 2002).  

In face of increased sympathetic drive as occurring during “fight or flight” situations 

vertebrobasilar arteries may thus vasodilate (instead of constrict) via the mechanisms 

described above to ensure the brainstem and or cortex remains well perfused at times when 

peripheral organs experience vasoconstriction and reduced vascular conductance (Lee et al., 

2011).  

 

Other proposed functions of parasympathetic innervation to cerebral arteries in vivo 

With such a dense parasympathetic innervation of the cerebral arteries it is a natural 

question to ask: What are the physiological circumstances in which these nerves are 

activated?? Beside the suggested function in ensuring adequate CBF during periods of high 

sympathetic activity, what else does it do? The question has not been answered equivocally, 
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though various clues to its function are appearing: As mentioned earlier activation of the 

parasympathetic innervation causes vasodilation. Thus it is likely to be involved in any 

process requiring centrally regulated increases in CBF that are independent of the 

endothelial NO system. Examples include, increased brain metabolism, thermoregulation (it 

is essential to keep the brain thermoregulated) and hypercapnia. 

Electrical stimulation of the PPG in rats increases cerebral blood flow by 40-50% on the 

ipsilateral side as measured by Doppler flow over the parietal cortex and tissue PO2 (Seylaz 

et al., 1988; Talman et al., 2007). In dogs, stimulation of the PPG and the superficial petrosal 

evoked vasodilatation in the middle cerebral artery, posterior communicating arteries and 

basilar artery (D'Alecy & Rose, 1977; Toda et al., 2009). Anti-cholinergic drugs fails to 

attenuate the response, emphasising that the vasodilatory response is mediated via a non-

cholinergic mechanism (Nakai et al., 1993).  

What evidence is there for vasodilatory tone? Following removal of the PPG in the awake rat 

Suzuki et al. (1990b) reported no change in blood flow, suggesting an absence of tone. 

However, these data were not confirmed by Boysen et al. (2009), who saw ablation of the 

PPG evoking a 30% decrease in blood flow increasing cerebrovascular resistance (CVR) in 

rats. Given that the muscarinic antagonist, atropine, does not affect cerebral blood flow, 

non-cholinergic transmission must underlie this tone (Toda et al., 1993; Yoshida et al., 1993; 

Toda et al., 2000a). Further evidence of tonic parasympathetic tone in the form of reduced 

blood flow upon NO inhibition has also been observed in monkeys (Toda et al., 2000b) and 

dogs (Toda et al., 1993; Yoshida et al., 1993; Toda et al., 2000a), where the vasodilatory 

responses to nerve stimulation was found to be attenuated by the NO inhibitor NG-nitro-L-

arginine (L-NA). Indeed, NO of neuronal origin has been associated with vasodilation and 
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decreased cerebral vascular resistance (Toda & Okamura, 2003). In nNOS deficient mice a 

reduced vasodilator response following stimulation of both efferent and afferent nerves was 

observed, an effect not seen in eNOS or iNOS deficient mice (Toda et al., 2009). Thus, there 

appears to be an apparent loss of ACh dependency as primary transmitter in the 

parasympathetic innervation and transfer to NO mediated vasodilatory processes, which is 

distinct to the innervation of peripheral arteries.  

Parasympathetic innervation from the PPG acting directly or indirectly on nociceptive 

sensory fibres have also been suggested to participate in regulation of blood brain barrier 

(BBB) permeability (Delépine & Aubineau, 1997; Yarnitsky et al., 2004a; Yarnitsky et al., 

2004b) and development of cluster headaches/migraine (Yarnitsky et al., 2003). 

Additionally, it is involved in the dilation of cerebral arteries following “breakthrough of 

autoregulation” in acute hypertension (Agassandian et al., 2003).  

 

Parasympathetic targets with clinical relevance for the cerebral vasculature 

The critical importance of the brainstem for life means that its perfusion needs to be tightly 

regulated. At rest, autonomic tone of the cerebral vessels is small (Heistad & Marcus, 1978; 

Heistad et al., 1978). However, it is reasonable to assume that any imbalance in the activity 

of autonomic nerves innervating the posterior cerebral circulation could have pathological 

implications for blood flow control and be a potential clinical target for various conditions in 

which cerebral blood flow is impeded, such as stroke or hypertension. The importance of 

the brainstem is highlighted by the finding that during extreme acute hypotension, cerebral 

blood flow is prioritised to the brainstem (Mueller et al., 1977). In this regard, we consider 

how disease is affected by the parasympathetic regulation of the cerebral vasculature and 
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ways in which modulation of parasympathetic input to the cerebral arteries may be used to 

alleviate pathology.  

During pathological increases of blood pressure above the upper limit of autoregulation, 

cerebral vessels dilate. Denervation of parasympathetic fibres originating from the PPG 

dampens this effect suggesting a baroreceptor mediated cerebral vasodilatation in rats 

(Talman & Dragon, 2000). It was later found that neuronal NOS (nNOS) drove the observed 

dilatory response; using a specific nNOS inhibitor the breakthrough dilatation that occurs 

above the autoregulatory threshold was attenuated (Talman et al., 2007). One possibility is 

that the shift in the autoregulatory curve to the right in hypertension (e.g. as in the SHR) 

may reflect reduced parasympathetic nitrergic input. 

The importance of NO in cerebral vascular regulation is highlighted by the association of the 

endogenous NOS inhibitor - asymmetric dimethylarginin (ADMA) which is elevated in 

conditions of hypoperfusion such as stroke and hypertension (Yoo & Lee, 2001; Napoli et al., 

2004; Kielstein & Zoccali, 2005). By targeting ADMA availability (Fan et al., 2013) and 

reducing plasma levels (Fan et al., 2013; Tsai et al., 2014) hypertension is prevented in 

young SHRs. Furthermore, ADMA infusion at levels that do not affect systemic blood 

pressure decreased CBF and induces vascular stiffness in healthy volunteers (Kielstein et al., 

2006). In rats topical application of ADMA results in basilar vasoconstriction and an 

inhibition of ACh mediated vasodilatation and in rabbits it has the same effect in cortical 

vessels (Faraci et al., 1995). Thus, NO in conjunction with parasympathetic innervation plays 

a major role in maintaining blood flow to the brain in health and disease states. The role of 

ADMA in ischemic stroke and its potential as a predictive disease marker has been discussed 

and reviewed elsewhere (Chen et al., 2012).  
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The endogenous NOS inhibitor monomethylarginine (L-NMMA), has been reported to be 

present at lower concentrations than ADMA in the circulation (Vallance et al., 1992). Like 

ADMA, L-NMMA was shown to reduce cortical blood flow when injected into the internal 

carotid artery without affecting systemic blood pressure (Thompson et al., 1996). When 

challenged with hypercapnia, the chemoregulatory response normally resulting in increased 

cerebral blood flow in monkeys, was prevented by prior intracarotid injection of L-NMMA. 

The same was not true for cerebral autoregulation due to changes in blood pressure 

(Thompson et al., 1996). This result provides further evidence for the role of NO in control 

of cerebral blood flow. 

Nitric Oxide is synthesised by NOS from L-arginine. The active site of NOS is subject to 

inhibition by the assymetric methylarginines, ADMA and L-NMMA. These inhibitors could be 

a good clinical target in conditions where the synthesis or bioavailability of NO is 

compromised (Leiper & Nandi, 2011). However, it is not specific to nNOS but also work on 

eNOS. 

The finding of markers associated with cardiovascular risk, and possibly autonomic 

imbalance, such as ADMA (Faraci et al., 1995), could provide other therapeutic pathways 

with targeted prophylactic medicine. In humans, sulfhydryl ACE inhibitor to reduce blood 

pressure also restored the NO/ADMA balance in hypertension (Napoli et al., 2004). Similarly, 

in SHRs 10 week treatment with an ACE-inhibitor not only decreased blood pressure but 

improved the vasodilatatory response of the basilar artery and blood flow during 

hypotension as well as the NO-mediated dilatation during topical application of ACh; these 

data all suggest an improvement in endothelial function of the basilar artery (Toyoda et al., 
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1998). Furthermore, NO or NO donor administration in stroke models has been shown to 

reduce lesion size and increase cerebral perfusion (Willmot et al., 2005).  

 

The direct effects of parasympathetic innervation can be seen during a hypotensive 

challenge in SHRs in which forebrain blood flow was reduced after chronic parasympathetic 

denervation compared to sham controls (Koketsu et al., 1992). These findings were not 

corroborated in normotensive Sprague Dawley rats (Branston et al., 1995). The 

parasympathetic system is involved in vasodilatation at the lower end of autoregulation 

(Branston et al., 1995). To what extent this is true for the posterior circulation of the 

brainstem remains to be established. In stroke, parasympathetic denervation exacerbates 

infarct size following middle cerebral artery occlusion (Kano et al., 1991; Koketsu et al., 

1992). This evidence supports a role for parasympathetic nerves in protecting against brain 

ischemia. In this context, stimulation of the PPG provided protection by increasing CBF and 

reducing the infarct size following cerebral artery occlusion (Henninger & Fisher, 2007). A 

reduction in ischemic area as well as protection of blood-brain barrier integrity were found 

in a model of photothrombotic stroke with PPG stimulation (Levi et al., 2012).  

It is worth considering the potential clinical importance of cross talk between sympathetic 

and parasympathetic branches mentioned above, as it can result in alterations in autonomic 

regulation in pathological circumstances. For instance stimulation of sympathetic nerves in 

normotensive rats results in basilar artery vasodilatation and increased blood flow, the 

same is not true for hypertensive animals or animals with chronic superior cervical ganglion 

denervation (Chang et al., 2012). The attenuated response is likely to be, at least in part, 

due to a reduction in the sympathetic to parasympathetic terminal density at the level of 
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the basilar artery in the hypertensive animals (Lee & Saito, 1986) or a lack of sympathetic 

input (Chang et al., 2012). Conversely, an overactive sympathetic and underactive 

parasympathetic nervous system limits basilar artery dilatation in face of a hypotensive 

challenge (Barry et al., 1982). This may cause ischemic damage especially in conditions 

where cerebrovascular resistance is high (e.g. SHRs), (Paton et al., 2009; Cates et al., 2011; 

Cates et al., 2012). Furthermore the limited vasodilatation of the basilar artery (Toyoda et 

al., 1998) contributes to the shift of the autoregulatory curve to higher BP levels in 

hypertension (Barry et al., 1982) further increasing the susceptibility of hypoperfusion.  

 

In case of ischemic stroke, stimulation of the parasympathetic nervous system to increase 

cerebral blood flow and restrict ischemia has clinical potential particularly considering the 

limiting treatments currently available and the restrictions of their use, as is the case with 

thrombolysis therapy (Cheyuo et al., 2011). Stroke in the vertebrobasilar circulation is a 

clinical emergency and accounts for about 20% of all ischemic strokes (Schoen et al., 2011) 

and has a high morbidity and mortality rate. Evidence shows that parasympathetic input 

provides some protection from ischemic damage (Kano et al., 1991; Koketsu et al., 1992; 

Henninger & Fisher, 2007; Cheyuo et al., 2011; Levi et al., 2012). Importantly this can be 

effective even after 24 hours of stroke onset (Solberg et al., 2008; Levi et al., 2012). The 

mechanisms of action require further investigation, as does the relevance of this treatment 

to the vertebrobasilar circulation. A comprehensive review on the potential of harnessing 

the parasympathetic system as a therapy in stroke has been published recently (Cheyuo et 

al., 2011). Whether this can also be targeted to assist with vertebrobasilar artery 

hypoperfusion in neurogenic hypertension (Cates et al., 2012; Marina et al., 2015), for 

example, remains unknown but holds therapeutic potential. Indeed, the Brainsgate Ischemic 



29 
 

Stroke System comprises an stimulator implanted adjacent to the PPG via the greater 

palatine canal under local anaesthesia (Khurana et al., 2009). This device is currently 

undergoing phase 3 trials (Clinical Trials.gov: NCT00826059 & NCT01874093). Another 

device directed to stimulation of the otic ganglion has also been described (Shalev & Gross, 

2010). By extrapolation, once the source(s) of input to the posterior cerebral circulation has 

been clarified, these nerves/ganglia could be targeted in a similar fashion. 

Systemically, activation of the parasympathetic efferent vagus nerve has been shown to 

inhibit pro-inflammatory cytokine release and decrease the inflammatory response. This 

function is coined “the cholinergic anti-inflammatory pathway” (Borovikova et al., 2000; 

Pavlov et al., 2003; Tracey, 2007). Evidence suggest it works via nicotinic α7-acetyl 

cholinergic receptor stimulation (Wang et al., 2003) and has been reported to have 

beneficial effects in a plethora of diseases from irritable bowel syndrome to depression 

(Wang et al., 2004; Rush et al., 2005; van Westerloo et al., 2006; Ghia et al., 2007; van 

Maanen et al., 2009) as well as improving kidney transplant outcomes (Hoeger et al., 2010). 

We propose that activation of the parasympathetic pathways innervating the cerebral 

arteries could also yield a similar anti-inflammatory response. In the anterior circulation this 

may be relevant for Alzheimer’s disease (de la Torre, 2002; Reale et al., 2004) and for 

posterior cerebral arteries: hypertension, which has been linked to inflammatory activity in 

brainstem walls (Waki et al., 2007; Waki et al., 2010; Zubcevic et al., 2011; Waki et al., 

2013). 

In this regard, both VIP and PACAP have been reported to exert similar anti-inflammatory 

effects through the VPAC1 receptor, which could be a relevant mechanism for the 
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parasympathetic innervation of cerebral arteries (Leceta et al., 2000; Martinez et al., 2002; 

Grimm et al., 2003). 

Yarnitsky et al. (2005) have shown that electrical stimulation of the PPG can prevent 

cerebral vascular spasm after subarachnoid haemorrhage and improve blood flow. 

Acetylcholine (given via intracisternal injection) can counter effects of cerebral vasospasm in 

basilar arteries after subarachnoid haemorrhage by supressing the production of cytokines 

(Song et al., 2014). However, it is worth noting that PPG stimulation has also been reported 

to disrupt the BBB and induce neurogenic inflammation via a reflex involving nociceptive 

sensory fibres (Delépine & Aubineau, 1997). A similar mechanism has also been ascribed to 

pain in migraine: Yarnitsky et al. (2003) reported that PPG activation during migraine is 

involved in sensitization of intracranial nociceptors by direct or indirect activation of sensory 

pain fibres by the release of ACh, VIP and NO. This effect of PPG stimulation has been used 

clinically to deliver macromolecules through the BBB (Yarnitsky et al., 2004a). Hence the 

(over-) stimulation of the parasympathetic innervation to the cerebral arteries may not only 

yield positive effects. Clinical application will require careful adaptation depending on the 

effect sought. 

 

Finally, and hypothetically, peptide targeting of the cerebral vasculature may also be 

possible. Using phage display proteins were identified that targeted the endothelial cells of 

the aorta and heart (Greig et al., 2010). Using such a technique may allow selective targeting 

of the cerebral arteries and may even differentiate between posterior versus the anterior 

circulation. Such targeting might allow enhancement of efficacy of vasodilating transmitter 

substances, for example. 
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Concluding remarks 

Control of blood flow to the brain is highly specialised and regionally specific. Uniquely, 

resistance is controlled in part by the main supply vessels as well as the microcirculation. 

We have discussed how the Circle of Willis and the vertebrobasilar circulations have 

different patterns of nervous innervation from parasympathetic, sympathetic and sensory 

systems. Because of similar phenotypes, we stress caution as to how to separate 

parasympathetic from sensory innervations immunocytochemically. Whilst the 

parasympathetic innervation of the anterior cerebral circulation is well described, this 

review highlights the need for clarification of the sources of parasympathetic innervation to 

the posterior cerebral circulation. It is clear that there are multiple sources of 

parasympathetic innervation and these change with age and in disease states and between 

species. The distinct sources of origin provides an opportunity for targeted regulation 

affecting sub-components of the cerebral circulation, which may be relevant to the 

treatment of stroke. The review highlights the number of transmitters systems used by the 

parasympathetic nerves innervating the cerebral vessels (e.g. ACh, NO, VIP, PACAP & PHI); 

this may provide fail safe mechanisms, state-dependent control, and regulation of the 

magnitude of the vasoactive response, for example. The evidence is unequivocal that there 

is a strong interdependence between the sympathetic and parasympathetic innervation 

both developmentally and functionally as they modulate each other. An example is the 

basilar artery vasodilatation induced by sympathetic nervous stimulation triggered by NO 

release from parasympathetic terminals. Malfunction of one of these systems will 

functionally alter the performance of the other. Thus, therapy targeting the 

parasympathetic nervous system to increase brain blood flow should not only be assured of 

a functional parasympathetic but also sensory and sympathetic innervation.  
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Innovative methods are being used to selectively stimulate specific nerves and ganglia 

innervating components of the cerebral circulation to increase blood flow. Whether specific 

endothelial markers on aspects of the cerebral circulation can be identified and target to 

modulate parasympathetic mediated vasodilatation remains a project for future scientific 

enquiry. 
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Figure Legends 

Figure 1. Human angiogram and schematic of cerebral circulation.  
(A) CT scan showing the anatomy of the cerebral arterial supply in humans. The image was 
kindly provided by Dr Nathan Manghat from University Hospital Bristol Trust. (B) Labelled 
schematic representation of (A) including origins of the circulation form the aortic arch, 
Figure modified from Schuenke et al. (2010). Abbreviations: A, anterior; R, right; P, posterior; 
L, left. 

 

Figure 2. Species variation in cerebral artery architecture. 

Schematic representation of the cerebral arterial tree and difference in contribution to 

anterior and posterior circulation by the ECA and ICA in (A) rats, (B) goat/sheep and (C) 

rabbit. Notice the presence of the carotid rete in (B) goat/sheep (red arrow), the lack of ICA 

and the existence of a V-Oa in the same species. CoW and VA labelled for orientation 

purposes. Abbreviations: APAr, ascending pharangeal artery residual; BA, basilar artery; 

CCA, common carotid artery; CoW, Circle of Willis; SA, spinal artery; VA, vertebral artery; V-

0a, vertebral-occipital anastomoses. Figure adapted from Daniel et al. (1953), Andersson 

and Jewell (1956) and Baldwin and Bell (1963). 

 

Figure 3. Approximate spatial contribution to cerebral blood supply by carotid and 

vertebral arteries in different species. 

Schematic representation of the cerebral blood supply contribution by the carotid and 

vertebral arteries in (A) man, (B) rat, (C) goat/sheep, (D) rabbit, (E) dog, (F) cat and (G) calf. 

Image based and adapted from Baldwin and Bell (1963) and Bralet et al. (1977). 

 

Figure 4. Parasympathetic innervation to cerebral vasculature. 

(A) Schematic overview of the anatomic position of various parasympathetic ganglia which 

are sources of parasympathetic input to the cerebral arteries. The level of parasympathetic 

innervation to the cerebral arteries varies as shown by (B) VIP innervations in the posterior 

communicating artery (dense innervation) and basilar artery (moderate innervation); image 

from Hara et al. (1985); x172 in original article, reproduced with permission. (C) Schematic 

representation of parasympathetic innervations to the rostral and posterior cerebral 

vasculature. The gradient represents reported density of innervation, checkered filling 

indicates unreported innervation. Note that species variation regarding innervation is not 

depicted in the figure. CmG, Carotid miniGanglia; CS, Cavernous Sinus; OG, Otic Ganglia; 

PTG; Pterygopalatine Ganglia; VIP, vasoactive intestinal peptide. Original figure collated 

from data from Gibbins et al. (1984a); Hara et al. (1985); Keller et al. (1985); Shimizu (1994); 

Kadota et al. (1996); Bleys et al. (2001); Ayajiki et al. (2012). 
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Figure 5. Electron microscopy image showing the close proximity of sympathetic and 

parasympathetic terminals on a cerebral artery. 

Image of the anterior cerebral artery of cat showing the close apposition of a 

parasympathetic (Ch, cholinergic) and sympathetic (A, adrenergic) neurons. Schwann cell is 

visible at the bottom. Image from Edvinsson et al. (1972b). x60000 in original reference, 

with permission.  

Figure 6. Mechanisms of endothelial dependent cross-talk leading to NO induced 

vasodilatation. 

There are multiple sources of nitric oxide production including the endothelium. (A) ACh 

exerts endothelium dependent vasodilatation acting on muscarinic (M) type 3 and/or 5 

receptors on endothelial cells inducing an increase in intracellular calcium which leads to NO 

production via eNOS activity. ACh still evokes a dilatation in denuded vessels suggesting a 

non-endothelial source of nitric oxide (NO). (B) Norepinephrine (NE) can stimulate the 

production of NO from cholinergic/nitrergic neurons via β2 receptors leading to increases in 

Ca2+ and calcium channel stimulation. The NO diffuses to nearby smooth muscle cells 

causing relaxation. Modulation of NO release in this system is achieved by ACh mediated NO 

inhibition via pre-junctional muscarinic (M) type 2 receptors on nitrergic neurons.  

Abbreviations: ACh, acetylcholine; cGMP, cyclic guanosine monophosphate; GC, guanylate 

cyclase; GTP, guanosine triphosphate; NO, nitric oxide; NOS, nitric oxide synthase. Figure 

based and adapted from Wahl and Schilling (1993), Zhang et al. (1998b), Liu et al. (2000) and 

Si and Lee (2002). 
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Tables 

Receptor 
subtype 

Cellular 
location 

Vessel 
location 

Effect  Proportion 
of total 
receptors 

Species Reference 

M1-AChR SMC MCA Vasoconstriction 15-27% 
 

Cat 
 

(Dauphin et al., 1991) 

   26-54% Human (Dauphin & Hamel, 1992)  

M2- AChR Perivascular 
nerves 
 
 

 
 
Absent!! 
BA 

Auto regulatory 
 
 
 

35% 
 
0% 
 

Cat & 
 
human 
 

(Dauphin & Hamel, 1992) 
 
 

Nitrergic 
nerves 
 

 
 
 

NO-modulatory- 
inhibition of NO - 
vasoconstriction 

- Pig 
 
 

(van Charldorp & van Zwieten, 
1989; Liu & Lee, 1999) 
 

Pre-
junctionally 
NO-nerves 
 

MCA4 Attenuate 
vasodilation by 
inhibiting NO- 
release from 
nitrergic nerves 

 Monkey (Toda et al., 1997) 

M3- AChR Endothlial MCA Vasodilation 10-18% Cat & 
human 

(Dauphin & Hamel, 1990; 
Dauphin et al., 1991) 

M5- AChR ? BA ? ? Rat (Phillips et al., 1997; Tayebati et 
al., 2003) 

Endothelium 
& SMC (less) 
media 

CoWs Vasodilation  GM-
mouse 

(Yamada et al., 2001a) 

α7-N AChR   
 

 
 

none Cat & 
human 

(Dauphin & Hamel, 1992) 
  

 BA 
 

Modulation of 
sympathetic  

 Pig 
 

(Zhang et al., 1998a; Si & Lee, 
2001)  

 BA perivascular 
neurones 

 Rat  (Chang et al., 2012) 

α3β2- N 
AChR 
 

  Modulation of 
sympathetic 
perivascular 
neurones 

 Rat (Lee et al., 2011) 

Table 1. Cholinergic receptors identified on cerebral arteries.

                                                           
4Endothelial denuded vessel prep 
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