

Liu, Z., Dumville, J. C., Norman, G., Westby, M. J., Blazeby, J., McFarlane, E., ... Cheng, H. Y. (2018). Intraoperative interventions for preventing surgical site infection: An overview of Cochrane Reviews. *Cochrane Database of Systematic Reviews*, 2018, [CD012653.pub2]. https://doi.org/10.1002/14651858.CD012653.pub2

Publisher's PDF, also known as Version of record

Link to published version (if available): 10.1002/14651858.CD012653.pub2

Link to publication record in Explore Bristol Research PDF-document

This is the final published version of the article (version of record). It first appeared online via Wiley at http://cochranelibrary-wiley.com/doi/10.1002/14651858.CD012653.pub2/abstract . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews (Review)

Liu Z, Dumville JC, Norman G, Westby MJ, Blazeby J, McFarlane E, Welton NJ, O'Connor L, Cawthorne J, George RP, Crosbie EJ, Rithalia AD, Cheng HY

Liu Z, Dumville JC, Norman G, Westby MJ, Blazeby J, McFarlane E, Welton NJ, O'Connor L, Cawthorne J, George RP, Crosbie EJ, Rithalia AD, Cheng HY.

Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews. *Cochrane Database of Systematic Reviews* 2018, Issue 2. Art. No.: CD012653.

DOI: 10.1002/14651858.CD012653.pub2.

www.cochranelibrary.com

TABLE OF CONTENTS

HEADER	1
ABSTRACT	1
PLAIN LANGUAGE SUMMARY	2
BACKGROUND	3
OBJECTIVES	5
METHODS	6
RESULTS	9
Figure 1	10
DISCUSSION	18
AUTHORS' CONCLUSIONS	20
ACKNOWLEDGEMENTS	21
REFERENCES	21
ADDITIONAL TABLES	25
APPENDICES	123
CONTRIBUTIONS OF AUTHORS	128
DECLARATIONS OF INTEREST	129
SOURCES OF SUPPORT	129

[Overview of Reviews]

Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews

Zhenmi Liu¹, Jo C Dumville¹, Gill Norman¹, Maggie J Westby¹, Jane Blazeby², Emma McFarlane³, Nicky J Welton², Louise O'Connor ⁴, Julie Cawthorne⁴, Ryan P George⁴, Emma J Crosbie⁵, Amber D Rithalia⁶, Hung-Yuan Cheng⁷

¹Division of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. ²NIHR Bristol Biomedical Research Centre, School of Social and Community Medicine, Bristol Medical School, University of Bristol, Bristol, UK. ³Centre for Guidelines, National Institute for Health and Care Excellence, Manchester, UK. ⁴Infection Prevention and Control / Tissue Viability Team, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK. ⁵Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK. ⁶Independent Researcher, Leeds, UK. ⁷Bristol Centre for Surgical Research, Bristol Medical School, University of Bristol, UK

Contact address: Zhenmi Liu, Division of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Jean McFarlane Building, Oxford Road, Manchester, M13 9PL, UK. zhenmi.liu@manchester.ac.uk, liuzhenmi1983@Hotmail.com.

Editorial group: Cochrane Wounds Group. **Publication status and date:** New, published in Issue 2, 2018.

Citation: Liu Z, Dumville JC, Norman G, Westby MJ, Blazeby J, McFarlane E, Welton NJ, O'Connor L, Cawthorne J, George RP, Crosbie EJ, Rithalia AD, Cheng HY. Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews. *Cochrane Database of Systematic Reviews* 2018, Issue 2. Art. No.: CD012653. DOI: 10.1002/14651858.CD012653.pub2.

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background

Surgical site infection (SSI) rates vary from 1% to 5% in the month following surgery. Due to the large number of surgical procedures conducted annually, the costs of these SSIs can be considerable in financial and social terms. Many interventions are used with the aim of reducing the risk of SSI in people undergoing surgery. These interventions can be broadly delivered at three stages: preoperatively, intraoperatively and postoperatively. The intraoperative interventions are largely focused on decontamination of skin using soap and antiseptics; the use of barriers to prevent movement of micro-organisms into incisions; and optimising the patient's own bodily functions to promote best recovery. Both decontamination and barrier methods can be aimed at people undergoing surgery and operating staff. Other interventions focused on SSI prevention may be aimed at the surgical environment and include methods of theatre cleansing and approaches to managing theatre traffic.

Objectives

To present an overview of Cochrane Reviews of the effectiveness and safety of interventions, delivered during the intraoperative period, aimed at preventing SSIs in all populations undergoing surgery in an operating theatre.

Methods

Published Cochrane systematic reviews reporting the effectiveness of interventions delivered during the intraoperative period in terms of SSI prevention were eligible for inclusion in this overview. We also identified Cochrane protocols and title registrations for future inclusion into the overview. We searched the Cochrane Library on 01 July 2017. Two review authors independently screened search results and undertook data extraction and 'Risk of bias' and certainty assessment. We used the ROBIS (risk of bias in systematic reviews) tool to assess the quality of included reviews, and we used GRADE methods to assess the certainty of the evidence for each outcome. We summarised the characteristics of included reviews in the text and in additional tables.

Main results

We included 32 Cochrane Reviews in this overview: we judged 30 reviews as being at low risk of bias and two at unclear risk of bias. Thirteen reviews had not been updated in the past three years. Two reviews had no relevant data to extract. We extracted data from 30 reviews with 349 included trials, totaling 73,053 participants. Interventions assessed included gloving, use of disposable face masks, patient oxygenation protocols, use of skin antiseptics for hand washing and patient skin preparation, vaginal preparation, microbial sealants, methods of surgical incision, antibiotic prophylaxis and methods of skin closure. Overall, the GRADE certainty of evidence for outcomes was low or very low. Of the 77 comparisons providing evidence for the outcome of SSI, seven provided high- or moderate-certainty evidence, 39 provided low-certainty evidence and 31 very low-certainty evidence. Of the nine comparisons that provided evidence for the outcome of mortality, five provided low-certainty evidence and four very low-certainty evidence.

There is high- or moderate-certainty evidence for the following outcomes for these intraoperative interventions. (1) Prophylactic intravenous antibiotics administered before caesarean incision reduce SSI risk compared with administration after cord clamping (10 trials, 5041 participants; risk ratio (RR) 0.59, 95% confidence interval (CI) 0.44 to 0.81; high-certainty evidence - assessed by review authors). (2) Preoperative antibiotics reduce SSI risk compared with placebo after breast cancer surgery (6 trials, 1708 participants; RR 0.74, 95% CI 0.56 to 0.98; high-certainty evidence - assessed by overview authors). (3) Antibiotic prophylaxis probably reduce SSI risk in caesarean sections compared with no antibiotics (82 relevant trials, 14,407 participants; RR 0.40, 95% CI 0.35 to 0.46; moderatecertainty evidence; downgraded once for risk of bias - assessed by review authors). (4) Antibiotic prophylaxis probably reduces SSI risk for hernia repair compared with placebo or no treatment (17 trials, 7843 participants; RR 0.67, 95% CI 0.54 to 0.84; moderatecertainty evidence; downgraded once for risk of bias - assessed by overview authors); (5) There is currently no clear difference in the risk of SSI between iodine-impregnated adhesive drapes compared with no adhesive drapes (2 trials, 1113 participants; RR 1.03, 95% CI 0.66 to 1.60; moderate-certainty evidence; downgraded once for imprecision - assessed by review authors); (6) There is currently no clear difference in SSI risk between short-term compared with long-term duration antibiotics in colorectal surgery (7 trials; 1484 participants; RR 1.05 95% CI 0.78 to 1.40; moderate-certainty evidence; downgraded once for imprecision - assessed by overview authors). There was only one comparison showing negative effects associated with the intervention: adhesive drapes increase the risk of SSI compared with no drapes (5 trials; 3082 participants; RR 1.23, 95% CI 1.02 to 1.48; high-certainty evidence - rated by review authors).

Authors' conclusions

This overview provides the most up-to-date evidence on use of intraoperative treatments for the prevention of SSIs from all currently published Cochrane Reviews. There is evidence that some interventions are useful in reducing SSI risk for people undergoing surgery, such as antibiotic prophylaxis for caesarean section and hernia repair, and also the timing of prophylactic intravenous antibiotics administered before caesarean incision. Also, there is evidence that adhesive drapes increase SSI risk. Evidence for the many other treatment choices is largely of low or very low certainty and no quality-of-life or cost-effectiveness data were reported. Future trials should elucidate the relative effects of some treatments. These studies should focus on increasing participant numbers, using robust methodology and being of sufficient duration to adequately assess SSI. Assessment of other outcomes such as mortality might also be investigated as part of non-experimental prospective follow-up of people with SSI of different severity, so the risk of death for different subgroups can be better understood.

PLAIN LANGUAGE SUMMARY

Overview of Cochrane Reviews of interventions used during surgery for preventing surgical site infection

What is the aim of this overview of reviews?

To identify and summarise all evidence from Cochrane Reviews on interventions to prevent surgical site infections (SSIs) that are delivered while surgery is taking place (during the intraoperative period).

Key messages

We cannot be certain about the effectiveness in preventing SSI of the majority of intraoperative interventions, as we judged the certainty of the evidence to be generally low or very low. In some circumstances (listed below), antibiotics were effective for the prevention of SSI. There is no high- or moderate-certainty evidence for the relative effects of intraoperative interventions on mortality, and no data at all for quality of life or costs. For these reasons, we cannot be certain whether these antibiotics, which are effective at preventing SSI. have any negative effects on mortality or quality of life. Larger trials with appropriate methods are needed to measure the outcomes that are important to both patients and health professionals.

What was studied in the overview?

If bacteria get into a surgical cut during surgery, this can result in a wound infection commonly called an SSI. SSIs are one of the most common forms of healthcare-associated infections, with around 1 in 20 surgical patients developing an SSI in hospital. SSIs can also develop after people have left hospital. SSIs can result in delayed wound healing, increased hospital stays, increased use of antibiotics, unnecessary pain and, in extreme cases, death. Their prevention is therefore a key aim for health services. Many interventions are used to reduce the risk of SSI in people having surgery. These interventions can be delivered at three stages: before, during and after the operation. It is therefore important to identify interventions that can reduce the incidence of SSIs. This overview focuses only on interventions delivered during surgery.

What are the main results of the overview?

In July 2017 we searched for Cochrane Reviews involving interventions for preventing SSIs during surgery. We found a total of 32 Cochrane Reviews that could be included in this overview. Two reviews had no relevant data to extract so we extracted data from 30 reviews with 349 included trials, totaling 73,053 participants. Interventions assessed included use of disposable face masks and surgical gloves, the use of oxygen during surgery, antiseptics for hand washing, patient skin preparation and cleaning the vagina before caesarean section, methods of surgical incision and skin closure and use of antibiotics to prevent infection.

Evidence of at least moderate certainty indicates that the following interventions reduce SSI risk: (1) antibiotics administered via drip before caesarean incision reduce SSI risk compared with administration after cord clamping (high-certainty evidence); (2) giving antibiotics before surgery reduces SSI risk compared with placebo after breast cancer surgery (high-certainty evidence); (3) antibiotics used to prevent wound infections probably reduce SSIs for caesarean section compared with no antibiotics (moderate-certainty evidence); (4) antibiotics used to prevent wound infections probably reduce SSI risk for hernia repair compared with placebo or no treatment (moderate-certainty evidence); (5) iodine-impregnated adhesive drapes probably make no difference to SSI risk compared with no adhesive drapes (moderate-certainty evidence); (6) there is probably no difference in SSI risk when antibiotics are given in the short-term compared to the long-term during colorectal surgery (moderate-certainty evidence). One comparison showed that adhesive drapes increase the SSI risk compared with no drapes (high-certainty evidence). Overall, we judged the certainty of evidence for our primary outcomes (SSIs and death) to be low or very low.

Clinicians can use the evidence summarised in this overview to choose the best intervention for people having surgery. However, many of the comparisons were supported by low- or very low-certainty evidence and so require further evidence to support future decision making. This overview can also be used by policymakers in developing local and regional protocols or guidelines and can reveal knowledge gaps for future research.

How up to date is this overview?

We searched for reviews that had been published up to July 2017. Of the 32 reviews included in this overview, 13 reviews had not been updated in the past three years.

BACKGROUND

Description of the condition

Millions of surgical procedures are conducted around the world each year. Most procedures result in surgical wounds that heal by primary intention, where wound edges are re-approximated using sutures, staples, clips or glue. Some surgical wounds are left open to heal (where closure is not appropriate because of infection, physical impossibility of approximating wound edges or because of the need to allow drainage) and some wounds break down following closure; these open wounds heal from the 'bottom-up' (known as 'healing by secondary intention').

Surgical wounds are at risk from microbial contamination and thus possible infection. Contamination may originate from the

patient, for example when microbes on the skin enter a wound, or from the surrounding environment, for example from operating staff, the theatre, or wider hospital and home environments. SSIs are relatively common: a recent US study with assessment in 183 hospitals involving 11,282 patients found that 452 people (4%) developed hospital-acquired infection; of these, 21.8% were SSIs (Magill 2014). Similar SSI incidence estimates have been reported in France (Astagneau 2009). In the UK around 2% to 5% of surgical patients develop SSIs (NICE 2008; Public Health England 2014) although the percentage varies greatly depending on the circumstances, including the contamination level of the surgery. In England, a 2006 survey of hospital-acquired infections reported that 8% of patients in hospitals had an infection while an inpatient, of which 14% were considered SSIs (Hospital Infection Society 2007; Smyth 2008). Many quoted incidence estimates for SSI are likely to be underestimates because infections that developed outside hospitals were not considered (Bruce 2001; Gibbons 2011). While more data are available for Western healthcare settings, SSI was identified as the leading cause of hospital-acquired infection in a systematic review of studies in low- and middle-income countries (Allegranzi 2010).

SSI is a serious global issue that can lead to significant morbidity, need for re-intervention and treatment (including antibiotic use), delayed wound healing, and in very serious infections, the possibility of death (Awad 2012; Brown 2014; CDC 2017). SSIs also increase consumption of healthcare resources. Recent figures from the UK suggest that SSIs lead to a median increased hospital stay of 10 days (95% confidence interval (CI) 7 to 13 days) with an associated median additional cost attributed to SSI of GBP 5239 (95% CI GBP 4622 to 6719) (Jenks 2014). The UK National Institute for Health and Care Excellence (NICE) identified that an SSI increased the costs of surgery by two to five times (NICE 2008). In the USA, De Lissovoy 2009 estimated that the extended length of stay and increased treatment costs associated with SSIs over a one-year period led to approximately 1 million additional inpatient-days, costing an additional USD 1.6 billion.

SSI risk

A patient's overall physical health can predict the risk of SSI, as can the type of surgical procedure (in terms of potential for contamination) and duration of surgery. These factors are collectively included in the National Nosocomial Infections Surveillance risk index (Gaynes 2001; SWI Task Force 1992), which proposes three criteria to assess risk: American Society of Anesthesiologists (ASA) score of 3, 4, or 5 (ASA 2014); wound class (see below); and duration of surgery. Other risk factors for SSI are suggested; such as if surgery is elective or emergency, but supporting data for these risk factors are more limited.

Wound class

Wound class is assessed using the classification system adopted by the Centres for Disease Control and Prevention (HICPAC 1999).

• Clean: non-infective operative wounds in which no inflammation is encountered, and neither the respiratory, alimentary, genito-urinary tract nor the oropharyngeal cavity is entered. In addition these cases are elective, have primary closure, and wounds are drained with closed drainage systems when required.

• Clean/contaminated: operative wounds in which the respiratory, alimentary, genital or urinary tract is entered under controlled conditions and without unusual contamination. Specifically, operations involving the biliary tract, appendix, vagina and oropharynx are included in this category, provided no evidence of infection or a major break in sterile technique is encountered.

• Contaminated: fresh, accidental wounds, operations with major breaks in sterile technique or gross spillage from the gastro-intestinal tract, and incisions in which acute, non-purulent inflammation is encountered.

• Dirty: old traumatic wounds with retained devitalised (dead) tissue and those that involve existing clinical infection or perforated viscera (internal organs or gut). This definition suggests that organisms causing postoperative infection were present in the operative field before the operation.

In the UK data from 232 NHS hospitals on 620,535 surgical procedures reported SSI rates of: 0.5% for knee prosthesis; 1% for cardiac surgery (non-coronary artery bypass graft); 0.6% for hip prosthesis and 5% for limb amputation (all clean surgery) (Health Protection Agency 2015). This is in contrast to the incidence of SSI following surgery on the large bowel (contaminated surgery) of 9.7% (Health Protection Agency 2015). Europe-wide surveillance also reports higher incidence of SSI in colon surgery (9.5% of surgeries resulting in SSI) (ECDC 2013).

Definition of SSI

Although there is no single agreed diagnostic tool or protocol to confirm the presence of an SSI, (Bruce 2001 identified 41 different definitions for SSI and 13 grading scales), the Centers for Disease Control and Prevention (CDC) definition is commonly used (Horan 1992).

A superficial SSI is defined as: "an infection occurring within 30 days after the operation and only involving the skin and subcutaneous tissue of the incision that is associated with at least one of the following:

• purulent drainage, with or without laboratory

confirmation, from the surgical site;

• organisms isolated from an aseptically-obtained culture of fluid or tissue from the surgical site;

• at least one of the following signs or symptoms of infection: pain or tenderness, localised swelling, redness or heat, *and* superficial incision is deliberately opened by the surgeon and is

culture-positive or not cultured. A culture-negative finding does not meet this criterion;

diagnosis of SSI by the surgeon or attending physician."

A deep incisional SSI is defined as: "infection that occurs within 30 days after the operative procedure if no implant is left in place, or within one year if an implant is left in place, and the infection appears to be related to the operative procedure *and* involves deep soft tissues (e.g. fibrous connective tissues and muscle layers) of the incision associated with one of the following:

• purulent drainage from the deep incision, but not from the organ/space component of the surgical site;

• a deep incision spontaneously dehisces (opens up) or is deliberately opened by the surgeon and is culture-positive or not cultured when the patient has at least one of the following symptoms: fever or localised pain or tenderness;

• an abscess, or other evidence of infection involving the deep incision is found on direct examination, during re-operation, or by histopathologic or radiologic examination;

• diagnosis of a deep incisional SSI by a surgeon or attending physician."

Description of the interventions

Many interventions are used with the aim of reducing the risk of SSI in people undergoing surgery. These interventions can be delivered at three stages: preoperatively, intraoperatively and postoperatively (Goodman 2017). For the purpose of this review we define:

• the preoperative phase as the time period between the decision for the need for surgery and when everything is ready for the operation to start, that is, the patient is on the operating table (for this review we have assumed that staff are ready to proceed with surgery at this point - thus the preparation of operative staff occurs in this preoperative period);

• the intraoperative phase is the time period from when the patient is on the operating table to when the operation has finished and the wound is closed (if relevant). We consider any activity taking place after induction of anaesthesia to be in this phase because this starts in the operating theatre itself. For this review, where it is clear that antibiotics were given very soon before the incision, we consider this to be intraoperative, that is, prophylactic intravenous antibiotics administered less than 60 minutes before surgery;

• the postoperative phase as the time period from the end of the intraoperative phase to resolution of surgical procedure (which we acknowledge could take several, weeks or months for some patients). We note that whilst dressings, wound drains and negative pressure wound therapy are often placed over wounds at the end of surgery, their use is predominantly outside of theatre, so they are considered in the postoperative phase. Table 1 details key intervention types used at each stage of the operative pathway, but is not an exhaustive list. Most interventions listed are probably independent of each other and would generally be delivered concurrently. However, the interventions listed could also be grouped together as a care bundle, where a care bundle is defined as a group of three to five evidence-based interventions that are delivered together.

This overview of reviews will focus on interventions delivered in the intraoperative phase.

How the intervention might work

See Table 1. The interventions are largely focused on decontamination of skin using soap and antiseptics; the use of barriers to prevent movement of micro-organisms into wounds; and optimising the patient's own bodily functions to promote best recovery. Both decontamination and barrier methods can be aimed at people undergoing surgery and operating staff. Other interventions focused on SSI prevention may be aimed at the surgical environment and include methods of theatre cleansing and approaches to theatre traffic (i.e. how the movement of staff in and out of theatre is managed).

Why it is important to do this overview

The Cochrane Handbook for Systematic Reviews of Interventions describes a Cochrane overview of reviews as being "intended primarily to summarize multiple Cochrane Intervention reviews addressing the effects of two or more potential interventions for a single condition or health problem" (Becker 2011).

SSIs are a prevalent problem for global healthcare and their prevention is a major focus for healthcare providers internationally. There are several Cochrane Reviews that draw together randomised controlled trial evidence for individual interventions for the prophylaxis of SSIs along the preoperative, intraoperative and postoperative pathway. Findings from these reviews have not been collated, so a transparent and usable synthesis of this evidence is required. This overview will aid decision makers aiming to draw together Cochrane evidence that spans the SSI prevention pathway. It will also be a useful resource for guideline developers, especially for the key NICE guidelines, which have not been fully updated for several years (NICE 2008). (A planned update of the guidelines was announced in 2017.) This overview will also complement other guidelines such as those produced by the World Health Organization (Allegranzi 2016a; Allegranzi 2016b).

OBJECTIVES

To present an overview of Cochrane Reviews of the effectiveness and safety of interventions delivered during the intraoperative

period aimed at preventing SSIs in all populations undergoing surgery in an operating theatre.

METHODS

Criteria for considering reviews for inclusion

Types of studies

We included reviews published in the *Cochrane Database of Systematic Reviews* that examine the effectiveness of interventions aimed at preventing SSIs. We did not consider non-Cochrane reviews. We only included systematic reviews of randomised controlled trial (RCT) evidence for patient-focused interventions. If reviews included other study designs alongside RCTs (e.g. controlled clinical trials, quasi-randomised controlled trials, or both) we only investigated if RCT evidence was presented separately for relevant analyses (e.g. as sensitivity analyses). If so, these RCT data were included. If there were no separate data for RCTs in a review of patient-focused interventions we did not include that review in analyses. Primary RCTs published since the included reviews, but not yet included in reviews, were excluded in line with Cochrane guidance.

Where studies evaluated service-level interventions e.g. protective staff coverings, theatre traffic and environmental cleansing, designs such as interrupted time series and controlled before and after studies were more feasible and we also extracted data from these study designs as well as from RCTs (including cluster RCTs).

Types of participants

We included reviews of studies involving adults or children or both. We excluded reviews where inclusion criteria specified that study participants had infected wounds at baseline (i.e. treatment rather than prevention reviews). Reviews that considered both treatment and prevention studies were examined in detail to isolate relevant comparisons.

We included reviews of participants undergoing surgery of any contamination level (clean, clean/contaminated, contaminated and dirty). Reviews focused solely on graft sites and wounds of the mouth and eye were excluded. We included reviews looking at surgical wounds planned to heal by primary intention (closed wounds) and secondary intention (open wounds). Given their specialist nature, we excluded eye and oral surgeries and studies looking at infection prevention in pin sites. We included reviews that assessed the following interventions aimed at preventing SSIs during the intraoperative period of the patient care pathway (regardless of comparator - all were eligible):

- decontamination of patients' skin at site of surgery incision;
- use of intraoperative prophylactic antibiotics;
- skin sealants;
- use of standard and incise drapes;

• use of masks, hair covers, overshoes, gowns and other protective coverings for theatre staff;

- different glove protocols;
- use of electrosurgery for surgical incisions;
- maintaining patient homoeostasis (warming);
- maintaining patient homoeostasis (oxygenation);
- maintaining patient homoeostasis (blood glucose control);
- wound irrigation and intracavity lavage (including use of intraoperative topical antiseptics before wound closure);
 - closure methods;
- theatre traffic (protocols for managing the movement of people in theatre).

We excluded reviews focusing on comparisons of different surgical approaches for the same surgery (e.g. different techniques for inguinal surgical repair; open versus closure of perianal wounds) or other interventions specific to certain types of surgery or procedures. We also excluded studies comparing different anaesthesiology regimens and those investigating the use of implants or internal devices.

Where interventions were delivered at multiple time periods in the same studies, such as for assessment of antibiotics where treatment was started in one phase and continued through multiple phases (e.g. antibiotics started preoperatively and continued postoperatively), data are presented in the overview that correspond with the start of the treatment. Thus this intraoperative overview includes reviews where the start of treatment was in the intraoperative phase. Where a review contained trials that variously delivered interventions at different starting phases, we aimed to extract and present data only for those trials relevant to the intraoperative phase (that is where the treatment started in the intraoperative phase).

Types of outcomes

We present data according to the time points used in reviews (if reported). Where possible, we grouped data into follow-up of 30 days or less and follow-up of more than 30 days. If a review presented data at many different time points, the overview authors reported data from the time points closest to 30 days and one year, noting where other time point data were available in the original review.

Types of interventions

Primary outcome

SSIs

Occurrence of postoperative SSI as defined by the CDC criteria (Horan 1992), or the study authors' definition of SSI. Where available we present data that differentiated between superficial and deep-incisional infection.

Secondary outcomes

Mortality

All cause-postoperative mortality (e.g. we did not differentiate between infection-related mortality and other mortality from other causes).

Health-related quality of life

We included quality-of-life assessments where they were reported using a validated scale that presents a single global score (e.g. SF-12, SF-36 or EQ-5D) or a validated, disease-specific questionnaire. Ideally, reported data were adjusted for baseline scores. We did not include ad hoc measures of quality of life that were not likely to be validated and would not be common to more than one trial. We did not plan to report multiple domain scores from the same measure but rather to report only overall scores for instruments e.g. physical component summary score and mental component summary score for the SF-36.

Cost-effectiveness

Findings that considered relative costs and benefits simultaneously.

Search methods for identification of reviews

We searched the *Cochrane Database of Systematic Reviews* (CDSR) using the search strategy presented in Appendix 2. Given the large number of interventions relating to the review, the search terms focused on identification of reviews linked to SSI rather than to specific interventions. The search was undertaken on 01 July 2017 (CDSR 2017, Issue 7), after which we tracked any included reviews for updates, and followed protocols in case of full review publication until 25 July 2017 (CDSR 2017, Issue 7).

Data collection and analysis

Selection of reviews

Two overview authors independently screened review titles and abstracts to identify potentially relevant inclusions. We obtained

the full text of all reviews thought to be potentially eligible for further investigation. The same two overview authors independently screened the full text of all potentially relevant resources for inclusion in the overview. We recorded reasons for exclusion of any reviews excluded at this stage. Any disagreements were resolved through discussion with a third overview author. Where overview authors were also authors of included reviews we sought to avoid bias by ensuring that decisions were made by two other overview authors.

Data extraction and management

We extracted data into a predefined and piloted data extraction form to ensure consistent data capture from each resource. Data were extracted by one overview author and independently checked by a second, with a third acting as arbiter where required. We extracted the following data for each included resource:

- study identification, review authors' details;
- review objectives;
- review inclusion and exclusion criteria;
- included settings;

• included populations, including types of surgery or procedure and depth of incision;

- all relevant comparisons and associated time points;
- concurrent intervention types that were the same for all intervention arms:
 - numbers of relevant included RCTs;
 - outcomes reported and details of reported outcome values;
- method and results of risk of bias and evidence quality assessment:
 - GRADE assessments:
 - details of any subgroup and sensitivity analyses.

Where a comparison was included in more than one review, we recorded the details multiple times (because it was relevant to each review in which it was contained). However, we reported the comparison only once for the review with the lowest risk of bias, or the most recent review if there was no difference in risk of bias assessment. We extracted meta-analysed data where possible and single study data when pooled data were not available: we extracted effect sizes with 95% confidence intervals where possible. We also extracted contextual information to enable narrative descriptions of how data were pooled (or not) presented per comparison (e.g. if some trials had been pooled for a comparison and some had not). If any information from a review was unclear or missing, we accessed the published reports of the individual trials. We did not contact study authors for details of missing data, but rather assumed that review authors had done all they could to retrieve data. We entered data into Review Manager 5 software (RevMan 2014).

Assessment of methodological quality of included reviews

Quality of included Cochrane Reviews

We used the risk of bias in systematic reviews (ROBIS) tool (Whiting 2016) to assess the risk of bias in systematic reviews. ROBIS assesses reviews in three phases: first, assessing relevance (optional); second, identifying concerns with the review process; and third, forming an overall judgement of the risk of bias. In the second phase, concerns with the review process fall into four domains: (1) study eligibility criteria; (2) identification and selection of studies; (3) data collection and study appraisal; and (4) synthesis and findings. Each domain contains a list of signalling questions to guide the bias assessment process. The signalling questions can be answered yes, probably yes, probably no, no or no information. Questions are worded so that a yes response relates to low concerns about the review e.g. "Did the review adhere to pre-defined objectives and eligibility criteria? and were the eligibility criteria appropriate for the review question?" At the end of each domain the assessor draws together their appraisal to indicate their concerns regarding: specification of study eligibility (domain 1); methods used to identify and select studies, or both (domain 2); methods used to collect data and appraise studies (domain 3); and the synthesis and findings (domain 4). Concerns can be graded low, high or unclear. We recorded the rationale or reasoning for decisions at each stage, that is for the signalling questions and the level of concern rated, in a table for each domain. As this overview only included Cochrane Reviews and relevance was considered as part of our screening and selection process, we did not assess relevance using the ROBIS tool (an optional first phase). Two reviewers (ZL and JD) assessed each review independently, without blinding, using a previously piloted standardised form based on the ROBIS Guidance Document and consulted each other to resolve any discordance and to compile a consensus judgment for each domain. We presented a summary of ROBIS results for each review using table format, which lent itself to presentation of data for a large number of reviews.

Quality or certainty of evidence extracted from included reviews

It is important to present the quality or certainty of evidence from each review. We present a GRADE assessment for each eligible outcome and comparison. Where GRADE assessment was conducted in the review we extracted this assessment; however, where GRADE assessments were not available, the overview authors undertook assessment (making it clear that they had conducted the GRADE assessment post hoc).

When making decisions for the risk of bias domain, we downgraded one level when studies had been classified at high risk of bias for one or more domains and where they were classified at unclear risk of bias for both domains that contributed to selection bias, or both.

In assessing the precision of effect estimates for SSI we followed GRADE guidance (GRADE 2013; Schünemann 2011a; Schünemann 2011b). We planned to take a conservative approach and calculated an optimal information size (OIS) for the SSI outcome using conventional sample size calculation methods and assuming a relative risk reduction of between 20% and 30% (Guyatt 2011). The OIS is summarised below but should not be treated as an optimal sample size for any future research. In GRADE assessments, the OIS is used to assess the stability of confidence intervals (CI) rather than to assess the appropriateness of a sample size to detect a difference *per se*.

Reduction in SSI from 14% to 10% (80% power; alpha 5%) = 2070 participants overall. Although on average, SSI rates are lower than 14% in many high-income countries, they can be higher in some countries and figures vary by SSI risk of the patient. We took 14% as a conservative upper estimate of SSI incidence and calculated 40% relative risk reduction.

We used the GRADE default minimum overall sample size for dichotomous outcomes of 300 in lieu of the OIS to assess precision for mortality.

If the OIS was not met we downgraded one level. We downgraded two levels if there were very few events (or very few participants for continuous outcomes). If the OIS was met we downgraded one level if the 95% CI failed to exclude important benefits and harms, which we considered as a relative risk reduction or increase of 25%.

Judgement of GRADE certainty was agreed through discussion involving at least two overview authors and involving additional overview authors where there were disagreements.

Data synthesis

The aim of this review is to present a detailed summary of treatment-effect data for interventions aimed at SSI prevention. We present all relevant comparisons grouped by intervention type (including details of co-interventions when recorded). We also considered data according to the contamination level of surgery where possible. We use tabular formats to present summaries of treatment effects with a corresponding GRADE assessment for each comparison. Where possible we extracted meta-analysed data, along with details of model type and measures of statistical heterogeneity. Where data had not been meta-analysed we report study-level treatment effects. Results from review subgroup and sensitivity analyses are also presented. We present all data in tabular, metaanalysis or narrative formats.

Where applicable, we converted available data to risk ratios (RR). Where this was not possible we present original data. We had planned not to undertake re-analysis of data beyond conversions to RR. However, due to the inclusion of multi-stage reviews (reviews that evaluated interventions at different points on the care

pathways, i.e. pre-, intra- or postoperative, or a combination of these) we extracted data on only trials where the intervention was started in the intraoperative phase. Where it seemed appropriate for each comparison, the overview authors meta-analysed these subsets of trials. We have cautiously pooled these data into a new meta-analysis relevant to this overview of reviews, reporting the results as RR with 95% CI (again, if the subsets of trials were reported as odds ratios (OR), we converted available data to RR). We did not plan to undertake a network meta-analysis within given intervention types.

RESULTS

See Characteristics of included reviews Table 2; Characteristics of excluded reviews Table 3.

Description of included reviews

The search generated 414 records 330 of which we excluded based on the title and abstract, and 84 of which we assessed as full text. Of these, 32 reviews were eligible for this review (See Table 2; Figure 1). Of the included reviews:

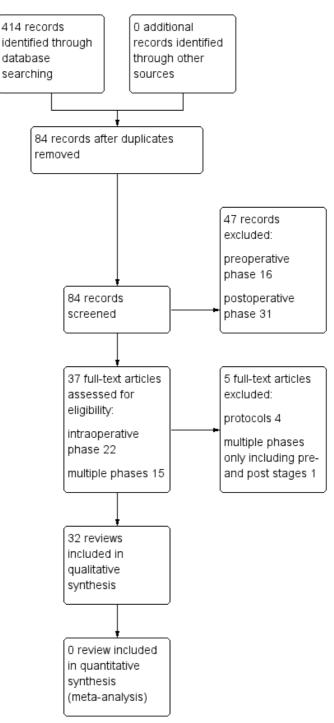


Figure I. Study flow diagram

Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

• two focused on theatre staff attire (Tanner 2006; Vincent 2016);

• five focused on the preparation of the surgical site (Dumville 2015; Hadiati 2014; Haas 2014; Webster 2015; Wood 2016).

• two focused on the method of surgical incision (Charoenkwan 2017; Cook 2014).

• five focused on patient homeostasis during surgery (Buchleitner 2012; Campbell 2015; Grocott 2012; Kao 2009; Wetterslev 2015). Of these, two were multi-stage reviews (that is they included trials evaluating intraoperative interventions as well as pre- or postoperative interventions, or both). In these reviews we extracted the relevant trials focusing on intraoperative intervention delivery for this review) (Buchleitner 2012; Grocott 2012).

• 12 reviews focused on the use of intraoperative prophylactic antibiotics for preventing SSIs (Gurusamy 2011; Gurusamy 2013; Gyte 2014; Jones 2014; Lipp 2013; Low 2012; Mackeen 2014; Nabhan 2016; Nelson 2014; Sanabria 2010; Sanchez-Manuel 2012; Smaill 2014). Most of these were multistage reviews and again, we extracted only data from trials delivering interventions that started in the intraoperative phase.

• six reviews focused on interventions for wound closure (AL-Khamis 2010; Biancari 2010; Dumville 2014; Gurusamy 2014a; Gurusamy 2014b; Mackeen 2012).

SSI was reported in 75% (24/32) of the included reviews; mortality was reported in 19% (6/32) and health-related quality of life or cost-effectiveness were not reported in any included review. Six per cent (2/32) of the reviews, reported no outcome data relevant to this overview (Campbell 2015; Low 2012). In total we extracted data from 30 reviews with 349 included trials, totaling 73,053 participants. We present SSI outcome data for 77 comparisons and mortality data for nine comparisons.

Of the 52 excluded full-text reviews, 48 focused on interventions only relating to the pre- or postoperative phase (or both) and four titles were at the protocol stage only (see Table 3; Figure 1).

Methodological quality of included reviews

ROBIS quality of included reviews

We rated the quality of included reviews using the ROBIS tool signalling questions (Table 4; detailed assessments by signalling questions are shown in Appendix 3) presenting the overall 'Risk of bias' assessment results for each review in Table 4.

Our judgements of the four domain assessment findings were as follows:

• we judged study eligibility to be at low concern for all included reviews;

• we judged the process of study identification and selection to be at low concern for all included reviews;

• for data collection and study appraisal, we judged 91% of included reviews to be at low concern. We deemed study quality not fully assessed in four studies (Cook 2014; Low 2012; Tanner 2006; Vincent 2016) and we judged these as unclear;

• for synthesis and findings, we judged 97% (31/32) of included reviews to be at low concern due to the synthesis being unlikely to produce biased results. Only one review (Cook 2014) did not consider clinical diversity across studies and bias was not explicitly addressed in the synthesis; we judged this review at high concern.

Overall risk of bias

We considered issues around risk of bias in all reviews. In terms of the overall 'Risk of bias' assessment, we judged 94% (30/32) of reviews to be at low risk of bias.

Quality of evidence in included reviews

Of the 32 included reviews, 31% (10/32) reported a GRADE assessment for the SSI outcome, whilst only one review (3%) reported a GRADE assessment for the mortality outcome. No other GRADE assessments were reported in the included reviews.

The overview authors undertook GRADE assessment of relative treatment-effect data where no review-level GRADE assessment was available. Overall, the GRADE certainty of evidence was low or very low, as summarised in Table 5. Of the 77 comparisons presenting SSI data, we judged 51% (39/77) as low certainty and 40% (31/77) as very low certainty. Of the nine comparisons presenting mortality data, we judged 56% (5/9) as being at low certainty and 44% (4/9) as very low. Common reasons for downgrading the certainty of evidence were risk of bias of included studies, imprecision and inconsistency.

Effect of interventions

Analysis of results

A detailed presentation of relative treatment-effect data and GRADE assessments for all individual comparisons are in Table 5 and Table 6. Below we present a narrative summary of key findings in an order of the process of the surgery.

Where included reviews contained trials investigating only intraoperative phase interventions, we interpreted results using data reported in the review, and did not return to the original studies. Where data were reported as RR, with or without 95% CIs, we

used the results directly from the reviews. Where data were reported as OR, we converted data to RR if appropriate. When the evidence was of very low certainty, we did not report RR in the main text but we did clarify RR (or original OR) in Table 5 and Table 6.

When reviews were multi-stage, that is they contained studies that variously started interventions at the pre-, intra- or postoperative stage (e.g. Antimicrobial prophylaxis for colorectal surgery (Nelson 2014)) we extracted data only for the trials relevant to this overview and reported cautious re-analysis of these extracted trials (see Data synthesis). Such re-analyses have been clearly marked in Table 5 and Table 6.

We present results by review, following an order relevant to the clinical pathway. We have made it clear that where general details of surgery were available we have reported these. Where there is a lack of detail this reflects the lack of information in the initial review. Further, we did not group the outcomes into follow-up of 30 days or less and follow-up of more than 30 days, as these time points were not recorded by the original reviews when the review authors did the meta-analysis.

I. Theatre staff attire

Two reviews investigated theatre staff attire interventions:

1.1. Double gloving for preventing SSIs

Tanner 2006 included two trials (125 participants) that compared double latex gloving with double latex gloving with a liner in a single comparison, however neither trial reported any SSI events (low-certainty evidence; downgraded twice for imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

1.2. Disposable face masks for preventing SSIs

Vincent 2016 included three trials (2106 participants) that compared disposable face mask use with no mask in a single comparison. Due to clinical heterogeneity, the review did not pool data.

SSI

Available trial evidence reports no clear difference in SSI risk following use of disposable face masks compared with no mask (lowcertainty evidence; downgraded for once for imprecision and once for inconsistency - assessed by overview authors).

No other outcome data relevant to the overview were reported.

2. Preparation of the surgical site

Six reviews reported interventions used to prepare the surgical site.

2.1. Skin antiseptics for preventing SSIs after clean surgery

Dumville 2015 included 13 trials (2623 participants in total) and evaluated a large number of different interventions, resulting in 12 comparisons of different types of skin antiseptic solutions and scrubs on SSI risk.

SSI

Available evidence largely reports no clear difference between different types of skin antiseptics on SSI risk. The certainty of evidence for the majority of these comparisons was low or very low. Data from one trial (542 participants) suggested that 0.5% chlorhexidine in methylated spirit may reduce SSI risk compared with povidone iodine paint (RR 0.47, 95% CI 0.27 to 0.82; lowcertainty evidence; downgraded once for risk of bias and once for imprecision - assessed by overview authors). The review also grouped interventions together in an analysis based on whether treatments were aqueous or alcoholic. Data from six trials (1400 participants) showed no clear difference between aqueous solutions and alcoholic solutions (RR 0.77, 95% CI 0.51 to 1.17; lowcertainty evidence; downgraded once for risk of bias and once for imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

2.2. Skin preparation following caesarean section for preventing SSIs

Hadiati 2014 included five trials (1466 participants in total) and presented four different comparisons: one comparing drapes with no drapes (two trials with 1294 participants) and three (172 participants) comparing different skin antiseptics.

SSI

Available trial evidence reports no clear difference between compared treatments on SSIs risk (low- and very low-certainty evidence; variously downgraded once for risk of bias and once or twice for imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

2.3. Vaginal preparation with antiseptic solutions for preventing SSIs

Haas 2014 included six trials (2205 participants) that compared antiseptic solutions with placebos in a single comparison.

SSI

Available trial evidence reports no clear difference between compared treatments on SSI risk (low-certainty evidence; downgraded

once for risk of bias and once for imprecision - assessed by review authors).

No other outcome data relevant to the overview were reported.

2.4. Plastic adhesive drapes for preventing SSIs

Webster 2015 included seven trials (4195 participants in total) and presented two comparisons.

SSI

The first comparison compared adhesive drapes with no drapes (five trials, 3082 participants) and found that use of adhesive drapes was associated with an increase in SSI risk (RR 1.23, 95% CI 1.02 to 1.48; high-certainty evidence - assessed by review authors). The second comparison compared iodine-impregnated adhesive drapes with no adhesive drapes (two trials; 1113 participants). Available trial evidence reports no clear difference in SSI risk (RR 1.03, 95% CI 0.66 to 1.60; moderate-certainty evidence; downgraded once for imprecision - assessed by review authors). No other outcome data relevant to the overview were reported.

2.5. Microbial sealants for preventing SSIs

Wood 2016 included seven trials (859 participants in total) that compared application of cyanoacrylate microbial sealants with no microbial sealant in a single comparison.

SSI

Available trial evidence shows no clear difference in SSI risk between treatments (RR 0.53, 95% CI 0.24 to 1.18; low-certainty evidence; downgraded once for risk of bias and once for imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

3. Making the surgical incision

3.1. Scalpel versus electrosurgery for major abdominal incisions

Charoenkwan 2017 included 11 trials (2178 participants) comparing scalpel with electrosurgery in a single comparison.

SSI

Available trial evidence reports no clear difference between compared treatments on SSI risk (RR 1.07, 95% CI 0.74 to 1.54; lowcertainty evidence; downgraded for risk of bias and imprecision - assessed by review authors).

No other outcome data relevant to the overview were reported.

3.2. Scalpel versus no-scalpel incision for vasectomy

Cook 2014 included two trials (1182 participants in total) that compared scalpel versus no-scalpel incision for vasectomy. As these two trials differed in their duration of follow-up and the level of operator experience with the no-scalpel technique, the review did not pool data.

SSI

It is uncertain whether no-scalpel incision reduces SSI risk (very low-certainty evidence; downgraded once for risk of bias, once for imprecision and once for heterogeneity - assessed by overview authors). Based on ROBIS, we assessed this review as being at unclear risk of bias because it used a limited 'Risk of bias' assessment process; and also due to the lack of information about data synthesis. The review authors did not state why synthesis was done for only some of their outcomes.

No other outcome data relevant to the overview were reported.

4. Treatment of the patient during surgery

4.1. Warming of intravenous and irrigation fluids

Campbell 2015 included 24 studies (1250 participants in total). No outcome data relevant to the overview were reported.

4.2. Intensive glycaemic control for preventing SSIs

Buchleitner 2012 included 12 trials (1403 participants in total). We categorised only two included trials (105 participants) as delivering interventions that started in the intraoperative phase.

SSI

We considered the reported outcome, 'infectious complications' to be synonymous with SSIs and pooled the data from these two trials (105 participants). It is uncertain whether intensive glycaemic control reduces SSI risk when compared with conventional glycaemic control (RR 0.71, 95% CI 0.22 to 2.26; very low-certainty evidence; downgraded twice for imprecision and once for inconsistency - assessed by overview authors).

Mortality

We pooled the data from two trials (105 participants). It is uncertain whether intensive glycaemic control reduces mortality risk compared with conventional glycaemic control (RR 1.23, 95% CI 0.18 to 8.43; very low-certainty evidence; downgraded twice for imprecision, once for inconsistency - assessed by overview authors).

No other outcome data relevant to the overview were reported.

4.3. Perioperative glycaemic control regimens for preventing SSIs

Kao 2009 included five trials (743 participants in total). We categorised only three included trials (589 participants) as delivering interventions that started in the intraoperative phase.

SSI

Evidence from one trial (78 participants) showed no clear difference in SSI risk when applying intra- and postoperative strict glycaemic control (using intravenous insulin) compared with conventional glycaemic control (RR 0.48, 95% CI 0.04 to 5.03; lowcertainty evidence; downgraded twice for imprecision - assessed by overview authors). One trial (371 participants) showed no clear difference when applying strict intraoperative glycaemic control (using insulin infusion) with conventional glycaemic control (RR 0.86, 95% CI 0.30 to 2.52; low-certainty evidence; downgraded twice for imprecision - assessed by overview authors). Another trial (140 participants) reported outcomes for pneumonia and wound infections and we did not consider these data. Due to variation in SSI outcomes we did not pool these trials in this overview.

Mortality

Evidence from 1 trial (78 participants) showed no clear difference in overall mortality risk when applying intra- and postoperative strict compared with conventional glycaemic control (RR 0.81, 95% CI 0.30 to 2.20; low-certainty evidence; downgraded twice for imprecision - assessed by overview authors). Similarly, another trial (371 participants) showed no clear difference when applying intraoperative strict compared with conventional glycaemic control (RR 9.05, 95% CI 0.49 to 166.88; low-certainty evidence; downgraded twice for imprecision - assessed by overview authors). The potential for harm represented in the imprecision reported is important to acknowledge here.

No other outcome data relevant to the overview were reported.

4.4. Increased global blood flow for preventing SSIs

Grocott 2012 included 31 trials (5292 participants in total). We categorised 15 included trials (1202 participants) as delivering interventions that started in the intraoperative phase.

SSI

Five included trials (353 participants) reported SSI data, which we pooled. Increased global blood flow (e.g. fluids and/or inotrope; oesophageal doppler) may reduce SSI risk compared with no treatment (RR 0.40, 95% CI 0.19 to 0.82; low-certainty evidence; downgraded once for imprecision and once for inconsistency - assessed by overview authors).

Mortality

Fifteen relevant trials (1202 participants) reported mortality and we pooled these data. There was no clear difference in mortality risk following interventions to increase global blood flow compared with no treatment (RR 0.67, 95% CI 0.40 to 1.13; lowcertainty evidence; downgraded twice for imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

4.5. High perioperative inspiratory oxygen fraction for preventing SSIs

Wetterslev 2015 included 28 trials (9330 participants in total). Of these, we categorised 15 included trials (7219 participants) as delivering interventions that started in the intraoperative phase.

SSI

Fifteen relevant trials (7219 participants) reported SSI data, which we pooled. There was no clear difference in SSI risk following use of 60% to 90% oxygen compared with 30% to 40% oxygen (RR 0.87, 95% CI 0.71 to 1.07; low-certainty evidence; down-graded once for risk of bias and once for inconsistency - assessed by overview authors).

Mortality

Eight relevant trials (4918 participants) in this review found no clear difference in mortality risk following use of 60% to 90% oxygen compared with 30% to 40% oxygen (RR 1.07, 95% CI 0.87 to 1.33; low-certainty evidence; downgraded once for imprecision and once for heterogeneity - assessed by overview authors). No other outcome data relevant to the overview were reported.

5. Use of antibiotics

5.1. Antibiotic prophylaxis versus no prophylaxis for preventing infection after caesarean section

Smaill 2014 included 95 trials (more than 15,000 women). We categorised all the included trials as delivering interventions that

started in the intraoperative phase. In these trials antibiotic treatment was continued postoperatively.

SSI

Eighty-two relevant trials (14,407 participants in total) reported SSI data presenting a single comparison of antibiotics with no antibiotics. Available trial evidence reports that antibiotic prophylaxis probably reduces SSIs (RR 0.40, 95% CI 0.35 to 0.46; moderate-certainty evidence; downgraded once for risk of bias - assessed by review authors).

No other outcome data relevant to the overview were reported.

5.2. Different classes of antibiotics given to women routinely for preventing SSI at caesarean section

Gyte 2014 included 31 RCTs (7697 participants in total).

SSI

There were 19 relevant included trials (3559 participants in total). Of these 17 trials specified the timing of administration, which we categorised as the intraoperative phase, while two trials did not specify the timing of administration. These trials reported SSI data presenting four comparisons of different antibiotic prophylaxis regimes, including single cephalosporin, cephalosporin drug combination, single penicillin and penicillin drug combinations. All comparisons found no clear difference in SSI risk between the different regimes used (low- or very low-certainty evidence; variously downgraded once or twice for risk of bias and imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

5.3. Antibiotic prophylaxis for the prevention of methicillin-resistant *Staphylococcus aureus* (MRSA)-related complications in surgical patients

Gurusamy 2013 included 12 trials (4704 participants in total). Of these, we categorised seven trials (3393 participants) as delivering interventions that started in the intraoperative phase. All these trials continued antibiotic treatment postoperatively.

SSI

Six trials (3294 participants in total) presented 11 comparisons of different prophylactic antibiotic regimens with each other, including pefloxacin, cefazolin, ertapenem, cefotetan, cefamendole, gentamycin, vancomycin, daptomycin, and cefuroxime. For all 11 comparisons there was no clear difference in SSI risk from use of one antibiotic prophylaxis regime compared with another (lowor very low-certainty evidence; variously downgraded for risk of bias and imprecision - assessed by overview authors). One trial (99 participants) compared antibiotic prophylaxis (co-amoxiclav or cefotaxime) with no antibiotic prophylaxis and showed that receiving antibiotic prophylaxis with co-amoxiclav (or cefotaxime if allergic to penicillin) may reduce SSI risk (RR 0.26, 95% CI 0.11 to 0.65; low-certainty evidence; downgraded twice for imprecision - assessed by overview authors).

Mortality

Two relevant trials reported mortality. One trial (99 participants) found no clear difference in mortality risk when using co-amoxiclav or cefotaxime compared with no antibiotic prophylaxis (RR 0.54, 95% CI 0.17 to 1.72; low-certainty evidence; downgraded twice for imprecision - assessed by overview authors). A second trial (884 participants) found no clear difference when using vancomycin compared with cefuroxime (RR 2.02, 95% CI 0.18 to 22.18; very low-certainty evidence; downgraded once for risk of bias and twice for imprecision - assessed by overview authors). No other outcome data relevant to the overview were reported.

5.4. Prophylactic antibiotics for preventing SSIs after breast cancer surgery

Jones 2014 included 11 RCTs (2867 participants). Of these we categorised nine trials as delivering interventions that started in the intraoperative phase.

SSI

Nine trials (2739 participants in total) presented three comparisons of different prophylactic antibiotic regimens. For the comparison of antibiotics delivered immediately prior to surgery compared with placebo, we pooled data from six trials (1708 participants): the use of antibiotic reduced SSI risk (RR 0.74, 95% CI 0.56 to 0.98; high-certainty evidence - assessed by overview authors). We also pooled the data from two trials (987 participants) and the use of antibiotics immediately prior to surgery may reduce the risk of SSIs compared with no treatment (RR 0.48, 95% CI 0.28 to 0.82; low-certainty evidence; downgraded once for imprecision and once for inconsistency - assessed by overview authors). One trial (44 participants) compared perioperative antibiotics with no antibiotic and found that it is uncertain whether perioperative antibiotics reduce SSI risk (very low-certainty evidence; downgraded once for risk of bias and twice for imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

5.5. Systemic antimicrobial prophylaxis for preventing SSIs after percutaneous endoscopic gastrostomy (PEG)

Lipp 2013 included 13 RCTs (1637 participants in total) and we categorised all trials as delivering interventions that started in the intraoperative phase.

SSI

All trials reported peristomal infection as an outcome. A pooled analysis (by review authors) of 12 trials (1271 participants) found that prophylactic antibiotics may reduce the incidence of peristomal infection (RR 0.39, 95% CI 0.30 to 0.51; low-certainty evidence, downgraded twice for risk of bias - assessed by overview authors). Another trial (334 participants) compared intravenous (IV) antibiotics with antibiotics via PEG but the review authors could not included it in the meta-analysis. The evidence reported that it was uncertain whether there was a difference in peristomal infection risk following treatment with systemic antibiotic (PEG) compared with systemic antibiotic (IV) (RR 0.70, 95% CI 0.30 to 1.65 very low-certainty evidence; downgraded once for risk of bias and twice for imprecision - assessed by overview authors). No other outcome data relevant to the overview were reported.

5.6. Timing of intravenous prophylactic antibiotics for preventing SSIs undergoing caesarean delivery

Mackeen 2014 included 10 trials (5041 participants in total) and we categorised all trials as delivering interventions that started in the intraoperative phase.

SSI

This review compared prophylactic intravenous antibiotics administered before caesarean incision with administration after cord clamping in a single comparison. Available trial evidence reports caesarean antibiotic prophylaxis administered intraoperatively prior to incision reduced maternal SSIs (RR 0.59, 95% CI 0.44 to 0.81; high-certainty evidence - assessed by review authors). No other outcome data relevant to the overview were reported.

5.7. Routes of administration of antibiotic prophylaxis for preventing infection after caesarean section

Nabhan 2016 included 10 trials (1354 participants in total). Of these we categorised seven trials (859 participants in total) as delivering interventions that started in the intraoperative phase.

SSI

Seven relevant trials (859 participants) reported SSI data. It is uncertain whether IV antibiotics reduce SSIs risk compared with irrigation (very low-certainty evidence; downgraded once for risk of bias and twice for imprecision - assessed by review authors). No other outcome data relevant to the overview were reported.

5.8. Antibiotic prophylaxis for preventing SSIs in patients undergoing elective laparoscopic cholecystectomy

Sanabria 2010 included 11 trials (1664 participants in total). We categorised all included trials as delivering interventions that started in the intraoperative phase.

SSI

Eleven trials (1664 participants) reported SSI data presenting a single comparison of antibiotic prophylaxis with placebo or no prophylaxis. It is uncertain whether antibiotic prophylaxis reduces SSI risk in this comparison (very low-certainty evidence; down-graded twice for risk of bias and once for imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

5.9. Antibiotic prophylaxis for hernia repair

Sanchez-Manuel 2012 included 17 trials (7843 participants in total). We categorised all included trials as delivering interventions that started in the intraoperative phase.

SSI

Seventeen trials (7843 participants) reported SSI data presenting a single comparison of antibiotic prophylaxis with placebo or no treatment. Available trial evidence reports that antibiotic prophylaxis probably reduces SSI risk (RR 0.67, 95% CI 0.54 to 0.84; moderate-certainty evidence; downgraded once for risk of bias assessed by overview authors). Based on ROBIS, however, we assessed this review as being at unclear risk of bias due to a limited risk of bias assessment processes being used. This means that the overview authors were unable to fully assess the risk of bias for all domains recognised in the current version of the Cochrane 'Risk of bias' tool. We have not downgraded further for this review-level issue.

No other outcome data relevant to the overview were reported.

5.10. Antimicrobial prophylaxis for preventing SSIs in colorectal surgery

Nelson 2014 included 260 trials (43,451 participants in total) and 68 different antibiotics. Of these, we categorised 22 included trials

(3604 participants in total) as delivering interventions that started in the intraoperative phase.

SSI

Twenty-two trials (3604 participants) presented six comparisons of different antibiotic regimens or different routes of administration of antibiotic prophylaxis. For the comparison of antibiotic with no antibiotic/placebo, we pooled the data from five trials (405 participants) and found that antibiotic may reduce SSI risk (RR 0.25, 95% CI 0.16 to 0.41; low-certainty evidence; downgraded once for risk of bias and once for imprecision - assessed by overview authors).

For the comparison of duration of therapy, we pooled data from seven trials (1484 participants) and found probably no difference in SSI risk with short-term compared with long-term duration antibiotic (RR 1.05, 95% CI 0.78 to 1.40; moderate certainty evidence; downgraded once for imprecision - assessed by overview authors).

For the comparison of additional aerobic coverage, we pooled data from four trials (230 participants) and found that, with added aerobic coverage, an antimicrobial prophylaxis regimen may slightly reduce SSI risk compared with no additional aerobic coverage (RR 0.38, 95% CI 0.16 to 0.96; low-certainty evidence; downgraded once for risk of bias and once for imprecision - assessed by overview authors).

For the comparison of additional anaerobic coverage, we pooled data from four trials (1098 participants) and found that, with added anaerobic coverage, an antimicrobial prophylaxis regimen may slightly reduce SSI risk compared with no additional anaerobic coverage (RR 0.65, 95% CI 0.47 to 0.90; low-certainty evidence; downgraded once for risk of bias and once for imprecision - assessed by overview authors).

For the comparisons of the different routes of administration of antibiotics from one trial (72 participants), it is uncertain whether oral antibiotics reduce SSI risk compared with intravenous routes (RR 2.11, 95% CI 0.20 to 22.29; very low-certainty evidence, downgraded once for risk of bias and twice for imprecision - assessed by overview authors). Evidence from one trial (310 participants) showed no clear difference when applying combined oral and intravenous antibiotics compared with oral or intravenous antibiotics alone (RR 0.50, 95% CI 0.23 to 1.11; low-certainty evidence, downgraded once for risk of bias and once for imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

5.11. Methods of decreasing infection to improve outcomes after liver resections

Gurusamy 2011 included seven trials (521 participants in total). Only two included trials reported mortality data, which we categorised as delivering interventions that started in the intraoperative phase.

Mortality

One trial (180 participants) compared long-duration antibiotics with short-duration antibiotics; however there were no events in either arm in this trial (very low-certainty evidence; downgraded once for risk of bias, once for imprecision and once for publication bias - assessed by review authors). Another trial (59 participants) compared topical povidone iodine gel with no topical povidone iodine gel. It is uncertain whether topical povidone iodine gel reduces mortality risk (very low-certainty evidence; downgraded once for risk of bias, once for imprecision and once for publication bias - assessed by review authors).

No other outcome data relevant to the overview were reported. 5.12. Perioperative antibiotics to prevent infection after first-trimester abortion

Low 2012 included 19 trials (9715 participants in total). No outcome data relevant to the overview were reported.

6. Management of theatre traffic

No reviews examined management of theatre traffic.

7. Wound irrigation

No reviews examined wound irrigation.

8. Wound closure

8.1. Continuous versus interrupted skin sutures for nonobstetric surgery

Gurusamy 2014a included five trials (827 participants in total) and of these, four trials (602 participants in total) reported SSI data.

SSI

Evidence from four trials (602 participants) showed that it is uncertain whether continuous skin sutures reduce SSI risk compared with interrupted skin sutures (very low-certainty evidence; downgraded once for risk of bias and twice for imprecision - assessed by review authors).

No other outcome data relevant to the overview were reported.

8.2. Subcutaneous closure versus no subcutaneous closure after non-caesarean surgical procedures

Gurusamy 2014b included six trials (815 participants in total) that compared subcutaneous closure with no subcutaneous closure in a single comparison.

SSI

Evidence showed that it is uncertain whether subcutaneous closure reduces SSI risk (very low-certainty evidence; downgraded once for risk of bias and twice for imprecision - assessed by review authors). No other outcome data relevant to the overview were reported.

8.3. Techniques and materials for skin closure in caesarean section for preventing SSIs

Mackeen 2012 included seven trials (1104 participants in total) and presented two comparisons reporting SSI risk.

SSI

For the comparison of staples with absorbable subcuticular suture, data from six trials (916 participants) were pooled and there was no clear difference in SSI risk following use of absorbable subcuticular suture (RR 0.85, 95% CI 0.43 to 1.71; low-certainty evidence; downgraded once for risk of bias and once for inconsistency – assessed by overview authors). For the comparison of barbed suture with polydiaxanone suture, data from one trial (188 participants) showed no clear difference in SSI risk when using the different types of sutures (RR 0.96, 95% CI 0.18 to 5.10; low-certainty evidence; downgraded twice for imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

8.4. Healing by primary versus secondary intention after surgical treatment for pilonidal sinus

AL-Khamis 2010 included 26 trials (2530 participants in total) and of these, 17 trials (1940 participants) reported SSI data.

SSI

Data from 10 trials (1231 participants) showed that it is uncertain whether open healing reduces SSI risk compared with midline closure (RR 1.31, 95% CI 0.93 to 1.85; very low-certainty evidence; downgraded once for risk of bias, once for imprecision and once for inconsistency - assessed by overview authors). Data from five trials (541 participants) showed midline closure may increase the rate of SSIs compared with other closure (RR 3.72, 95 5 CI 1.86 to 7.42; low-certainty evidence; downgraded for risk of bias and imprecision - assessed by overview authors). Evidence from one trial (68 participants) showed that it is uncertain whether classic Limberg reduces SSI risk compared with modified Limberg (very low-certainty evidence; downgraded once for risk of bias, twice for imprecision - assessed by overview authors). Similarly, evidence from another trial (100 participants) showed that it is uncertain whether classic Limberg reduces SSI risk compared with Karydakis (very low-certainty evidence; downgraded once for risk of bias and twice for imprecision - assessed by overview authors).

No other outcome data relevant to the overview were reported.

8.5. Staples versus sutures for closing leg wounds after vein graft harvesting for coronary artery bypass surgery

Biancari 2010 included three trials (322 participants in total) that compared staple closure with suture closure in a single comparison.

SSI

It is uncertain whether staples reduce SSI risk compared with sutures (very low-certainty evidence; downgraded once for risk of bias and twice for imprecision - assessed by overview authors). No other outcome data relevant to the overview were reported.

8.6. Tissue adhesives for closure of surgical incisions

Dumville 2014 included 33 trials (2793 participants in total) and of these, 22 trials (1731 participants in total) reported SSI data.

SSI

Twenty-two trials (1731 participants in total) presented six comparisons of tissue adhesives with different wound-closing technologies. There was no clear difference in SSI risk between wounds closed with tissue adhesives and wounds closed using other methods reported (sutures, adhesive tape, staples or others) (low- or very low-certainty evidence; variously downgraded for risk of bias and imprecision - assessed by review authors).

No other outcome data relevant to the overview were reported.

9. Theatre cleansing

No reviews examined theatre cleansing.

DISCUSSION

Summary of main results

We have summarised the main results of the included reviews by categorising their findings and GRADE assessment (GRADE 2013) (Table 7).

The relative effects of majority of included interventions are inconclusive due to the low or very low certainty evidence. Exceptions to this are listed below. All data listed relate to SSI. There was no high or moderate certainty evidence for the relative effects of intra-operative interventions on mortality and no outcome data at all for quality of life or costs.

High quality evidence

• Prophylactic intravenous antibiotics administered before caesarean incision reduce SSI risk compared with after neonatal umbilical cord clamping (RR 0.59, 95% CI 0.44 to 0.81; high-certainty evidence - rated by review authors).

• Adhesive drapes increase SSI risk compared with no drapes (RR 1.23, 95% CI 1.02 to 1.48; high-certainty evidence - rated by review authors) (negative effects).

• Preoperative antibiotics reduce SSI risk compared with placebo after breast cancer surgery (RR 0.74, 95% CI 0.56 to 0.98; high-certainty evidence - assessed by overview authors).

Moderate quality evidence

• Antibiotic prophylaxis probably reduce SSI risk after caesarean section compared with no prophylaxis (RR 0.40, 95% CI 0.35 to 0.46; moderate-certainty evidence - rated by review authors).

• Antibiotic prophylaxis probably reduce SSI risk compared with placebo for hernia repair (RR 0.67, 95% CI 0.54 to 0.84; moderate-certainty evidence - rated by overview authors).

• Iodine-impregnated adhesive drapes (compared with no adhesive drapes); and duration of the use of antimicrobial prophylaxis for colorectal surgery (short-term compared with long-term duration antibiotic) probably lead to little difference in SSI risk (moderate-certainty evidence - rated by overview authors).

Overall completeness and applicability of evidence

The evidence included in this overview covers all eligible Cochrane Reviews. Of the 32 included reviews, seven could be considered up-to-date as they were published within the last two years (Cochrane recommends updating reviews every two years) (Campbell 2015; Dumville 2015; Nabhan 2016; Vincent 2016; Webster 2015; Wetterslev 2015; Wood 2016).

In keeping with the nature of a Cochrane overview, this body of work does not cover non-Cochrane reviews. Alternative or emerging strategies for prevention of SSIs may not yet have been covered in a Cochrane Review and thus these data are not included here, for example, use of Triclosan-containing sutures in children or laminar airflow ventilation systems. Once such strategies have been assessed in new reviews, we can and will update this overview accordingly.

Quality of the evidence

In assessing the quality of the evidence, we employed the ROBIS tool to examine the reviews, and evaluated the authors' conclusions to ensure that they were appropriate based on the available data. All 32 included reviews scored well across the ROBIS assessment, likely due to the stringent reporting guidelines implemented by Cochrane prior to publication.

We used GRADE to assess the quality of the evidence reported by primary studies in the included reviews. The evidence presented in the majority of comparisons (91%) was rated either low- or very low-quality/certainty. The main reasons for downgrading the certainty of evidence included bias in the primary trials and imprecision, the latter caused by small sample sizes or low event rates, or both. It must be noted that the overview authors might have used different criteria to make GRADE assessments to the review authors. For example in our process we used an OIS (optimal information size) and this informed our decisions on downgrading for precision - this may not have been the case in other reviews. For transparency, we have reported review authors' GRADE decisions but these may not calibrate well with our assessments.

Potential biases in the overview process

By only searching the Cochrane Library, and including only current Cochrane Reviews we may have missed some key literature. However, previous publications have referred to the higher-quality grading (high ROBIS score) in Cochrane Reviews due to the basic criteria necessary for publication at any stage (protocol or full review), suggesting that they may be the most reliable source of evidence (Pollock 2017).

We have employed a standard GRADE process on the included studies in reviews (Schünemann 2011a; Schünemann 2011b). In one case we considered how a review-level issue of sub-optimal risk of bias assessment affected the GRADE assessment (Sanchez-Manuel 2012). In this case we did not alter the level of GRADE certainty given, but uncertainty on the quality of the review providing the evidence that was graded must be recognised.

Agreements and disagreements with other studies or reviews

Over the years, as new evidence from RCTs continues to emerge, a steady stream of publications aim to provide a comprehensive overview on the prevention of SSIs. This is a summary overview

of current Cochrane Reviews, we are not aware of any similar overviews of prevention for SSIs.

World Health Organization (WHO) guidelines on SSI prevention have recently been published (WHO 2016). The WHO reviews that underpin these guidelines (WHO 2016) were also split by operative phase: preoperative, intraoperative and postoperative. The methods used to conduct the systematic reviews that underpin these guidelines were, in some cases, different to those of the corresponding Cochrane Reviews included in this overview of reviews, which means direct comparison between overview and guidelines findings is not appropriate. The WHO reviews are standard systematic reviews, more recent ones, in some cases, include observational as well as randomised controlled trial data and have review questions that, in some cases, differ in scope to corresponding Cochrane Reviews (as do related alibility criteria). Focusing on the respective findings of the guidelines and the overview for the intraoperative phase, the guidelines include topics not covered by Cochrane Reviews, such as maintenance of body temperature, maintenance of adequate circulating volume control, discontinuation of immunosuppressive agents and use of laminar airflow ventilation systems. Additionally, intraoperative antibiotic prophylaxis, considered as part of this overview, were only considered as pre- or postoperative interventions in the guidelines. Four further interventions were considered in both the guidelines and this overview: patient oxygenation, use of microbial sealants, blood glucose control and use of drapes. The WHO guidelines (WHO 2016) make a strong recommendation with moderate-quality evidence for use of 80% inspired oxygen intraoperatively and into the postoperative period for adult patients under general anaesthesia with endotracheal intubation. Our overview found low-certainty evidence from one review (Wetterslev 2015) with 15 RCTs reporting no clear difference in SSI risk following use of high perioperative inspiratory oxygen fraction for adult surgical patients. Although similar data were used in the analysis performed, unlike Wetterslev 2015, WHO 2016 conducted a subgroup analysis based on the type of anaesthesia, and it is this subgroup analysis that informs the recommendation made (on oxygenation). Use of surgical drapes was also considered by both guidelines and our overview. This overview considers two more RCTs than WHO guidelines, but both sources report similar findings in that adhesive drapes appear to increase the SSI risk compared with no drapes. Again, there were no key differences in findings reported for microbial sealant and blood glucose control.

AUTHORS' CONCLUSIONS

Implications for practice

This overview provides the most up-to-date evidence on prevention of SSIs from currently published Cochrane Reviews (intraoperative phase). Generally, we found insufficient or low-certainty evidence for the effect of most interventions for preventing SSIs. This comprehensive overview of Cochrane Reviews highlights the current uncertainty regarding the effectiveness of the intraoperative phase interventions as preventions for SSIs. It is important to note that one review with high-certainty evidence showed harms associated with the use of adhesive drapes; and another review also with high-certainty evidence showed benefit when using prophylactic intravenous antibiotics administered before caesarean incision. As there remains uncertainty on the use of a number of prophylactic SSI prevention options, health professionals are likely to follow local and national guidelines until more information becomes available.

Implications for research

The individual reviews and this overview have highlighted the lack of good evidence for intraoperative interventions for SSI prevention. Included reviews in this category focused on interventions administered during the procedure (e.g. prophylactic antibiotics, patient warming) and methods to reduce bacterial contamination (e.g. glove changes, incise drapes). Just a few interventions altered the surgical approach itself (e.g. closure methods, the use of electrosurgical incisions). It is possible that different surgical techniques may influence SSI and this may be an area in need of more research. Most of the trials and the participants included in them did not contribute to any reliable assessment of efficacy or harm, which may lead to research waste. Robust randomised controlled trials with good internal validity from use of appropriate methods of randomisation, blinding and analysis are required. Studies also need to have carefully considered sample size calculations and recruitment strategies to ensure that they are not underpowered. It is also important that the outcomes that are important to patients and health professionals are measured. Future studies should use appropriate outcome measures that are consistent, reliable, have internal and external validity, and are sensitive to change in what is being measured. Consistent use of outcomes and related definitions would maximise the value of data from across multiple studies. Improving measurement of SSI, especially after hospital discharge, is warranted to improve data collection in this phase using validated patient-reported outcome (PRO) measures or methods for wound photography, or both, to complement these. A core outcome set focused on surgical wounds may be considered by developing and applying agreed, standardised sets of outcomes in this area. Trials should also collect quality-of-life data and consider incorporating cost-effectiveness analysis. Whilst adverse events should be collected as part of a trial, additional data on mortality and other rare events might be better collected as part of observational, prospective studies - perhaps using routinely collected data if possible. Crucially it is important to understand the risk of death as a function of SSI severity and these data are unlikely to be obtained from trials. This research also highlights the need for review authors to update existing reviews to ensure

that new studies are incorporated into existing reviews so that Cochrane Reviews remain contemporary and relevant.

ACKNOWLEDGEMENTS

The authors would like to thank peer reviewers Kurinchi Gurusamy, Gill Worthy, Colin Davies and Janet Wale for their comments on the overview, and Lawrence Best and Ros Wade for their comments on the protocol. The reviewers are also grateful for copy-editors Ann Jones for editing the protocol and Denise Mitchell for editing the overview.

REFERENCES

References to included reviews

AL-Khamis A, McCallum I, King PM, Bruce J. Healing by primary versus secondary intention after surgical treatment for pilonidal sinus. Cochrane Database of Systematic Reviews 2010, Issue 1. [DOI: 10.1002/14651858.CD006213.pub3 Biancari F, Tiozzo V. Staples versus sutures for closing leg wounds after vein graft harvesting for coronary artery bypass surgery. Cochrane Database of Systematic Reviews 2010, Issue 5. [DOI: 10.1002/14651858.CD008057.pub2 Buchleitner AM, Martínez-Alonso M, Hernández M, Solà I, Mauricio D. Perioperative glycaemic control for diabetic patients undergoing surgery. Cochrane Database of Systematic Reviews 2012, Issue 9. [DOI: 10.1002/ 14651858.CD007315.pub2 Campbell G, Alderson P, Smith AF, Warttig S. Warming of intravenous and irrigation fluids for preventing inadvertent perioperative hypothermia. Cochrane Database of Systematic Reviews 2015, Issue 4. [DOI: 10.1002/ 14651858.CD009891.pub2 Charoenkwan K, Iheozor-Ejiofor Z, Rerkasem K, Matovinovic E. Scalpel versus electrosurgery for major abdominal incisions. Cochrane Database of Systematic Reviews 2017, Issue 6. [DOI: 10.1002/ 14651858.CD005987.pub3 Cook LA, Pun A, Gallo MF, Lopez LM, Van Vliet HA. Scalpel versus no-scalpel incision for vasectomy. Cochrane Database of Systematic Reviews 2014, Issue 3. [DOI: 10.1002/14651858.CD004112.pub4 Dumville JC, Coulthard P, Worthington HV, Riley P, Patel N, Darcey J, et al. Tissue adhesives for closure of surgical incisions. Cochrane Database of Systematic Reviews 2014, Issue 11. [DOI: 10.1002/14651858.CD004287.pub4 Dumville JC, McFarlane E, Edwards P, Lipp A, Holmes A, Liu Z. Preoperative skin antiseptics for preventing surgical wound infections after clean surgery. Cochrane Database of Systematic Reviews 2015, Issue 4. [DOI: 10.1002/ 14651858.CD003949.pub4

Harrison D, Rowan K, Optimisation Systematic Review Steering Group. Perioperative increase in global blood flow to explicit defined goals and outcomes following surgery. Cochrane Database of Systematic Reviews 2012, Issue 11. [DOI: 10.1002/14651858.CD004082.pub5 Gurusamy KS, Naik P, Davidson BR. Methods of decreasing infection to improve outcomes after liver resections. Cochrane Database of Systematic Reviews 2011, Issue 11. [DOI: 10.1002/14651858.CD006933.pub2 Gurusamy KS, Koti R, Wilson P, Davidson BR. Antibiotic prophylaxis for the prevention of methicillin-resistant Staphylococcus aureus (MRSA) related complications in surgical patients. Cochrane Database of Systematic Reviews 2013, Issue 8. [DOI: 10.1002/14651858.CD010268.pub2 Gurusamy KS, Toon CD, Allen VB, Davidson BR. Continuous versus interrupted skin sutures for nonobstetric surgery. Cochrane Database of Systematic Reviews 2014, Issue 2. [DOI: 10.1002/14651858.CD010365.pub2 Gurusamy KS, Toon CD, Davidson BR. Subcutaneous closure versus no subcutaneous closure after non-caesarean surgical procedures. Cochrane Database of Systematic Reviews 2014, Issue 1. [DOI: 10.1002/14651858.CD010425.pub2 Gyte GM, Dou L, Vazquez JC. Different classes of antibiotics given to women routinely for preventing infection at caesarean section. Cochrane Database of Systematic Reviews 2014, Issue 11. [DOI: 10.1002/ 14651858.CD008726.pub2 Haas DM, Morgan S, Contreras K. Vaginal preparation with antiseptic solution before cesarean section for preventing postoperative infections. Cochrane Database of Systematic Reviews 2014, Issue 12. [DOI: 10.1002/ 14651858.CD007892.pub5 Hadiati DR, Hakimi M, Nurdiati DS, Ota E. Skin preparation for preventing infection following caesarean section. Cochrane Database of Systematic Reviews 2014, Issue 9. [DOI: 10.1002/14651858.CD007462.pub3

Jones DJ, Bunn F, Bell-Syer SV. Prophylactic antibiotics to

prevent surgical site infection after breast cancer surgery.

Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. [DOI: 10.1002/14651858.CD005360.pub4 Kao LS, Meeks D, Moyer VA, Lally KP. Peri-operative glycaemic control regimens for preventing surgical site infections in adults. *Cochrane Database of Systematic Reviews* 2009, Issue 3. [DOI: 10.1002/14651858.CD006806.pub2 Lipp A, Lusardi G. Systemic antimicrobial prophylaxis for percutaneous endoscopic gastrostomy. *Cochrane Database of Systematic Reviews* 2013, Issue 11. [DOI: 10.1002/ 14651858.CD005571.pub3

Low N, Mueller M, Van Vliet HA, Kapp N. Perioperative antibiotics to prevent infection after first-trimester abortion. *Cochrane Database of Systematic Reviews* 2012, Issue 3. [DOI: 10.1002/14651858.CD005217.pub2 Mackeen AD, Berghella V, Larsen ML. Techniques and materials for skin closure in caesarean section. *Cochrane*

Database of Systematic Reviews 2012, Issue 11. [DOI: 10.1002/14651858.CD003577.pub3

Mackeen AD, Packard RE, Ota E, Berghella V, Baxter JK. Timing of intravenous prophylactic antibiotics for preventing postpartum infectious morbidity in women undergoing cesarean delivery. *Cochrane Database of Systematic Reviews* 2014, Issue 12. [DOI: 10.1002/14651858.CD009516.pub2

Nabhan AF, Allam NE, Abdel-Aziz Salama MH. Routes of administration of antibiotic prophylaxis for preventing infection after caesarean section. *Cochrane Database* of Systematic Reviews 2016, Issue 6. [DOI: 10.1002/ 14651858.CD011876.pub2

Nelson RL, Gladman E, Barbateskovic M. Antimicrobial prophylaxis for colorectal surgery. *Cochrane Database* of Systematic Reviews 2014, Issue 5. [DOI: 10.1002/ 14651858.CD001181.pub4

Sanabria A, Dominguez LC, Valdivieso E, Gomez G. Antibiotic prophylaxis for patients undergoing elective laparoscopic cholecystectomy. *Cochrane Database of Systematic Reviews* 2010, Issue 12. [DOI: 10.1002/ 14651858.CD005265.pub2

Sanchez-Manuel FJ, Lozano-García J, Seco-Gil JL. Antibiotic prophylaxis for hernia repair. *Cochrane Database* of Systematic Reviews 2012, Issue 2. [DOI: 10.1002/ 14651858.CD003769.pub4

Smaill FM, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. *Cochrane Database of Systematic Reviews* 2014, Issue 10. [DOI: 10.1002/14651858.CD007482.pub3

Tanner J, Parkinson H. Double gloving to reduce surgical cross-infection. *Cochrane Database of Systematic Reviews* 2006, Issue 3. [DOI: 10.1002/14651858.CD003087.pub2
Vincent M, Edwards P. Disposable surgical face masks for preventing surgical wound infection in clean surgery. *Cochrane Database of Systematic Reviews* 2016, Issue 4. [DOI: 10.1002/14651858.CD002929.pub3
Webster J, Alghamdi A. Use of plastic adhesive drapes during surgery for preventing surgical site infection. *Cochrane Database of Systematic Reviews* 2015, Issue 4. [DOI: 10.1002/14651858.CD006353.pub4
Wetterslev J, Meyhoff CS, Jørgensen LN, Gluud

C, Lindschou J, Rasmussen LS. The effects of high perioperative inspiratory oxygen fraction for adult surgical patients. *Cochrane Database of Systematic Reviews* 2015, Issue 6. [DOI: 10.1002/14651858.CD008884.pub2 Wood C, Phillips C. Cyanoacrylate microbial sealants for skin preparation prior to surgery. *Cochrane Database of Systematic Reviews* 2016, Issue 5. [DOI: 10.1002/ 14651858.CD008062.pub4

References to excluded reviews

Cirocchi R, Randolph JJ, Montedori A, Cochetti GG, Arezzo A, Mearini EE, et al. Staples versus sutures for surgical wound closure in adults. *Cochrane Database of Systematic Reviews* 2014, Issue 8. [DOI: 10.1002/ 14651858.CD011250

McCallum I, O'Loughlin P, Robinson S, Wright LJ, Thomas CL. Antibiotic-coated sutures versus non-antibiotic-coated sutures for the prevention of abdominal surgical wound infection. *Cochrane Database of Systematic Reviews* 2016, Issue 11. [DOI: 10.1002/14651858.CD011297.pub2 Ousey KJ, Edward KL, Lui S, Stephenson J, Duff J, Walker KN, et al. Perioperative warming therapy for preventing surgical site infection in adults undergoing surgery. *Cochrane Database of Systematic Reviews* 2016, Issue 12. [DOI: 10.1002/14651858.CD011731.pub2 Smith TA, Rowlands C, Dumville JC, Norman G. Intracavity lavage and wound irrigation for prevention of surgical site infection. *Cochrane Database of Systematic Reviews* 2016, Issue 6. [DOI: 10.1002/ 14651858.CD012234

Verschuur HP, De Wever W, Van Benthem PP. Antibiotic prophylaxis in clean and clean-contaminated ear surgery. *Cochrane Database of Systematic Reviews* 2004, Issue 3. [DOI: 10.1002/14651858.CD003996.pub2

Additional references

ACORN 2012

Australian College of Operating Room Nurses (ACORN). *Standards for Perioperative Nursing.* 14th Edition. Adelaide, Australia: ACORN, 2012.

Al-Niaimi 2009

Al-Niaimi A, Safdar N. Supplemental perioperative oxygen for reducing surgical site infection: a meta-analysis. *Journal* of *Evaluation in Clinical Practice* 2009;**15**(2):360–5.

Allegranzi 2010

Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic healthcare-associated infection in developing countries: systematic review and meta-analysis. *Lancet* 2010;**377**(9761):228–41.

Allegranzi 2016a

Allegranzi B, Bischoff P, de Jonge S, Kubilay NZ, Zayed B, Gomes SM, et al. WHO Guidelines Development Group. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. *Lancet Infectious Diseases* 2016;**16**(12): e276–87.

Allegranzi 2016b

Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, et al. WHO Guidelines Development Group. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. *Lancet Infectious Diseases* 2016;**16**(12):e288–303.

ASA 2014

American Society of Anesthesiologists (ASA). ASA physical status classification system. October 2014. www.asahq.org/resources/clinical-information/asa-physicalstatus-classification-system (accessed 4 October 2017).

Astagneau 2009

Astagneau P, L'Hériteau F, Daniel F, Parneix P, Venier AG, Malavaud S, et al. Reducing surgical site infection incidence through a network: results from the French ISO-RAISIN surveillance system. *Journal of Hospital Infection* 2009;**72** (2):127–34.

Awad 2012

Awad SS. Adherence to surgical care improvement project measures and post-operative surgical site infections. *Surgical Infections* 2012;**13**(2):234–7.

Barnes 2014

Barnes S, Spencer M, Graham D, Johnson HB. Surgical wound irrigation: a call for evidence-based standardization of practice. *American Journal of Infection Control* 2014;**42** (5):525–9.

Becker 2011

Becker LA, Oxman AD. Chapter 22: Overviews of reviews. In: Higgins JP, Green S, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. Available from handbook.cochrane.org.

Brown 2014

Brown B, Tanner J, Padley W. This wound has spoiled everything: emotional capital and the experience of surgical site infections. *Sociology of Health and Illness* 2014;**36**(8): 1171–87.

Bruce 2001

Bruce J, Russell EM, Mollison J, Krukowski ZH. The measurement and monitoring of surgical adverse events. *Health Technology Assessment* 2001;**5**(22):1–194.

CDC 2017

US Centers for Disease Control and Prevention (CDC). Surgical site infection (SSI) event. Procedure-associated module. January 2017. www.cdc.gov/nhsn/PDFs/ pscmanual/9pscssicurrent.pdf (accessed 20 January 2017).

Cooper 2003

Cooper BS, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Medley GF, et al. Systematic review of isolation policies in the hospital management of methicillinresistant Staphylococcus aureus: a review of the literature with epidemiological and economic modelling. *Health Technology Assessment* 2003;7(39):1–194.

De Lissovoy 2009

De Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: incidence and impact on hospital utilization and treatment costs. *American Journal of Infection Control* 2009;**37**(5):387–97.

ECDC 2013

European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of healthcare associated infections and antimicrobial use in European acute care hospitals 2011-2012. ecdc.europa.eu/en/publications/ publications/healthcare-associated-infections-antimicrobial-use-pps.pdf (accessed 12 December 2016).

Gaynes 2001

Gaynes RP, Culver DH, Horan TC, Edwards JR, Richards C, Tolson JS. Surgical site infection (SSI) rates in the United States, 1992-1998: the National Nosocomial Infections Surveillance System basic SSI risk index. *Clinical Infectious Diseases* 2001;**33**(Suppl 2):S69–77.

Gibbons 2011

Gibbons C, Bruce J, Carpenter J, Wilson AP, Wilson J, Pearson A, et al. Identification of risk factors by systematic review and development of risk-adjusted models for surgical site infection. *Health Technology Assessment* 2011;**15**(30): 1–156.

Goodman 2017

Goodman T, Spry C. Introduction to perioperative nursing. In: Goodman T, Spry C editor(s). *Essentials of Perioperative Nursing*. 6th Edition. Burlington, MA: Jones & Barlett Learning, 2017:1–14.

GRADE 2013

Schünemann H, Broz ek J, Guyatt G, Oxman A, GRADE working group. GRADE handbook. October 2013. gdt.guidelinedevelopment.org/central_prod/_design/client/ handbook/handbook.html (accessed 5 February 2016).

Greif 1999

Greif R, Laciny S, Rapf B, Hickle RS, Sessler DI. Supplemental oxygen reduces the incidence of postoperative nausea and vomiting. *Anesthesiology* 1999;**5**:1246-52.

Guyatt 2011

Guyatt GH, Oxman AD, Kunz R, Broz ek J, Alonso-Coello P, Rind D, et al. GRADE guidelines 6. Rating the quality of evidence: imprecision. *Journal of Clinical Epidemiology* 2011;**64**(12):1283-93.

Hardin 1997

Hardin W, Nichols R. Handwashing and patient skin preparation. In: Malangoni MA editor(s). *Critical Issues in Operating Room Management*. Philadelphia: Lippincott-Raven, 1997:133–49.

Health Protection Agency 2015

Health Protection Agency. Surveilance of surgical site infections in NHS hospitals in England 2014/2015. www.gov.uk/government/uploads/ system/uploads/attachment_data/file/484874/Surveillance_of_Surgical_Site_Infections_in_NHS_Hospitals_in_England_report_2014-15.pdf (accessed 12 December 2016).

HICPAC 1999

Hospital Infection Control Practices Advisory Committee (HICPAC). Guideline for prevention of surgical site infection 1999. *Infection Control and Hospital Epidemiology* 1999;**20**(4):259.

Horan 1992

Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori T. CDC definitions of nosocomial surgical site infections 1992: a modification of CDC definitions of surgical wound infections. *Infection Control and Hospital Epidemiology* 1992;**13**(10):606–8.

Hospital Infection Society 2007

Hospital Infection Society. Third prevalence survey of healthcare associated infections in acute hospitals in England 2006. webarchive.nationalarchives.gov.uk/ 20081105143757/dh.gov.uk/en/Publicationsandstatistics/ Publications/PublicationsPolicyAndGuidance/DH_078388 (accessed 12 December 2016).

Jenks 2014

Jenks PJ, Laurent M, McQuarry S, Watkins R. Clinical and economic burden of surgical site infection and predicted financial consequences of elimination of SSI from an English hospital. *Journal of Hospital Infection* 2014;**86**(1): 24–33.

Kovavisarach 2002

Kovavisarach E, Seedadee C. Randomised controlled trial of glove perforation in single and double-gloving methods in gynaecologic surgery. *Australia and New Zealand Journal of Obstetrics and Gynaecology* 2002;**42**(5):519–21.

Laine 2004

Laine T, Aarnio P. Glove perforation in orthopaedic and trauma surgery: a comparison between single, double indicator and double gloving with two regular gloves. *Journal of Bone and Joint Surgery* 2004;**86**(6):898–900.

Larson 1995

Larson E. APIC guideline for handwashing and hand antisepsis in health-care settings. *American Journal of Infection Control* 1995;**23**(4):251–69.

Ljungqvist 2005

Ljungqvist O, Nygren J, Soop M, Thorell A. Metabolic perioperative management: novel concepts. *Current Opinion in Critical Care* 2005;**11**(4):295–9.

Magill 2014

Magill SS, Edwards JR, Bamburg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. *New England Journal of Medicine* 2014;**370**(13):1198–208.

Mangram 1999

Mangram A, Horan T, Pearson M, Silver L, Jarvis W, Hospital Infection Control Practices Advisory Committee. Guideline for prevention of surgical site infection 1999. *Infection Control and Hospital Epidemiology* 1999;**20**(4): 250–78.

NICE 2008

National Institute for Health and Care Excellence (NICE). Surgical site infections: prevention and treatment. Clinical guideline [CG74]. October 2008. www.nice.org.uk/ guidance/cg74 (accessed 23 February 2017).

NICE 2016

National Institute for Health and Care Excellence (NICE). Hypothermia: prevention and management in adults having surgery. Clinical guideline [CG65]. December 2016. www.nice.org.uk/guidance/cg65 (accessed 23 February 2017).

Pollock 2017

Pollock A, Campbell P, Brunton G, Hunt H, Estcourt L. Selecting and implementing overview methods: implications from five exemplar overviews. *Systematic Reviews* 2017;**6**:145.

Public Health England 2014

Public Health England. Surveillance of surgical site infections in NHS hospitals in England: 2013 to 2014. www.gov.uk/government/uploads/ system/uploads/attachment_data/file/386927/ SSI_report_2013_14_final_3_pdf (accessed 1 December 2016).

Reichman 2009

Reichman DE, Greenberg JA. Reducing surgical site infections: a review. *Reviews in Obstetrics and Gynecology* 2009;**2**(4):212–21.

RevMan 2014 [Computer program]

Nordic Cochrane Centre, The Cochrane Collaboration. Review Manager 5 (RevMan 5). Version 5.3. Copenhagen: Nordic Cochrane Centre, The Cochrane Collaboration, 2014.

Schünemann 2011a

Schünemann HJ, Oxman AD, Higgins JP, Deeks JJ, Glasziou P, Guyatt GH. Chapter 12: Interpreting results and drawing conclusions. In: Higgins JP, Green S, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. Available from handbook.cochrane.org.

Schünemann 2011b

Schünemann HJ, Oxman AD, Higgins JP, Vist GE, Glasziou P, Guyatt GH. Chapter 11: Presenting results and 'Summary of findings' tables. In: Higgins JP, Green S, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. Available from handbook.cochrane.org.

Singer 2008

Singer AJ, Quinn JV, Hollander JE. The cyanoacrylate topical skin adhesives. *American Journal of Emergency Medicine* 2008;**26**(4):490–6.

Smyth 2008

Smyth ET, McIlvenny G, Enstone JE, Emmerson AM, Humphreys H, Fitzpatrick F, et al. Four country healthcare associated infection prevalence survey 2006: overview of the results. *Journal of Hospital Infection* 2008;**69**(3):230–48.

Soderstrom 2003

Soderstrom R. Principles of electrosurgery as applied to gynaecology. In: Rock JA, Jones HW III editor(s). *Te Linde's Operative Gynecology*. 9th Edition. Philadelphia: Lippincott Williams & Wilkins, 2003:291–308.

Spagnolo 2013

Spagnolo AM, Ottria G, Amicizia D, Perdellif, Cristina ML. Operating theatre quality and prevention of surgical site infections. *Journal of Preventive Medicine and Hygiene* 2013;**54**(3):131–7.

Stephan 2002

Stephan F, Yang K, Tankovic J, Soussy CJ, Dhonneur G, Duvaldestin P, et al. Impairment of polymorphonuclear neutrophil functions precedes nosocomial infections in critically ill patients. *Critical Care Medicine* 2002;**30**(2): 315–22.

Swenson 2008

Swenson BR, Camp TR, Mulloy DP, Sawyer RG. Antimicrobial-impregnated surgical incise drapes in the prevention of mesh infection after ventral hernia repair. *Surgical Infections* 2008;**9**(1):23–32.

SWI Task Force 1992

Surgical Wound Infection (SWI) Task Force. Consensus paper on the surveillance of surgical wound infections. *Infection Control and Hospital Epidemiology* 1992;**13**(10): 599–605.

Wade 1980

Wade A. *Pharmaceutical Handbook*. 19th Edition. London: Pharmaceutical Press, 1980.

Warner 1988

Warner C. Skin preparation in the surgical patient. *Journal* of the National Medical Association 1988;**80**(8):899–904.

Whiting 2016

Whiting P, Savović J, Higgins J, Caldwell D, Reeves B, Shea B, et al. ROBIS: a new tool to assess risk of bias in systematic reviews was developed. Journal of Clinical Epidemiology 2016; Vol. 69:225–34.

Whitney 2015

Whitney JD, Dellinger EP, Weber J, Swenson RE, Kent CD, Swanson PE, et al. The effects of local warming on surgical site infection. *Surgical Infections* 2015;**16**(5):595–603.

WHO 2016

World Health Organization (WHO). Global guidelines for the prevention of surgical site infection. November 2016. www.who.int/gpsc/ssi-prevention-guidelines/en/ (accessed 20 May 2017).

References to other published versions of this review

Dumville 2017

Dumville JC, Norman G, Westby MJ, Blazeby J, McFarlane E, Welton NJ, et al. Intra-operative interventions for preventing surgical site infection: an overview of Cochrane reviews. *Cochrane Database of Systematic Reviews* 2017, Issue 5. [DOI: 10.1002/14651858.CD012653

* Indicates the major publication for the study

ADDITIONAL TABLES

Table 1. Interventions aimed at preventing surgical site infections

Intraoperative intervention types	Details	Theories on how the intervention type might work
For the patient		
Decontamination of patients' skin at site of surgery incision		The aim of preoperative skin antisepsis is to reduce the risk of SSIs by reducing the number of micro-organisms on the skin (ACORN 2012; Mangram 1999).
Skin sealants	plied to the patient's skin before surgery and left to dry forming a protective film over the planned incision site. Cyanoacry-	As with other barrier methods, the use of skin sealants is focused on preventing contamination of the surgical wound with micro-organisms from the patient's skin. It is proposed that skin sealant use be- fore surgery prevents any remaining micro- organisms from migrating into the surgi-

Table 1. Interventions aimed at preventing surgical site infections (Continued)

		cal wound following skin decontamination (Singer 2008).
Incise drapes	Before a surgical incision is made, ster- ile plastic adhesive (incise) drapes can be placed onto cleansed skin. The surgical in- cision is then made through the drape. Drapes can be plain or impregnated with antimicrobial products	Drapes are used as a barrier between the incision and the patient's skin, which, al- though cleansed may harbour micro-or- ganisms, such as at deeper levels of the skin that cleansing cannot reach (Swenson 2008).
Use of electrosurgery for surgical incisions	-	It has been suggested that using heat to make a surgical incision may reduce the risk of SSI
Maintaining patient homoeostasis (warm- ing)	During surgery the patient's bodily func- tions need to be optimised to promote re- covery; it is further postulated this may also reduce the risk of SSI. Under general anaes- thetic it is harder for the body to regulate its own temperature and this can increase the risk of perioperative hypothermia. Warm- ing can be achieved using thermal insula- tion such as blankets, or active methods of warming that use machines to transfer heat to the patient, and use of heated intra- venous fluids (NICE 2016; Whitney 2015)	Undertaking warming aims to maintain body temperature and prevent the de- velopment of perioperative hypothermia, which can lead to negative postoperative outcomes, which potentially include SSI. These interventions can also be used post- operatively to mitigate the impact of pe- rioperative hypothermia when it has not been prevented
Maintaining patient homoeostasis (oxy- genation)	During surgery under general anaesthetic patients are intubated and supplied with oxygen to maintain adequate oxygen per- fusion to all tissues	It is suggested that the risk of SSI is higher when tissue oxygenation is not optimised during surgery. Some surgical protocols use higher saturation levels of oxygen during intubation to increase tissue oxygenation levels with the aim of reducing wound com- plications such as SSI. High oxygen levels have been linked to serious adverse events such as blindness and death (Al-Niaimi 2009).
Maintaining patient homoeostasis (blood glucose control)	Use of strict glycaemic control using med- ications to maintain glucose levels during surgery	Hyperglycaemia after surgery is postulated to lead to increased risk of surgical com- plications including infection (Ljungqvist 2005; Stephan 2002).

Table 1. Interventions aimed at preventing surgical site infections (Continued)

Wound irrigation and intracavity lavage (including use of intraoperative topical an- tiseptics before wound closure)	Surgical irrigation and intracavity lavage use fluids to wash out the surgical cavity at the end of the surgical procedure before the wound is closed. Both wound irriga- tion and intracavity lavage can be altered by: volume of irrigation fluid; mechanism or timing of delivery; or solution composi- tion (Barnes 2014).	The theoretical advantage of surgical wound irrigation is to reduce the bacte- rial load in a surgical wound, and thus the risk of SSI, through a combination of wa- ter pressure, dilution, or the application of antimicrobial agents
Closure methods	Surgical wounds can be closed using sutures (absorbable or not) staples, adhesive strips or tissue adhesives. Some closure methods can make use of sutures that are coated in antimicrobial products The timing of closure can also vary; some wounds can be left open for a period follow- ing surgery and then closed (delayed clo- sure)	There is a view that the method of surgi- cal wound closure may impact on SSI risk. There is limited background evidence on mechanisms for SSI prevention, although it has been suggested that the better the seal the closure method obtains, the bet- ter the barrier to microbial contamination (Gurusamy 2014a).
For staff		
Use of masks, hair covers, overshoes, gowns and other protective coverings for theatre staff	Protective coverings worn in theatre by staff to limit the movement of micro-organisms in theatre (Cooper 2003). For example: masks over the face; dis- posable shoe covers worn over standard footwear and changed as required; dispos- able or reusable gowns worn over standard scrub outfits and changed as required	There are various coverings used in surgery that are designed to act as a barrier between the environment and the patient's wound to maintain a sterile operative field, such as masks that aim to capture water droplets being expelled. Masks contain one or two very finely woven filters that can inhibit bacteria. Masks cover the nose and mouth, but there is concern that masks may be worn incorrectly and allow air leaks from the sides of the mask Shoe coverings aim to limit the transfer of external material in and out of theatres Gowns cover standard surgical attire and can be removed when contaminated and replaced
Different glove protocols	Surgical staff wear disposable gloves dur- ing surgery. Gloves are used in a number of ways intended to minimise microbial con- tamination from staff to patients, including double gloving (using two pairs of gloves), the use of glove liners or cloth outer gloves (Kovavisarach 2002; Laine 2004).	Gloves are a barrier intervention that aim to prevent transfer of micro-organisms from the staff member's skin to the patient's skin or wound. Gloves also act as a barrier to prevent staff from infection by patients

For the environment

Table 1. Interventions aimed at preventing surgical site infections (Continued)

Theatre cleansing	The theatre environment needs to be cleaned regularly with detergents to disin- fect surfaces. Daily deep cleaning is likely to occur using various protocols for clean- ing surfaces between patient surgeries, es- pecially areas that are contaminated with bodily fluid, or that are frequently touched by staff. Recent technologies used for the- atre cleansing include UVC light decon- tamination and hydrogen peroxide vapour treatment Surgical instruments are also sterilised to decontaminate them after use. Various pro- tocols are used including steam sterilisation and chemical sterilisation, which is used when steam sterilisation is not feasible Theatre cleaning can also involve the use of ventilation systems, such as laminar airflow systems, which supply filtered air into the environment to limit numbers of airborne micro-organisms To avoid cross-infection, special protocols may be developed for cleansing when sur- gical patients are known to have specific in- fections	All aspects of theatre cleansing aim to min- imise numbers of micro-organisms present in the theatre environment with the aim of reducing the risk of SSI. (Spagnolo 2013).
Theatre traffic	A surgical theatre can be a busy working environment with people moving in and out. This movement can be managed, for example limiting the entrance and exit of staff during surgery, and minimising visi- tors into the theatre (e.g. partners of women undergoing caesarean sections) (Spagnolo 2013).	A key aim in the prevention of SSI is to limit numbers of micro-organisms in the operative environment. People moving in and out of the operative field may increase the risk of contamination. Visitors to the theatre who have not undergone full hand scrubbing protocols and so forth could also potentially increase SSI risk

Table 2.	Characteristics	of included	reviews

Review no.	First review author + year	Review title	cluded RCTs (and partici-	Re- view ob- jective	Popula- tion, in- cluding types of surgery/ proce- dure	g. nasal decon- tamina-	Com- parator (s)	Relevant outcomes		Review limita- tions	Note
			pants)		and depth of incision	tion		Primary	Sec- ondary		
CD0062	AL- 13Khamis 2010	Healing by primary ver- sus sec- ondary inten- tion af- ter surgi- cal treat- ment for pi- lonidal sinus	26 stud- ies (n = 2530)	To de- termine the relative effects of open com- pared with closed surgical treat- ment for pi- lonidal sinus on the out- comes of time to healing, infec- tion and recur- rence rate	ticipants (over 14 years of age) un- dergoing surgery to treat pi- lonidal sinus disease; surgical treat- ment for pi-	vention where the wound	Another surgi- cal inter- vention	Time to healing SSI Recur- rence	Time to return to work Other compli- cations and morbid- ity Partici- pant (patient) satisfac- tion Cost Length of hospi- tal stay Pain Quality of life Rate of change of wound volume Wound healing rate Opera- tive time	Vari- ations in the sur- gi- cal tech- niques included in each group when con- ducting meta- analysis	They also com- pared differen: closed surgical treat- ments (midline wound closure Within each group there were varia- tions in th surgi- cal tech niques used: fo exam- ple, th amount of tissu

										type of suture
CD00805 201	10	Staples versus sutures for clos- ing leg wounds after vein graft harvest- ing for coro- nary artery bypass surgery	4 studies (n = 839 leg wounds in 581 partici- pants)	To com- pare the rates of SSI and wound dehis- cence of staples and sutures for skin closure after saphe- nous vein graft harvest- ing for coro- nary artery bypass graft surgery	-	Suture	Staples	Rates of SSI Sever- ity of SSI Time to wound healing	Rate of wound dehis- cence Length of hospi- tal stay Pain Cost Patient comfort Lower limb revascu- lariza- tion	Only 3 studies included (322 legs) were pooled into meta- analysis 1 study was ex- cluded from the pooled analysis because each wound experi- enced both methods of closure and there was the risk of a unit of analy- sis error. How- ever there was no statisti- cally sig- nifi- cant dif- ference between the groups in this study.

CD00731	Buch- leitner 2012 ^a	Periop- er- ative gly- caemic control for dia- betic pa- tients under- going surgery	12 stud- ies (n = 1403)	To assess the effects of periop- er- ative gly- caemic control for peo- ple with diabetes under- going surgery	Partici- pants of any age, sex or ethnicity with previ- ously di- agnosed type 1 or 2 diabetes mellitus and submit- ted to periop- erative gly- caemic control	Periop- er- ative gly- caemic control proto- col pro- posed by study authors that in- volves a more in- ten- sive con- trol than the con- ven- tional care	fined as stan- dard or conven- tional care by the study	Any kind of infec- tious compli- cation All- cause mortal- ity Hypo- gly- caemic episodes	Cardio- vascular events Renal failure Length of ICU and hos- pital stay Health- related quality of life Eco- nomical costs Weight gain Mean blood glucose during inter- vention	
CD00989	Camp- bell 2015	Warm- ing of in- tra- venous and irri- gation fluids for prevent- ing inad- ver- tent pe- rioper- ative hy- pother- mia	24 stud- ies (n = 1250)	To estimate the ef- fective- ness of preoper- ative or intraop- erative warm- ing, or both, of intra- venous and ir- rigation fluids in pre- venting periop- erative hy- pother-	Adults under- going elective or emer- gency surgery (in- cluding surgery for trauma) under general or re- gional (central neu- raxial block) anaes- thesia,	warm- ing flu- ids be- fore ad- minis- tration	warmed fluid inter- ventions Stan- dard care Thermal insula- tion or passive warm- ing Active warm- ing Preoper- ative or intraop-		Infec- tion and compli- ca- tions of the sur- gical wound Pressure ulcers Bleeding compli- cations Other cardio- vascu- lar com-	No data of inter- est to overview authors reported

				mia and its compli- cations during surgery in adults	or both	fluids adminis- tered to a body cavity that is warmed by any method	ing, or both, of inspired and in- sufflated gases Preoper- ative and intraop- erative pharma- cological inter- ventions	cardio- vascular compli- cations	comes All- cause mortal- ity Length of stay Un- planned high de- pen- dency or inten- sive care admis- sion Adverse effects	
CD00598	Charoenk 2017	Scalpel versus electro- surgery for ma- jor ab- dominal incisions	16 stud- ies (n = 2769)	To assess the effects of electro- surgery com- pared with scalpel for ma- jor ab- dominal incisions	People under- going major open ab- dominal surgery, regard- less of the ori- entation of the incision (vertical, oblique, or trans- verse) and surgical setting (elective or emer- gency)	Wound cre- ation us- ing elec- tro- surgery	Wound creation using a scalpel	Wound infec- tion Time to wound healing Wound dehis- cence	Wound incision time Wound- related blood loss Postop- erative pain Adhe- sion or scar for- mation	Sub- group anal- ysis was planned but not possible to carry out due to inter- ventions being in- suffi- ciently homo- geneous and badly re- ported. Sensitiv- ity anal- ysis was planned by exclud- ing stud-

										ies at high or un- clear risk of bias. How- ever, this was not possible as none of the in- cluded studies were at low risk of bias
CD00411	Cook 2014	Scalpel ver- sus no- scalpel incision for va- sectomy	2 studies (n = 1529)	To compare the effec- tive- ness, sa- fety, and accept- ability of the inci- sional ver- sus no- scalpel ap- proach to the vasec- tomy	of repro- ductive age un- dergoing vasec- tomy for	No- scalpel	Scalpel	Post-va- sectomy adverse events (includ- ing wound infec- tion)	Operat- ing time Pain Time to resump- tion of inter- course Rates for azoosper- mia Time to azoosper- mia Preg- nancy Inci- dence of recanal- ization Inci- dence of re- peat va- sectomy Cost analysis Con- sumer	

									accept- abil- ity mea- sures Provider accept- abil- ity mea- sures	
CD00428	Dumville 2014	Tissue adhe- sives for closure of surgi- cal inci- sions	33 stud- ies (n = 2793)	To de- termine the effects of various tissue adhe- sives com- pared with conven- tional skin closure tech- niques for the closure of sur- gical wounds	People of any age and in any set- ting re- quir- ing clo- sure of a surgical skin in- cision of any length	Tissue adhesive	An- other tis- sue ad- hesive or alterna- tive con- ven- tional closure device	Wound dehis- cence	Propor- tion of infected wounds Cos- metic appear- ance Pa- tient sat- isfaction Sur- geon sat- isfaction Cost Time taken to wound closure	
CD00394	Dumville 2015	Preoper- ative skin an- tiseptics for pre- venting surgical wound infec- tions af- ter clean surgery	13 stud- ies (n = 2623)	To de- termine whether preop- erative skin an- tisepsis imme- diately prior to surgical incision for clean surgery prevents SSI and	age un- dergo- ing clean	Antisep- tic solu- tions or powders	trol; an-	SSI	Quality of life Adverse events Re- source use	

				to deter- mine the com- parative effec- tiveness of alter- native antisep- tics						
CD00408	Grocott 3 2012 ^{<i>a</i>}	Periop- erative increase in global blood flow to explicit defined goals and out- comes fol- lowing surgery	31 stud- ies (n = 5292)	To describe the effects of in- creasing periop- erative blood flow using fluids with or without in- otropes or va- soactive drugs. Out- comes were mortal- ity, mor- bidity, resource utiliza- tion and health status	Adults (aged ≥ 16 years) under- going surgery in an op- erating theatre	Periop- erative adminis- tration (ini- tiated within 24 h before surgery and lasting up to 6 h after surgery) of fluids, with or without in- otropes or va- soactive drugs to increase global blood flow against explicit mea- sured goals	Control	Mor- tality (at longest avail- able fol- low-up)	Mor- tality: all reported time frames Morbid- ity Re- source utilisa- tion Health status	Sub- group analysis and sen- sitiv- ity anal- ysis were done
CD00872	Gyte 2 2014 ^a	Dif- ferent classes of an- tibiotics	31 stud- ies (n = 7697 women)	To de- termine, from the best available	Women under- go- ing cae- sarean	Prophy- lactic an- tibi- otic regi- mens	Differ- ent classes of antibi- otics (≥	Mater- nal: mater- nal sep- sis (sus-	Mater- nal: fever (febrile morbid-	Sub- group analyses were car- ried out

airen t-	25 cm d	evi-	contine	2 antibi-	posted	itrr)	by true
given to women	35 stud- ies	ev1- dence,	section, both	2 antibi- otics	pected or	ity) ; wound	by type of
rou-	included	the bal-	elec-	from the	proven);	; would infec-	
tinely	in the re-	ance of		different	en-	tion; uri-	surgery; by time
	view but		non-		dometri-	nary	of
-	only 31	and	elective	antibi-	tis	tract in-	adminis-
venting infec-	provided	harms	ciccuve	otics)	Infant:	fection;	tra-
tion	data	between		01103)	in-	thrush;	tion; by
at cae-	uata	different			fant sep-	se-	route of
sarean		classes			sis (sus-	rious in-	adminis-
section		of an-			pected	fectious	tration
section		tibiotic			or	compli-	Sensitiv-
		given			proven);	cation;	ity anal-
		prophy-			oral	adverse	ysis was
		lacti-			thrush	effects of	not per-
		cally to				treat-	formed
		women				ment on	
		under-				the	
		going				woman;	
		cae-				maternal	
		sarean				lengths	
		section				of hospi-	
						tal stay;	
						infec-	
						tions -	
						post-	
						hos-	
						pital dis-	
						charge	
						to	
						30 days	
						postop-	
						era-	
						tively;	
						readmis-	
						sions	
						Infant:	
						imme-	
						diate ad-	
						verse ef-	
						fects of antibi-	
						antibi- otics on	
						ones on	

Table 2.	Characteristics of included reviews	(Continued)
----------	-------------------------------------	-------------

									the in- fant; in- fant; in- fant of hospi- tal stay; long- term ad- verse ef- fects; infant's immune system develop- ment Addi- tional out- comes: develop- ment of bacte- rial resis- tance; costs	
CD00693	Gu- 3 rusamy 2011 ^a	Meth- ods of decreas- ing infec- tion to improve out- comes after liver re- sections	7 studies (n = 521)	To de- termine the benefits and harms of different inter- ventions in de- creasing the in- fectious compli- cations and im- proving the out- comes after liver re- section	People- under- going liver re- section	Antibi- otics Prebi- otics or probi- otics Im- munomoo ulation- Topical antibi- otic or antisep- tic	No an- tibi- otics or placebo; no pro- biotics or probi- cotics or placebo; no im- munomou ulation; no topical antibi- otic or anti- septic or saline or placebo before	Mortal- ity Serious adverse events Quality of life	Hospital stay Number of un- planned visits to the doc- tor Return to work Costs	The unit of anal- ysis was the aggre- gate data on par- ticipants under- going liver re- sec- tion ac- cording to ran- domised group Sensitiv- ity anal- ysis

							wound closure; another of the in- cluded inter- ventions			and sub- group anal- ysis were not con- ducted
CD01020	Gu- o rusamy 2013 ^a	Antibi- otic pro- phylaxis for the preven- tion of methi- cillin- resistant Staphy- lococcus aureus (MRSA) related com- plica- tions in surgical patients	12 stud- ies (n = 4704)	To com- pare the benefits and harms of all methods of an- tibiotic prophy- laxis in the preven- tion of postop- erative MRSA infec- tion and related compli- cations in peo- ple un- dergoing surgery	under- going surgery, irre- spective of age, type of surgery, whether surgery was elective	Antibi- otic pro- phylaxis	Placebo (or no treat- ment) ; differ- ent an- tibi- otic pro- phylaxis (and reg- imens)	All- cause mortal- ity Other serious adverse events Quality of life	Total length of hospital stay Use of health care re- sources Rates of SSIs Rates of SSIs due to MRSA Rates of infec- tions due to MRSA	No sub- group anal- ysis per- formed. Sensitiv- ity anal- ysis was done
CD01036	Gu- 7 rusamy 2014a	Contin- uous versus inter- rupted skin su- tures for non- obstetric surgery	5 studies (n = 827)	To com- pare the benefits and harms of con- tinuous com- pared with inter- rupted skin closure	-	Contin- uous su- tures	Inter- rupted sutures	SSI Wound dehis- cence Quality of life	Hyper- trophic scarring Keloid scarring Inci- sional hernia Hospital stay Impact to the pa-	No sub- group anal- ysis per- formed; sensitiv- ity anal- ysis was done

				tech- niques in par- ticipants under- going non- obstetric surgery					tient and to the health- care fun- der	
CD01042	Gu- rusamy 2014b	Subcu- taneous clo- sure ver- sus no subcuta- neous clo- sure af- ter non- cae- sarean surgi- cal pro- cedures	6 studies (n = 815) 8 studies (n = 1318) included in the re- view but only 6 con- tributed data	benefits (such as de- creased wound- related compli-	People, of any age and sex, un- dergoing non-cae- sarean surgery	Subcu- taneous closure	No sub- cuta- neous closure, irrespec- tive of the su- ture ma- terial	SSI Wound dehis- cence Quality of life	Hyper- trophic scarring Keloid scar- ringIn- cisional hernia- Hospital stay- Impact to the patient and to the health- care funder	No sub- group anal- ysis per- formed; sensitiv- ity anal- ysis was done

CD00789	Haas 2014	Vaginal prepara- tion with an- tisep- tic solu- tion be- fore ce- sarean sec- tion for prevent- ing post- oper- ative in- fections	7 studies (n = 2816; 2635 anal- ysed)	termine if cleans-	Preg- nant women who re- ceived a cae- sarean delivery	Vaginal cleans- ing with any type of anti- septic solution	Placebo solu- tion/ standard care	Postpar- tum en- dometri- tis	Wound infec- tion; fever; wound seroma or hematoma Com- posite wound compli- cations Side ef- fects of vaginal prepara- tion	Sub- group anal- ysis was done
CD00746	Hadiati 2014	Skin prepara- tion for prevent- ing in- fection follow- ing cae- sarean section	6 studies (n = 1522)	To com- pare the effects of different agent forms and methods of pre- opera- tive skin prepa- ration for pre- venting post cae- sarean infec-	nant women under- going elective or emer- gency cae- sarean	Antisep- tic agents used for cae- sarean sec- tion skin prepara- tion	Differ- ent anti- septic agents, forms or methods of appli- cation	SSI Metri- tis or en- dometri- tis	Length of stay Mater- nal mor- tality Repeat surgery Re-ad- mission resulting from in- fection Reduc- tion of skin bac- teria colony	No sub- group anal- ysis per- formed; sensitiv- ity anal- ysis was not done

				tion					count Adverse events	
CD00536	Jones 2014 ^{<i>a</i>}	Prophy- lactic an- tibiotics to pre- vent sur- gical site infec- tion af- ter breast cancer surgery	ies (n =	To de- termine the effects of prophy- lactic (pre- or periop- erative) antibi- otics on the inci- dence of surgical site in- fection (SSI) after breast cancer surgery	with breast cancer under- going breast surgery with or without imme- diate	or peri- oper- ative an- tibi- otic used	placebo;	SSI Ad- verse re- actions	Death Delay in adjuvant can- cer treat- ment be- cause of breast wound infec- tion Time to wound healing Time to infec- tion Read- mission to hospi- tal Cost of care (should be a compar- ison be- tween the treat- ment and con- trol group)	Sensitiv- ity anal- ysis was per- formed
CD00680	Kao 2009 ^a	Peri- oper- ative gly- caemic con- trol regi- mens for prevent- ing sur- gical site	5 studies (n = 773)	To sum- marise the evidence for the impact of gly- caemic control in the	aged ≥	caemic control	At least 1 other gly- caemic con- trol regi- men pre- , intra- , and/or postop-	SSI	Inci- dence and severity of hy- pogly- caemia Level of gly-	Sub- group analysis was per- formed (people with and with- out dia-

	infec- tions in adults		periop- erative period on the inci- dence of surgical site in- fections, hypogly- caemia, level of gly- caemic control, all-cause and in- fection- related mortal- ity, and hospital length of stay and to in- vestigate for dif- ferences of effect between different levels of gly- caemic control	cal pro- cedure		eratively		caemic control All- cause and in- fection- related mortal- ity Length of hospi- tal stay	betes); sensitiv- ity anal- yses were not un- dertaken
Lipp CD00557 2013 ^{<i>a</i>}	Systemic antimi- crobial prophy- laxis for percuta- neous endo- scopic gastros- tomy	13 stud- ies (n = 1637)	To establish whether prophy- lactic use of systemic antimi- crobials reduces the risk of peri- stomal	der or diagno- sis, un- dergoing place- ment of a PEG	Antimi- cro- bial pro- phylaxis	Placebo or usual care and compar- isons be- tween differ- ent an- timicro- bial regi- mens	site in-	Identifi- cation of bacte- ria caus- ing in- fection Peritoni- tis Adverse effects Mortal- ity Re-	

				infec- tion in people under- going place- ment of percu- taneous endo- scopic gastros- tomy tubes					moval of PEG tube be- cause of infec- tion Length of hospi- tal stay	
CD00521	Low 2012 ^{<i>a</i>}	Periop- erative antibi- otics to prevent infec- tion after first- trimester abortion	19 stud- ies (n = 9715)	termine: 1. the effec- tiveness of an- tibiotic prophy- laxis in prevent- ing post- abortal upper genital tract in- fection;	All women under- going induced first trimester surgi- cal or medical abortion with or without a history of pelvic inflam- matory disease, or a pre- abortion diagno- sis of bacterial vagi- nosis, N. gon- orrhoeae or C. tra- choma- tis	Any an- tibiotic regimen; univer- sal antibi- otic pro- phylaxis	A placebo or noth- ing; or another antibi- otic regimen; a screen- and- treat strategy and/or a com- bina- tion of screen- and- treat and antibi- otic pro- phylaxis	The pro- portion of women diag- nosed with post- abor- tal upper genital tract in- fection	Other antibi- otic treat- ments provided in the 6 weeks follow- ing the abortion Hospi- talisa- tion due to infec- tious compli- cations Adverse effects of antibi- otic pro- phy- laxis or screen- ing Propor- tion of women under-	Sub- group anal- yses were not per- formed; sensitiv- ity anal- yses were not un- dertaken No data of inter- est to overview authors reported

									going the screen- and- treat strategy who were re- infected with C. tra- choma- tis	
CD0035	Mack- een 2012	Tech- niques and ma- terials for skin closure in cae- sarean section	11 stud- ies (n = 1554)	To compare the effects of skin clo- sure tech- niques and ma- te- rials on mater- nal out- comes and time taken to perform a cae- sarean	under-	Various closure tech- niques and ma- terials	Differ- ent clo- sure tech- niques and ma- terials	Wound infec- tion	Wound compli- cations Pres- ence of hematoma Pres- ence of seroma Skin separa- tion Reclo- sure Read- mission Length of stay Pain per- ception Cosme- sis Pa- tient sat- isfaction Length of scar Total opera- tive time Cost	Only 8 (n = 1166) of the 11 included tri- als con- tributed data: 2 studies did not re- port suf- ficiently on prespec- ified out- comes on which this review was focused; and 1 study did not report out- cout-

								Mater- nal length of hospital stay Pres- ence of hyper- trophic scar	comes sepa- rately for women under- go- ing cae- sarean. Sub- group analysis was per- formed; sensitiv- ity anal- ysis was done too
CD00951	Mack- een 2014 ^a	Timing of intra- venous prophy- lactic antibi- otics for pre- venting postpar- tum in- fectious morbid- ity in women under- going cesarean delivery	10 stud- ies (n = 5041)	To com- pare the effects of cae- sarean antibi- otic pro- phylaxis admin- istered preoper- atively versus after neonatal cord clamp on post- opera- tive in- fectious compli- cations for both the mother and the neonate	Prophy- lactic in- tra- venous (IV) an- tibiotic adminis- tration for cae- sarean birth 0- 30 and 30- 60 min- utes prior to skin in- cision	Prophy- lactic an- tibiotic adminis- tration for cae- sarean birth af- ter neonatal umbil- ical cord clamp- ing	Com- posite maternal postpar- tum in- fectious morbid- ity (in- cluding serious infec- tious compli- cations, en- domy- ometri- tis, wound infec- tion, or death at- tributed to infec- tion)	Mater- nal mor- tality Mater- nal post- par- tum in- fection Placen- tal trans- fer of an- tibiotics Breast- feeding	Sub- group anal- yses were not per- formed; sensitiv- ity anal- yses were not un- dertaken

CD01187 2016	of adminis- tration of antibi- otic pro- phylaxis for pre- venting infec- tion af- ter cae- sarean section	ies (n = 1354)	and harms of different routes of prophy- lactic antibi- otics given for prevent- ing in- fectious morbid- ity in women under- going cae- sarean section	Women under- going elective or emer- gency cae- sarean section	Prophy- lactic an- tibi- otic regi- mens	Differ- ent route (s) of an- tibiotic adminis- tration	dometri- tis; wound infec- tion Infant: in- fant sep- sis (sus- pected or proven)	Mater- nal: postpar- tum febrile morbid- ity; uri- nary tract in- fection; se- rious in- fectious cation; adverse effects of treat- ment on the woman; maternal length of hospital stay; readmis- sions Infant: oral thrush; infant length of hospital stay; readmis- sions Infant: oral thrush; infant length of hospital stay; imme- diate ad- verse ef- fects of antibi- otics on the infant	Com- bined groups of simi- lar routes to cre- ate a sin- gle pair- wise compar- ison	Sub- group analysis was car- ried out by dosage; Sensitiv- ity anal- ysis was per- formed
Nelso CD00118 20144	n Antimi- cro- bial pro- phylaxis for col- orectal	451)	To establish the ef- fective- ness of antimi-	Patients (adults and chil- dren) under- going	All antimi- crobial prophy- laxis reg- imens	No treat- ment control/ placebo Regi-	SSI (ab- dominal wound)			

		surgery	ent an- tibiotics	crobial prophy- laxis for the preven- tion of surgical wound infec- tion in people under- going col- orectal surgery	either elective or emer- gency col- orectal surgery, in which sepsis was not sus- pected preoper- atively	deliv- ered orally, intra- venously or by in- tramus- cular injection used to prevent postop- erative infec- tion	men dif- fering in dura- tion, tim- ing, use of aero- bic/ anaer- obic cov- erage, route of adminis- tration A pub- lished gold standard regimen			
CD00526	Sanabria 2010 ^a	Antibi- otic pro- phy- laxis for patients under- going elective laparo- scopic chole- cystec- tomy	11 stud- ies (n = 1664)	To assess the ben- eficial and harmful effects of antibi- otic pro- phylaxis versus placebo or no prophy- laxis for people under- going elective laparo- scopic chole- cystec- tomy	Adult patients (> 17 years) under- going laparo- scopic chole- cystec- tomy with preop- erative clinical diagno- sis of cholelithi- asis without acute chole- cystitis or other benign, non- acute	Antibi- otic pro- phylaxis, adminis- tered in- tra- venously or orally, prior to elective laparo- scopic surgery	Placebo or no an- tibiotic	All- cause mortal- ity SSI Extra- abdom- inal in- fections Adverse events Quality of life		A sensi- tivity analy- sis using worst- best case and best- worst case analyses

					inflam- matory disease of the gall- bladder. Jaun- diced patients were excluded					
CD00376	Sanchez- Manuel 2012 ^a	Antibi- otic pro- phy- laxis for hernia repair	17 stud- ies (n = 7843)	To clar- ify the effec- tiveness of an- tibiotic prophy- laxis in reducing postop- erative wound infec- tion rates in elective open inguinal hernia repair	Adult patients under- going open elective inguinal or femoral hernia repair, with or without the use of pros- thetic material	Admin- istration of prophy- lactic an- tibiotics	Placebo or no treat- ment	Wound infec- tion rate assessed at least at 30 days after the prophy- lactic an- tibiotic treat- ment was given		Sensitiv- ity anal- ysis and sub- group anal- ysis were con- ducted
CD00748	Smaill 2014 ^{<i>a</i>}	Antibi- otic pro- phy- laxis ver- sus no prophy- laxis for prevent- ing in- fection after ce- sarean section	95 stud- ies (> 15, 000 women)	To assess the effects of prophy- lactic antibi- otics com- pared with no prophy- lactic antibi- otics on infec- tious	Women under- going cae- sarean section, both elective (planned) and non- elective/ emer- gency	Any pro- phy- lactic an- tibi- otic regi- men ad- minis- tered for cae- sarean section	Placebo or no treat- ment	Mater- nal: febrile morbid- ity; wound infec- tion; en- dometri- tis; se- rious in- fectious compli- cation	Mater- nal: urinary tract in- fection; adverse effects of treat- ment on the woman; length of stay in hospital	A sen- sitivity analysis was un- dertaken on the primary out- comes by study quality, omitting the 9 quasi-

Table 2. Characteristics of inc	luded reviews	(Continued)
---------------------------------	---------------	-------------

				com- plica- tions in women under- going cae- sarean section				Infant: imme- diate ad- verse ef- fects of antibi- otics on the in- fant; oral thrush	hospital; long- term ad- verse ef- fects;	RCTs; sub- group analyses were carried out by an- tibiotic regimen, type of surgery and time of adminis- tration
CD00308	Tanner 2006	Dou- ble glov- ing to re- duce surgical cross-in- fection	31 stud- ies (n = not re- ported) Unit of anal- ysis var- ied, gloves were col- lected)	To de- termine if addi- tional glove pro- tection reduces the num- ber of surgical site or blood- borne infec- tions in patients or the surgical team; to de- termine if addi- tional	mem- bers of the sur- gi- cal team prac-	Coloured	An- other/ different type	Rates of SSI in surgical patients	Rates of perfo- rations in inner- most surgical gloves Rates of blood- borne infec- tions in post- oper- ative pa- tients or the sur- gical team	2 tri- als were found that ad- dressed sur- gical site infec- tions in patients. Both tri- als reported no infec- tions No sub- group anal- ysis per- formed; sensitiv- ity anal- ysis was

				glove pro- tection reduces the number of perfo- rations to the inner- most pair of surgical gloves						not done
CD00292	Vincent 2016	Dispos- able sur- gical face masks for pre- venting surgical wound infec- tion in clean surgery	N	To de- termine whether the wearing of dis- posable surgical face masks by the surgical team during clean surgery reduces postop- erative surgical wound infec- tion	Adults and chil- dren un- dergo- ing clean surgery	The wearing, by the surgical team (scrubbed and not scrubbed) , of dis- posable surgical face masks	No masks	The in- cidence of post- opera- tive sur- gical wound infec- tion	Length	No sub- group anal- ysis per- formed
CD00635	Webster 2015	Use of plastic adhesive drapes during surgery for pre- vent- ing sur- gical site	7 studies (n = 4195)	To assess the effect of adhesive drapes used during surgery on surgical	People of any age or gen- der, un- dergoing any type of inpa- tient or outpa-	Plastic adhesive drapes through which an incision is made (used alone or	No plas- tic adhe- sive drapes; other drapes (e.g. wo- ven (ma- terial) or dispos-	SSI	Mortal- ity Length of hospi- tal stay Costs Hospi- tal read- missions	The only sub- group analysis that was possible, based on available

	infec-	site in-	tient	in com-	able (pa-	Ad-	data,
	tion	fection,	surgery	bination	per)	verse re-	was of
		cost,		with	drapes)	actions	clean
		mortal-		other		Other	com-
		ity and		drapes		se-	pared
		morbid-		and any		rious in-	with
		ity		antisep-		fection	contam-
		,		tic skin		or infec-	inated
				prepara-		tious	surgery
				tion)		compli-	(wound
				,		cation	classifi-
						such	cation)
						as septi-	Sensi-
						caemia	tivity
						or septic	analyses
						shock	were
						SHOCK	carried
							out by
							exclud-
							ing trials
							most
							suscep-
							tible
							to bias:
							those
							with
							inade-
							quate al-
							location
							conceal-
							ment
							and un- certain
							or un-
							blinded
							outcome
							assess-
							ment
							It was
							not pos-
							sible to
							under-

									take a planned sensi- tivity analysis based on the type of material the drape was made from due to insuf- ficient detail about the products
CD00888	Wetter- slev 2015 ^a	The ef- fects of high pe- rioper- ative in- spira- tory oxy- gen frac- tion for adult surgical patients	28 stud- ies (n = 9330)	To assess the benefits and harms of an FIO ₂ $\geq 60\%$ com- pared with a control FIO ₂ $\leq 40\%$ in the periop- erative setting in terms of mor- tality, surgical site in- fection, respi- ratory insuffi-	Sur- gical pa- tients ≥ 18 years who were un- dergoing elective or emer- gency surgery	A high FIO ₂ of ≥ 60%	All- cause mortal- ity SSI within 30 days of follow- up after surgery	All- cause mortal- ity within 30 days of fol- low-up Respira- tory in- suffi- ciency Serious adverse event Du- ration of postop- erative hospital- isations Qual- ity of life as mea-	Sub- group and sen- sitivity analyses were con- ducted, the role of bias was ex- amined and trial se- quential analysis (TSA) was applied to exam- ine the level of evidence

		ciency, serious adverse events and length of stay during the index admis- sion for adult surgical patients					sured by the included trials	support- ing or refuting a high FIO ₂ during surgery, anaes- thesia and recovery
Wood CD00806 2016	7 studies Cyanoacry (n = late mi- 859) crobial sealants for skin prepa- ration prior to surgery	the effects of the preoper- ative ap- plication of mi- crobial	Participants under- going any type of clean surgery in an op- erating theatre	Micro- bial sealant ap- plied to the sur- gical in- ci- sion site immedi- ately be- fore surgery	No ap- plication of mi- crobial sealant, with or without the use of tra- ditional preop- erative prepara- tion so- lutions such as povi- done io- dine or chlorhex- idine	Rates of SSI	All- cause mortal- ity Ad- verse re- actions Other se- rious in- fection or infec- tious compli- cation Length of hospi- tal stay Rates of hospi- tal stay Rates of hospi- tal re-ad- missions Costs Postop- erative antibi- otic use	No sub- group nor sen- sitiv- ity anal- ysis was not done

"This is a multi-stage review. We only extracted data from trials delivering interventions that started in the intraoperative phase

Table 3. Characteristics of excluded reviews

First review author + year	Reasons for exclusion
Cirocchi 2014	Protocol
McCallum 2016	Protocol
Ousey 2016	Protocol
Smith 2016	Protocol (ongoing)
Verschuur 2004	Only included pre- and postoperative stages

Table 4. Assessment of results by ROBIS (risk of bias in systematic reviews)

Review title	(identifying concerns with the review process)										
	Study el criteria	igibility	Identification and selection of studies	Data collec- tion and study ap- praisal	Synthesis and find- ings	Risk of bias in the review					
Healing by primary versus secondary in- tention after surgi- cal treatment for pi- lonidal sinus (AL- Khamis 2010)	Ģ		*	ų	G.	¥					
Staples versus su- tures for closing leg wounds after vein graft harvesting for coronary artery by- pass surgery (Biancari 2010)	0			٥	©	6					
Perioperative gly- caemic control for diabetic patients un- dergoing surgery (Buchleitner 2012)	ō		9	5)	¢.	æ					
Warming of intra- venous and irriga- tion fluids for pre-	ō		9	69	é	¢.					

venting inadvertent periop- erative hypothermia (Campbell 2015)					
Scalpel versus elec- trosurgery for ab- dominal incisions (Charoenkwan 2017)	Q)	₩ 	٥	¢	49
Scalpel versus no- scalpel incision for vasectomy (Cook 2014)	Ģ	ġ.	?	ę	?
Tissue adhesives for closure of surgical incisions (Dumville 2014)	ø	ф.	9	¢	ę
Preop- erative skin antisep- tics for preventing surgical wound in- fections after clean surgery (Dumville 2015)	¢	8	5	¢.	\$\$
Pe- rioperative increase in global blood flow to explicit defined goals and outcomes following surgery (Grocott 2012)	ũ	۵	ώ 	â	\$
Different classes of antibiotics given to women rou- tinely for prevent- ing infection at cae- sarean section (Gyte 2014)	G .	۵	ي ۵	G	¢
Methods of decreas- ing infection to im- prove outcomes af- ter liver resections (ē.	₩ 	9	6	¢

Gurusamy 2011)					
An- tibiotic prophylaxis for the prevention of methicillin resis- tant Staphylococcus aureus (MRSA) re- lated complications in surgical patients (Gurusamy 2013)	۵	ġ.	â	ي ب	÷
Continuous versus interrupted skin su- tures for non- obstetric surgery (Gurusamy 2014a)	¢	۵	9	¢	¢
Subcutaneous clo- sure versus no sub- cutaneous clo- sure after non-cae- sarean surgical pro- cedures (Gurusamy 2014b)	۵	8	8	¢.	8
Vaginal preparation with antiseptic so- lution before ce- sarean section for preventing postop- erative infections (Haas 2014)	Q	Ŵ	ţ	ų.	ų.
Skin preparation for preventing infection following caesarean section (Hadiati 2014)	٥	ц;	9	Ģ	¢
Prophylactic antibi- otics to prevent sur- gical site infec- tion after breast can- cer surgery (Jones 2014)	9	а	а	Ċ.	ę.

Peri-operative gly- caemic control reg- imens for prevent- ing surgical site in- fections in adults (Kao 2009)	Q	₩ 	9	ę.	e
Systemic antimicro- bial prophylaxis for percutaneous endo- scopic gastrostomy (Lipp 2013)	0	8	9	¢	\$
Perioperative antibi- otics to prevent in- fection after first- trimester abortion (Low 2012)	Q	\$?	ų.	*
Techniques and ma- terials for skin clo- sure in caesarean section (Mackeen 2012)	۵	8	۵	¢	4
Tim- ing of intravenous prophylactic antibi- otics for prevent- ing postpartum in- fectious morbidity in women undergo- ing cesarean delivery (Mackeen 2014)	¢	9	9	¢	4
Routes of adminis- tration of antibiotic prophylaxis for pre- venting infection af- ter caesarean section (Nabhan 2016)	6	₩ 	٩	Ç	¢
Antimicrobial pro- phylaxis for colorec- tal surgery (Nelson 2014)	à	۵	()	e	¢.

Antibiotic pro- phylaxis for patients	ø	49	4	¢	£
undergoing elective laparoscopic chole- cystectomy (Sanabria 2010)					
Antibiotic prophylaxis for her- nia repair (Sanchez- Manuel 2012)	Ø	8	?	¢	?
Antibiotic pro- phylaxis versus no prophylaxis for pre- venting infection af- ter cesarean section (Smaill 2014)	Q	9	φ.	¢;	ų.
Double glov- ing to reduce sur- gical cross-infection (Tanner 2006)	Ø	9	?	¢	¢
Disposable surgical face masks for preventing sur- gical wound infec- tion in clean surgery (Vincent 2016)	Q	8	۵	Q.	đ.
Use of plastic adhesive drapes during surgery for preventing surgical site infection (Webster 2015)	Q.	9 	9	¢;	£:
The effects of high perioperative inspi- ratory oxygen frac- tion for adult surgi- cal patients (Wetterslev 2015)	٩	Q.	ų	(g	¥
Cyanoacrylate mi- crobial sealants for skin prepara- tion prior to surgery	Ø		9	e.	ά.

(Wood 2016)

 \odot = low risk; \odot = high risk; and ? = unclear risk

Table 5.	parative		Ratio		Qual- ity/cer-		-	Num- ber of	-	Qual- ity/cer-	GRADE	
-	(95% Cl	·	(RR)	partici-		Foot-	out-	partici-	•	tainty	Foot-	-
Inter-		onfidence		pants	of the	note	come	pants		of the	note	Com-
vention	interval		CI) # ran-	(stud-	evi-		values	(stud-	evi-	evi-		ments
and				ies)	dence		Re-	ies)	dence	dence		†meta-
com-			dom-		(GRADE		sults in			(GRADE		analysis
parison			effects,		* as-		brack-		* as-			by
inter-			all other		sessed		ets		sessed	sessed		overview
vention			RR		by		are RR		by	by		author
			= fixed-		overview		with			overview		Odd
			effect		authors		95%		authors	authors		Ratio
					\$		CIs un-					(OR)
					assessed		less					
					by		other-					
			_		review		wise in-					
	As-	Corre-			authors		dicated					
							# ran-					
	sumed	spond-					dom-					
	risk	ing risk					effects,					
							all other					
	With	With					RR					
	com-	inter-					= fixed-					
	parator	vention					effect					

1. Theatre staff attire

1.1. Double glov- ing to reduce surgi- cal cross- infec- tion (Tanner 2006) Dou- ble latex versus double la- tex with	0 pe: 1000	• 0 per 1000 (0 to 0)	Not es- timable	125 (2)	Low*1	N/A ¹ Downgraded twice due to impre- cision (very small num- bers of partic- ipants with no events)	N/A	N/A	N/A	Both trials re- ported no SSI; both tri- als were under- pow- ered for this out- come
---	---------------	-----------------------------	--------------------	---------	-------	---	-----	-----	-----	---

liner											
1.2. Dis- pos- able surgi- cal face masks for pre- venting sur- gical wound infec- tion in clean surgery (Vincent 2016) Mask ver- sus no mask	N/A	N/A	N/A	N/A	N/A	N/A	RR 0.10 (0. 01 to 1. 83); RR 1.33 (0. 59 to 3. 02); RR 1.16 (0. 73 to 1. 84)	2106 (3)	Low* ^{1,2}	¹ Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion) ² Downgr due to incon- sistency (direc- tion of inter- vention effect varied be- tween studies)	by review authors and con- verted to RR by overview au- thors: OR 0.07 (0. 00 to 1. 63); OR 1.34 (0. 58 to 3. 07); OR 1.17 (0. 70 to 1. 97) Data not pooled due

 Table 5. 'Summary of findings' table - Outcome: Surgical Site Infections (SSIs) (Continued)

2. Preparation of the surgical site

2.1. Preoperative skin antiseptics for preventing surgical wound infections after clean surgery (Dumville 2015)

a) 2% io- dine in 90% al- cohol versus 70% al- cohol	13 per 1000	12 per 1000 (1 to 194)	RR 0. 94 (0.06 to 14.74)	157 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	N/A	N/A	N/A	
b) Povi- done- iodine (PI) paint ver- sus soap scrub and ap- plica- tion of methy- lated spirit	51 per 1000	59 per 1000 (18 to 187)	1.15 (0.	200 (1)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num-	N/A	N/A	N/A	

Table 5. 'Summary of findings' table - Outcome: Surgical Site Infections (SSIs) (Continued)

Table 5. 'Summary of findings' table - Outcome: Surgical Site Infections (SSIs) (Continue)	Table 5.	'Summary of findings'	' table - Outcome: Surgic	al Site Infections (SSIs)	(Continued
--	----------	-----------------------	---------------------------	---------------------------	------------

						bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)				
c- 1) 7.5% aque- ous PI scrub/ 10% aque- ous PI paint versus 10% aque- ous PI paint	140 per 1000	106 per 1000 (48 to 236)	RR 0.76 (0. 34 to 1. 69)	178 (2)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit	N/A	N/A	N/A	

						and harm for the inter- ven- tion)					
c-2) 7.5% aque- ous PI scrub/ 10% aque- ous PI paint versus iodophor in alcohol paint	1000	60 per 1000 (30 to 120)	RR 1.47 (0. 73 to 2. 94)	621 (6)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)		N/A	N/A	N/A	2 stud- ies had no events in either group (n = 160)
c-3) 10% aque- ous PI paint versus iodophor in alcohol	1000	125 per 1000 (16 to 981)	RR 6. 25 (0.80 to 49.05)	106 (1)	Low*1	¹ Downgr twice due to impre- cision (small num-	N/A	N/A	N/A	N/A	

Table 5. 'Summary of findings' table - Outcome: Surgical Site Infections (SSIs) (Continued)

Table 5.	'Summary of findings	table - Outcome: Surgical Site Inf	ections (SSIs) (Continued)
----------	----------------------	------------------------------------	----------------------------

paint						bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)					
d-1) 7.5% aque- ous PI scrub/ 10% aque- ous PI paint versus 2% chlorhex idine in 70% alcohol paint	N/A -	N/A	N/A	N/A	N/A	N/A	N/A	100 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility	due to no re- ported SSI events in either

Table 5.	'Summary of findings'	table - Outcome: Surgical Site Infections (SSIs)	(Continued)
----------	-----------------------	--	-------------

										of both benefit and harm for the inter- ven- tion)	
d-2) 10% aque- ous PI paint versus 2% chlorhex- idine in 70% alcohol paint	1000	66 per 1000 (35 to 125)	RR 1.06 (0. 56 to 2. 00)	556 (1)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	timable	100 (1)	N/A	N/A	No events in either group
d-3) Iodophor in alcohol (film- form- ing)	N/A	N/A	N/A	N/A	N/A	N/A	Not es- timable	100 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias	in either

paint versus 2% chlorhex idine in 70% alcohol paint										² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	
d-4) 7.5% aque- ous PI scrub fol- lowed by 10% aque- ous PI paint versus 4% chlorhex- idine in 70% alcohol scrub	21 per 1000	57 per 1000 (11 to 289)	RR 2. 76 (0.55 to 13.86)	183 (1)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter-	timable	127 (1)	N/A	N/A	No events in either group

Table 5. 'Summary of findings' table - Outcome: Surgical Site Infections (SSIs) (Continued)

Table 5.	'Summary of findings'	table - Outcome: Surgica	al Site Infections (SSIs)	(Continued)

						vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)					
d-5) 0.5% chlorhex- idine in methy- lated spirit versus PI paint	1000	62 per 1000 (36 to 109)	RR 0.47 (0. 27 to 0. 82)	542 (1)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events)		N/A	N/A	N/A	
e) 0. 75% Cholorhe idine and 1.5% cetrim- ide scrub versus 0.75% chlorhex- idine and 1.5% cetrim- ide paint	1000	44 per 1000 (6 to 296)	RR 0.98 (0. 14 to 6. 65)	91 (1)	Low* 1,2	1 Down- graded once due to risk of bias 2 Down- graded once due to impre- cision (small num- bers of	N/A	N/A	N/A	N/A	

Table 5.	'Summary of findings'	table - Outcome: Surg	gical Site Infections (SSIs)	(Continued)
----------	-----------------------	-----------------------	------------------------------	-------------

						events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)				
f) Alcoholic solu- tions versus aque- ous so- lutions	53 per 1000	41 per 1000 (27 to 62)	RR 0.77 (0. 51 to 1. 17)	1400 (6)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and	N/A	N/A	N/A	

					harm for the inter- ven- tion)					
a)	ion for pr 144 per 1000 (109 to 191)	-	nfection f 1294 (2)	Low [§]	^{\$} Wide confi- dence interval cross- ing the line of no ef- fect.	section (F	Iadiati 2014) N/A	N/A	N/A	
b) 1- minute alcohol scrub with iodophor drape versus 5- minute iodophor scrub without drape	N/A	N/A	N/A	N/A	N/A	Not es- timable	79 (1)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit	in either group

Table 5. 'Summary of findings' table - Outcome: Surgical Site Infections (SSIs) (Continued)

										and harm for the inter- ven- tion)
c) Parachlor with iodine versus iodine alone	120 per 1000	40 per 1000 (5 to 359)	RR 0.33 (0. 04 to 2. 99)	50 (1)	Low [§]	[§] Wide confi- dence interval cross- ing the line of no ef- fect & small sample size	N/A	N/A	N/A	N/A
d) Chlorhex idine glu- conate versus povi- done iodine		95 per 1000 (9 to 974)	RR 2. 10 (0.20 to 21.42)	43 (1)	Very low [§]	[§] One study with design limita- tions Wide confi- dence interval cross- ing the line of no ef- fect, few events & small sample size	N/A	N/A	N/A	N/A
2.3. Vaginal prepa- ration with anti- septic solu- tion	33 per 1000	29 per 1000 (18 to 45)	RR 0.86 (0. 54 to 1. 36)	2205 (6)	Low [§]	[§] Most stud- ies con- tribut- ing data had de- sign limita-	N/A	N/A	N/A	N/A

Table 5.	'Summary of findings'	table - Outcome: Surgica	1 Site Infections (SSIs)	(Continued)

before	tions
ce-	Wide
sarean	confi-
section	dence
for pre-	interval
venting	Cross-
post-	ing
oper-	the line
ative	of no ef-
infec-	fect
tions	
(Haas	
2014)	
Vaginal	
prepa-	
ration	
versus	
control	

	1 • •	.• • 1	
2.4. Use of plastic adhesive drapes	luring surgery fo	or preventing surgical	site infection (Webster 2015)

a) Ad- hesive drapes versus no ad- hesive drapes	- 112 per 1000	1000	RR 1.23 (1. 02 to 1. 48)	3082 (5)	High [§]	[§] The total sample met require- ments for optimal infor- mation size, and the total number of events ex- ceeded 300	N/A	N/A	N/A	N/A	
b) Iodine- impreg- nated adhe- sive drapes versus no ad-	1000	67 per 1000 (43 to 104)	RR 1.03 (0. 66 to 1. 60)	1113 (2)	Moder- ate [§]	[§] There was impre- cision on at least 2 counts; the	N/A	N/A	N/A	N/A	

hesive drapes					total sample size was too small to meet optimal infor- mation size, and the total number of events was less than 300				
2.5. Cyanoacci late micro- bial sealants for skin prepa- ration prior to surgery (Wood 2016) Micro- bial sealant versus no mi- crobial sealant	59 per 1000 (27 to 130)	RR 0.53 (0. 24 to 1. 18) [#]	859 (7)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and	N/A	N/A	N/A	One study had no events in either group (n = 96)

Table 5.	'Summary of findings'	table - Outcome:	Surgical Site Infec	tions (SSIs)	(Continued)
----------	-----------------------	------------------	---------------------	--------------	-------------

					harm for the inter- ven- tion)				
3. Makin 3.1. Scalpel versus electro- surgery for ma- jor ab- dom- inal in- ci- sions (Charoen 2017) Electro- surgery versus scalpel	1000	79 per 1000 (55 to 114)	2178 (11)	Low§	[§] Serious limi- tation due to lack of infor- mation on ran- domi- sation and allo- cation con- ceal- ment in three studies con- tribut- ing more than 50% to the analysis Serious impre- cision as 95% CIs around the es- timate were wide ranging	N/A	N/A	N/A	N/A

Table 5.	'Summary of findings	table - Outcome: Surgical	Site Infections (SSIs)	(Continued)
----------	----------------------	---------------------------	------------------------	-------------

						includ- ing the prob- ability of a re- duction as well as an increase in wound infec- tion				
3.2. Scalpel ver- sus no- scalpel inci- sion for vasec- tomy (Cook 2014) No- scalpel versus stan- dard in- cision	22 per 1000	7 per 1000 (2 to 21)	RR 0.31 (0. 10 to 0. 94)	1182 (2)	Very Low* 1,2,3	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events) ³ Downgr once due to hetero- geneity	N/A	N/A	N/A	2 studies differed in their timing and nature of postop- erative evalu- ations, includ- ing the evalua- tion of steril- ity; and in op- erator expe- rience with the no- scalpel tech- nique Peto OR re- ported

					by review authors and con- verted to RR by overview au- thors: Peto OR 0.34 (0. 13 to 0. 90)
--	--	--	--	--	---

4.	Treatment	of	patient	during	surgery

4.1. Warm- ing of intra- venous and irriga- tion fluids for pre- venting inad- vertent periop- erative hy- pother- mia (Camp- bell 2015)	N/A	N/A	N/A	N/A	No SSI data pro- vided						
4.2. Periop- erative gly- caemic control for di- abetic	N/A	N/A	N/A	N/A	N/A	N/A	1/10 vs. 6/22: RR 0.37 (0. 05, 2. 66) [#]	32 (1)	Very low* ^{1,2}	¹ Downgr twice due to impre- cision (small	Only 2 in- cluded tri- als were cate- gorised

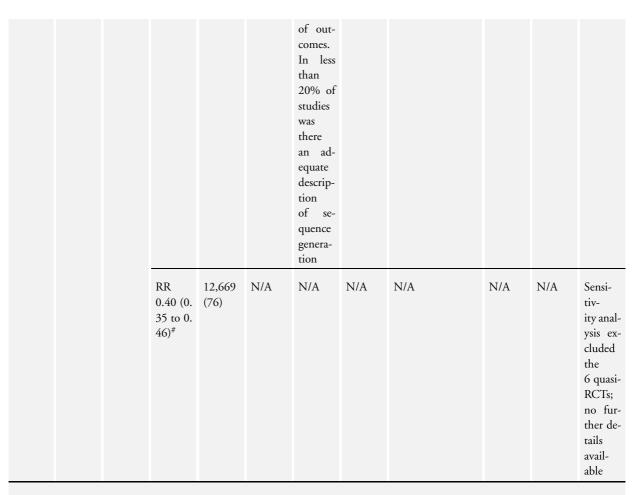
Table 5.	'Summary of findings'	table - Outcome: Surgica	l Site Infections (SSIs)	(Continued)
14010)	0	able careomeroarprea	1 0110 11110010 (0010)	(00////////////////////////////////////

pa- tients under- going surgery (num- bes of inten- surgery (num- bes of inten- surgery (inten- confie Buch- leitner 2012) ectious vals comfie Inten- sive ver- sus con- ven- tional gly- caemic control inten- sive ver- sus con- ven- tional etious vals comfie gly- caemic control inten- sive ver- sus con- ven- tional inten- sive ver- sus con- ven- tional inten- sive ver- sus con- ven- tional inten- sive ver- sive ver- tional inten- sive ver- ven- tional inten- sive ver- sive ver- ven- tional inten- sive ver- ven- tional inten- sive ver- sive ver- sive ver- ven- tional inten- sive ver- sive ver-								
under- going events; phase; surgery confi confi (confi confi Buch- inter- fccious 2012) vals compli Inten- sive ver- size con- suco- of both RR sibility SSIs ven- tional gby- caemic 0.71 (0. gly- and 22 to 2. harm 26) ³ caemic control inter- ven- ion ion gly- caemic control inter- control ion inter- ion inter- ion ion inter- ion ion gly- caemic ion ion ion gly- ion ion ion ion ion ion ion ion ion ion ion ion ion ion ion ion ion	pa-						num-	in
going surgery (wide confi- dence vals Our- confi- come dence vals Buch- liciner compli- that cations 2012) inten- sive ver- sus con- ven- tional that cations y- caemic control of both RR benefit 0.71 (0. and 22 to 2. harm 20 * add 22 to 2. harm 20 * control for the inter- ven- tion) incon- sistency (direc- tion of inter- vention 2 3/37 vs. 73 (1) vention ffect effect 3/37 vs. 73 (1) vention effect varied 3/2 0. be- tor tor be- tor twen	tients						bers of	intraop
going surgery (wide Out- conf- Buch- leitner come come 2012) inter- fectious sive ver- sus con- ven- tional wide 0ut- comi wide of un- come gly- caemic control and 25 to 2. and 22 to 2. harm 201' and 20' incen- sive ver- sus con- ven- tional for the inter- inter- inter- and 20' gly- caemic and 20' and 20' ional 3/37 vs. 73 (1) m incon- sistency direc- inter- inter- 220 (0. yarid inter- vention inter- vention 3/37 vs. 73 (1) vention effect varid inter- vention	under-							
surgery ((Buch- Buch- 2012) Inten- sive ver- sus con- ven- tional gly- caemic control	going							
(dence for In- Buch- inter- fectious 1einer vals compli- 2012) that catious Inten- six con- include rather six con- the pos- than sibility SSIs ven- of both RR benefit 0.71 (0. and 22 to 2. gly- caemic of both RR ven- ton. ton. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>confi-</td> <td></td>							confi-	
Buch- leitner inter- 2012) inter- vals inter- cations inter- vals inter- cations inter- vals inter- cations inter- vals inter- va							dence	for In-
leitner vals compli- 2012) that cations Inten- include tather sive ver- sibility SSIs ven- of both RR tional gly- caemic 071 (0. caemic netr- ven- ton control for the inter- ven- tion) for the inter- ven- tion) for the inter- ven- (due to incon- sistery (direc- (direc- tion) incon- sistery (direc- tion of inter- ven- 3/37 vs. 73 (1) effect vention 1/ fick vention inter- 2/20 (0. 32, 26. twen effect	Buch-						inter-	fectious
2012) Inten- sive ver- sus con- ven- tional gly- caemic control							vals	compli-
Inten- sive ver- sus con- ven- tional gly- caemic control							that	
sive ver- sus con- ven- tional gly- caemic control							include	rather
sus con- ven- tional gly- caemic control $3/37$ vs. 73 (1) $\frac{3/37}{1}$ vs. 73 (1) $\frac{3/37}{1}$ vs. 73 (1) $\frac{3/37}{1}$ vs. 73 (1) $\frac{3/37}{1}$ vs. 73 (1) $\frac{1}{1}$ $\frac{3}{2}$ or 1 $\frac{1}{1}$ 3 $\frac{1}{2}$ or 1 $\frac{1}{1}$ 3 $\frac{1}{2}$ or 1 $\frac{1}{1}$ 3 $\frac{1}{2}$ $\frac{1}{1$							the pos-	than
ven- tional gly- caemic control								
tional gly- caemic control $ \begin{array}{cccc} 1 & 0.71 (0. \\ 1 & 0.71 ($								
gly- caemic control $and 22 to 2.$ harm 26) [†] for the inter- ven- tion) $2Downg$ due to incon- sistency (direc- tion of inter- ven- tion) $\frac{3/37 \text{ vs. } 73 (1)}{1/}$ effect varied 2.92 (0. 32, 26. ven- tion							benefit	0.71 (0.
caemic control harm $26)^{\dagger}$ for the inter- ven- tion) 2Downgi due to incon- sistency (direc- tion of inter- ven- tion) 2Downgi due to incon- sistency (direc- tion of inter- ven- tion) 3/37 vs. 73 (1) 1/ 36; RR 2, 26 ; RR varied 2, 26 ; True ven- tion of inter- venton sistency (direc- tion of inter- venton sistency (direc- tion of inter- venton sistency venton inter- venton sistency (direc- tion of inter- venton sistency venton inter- venton sistency venton venton sistency venton sistency venton vent							and	22 to 2.
control for the inter- ven- tion) ² Downgi due to incon- sistency (direc- tion of inter- yen- tion) ² Downgi due to incon- sistency (direc- tion of inter- vention 1/ Sf, RR 2.92 (0. 32, 26. tween							harm	26)†
inter- ven- tion) ² Downgi due to incon- sistency (direc- tion of inter- vention = 3/37 vs. 73 (1) vention = 1/ 36; RR 2.92 (0. 32, 26. tween							for the	
tion) ² Downgy due to incon- sistency (direc- tion of inter- 3/37 vs. 73 (1) vention 1/ 36; RR 2.92 (0. 32, 26. tion)							inter-	
² Downgi due to incon- sistency (direc- tion of inter- 3/37 vs. 73 (1) 1/ sf; RR 2.92 (0. 32, 26.							ven-	
due to incon- sistency (direc- tion of inter- 3/37 vs. 73 (1) 1/ 36; RR 2.92 (0. 32, 26.							tion)	
due to incon- sistency (direc- tion of inter- 3/37 vs. 73 (1) 1/ 36; RR 2.92 (0. 32, 26.								
incon- sistency (direc- tion of inter- 3/37 vs. 73 (1) 1/ vention 1/ 36; RR varied 2.92 (0. 32, 26. be- tween							² Downgi	
sistency (direc- tion of inter- 3/37 vs. 73 (1) vention 1/ effect 36; RR varied 2.92 (0. be- 32, 26. tween							due to	
3/37 vs. 73 (1) (direction of interview) 3/37 vs. 73 (1) vention 1/ effect 36; RR varied 2.92 (0. be- 32, 26. tween							incon-	
ion of inter- 3/37 vs. 73 (1) vention 1/ effect 36; RR varied 2.92 (0. be- 32, 26. tween							sistency	
3/37 vs. 73 (1) vention 1/ effect 36; RR varied 2.92 (0. be- 32, 26. tween							(direc-	
3/37 vs. 73 (1) vention 1/ effect 36; RR varied 2.92 (0. be- 32, 26. tween							tion of	
1/ effect 36; RR varied 2.92 (0. be- 32, 26. tween							inter-	
36; RR varied 2.92 (0. be- 32, 26. tween						73 (1)		
2.92 (0. be- 32, 26. tween								
32, 26. tween							varied	
							be-	
77) [#] studies)								
					77)#		studies)	

42 D 1 1 1	1 1 1 C			1 (V 2000)
4.3. Peri-operative glycaemic	control regimens for i	preventing surgical si	ite infections in a	aults (Kao 2009)

a)	N/A	N/A	N/A	N/A	N/A	N/A	1/40 vs.	78 (1)	Low*1	
Intra-							2/			¹ Downgraded
and							38; RR			twice
postop-							0.48 (0.			due to
erative							04 to 5.			impre-
strict							03)			cision
versus										(small
conven-										num-
tional										bers of
gly-										events;
caemic										
control										

with intra- venous insulin										wide confi- dence interval that include the pos- sibility of both benefit and harm for the inter- ven- tion)	
b) In- traop- erative strict versus conven- tional gly- caemic control with insulin infu- sion	N/A	N/A	N/A	N/A	N/A	N/A	6/ 185 vs. 7/186; RR 0.86 (0. 30 to 2. 52)	371 (1)	Low*1	¹ Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	Out- come for deep wound infec- tion
c) Intra- and postop- erative	N/A	N/A	N/A	N/A	N/A	N/A	0/72 vs. 9/ 68; RR 0.05 (0.	140 (1)	Low* 1,2	¹ Downgr once due to	for


strict gly- caemic control with intra- venous glucose insulin- potas- sium infu- sion (GIK) versus conven- tional gly- caemic control with subcu- taneous insulin							00 to 0. 84)			risk of bias ² Downgı once due to impre- cision (small num- bers of events; small sample size)	mo- nia and wound infec- tions
4.4. Periop- erative in- crease in global blood flow to explicit defined goals and out- comes fol- lowing surgery (Grocott 2012) In- creased global	N/A	N/A	N/A	N/A	N/A	N/A	4/50 vs. 5/50; RR 0.80 (0. 23 to 2. 81)	100 (1)	Low*1	¹ Downgr once due to impre- cision (small sample size) ² Downgr once due to incon- sistency	19 to 0. 82) [†]

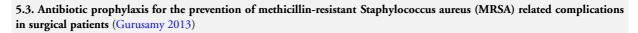
blood flow versus control							0/19 vs. 2/18; RR 0.19 (0. 01 to 3. 71)	37 (1)			
							3/30 vs. 8/30: RR 0.38 (0. 11 to 1. 28)	60 (1)			
							2/32 vs. 10/34; RR 0.21 (0. 05 to 0. 90)	66 (1)			
							0/30 vs. 2/60; RR 0.39 (0. 02 to 7. 95)	90 (1)			
4.5. The effects of high periop- erative inspi- ratory oxygen frac- tion for adult surgi- cal pa- tients (129 per 1000	112 per 1000 (92 to 138)	RR 0.87 (0. 71 to 1. 07) [#]	7219 (15)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to hetero- geneity		N/A	N/A	N/A	Review authors ob- tained data on (SF)-36 from the Greif 1999 trial through Daniel

Table 5.	'Summar	y of findings'	table -	Outcome: Surgic	al Site Iı	nfections	(SSIs)	(Continued)
----------	---------	----------------	---------	-----------------	------------	-----------	--------	-------------

Wetter- slev 2015) 60% to 90% oxygen versus 30% to 40%	Sessler, who was a co- author of this trial report
oxy- gen pe-	
riopera- tively	

5. Use of antibiotics

5.2. Review: Different classes of antibiotics given to women routinely for preventing infection at caesarean section (Gyte 2014) Cephalosporins versus penicillins - all women


a) Single	33 per 1000	27 per 1000		1497 (9)	Low§	[§] Most stud-	N/A	N/A	N/A	N/A	
cephalos	r	(12 to	38 to 1.			ies con-					
versus	Î	59)	81)#			tribut-					
single						ing data					
peni-						had de-					
cillin						sign					
						limita-					
						tions.					
						Wide					
						confi-					
						dence					
						interval					
						cross-					

						ing the line of no ef- fect & small sample size					
b) Single cephalosy versus peni- cillin drug combi- nation	33 per 1000	23 per 1000 (13 to 42)	RR 0.72 (0. 40 to 1. 30) [#]	1608 (7)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	N/A	N/A	N/A	N/A	
c) Cephalos drug combi- nation versus single peni-		65 per 1000 (14 to 311)	RR 2.02 (0. 42 to 9. 63) [#]	139 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias	N/A	N/A	N/A	N/A	

cillin					² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)				
d) Cephalos drug combi- nation versus peni- cillin drug combi- nation	46 per 1000 (16 to 133)	1.23 (0.	315 (2)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals	N/A	N/A	N/A	

Table 5.	'Summary of findings'	table - Outcome: Surgica	al Site Infections (SSIs)	(Continued)
Indie J.	ounning of mungo	able Outcomerourgie	a one micetions (0015)	(00111111111111111111111111111111111111

that include the pos- sibility of both
of both benefit and harm for the
inter- ven- tion)

a) Pe- floxacin versus cefa- zolin and oxacillin (tibial fracture requir- ing external fixa- tion)	90 per 1000	67 per 1000 (39 to 115)	RR 0. 74 (0.43 to 1.28)	616 (1)	Very low [§]	^{\$} The risk of bias in the trial was high The confi- dence inter- vals over- lapped 1 and/ or 0.75 and 1. 25. There were fewer than 300 events in total in the inter- vention and control groups	N/A	N/A	N/A	N/A	Overall SSIs; Group 1: intra Group 2: intra and post
b) Er- tapenem	15 per 1000	9 per 1000	RR 0.59 (0.	672 (1)	Very low* ^{1,2}	¹ Downgr	N/A	N/A	N/A	N/A	MRSA

versus cefote- tan	(2 to 37)	14 to 2. 46)			once due to risk of bias ² Downgi twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)					SSIs; over 30 min within 60 min prior to the ini- tial in- cision
c) Cefaman dole versus cefaman- dole and gen- tamycin	0 per 1000 (0 to 0)	RR 5. 08 (0.24 to 105.24)	522 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events;	N/A	N/A	N/A	N/A	Overall SSIs One study with 4 arms

						wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)			
d) C fazoli: and gen- tamyo cefam dole and gen- tamyo	n 1000 in an-	0 per 1000 (0 to 0)	RR 17. 67 (1.03 to 304.54)	516 (1)	Very low*1.2	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and	N/A	N/A	N/A

						harm for the inter- ven- tion)			
e) Ce- fazolin versus cefaman- dole	1000	27 per 1000 (6 to 131)	RR 3. 55 (0.75 to 16.95)	514 (1)	Very low*1,2	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	N/A	N/A	N/A
f) Ce- fazolin versus cefa- zolin and gen- tamycin	32 per 1000	28 per 1000 (10 to 75)	0.87 (0.	508 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr twice	N/A	N/A	N/A

Table 5.	'Summary of findings'	table - Outcome: Surgical	Site Infections (SSIs)	(Continued)
----------	-----------------------	---------------------------	------------------------	-------------

						due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)					
g) Co- amoxi- clav or cefo- taxime versus placebo	375 per 1000	98 per 1000 (41 to 244)	RR 0.26 (0. 11 to 0. 65)	99 (1)	Low*1	¹ Downgr twice due to impre- cision (small num- bers of events; small sample size)	N/A	N/A	N/A	N/A	Overall SSIs
h) Van- comycin and ce- fazolin versus cefa- zolin (open frac- tures)		87 per 1000 (23 to 327)	RR 1.00 (0. 27 to 3. 76)	92 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr twice due to		N/A	N/A	N/A	Overall SSIs

Table 5.	'Summary of findings'	table - Outcome: Surgical	Site Infections (SSIs)	(Continued)
----------	-----------------------	---------------------------	------------------------	-------------

						impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)				
i) Dap- to- mycin and ce- fazolin ver- sus ce- fazolin	129 per 1000	39 per 1000 (9 to 177)	RR 0.30 (0. 07 to 1. 37)	113 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include	N/A	N/A	N/A	Over- all SSIs; one study with 3 arms

Table 5.	'Summary of findings' table - Outcome: S	Surgical Site Infections (SSIs)	(Continued)
----------	--	---------------------------------	-------------

						the pos- sibility of both benefit and harm for the inter- ven- tion)				
j) Van- comycin and ce- fazolin versus cefa- zolin (vas- cular surgery)	129 per 1000	125 per 1000 (49 to 323)	RR 0.97 (0. 38 to 2. 50)	118 (1)	Very low*1,2	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)		N/A	N/A	N/A
k) Van- comycin and ce- fazolin		1000	RR 3. 19 (0.69 to 14.65)	107 (1)	Very low* ^{1,2}	¹ Downgr once	N/A	N/A	N/A	N/A

versus dapto- mycin and ce- fazolin					due to risk of bias ² Downgy twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	ſ				
l) Van- comycin versus ce- furox- ime	34 per 1000 (17 to 70)	RR 1.08 (0. 53 to 2. 21)	884 (1)	Low* 1,2	¹ Downg once due to risk of bias ² Downg once due to impre- cision (small num- bers of events; wide	r	N/A	N/A	N/A	

Table 5.	'Summary of findings'	table - Outcome: Surgica	al Site Infections (SSIs)	(Continued)
Indie J.	ounning of mungo	able Outcomerourgie	a one micetions (0015)	(00111111111111111111111111111111111111

confi-
dence
inter-
vals
that
include
the pos-
sibility
of both
benefit
and
harm
for the
inter-
ven-
tion)

5.4. Prophylactic antibiotics to	prevent surgical site infection	after breast cancer surger	v (Jones 2014)

a) Pre- opera- tive an- tibiotic versus placebo	N/A	N/A	N/A	N/A	N/A	N/A	3/69 vs 10/ 72; RR 0.31 (0. 09 to 1. 09)	1708 (6)	High*	RR 0.74 (0. 56 to 0. 98) [†]
							17/ 110 vs 19/108; RR 0.88 (0. 48 to 1. 60)			
							29/ 164 vs 32/169; RR 0.93 (0. 59 to 1. 47)			
							8/ 144 vs 13/148; RR 0.63 (0. 27 to 1. 48)			

Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

							17/ 303 vs 26/303; RR 0.65 (0. 36 to 1. 18) 3/ 59 vs 5/ 59; RR 0.60 (0. 15 to 2. 40)				
b) Pre- opera- tive an- tibiotic versus none	N/A	N/A	N/A	N/A	N/A	N/A	9/ 187 vs 25/182; RR 0.35 (0. 17 to 0. 73) 10/ 311 vs 14/307; RR 0.71 (0. 32 to 1. 56)	987 (2)	Low* 1,2	¹ Downgr once due to impre- cision (small num- bers of events) ² Downgr due to incon- sistency (direc- tion of inter- vention effect varied be- tween studies)	28 to 0. 82) [†]
c) Peri- opera- tive an- tibi- otics versus no an- tibiotic	182 per 1000	20 per 1000 (2 to 355)	RR 0.11 (0. 01 to 1. 95)	44 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr		N/A	N/A	N/A	

Table 5.	'Summary of findings'	table - Outcome: Surg	gical Site Infections (SSIs)	(Continued)
----------	-----------------------	-----------------------	------------------------------	-------------

						twice due to impre- cision (small num- bers of events; wide					
5.5. Sys- temic antimi- crobial pro- phy- laxis for per- cuta- neous endo- scopic gas- tros- tomy (Lipp 2013) Sys- temic antibi- otic (IV) versus placebo/ no in- terven- tion/ skin an- tiseptic	242 per 1000	94 per 1000 (73 to 123)	RR 0.39 (0. 30 to 0. 51)	1271 (12)	Low*1	¹ Downgr twice due to risk of bias	N/A	N/A	N/A	N/A	OR reported by review authors and con- verted to RR by overview au- thors: OR 0.36 (0. 26 to 0. 50)
5.6. Timing of intra- venous pro- phy- lactic antibi-	41 per 1000	24 per 1000 (17 to 33)	RR 0.59 (0. 44 to 0. 81) [#]	5041 (10)	High [§]		N/A	N/A	N/A	N/A	

otics											
for pre-											
venting											
post-											
partum											
infec-											
tious											
mor-											
bidity											
in											
women											
under-											
going											
ce-											
sarean											
deliv-											
ery (
Mack-											
een											
2014)											
Pro-											
phy-											
lactic											
intra-											
venous											
antibi-											
otics											
admin-											
istered											
before											
ce-											
sarean											
incision											
versus after											
neona- tal um-											
tal um- bilical											
cord											
clamp-											
ing											
(mater-											
nal out-											
comes)											
5.7.		10 per	RR	859 (7)	Very	6 -	N/A	N/A	N/A	N/A	Intra or
Routes	1000	1000	0.49 (0.		low§	[§] Studies					intra &
of ad-			17 to 1.			with					post
minis-		30)	43)#			design					

Table 5.	'Summary of findings' table - Outcome: Surgical Site Infections (SSIs)	(Continued)
----------	--	-------------

Table 5. 'Summary of findings' table - Outcome: Surgical Site Infections (SSIs)	(Continued)
---	-------------

tration of an- tibiotic pro- phy- laxis for pre- venting infec- tion after cae- sarean sec- tion (Nab- han 2016) Intra- venous (IV) ver- sus irri- gation						limita- tions Studies include rela- tively few patients and few events and have a wide 95% CI that in- cludes both appre- ciable benefit and appre- ciable harm				
5.8. Antibi- otic pro- phy- laxis for pa- tients under- going elective laparo- scopic chole- cystec- tomy (Sanabria 2010) Antibi- otic pro- phy- laxis	33 per 1000	27 per 1000 (15 to 46)	RR 0.81 (0. 47 to 1. 42) [#]	1664 (11)	Very low*1,2	¹ Downgr twice due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that	N/A	N/A	N/A	Intra or intra & post OR re- ported by review authors and con- verted to RR by overview au- thors: OR 0.87 (0. 49 to 1. 54) [#]

Table 5.	'Summary of findings'	table - Outcome: Surgica	l Site Infections (SSIs)	(Continued)
----------	-----------------------	--------------------------	--------------------------	-------------

versus placebo or no- pro- phy- laxis						include the pos- sibility of both benefit and harm for the inter- ven- tion)					
5. 9. An- tibiotic pro- phy- laxis for her- nia repair (1000	31 per 1000 (25 to 38)	RR 0.67 (0. 54 to 0. 84) [#]	17 (7843)	Moder- ate*1	1 Down- graded once due to risk of bias	N/A	N/A	N/A	N/A	Intra or intra & post OR re- ported by review authors and con-
Sanchez- Manuel 2012) Antibi- otic pro- phy- laxis versus placebo											verted to RR by overview au- thors: OR 0.64 (0. 50 to 0. 82) [#]

a) An- tibi- otic ver- sus no antibi- otic/ placebo	N/A	N/A	N/A	N/A	N/A	N/A	5/49 vs 16/50; RR 0.32 (0. 13 to 0. 80) [#]	405 (5)	Low* 1,2		
---	-----	-----	-----	-----	-----	-----	---	---------	-------------	--	--

							2/30 vs 11/27; RR 0.16 (0. 04 to 0. 67) [#] 7/108 vs 8/49; RR 0.40 (0. 15 to 1. 03) [#] 3/13 vs 11/19; RR 0.40 (0. 14 to 1. 16) [#] 2/29 vs 12/31; RR 0.18 (0. 04 to 0. 73) [#]				
b) Du- ration of ther- apy (short- term versus long- term dura- tion an- tibi- otic)	N/A	N/A	N/A	N/A	N/A	N/A	2/31 vs 0/27; RR 4. 38 (0.22 to 87.32) [#]	1484 (7)	Moder- ate*1	¹ Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos-	78 to 1. 40) [†] Short- term: partic- ipants who re-

Table 5.	'Summary of findings' table - Outcome: Surgical Site Infections (SSIs)	(Continued)
----------	--	-------------

	14/ 100 vs 12/104; RR 1.21 (0. 59 to 2. 49) [#] 9/ 149 vs 8/145; RR 1.09 (0.	sibility who re- of both ceived benefit at and least a harm second for the intra- inter- oper- ven- ative tion) dose of antibi- otic or postop- erative dosing (or both)
	43 to 2. 76) [#] 23/ 113 vs 22/114; RR 1.05 (0. 62 to 1. 78) [#]	
	8/65 vs 8/70; RR 1.08 (0. 43 to 2. 70) [#]	
	5/71 vs 7/67; RR 0.67 (0. 22 to 2. 02) [#]	
	22/ 209 vs 23/219;	

							RR 1.00 (0. 58 to 1. 74) [#]				
c) Addi- tional aerobic cover- age ver- sus no aero- bic cov- erage	N/A	N/A	N/A	N/A	N/A	N/A	0/13 vs 3/11; RR 0.12 (0. 01 to 2. 14) [#] 3/47 vs 0/50; RR 7.44 (0. 39 to 140. 25) [#] 0/26 vs 6/23;	230 (4)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events)	16 to 0.
							RR 0.07 (0. 00 to 1. 15) [#] 3/27 vs 7/33; RR 0.52 (0. 15 to 1. 83) [#]				
d) Ad- ditional anaero- bic cov- er- age ver- sus little anaero- bic cov- erage	N/A	N/A	N/A	N/A	N/A	N/A	19/ 287 vs 44/280; RR 0.42 (0. 25 to 0. 70) [#] 18/ 121 vs	1098 (4)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to incon- sistency	47 to 0. 90) ^{†#}

							16/116; RR 1.08 (0. 58 to 2. 01) [#] 7/89 vs 9/85; RR 0.74 (0. 29 to 1. 91) [#] 9/36 vs 17/84; RR 1.24 (0. 61 to 2. 51) [#]				
e) Oral versus intra- venous	N/A	N/A	N/A	N/A	N/A	N/A	2/35 vs 1/37; RR 2. 11 (0.20 to 22.29) [#]	72 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility	

 Table 5. 'Summary of findings' table - Outcome: Surgical Site Infections (SSIs) (Continued)

										of both benefit and harm for the inter- ven- tion)	
f) Com- bined oral and intra- venous oral or intra- venous alone	N/A	N/A	N/A	N/A	N/A	N/A	9/ 169 vs 15/141; RR 0.50 (0. 23 to 1. 11) [#]	310 (1)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	
5.11. Meth- ods of de- creas- ing in- fection	N/A	N/A	N/A	N/A	No SSI data pro- vided						

	Table 5.	'Summary of findings'	table - Outcome: Surgica	al Site Infections (SSIs) (Continued)
--	----------	-----------------------	--------------------------	--------------------------	---------------

to im- prove out- comes after liver resec- tions (Gu- rusamy 2011)											
5.12. Periop- erative antibi- otics to prevent infec- tion after first- trimester abor- tion (Low 2012)	N/A	No SSI data pro- vided									

6. Management of theatre traffic (no reviews)

7. Wound irrigation (no reviews)

8. Wound closure											
8.1. Con- tin- uous versus inter- rupted skin sutures for non- ob- stetric surgery (71 per 1000	1000	RR 0.73 (0. 40 to 1. 33)	602 (4)	Very low [§]	[§] High risk of bias; the confi- dence inter- vals over- lapped 1 and either 0.75 or 1.25, or		N/A	N/A	N/A	

Table 5.	'Summary of findings'	table - Outcome:	Surgical Site Infections	(SSIs)	(Continued)

Gu- rusamy 2014a) Con- tinu- ous ver- sus in- ter- rupted skin su- tures						both. The number of events in the inter- vention and control group was fewer than 300					
8.2. Sub- cuta- neous closure versus no sub- cuta- neous closure after non- cae- sarean sur- gical proce- dures (Gu- rusamy 2014b) Subcu- taneous versus no sub- cuta- neous closure	84 per 1000	71 per 1000 (44 to 112)	RR 0.84 (0. 53 to 1. 33)	815 (6)	Very low [§]	[§] The trial (s) was (were) of high risk of bias The confi- dence inter- vals over- lapped 1 and either 0.75 or 1.25 or both The number of events in the inter- vention and control group was fewer than 300	N/A	N/A	N/A	N/A	

Table 5.	'Summary of findings'	table - Outcome: Surgical	Site Infections (SSIs)	(Continued)
----------	-----------------------	---------------------------	------------------------	-------------

a)	31 per			916 (6)	Low* 1,2		N/A	N/A	N/A	N/A	
taples ersus b-	1000	1000 (13 to 52)	0.85 (0. 43 to 1. 71)		1,2	¹ Downgr once due to					
orbable 1bcu-)2)	/1)			risk of bias					
cular iture						² Downgr					
iture						once due to					
						incon-					
						sistency (direc-					
						tion of inter-					
						vention effect					
						varied be-					
						tween studies)					
	13 per 1000	10 per 1000	RR 0.72 (0.	400 (4)	Low* 1,2	¹ Downgr	N/A	N/A	N/A	N/A	Sensi- tivity
			17 to 3. 01)			once due to					anal- ysis:
		,				impre- cision					Staple (1/177
						(small num-					versus ab-
						bers of events;					sorbab subcu-
						wide confi-					ticular
						dence inter-					(3/223
						vals					
						that include					
						the pos- sibility					
						of both benefit					
						and harm					

						for the inter- ven- tion) 2 Down- graded once due to incon- sistency (direc- tion of inter- ven- tion ef- fect var- ied be- tween studies)					
b) Barbed suture versus PDS suture	33 per 1000	31 per 1000 (6 to 167)	RR 0.96 (0. 18 to 5. 10)	188 (1)	Low*1	¹ Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	N/A	N/A	N/A	N/A	

a) Open	77 per 1000	100 per 1000	RR 1.31 (0.	1231 (10)	Very low*	¹ Downgr	N/A	N/A	N/A	N/A	
versus	1000	(71 to		(10)	1,2,3	once					
closed		142)	85)			due to					
(all)		142)	((0)			risk of					
(all)						bias					
						0143					
						² Downgr					
						once					
						due to					
						impre-					
						cision					
						(small					
						num-					
						bers of					
						events;					
						wide					
						confi-					
						dence					
						inter-					
						vals					
						that					
						include					
						the pos-					
						sibility					
						of both					
						benefit					
						and					
						harm					
						for the					
						inter-					
						ven-					
						tion)					
						³ Downgr					
						once					
						due to					
						incon-					
						sistency					
						(direc-					
						tion of					
						inter-					

8.4. Healing by primary versus secondary intention after surgical treatment for pilonidal sinus (AL-Khamis 2010) primary versus secondary intention

 Table 5. 'Summary of findings' table - Outcome: Surgical Site Infections (SSIs) (Continued)

						vention effect varied be- tween studies)				
b) Closed (mid- line) versus closed (other)	33 per 1000	124 per 1000 (62 to 246)	3.72 (1.	541 (5)	Low* 1,2	¹ Downgr once due to risk of bias ² Downgr once due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	N/A	N/A	N/A	1 study out of 5 had no event in both arms
c) Clas- sic Lim- berg versus modi- fied Lim- berg	30 per 1000	228 per 1000 (30 to 1000)	RR 7. 54 (1.00 to 57.07)	68 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr	N/A	N/A	N/A	

Table 5.	'Summary of findings	table - Outcome: Surgica	d Site Infections (SSIs)	(Continued)
----------	----------------------	--------------------------	--------------------------	-------------

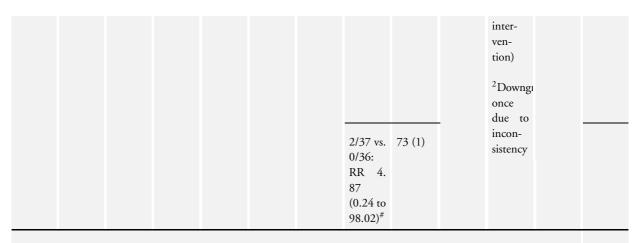
						twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)				
d) Kary- dakis ver- sus clas- sic Lim- berg	80 per 1000	260 per 1000 (91 to 743)	RR 3.25 (1. 14 to 9. 29)	100 (1)	Very low* ^{1,2}	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals	N/A	N/A	N/A	

Table 5.	'Summary of findings'	table - Outcome: Surgical Site Infections (SSIs)	(Continued)
----------	-----------------------	--	-------------

						that include the pos- sibility of both benefit and harm for the inter- ven- tion)					
8.5. Staples versus sutures for closing leg wounds after vein graft har- vesting for coro- nary artery bypass surgery (Bian- cari 2010) Staples versus sutures	80 per 1000	97 per 1000 (48 to 192)	RR 1.20 (0. 60 to 2. 39)	322 (3)	Very low*1,2	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)	cally signifi- cant differ- ence: P	258 par- ticipants with 516 leg segments	N/A	N/A	One study was ex- cluded from the pooled analysis due to the risk of a unit of anal- ysis er- ror

8.6. Tissue adhesives for closure of surgical incisions (Dumville 2014)

a) Tis- sue ad- hesives versus sutures	23 per 1000	40 per 1000 (22 to 73)	RR 1.72 (0. 94 to 3. 16)	1239 (18)	Very low [§]	[§] Study 95% CI is wide; Possi- ble unit of anal- ysis is- sues	N/A	N/A	N/A	N/A	Eight studies had no events in either group (n = 495) Sensi- tiv- ity anal- ysis was con- ducted due to the unit of anal- ysis is- sues in 3 stud- ies; show- ing sim- ilar re- sults
b) Tis- sue ad- hesives ver- sus ad- hesive tape	43 per 1000	60 per 1000 (17 to 209)	RR 1.37 (0. 39 to 4. 81) [#]	190 (3)	Low [§]	[§] Study 95% CIs are very wide Evi- dence of incon- sistency in point esti- mates. With the point esti- mate from one	N/A	N/A	N/A	N/A	


						study lying outside the 95% CIs of another					
c) Tis- sue ad- hesives versus staples	71 per 1000	99 per 1000 (21 to 463)	RR 1.39 (0. 30 to 6. 54) [#]	320 (4)	Very low [§]	^{\$} Study 95% CIs are very wide Evi- dence of point esti- mates lying in oppo- site di- rections with the es- timate for one study lying outside the 95% CI of another	N/A	N/A	N/A	N/A	One study had no events in either group (n = 70)
d) Tis- sue ad- hesives versus other tech- niques	66 per 1000	27 per 1000 (7 to 105)	RR 0.41 (0. 11 to 1. 60) [#]	249 (2)	Low [§]	[§] Study 95% CIs are very wide Single study with low event rate	N/A	N/A	N/A	N/A	One study had no events in either group (n = 40)
e) Ad- hesives ver- sus ad-	47 per 1000	38 per 1000 (7 to 200)	RR 0.82 (0. 16 to 4. 31)	148 (1)	Very low [§]	[§] Study 95% CIs	N/A	N/A	N/A	N/A	

hesives: high viscos- ity ver- sus low vis- cosity					are very wide Single study with low event rate					
f) Ad- hesives versus adhe- sives: octyl- cyanoacr late versus butyl- cyanoacr late	210 per 1000 (70 to 627)	RR 0.63 (0. 21 to 1. 88)	80 (2)	Low [§]	[§] The 95% CI esti- mate around the RR of 1.46 is very wide	N/A	N/A	N/A	N/A	One study had no events in either group (n = 43)

9. Theatre cleansing (no reviews)

Illustrative com- parative risks (95% CI) CI = confidence i interval	Ratio (RR)	ber of partici- pants (stud- ies)	•	Foot- note	partici- pants (stud- ies)	ity/cer-	Foot- note		
								Ratio (OR)	

	As- sumed risk With com- parator	Corre- spond- ing risk With inter- vention	fixed- effect		authors § assessed by review authors		with 95% CIs un- less other- wise in- dicated # ran- dom- effects, all other R R		overview authors			
4.2. Periop- erative gly- caemic control for di- abetic pa- tients under- going surgery (Buch- leitner 2012) Inten- sive ver- sus con- ven- tional gly- caemic control	N/A	N/A	N/A	N/A	N/A	N/A	0/10 vs. 2/22: RR 0. 42 (0.02 to 7.99) [#]	32 (1)	Very low*1,2	¹ Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the	18 to 8.	

	1 · ·			
4.3. Peri-operative glycaemic contro	regimens for n	reventing surgical	sife infections	in adults (Kao 2009)
inor i en operative grjeaenne eenne				

Intra- and post- oper- ative strict versus conven- tional gly- caemic control with intra- venous insulin	N/A	N/A	N/A	N/A	N/A	N/A	6/40 vs. 7/38; RR 0. 81 (0.30 to 2.20)	78 (1)	Low*1	¹ Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)
Intra- oper- ative strict	N/A	N/A	N/A	N/A	N/A	N/A	4/ 185 vs. 0/186; RR 9.	371 (1)	Low*1	¹ Downgr twice

versus conven- tional gly- caemic control with insulin infu- sion							05 (0.49 to 166.88)			due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)		
4.4. Periop- erative in- crease in global blood flow to explicit defined goals and out- comes fol- lowing surgery (Grocott 2012) In- creased global	66 per 1000	44 per 1000 (26 to 74)	RR 0.67 (0. 40 to 1. 13)	1202 (15)	Low*1	1 Down- graded twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit	N/A	N/A	N/A	N/A	Time inter- vention started - Intra- opera- tive; 3 stud- ies have no events in either group (n= 177)	

blood flow versus control						and harm for the inter- ven- tion)						
	164 per 1000	137 per 1000 (89 to 212)	RR 1.07 (0. 87 to 1. 33) [#]	4918 (8)	Low* 1,2	1Down-gradedoncedue toimpre-cision(smallnum-bers ofevents;wideconfi-denceinter-valsthatincludethe pos-sibilityof bothbenefitandharmfor theinter-ven-tion)2Down-gradedoncedue tohetero-geneity	N/A	N/A	N/A	N/A	2 stud- ies have no events in either group (n= 393)	

5.1. Antibiotic prophylaxis for the prevention of methicillin-resistant Staphylococcus aureus (MRSA) related complications in surgical patients (Gurusamy 2013)

Co-	146 per	79 per	RR	99 (1)	Low*1		N/A	N/A	N/A	N/A
amoxi-	1000	1000	0.54 (0.			¹ Downgi				
clav		(25 to	17 to 1.			twice				

Table 6.	'Summary of findings' table - Outcome: Mortality	(Continued)
----------	--	-------------

or cefo- taxime versus placebo		251)	72)			due to impre- cision (small num- bers of events; wide confi- dence inter- vals that include the pos- sibility of both benefit and harm for the inter- ven- tion)				
Van- comycin versus ce- furox- ime	2 per 1000	5 per 1000 (0 to 50)	RR 2. 02 (0.18 to 22.18)	884 (1)	Very low*1,2	¹ Downgr once due to risk of bias ² Downgr twice due to impre- cision (small num- bers of events; wide confi- dence inter- vals that	N/A	N/A	N/A	

Table 6.	'Summar	y of findings'	table - Outcome:	Mortality	(Continued)
----------	---------	----------------	------------------	-----------	-------------

include	
linciude	
the pos-	
sibility	
of both	
benefit	
and	
harm	
for the	
inter-	
ven-	
tion)	

5.11. Methods of decreasing infection to improve outcomes after liver resections (Gurusamy 2011)

Topical		96 per		59 (1)	Very	[§] High	N/A	N/A	N/A	N/A	
povi-	1000	1000	1.35 (0.		low§	risk of					
done			24 to 7.			bias					
iodine		538)	53)			The					
gel ver-						number					
sus no						of tri-					
topical						als were					
povi-						too few					
done						to assess					
iodine						incon-					
gel						sistency					
						The					
						confi-					
						dence					
						inter- vals of					
						vals of risk ra-					
						risk ra- tio					
						over-					
						lapped 0.					
						0. 75 and					
						1.25					
						Publi-					
						cation					
						bias					
						could					
						not be					
						assessed					
						be-					
						cause of					
						the few					
						trials					
						triais					

Table 7. GRADE interventions according to outcomes

Outcome	High-certainty	evidence	Moderate-certa	iinty evidence	Low-certainty	Very low-cer- tainty evidence/no studies	
	(Important/ less important	What doesn't work (no im- portant bene- fit/harm)	bly works (Important/ less important	bly doesn't work (no im-	work (Impor- tant/less im- portant bene-	difference (no	Uncertainty

SSI	Adhesive drape (harm)	N/A	Antibiotic pro- phylaxis (her- nia repair)	Iodine-im- pregnated ad- hesive drapes	In- tra- and post- operative strict glycaemic con- trol with intra- venous glucose insulin-potas- sium infusion	Aqueous solu- tions	2% iodine in 90% alcohol
	Prophylac- tic intravenous antibiotics ad- ministered be- fore caesarean incision	N/A	Antibiotic pro- phylaxis (cae- sarean section)		In- creased global blood flow	Double glov- ing	Iodophor-in- alcohol paint
	Preoper- ative antibiotic (breast cancer surgery)	N/A		N/A	Antibiotic pro- phy- laxis (co-amox- iclav or cefo- taxime)	Dis- posable surgi- cal face masks	Chlorhexidine gluconate
	N/A	N/A	N/A	N/A	N/A	PI paint	Scalpel versus electrosurgery
	N/A	N/A	N/A	N/A	Systemic antibiotic (IV)	Aqueous PI scrub	No-scalpel
	N/A	N/A	N/A	N/A	Antibiotic pro- phy- laxis (colorec- tal surgery)	Cholorhexi- dine and cetrimide scrub	Warming of IV and irrigation fluids
	N/A	N/A	N/A	N/A	Additional aer- obic cov- erage (colorec- tal surgery)	Vaginal prepa- ration	Intensive glycaemic con- trol
	N/A N/A		N/A	N/A	Additional anaerobic cov- erage (colorec- tal surgery)	Skin prepara- tion (drape; alcohol scrub with iodophor drape; parachlorometax with iodine)	phylaxis (pefloxacin; er- tapenem; cefamandole;

Table 7. GRADE interventions according to outcomes (Continued)

Table 7. GRADE interventions according to outcomes (Continued)

						tomycin and cefazolin; van- comycin and cefazolin; dap- tomycin and cefazolin; cephalosporin drug combina- tion)
N/A	N/A	N/A	N/A	N/A	Tech- niques and ma- terials for skin closure	IV versus irri- gation
N/A	N/A	N/A	N/A	N/A	Microbial sealant	Antibiotic pro- phylaxis (elec- tive laparo- scopic chole- cystectomy)
N/A	N/A	N/A	N/A	N/A	Intra- and postopera- tive strict gly- caemic control	Oral versus in- travenous (an- timicrobial prophylaxis for colorectal surgery)
N/A	N/A	N/A	N/A	N/A	High perioper- ative inspira- tory oxygen	Meth- ods of decreas- ing infection to improve outcomes after liver resections
N/A	N/A	N/A	N/A	N/A	Antibiotic pro- phylaxis (van- comycin; sin- gle cephalosporin)	Perioperative antibiotics to prevent infec- tion after first- trimester abor- tion
N/A	N/A	N/A	N/A	N/A	Com- bined oral and IV versus alone (antimicrobial prophylaxis for colorectal surgery)	Con- tinuous com- pared with in- terrupted skin sutures

Table 7.	GRADE interventions according to outcome	es (Continued)
----------	--	----------------

	N/A	N/A	N/A	N/A	N/A	Intraoper- ative strict gly- caemic control	Subcutaneous closure
	N/A	N/A	N/A	N/A	N/A	N/A	Open ver- sus closed (pri- mary ver- sus secondary intention)
	N/A	N/A	N/A	N/A	N/A	N/A	Staples versus sutures
	N/A	N/A	N/A	N/A	N/A	N/A	Tissue ad- hesives for clo- sure
Mortality	N/A N/A		N/A	N/A	N/A	In- creased global blood flow	Intensive gly- caemic control
	N/A	N/A	N/A	N/A	N/A	In- tra- and post- operative strict or Intraopera- tive strict glycaemic con- trol	sus short-dura-
	N/A	N/A	N/A	N/A	N/A	High perioper- ative inspira- tory oxygen	Topical PI gel
	N/A	N/A	N/A	N/A	N/A	phy-	Antibiotic pro- phylaxis (van- comycin and cefuroxime)

IV: intravenous; NA: not applicable; PI: povidone iodine; SSI: surgical site infection

APPENDICES

Appendix I. Summary of common topical antiseptics used in preoperative skin decontamination

Antiseptic agents

Alcohol

Alcohol denatures the cell wall proteins of bacteria. Alcohol rubs are usually available in preparations of 60% to 90% strength and are effective against a wide range of gram-positive and gram-negative bacteria, *Mycobacterium tuberculosis*, and many fungi and viruses. The three main alcohols used are ethanol, isopropanol and n-propanol, and some rubs may contain a mixture of these. Alcohol-based solutions usually (but not always) contain additional active ingredients to combine the rapid bacteriocidal effect of alcohol with more persistent chemical activity.

lodine and iodophors

Iodine and iodophors are iodine solutions that are effective against a wide range of gram-positive and gram-negative bacteria, the tubercle bacillus (TB), fungi and viruses. These penetrate cell walls, then oxidise and substitute the microbial contents with free iodine (Hardin 1997; Mangram 1999; Warner 1988). Iodophors contain a surfactant or stabilising agent that liberates the free iodine (Wade 1980). Iodophor has largely replaced iodine as the active ingredient in antiseptics. Iodophor comprises free iodine molecules bound to a polymer such as polyvinyl pyrrolidine (i.e. povidone), so is often termed povidone iodine (PI) (Larson 1995). Typically, 10% PI formulations contain 1% available iodine (Larson 1995; Reichman 2009). PI is soluble in both water and alcohol, and available preparations include aqueous iodophor scrub and paint, aqueous iodophor one-step preparation with polymer (3M), and alcoholic iodophor with water insoluble polymer (DuraPrep).

Chlorhexidine

Chlorhexidine is a biguanide. It is effective against a wide range of gram-positive and gram-negative bacteria, lipophilic viruses and yeasts. Although its immediate antimicrobial activity is slower than alcohols, it is more persistent because it binds to the outermost layer of skin.

Triclosan

Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) has been incorporated in detergents (0.4% to 1%) and alcohols (0.2% to 0.5%) used for hygienic and surgical hand antisepsis or preoperative skin disinfection. It inhibits *Staphylococci*, coliforms, enterobacteria and a wide range of gram-negative intestinal and skin flora.

Appendix 2. Search strategy

#1MeSH descriptor: [Surgical Wound Infection] explode all trees #2MeSH descriptor: [Surgical Wound Dehiscence] explode all trees #3(surg* near/5 infect*):ti,ab,kw #4(surg* near/5 wound*):ti,ab,kw #5(surg* near/5 site*):ti,ab,kw #6(surg* near/5 incision*):ti,ab,kw #7(surg* near/5 dehisc*):ti,ab,kw #8(wound* near/5 dehisc*):ti,ab,kw #9(wound* near/5 infect*):ti,ab,kw #10(wound near/5 disruption*):ti,ab,kw #11(wound next complication*):ti,ab,kw

Re- view	Study eligi- bil- ity crite- ria	Iden- tifi- ca- tion and se- lec- tion of stud- ies	Data c	collectio	on and s	tudy ap	praisal	Synth	esis and	findinş		Risk of bias in the review				
	Pri- mary study eligi- bility cri- teria were pre- spec- ified, clear, and ap- pro- pri- ate to the re- view ques- tion	Were all pri- mary stud- ies that would have met in the in- clu- sion cri- teria in- cluded in the re- view?	in data col- lec- tion	Suffi- cient study char- ac- teris- tics avail- able	All rele- vant study re- sults were col- lected	Ap- pro- pri- ate crite- ria to assess risk of bias	Ef- forts made to min- imise error in risk of bias as- sess- ment	Syn- thesis in- cluded all stud- ies	All pre- de- fined anal- yses fol- lowed	Syn- thesis was ap- pro- pri- ate	Het- ero- gene- ity was ad- dressec	Ro- bust find- ings e.g. as- sessed with fun- nel plot or sensi- tivity anal- yses	Ad- dressec bi- ases in the syn- thesis	pre- ta- tions of find- ings ad-	Rele- vance of iden- tified stud- ies to the re- search ques- tion was ap- pro- pri- ately con- sid- ered	Re- view- ers avoided em- pha- sising re- sults on the basis of their sta- tis- tical sig- nifi- cance
AL- Khami 2010	Y	Y	Y	Y	Y	Y	Y	Y	Y	РҮ	РҮ	PN	Y	РҮ	Y	Y
Bian- cari 2010	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	PN	Y	РҮ	Y	Y

Appendix 3. Assessment by ROBIS signalling questions

(Continued)

Buch- leit- ner 2012	Y	Y	Y	Y	Y	Y	Y	Y	Y	РҮ	Y	Y	РҮ	РҮ	Y	Y
Camp- bell 2015	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	PN	Y	Y
Charoe 2017	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Cook 2014	Y	Y	Y	Y	Y	N	Y	PN	РҮ	PN						
Dumvi 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Dumvi 2015	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Gro- cott 2012	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Gyte 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Gu- rusamy 2011		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Gu- rusamy 2013		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Gu- rusamy 2014a		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Gu- rusamy 2014b		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Haas 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	РҮ	Y	Y

(Continued)

Ha- diati 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	PN	РҮ	РҮ	Y	Y
Jones 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Kao 2009	Y	Y	Y	Y	Y	Y	Y	Y	Y	РҮ	РҮ	PN	РҮ	РҮ	Y	Y
Lipp 2013	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Low 2012	Y	Y	Y	Y	Y	Ν	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Mac- keen 2012	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Mac- keen 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Nab- han 2016	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	РҮ	Y	Y	Y	Y
Nel- son 2014	Y	Y	Y	Y	Y	РҮ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Sanabr 2010	Y	Y	Y	Y	Y	РҮ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Sanche	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Manue 2012	2															
Smaill 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Tan- ner 2006	Y	Y	Y	Y	Y	Ν	Y	Y	Y	РҮ	РҮ	Ν	РҮ	РҮ	Y	Y

(Continued)

Vin- cent 2016	Y	Y	Y	Y	Y	Y	Y	Y	Y	РҮ	PY	PN	РҮ	PY	Y	Y
Web- ster 2015	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Wet- ter- slev 2015	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Wood 2016	Y	Y	Y	Y	Y	Y	Y	Y	Y	РҮ	Y	N	РҮ	РҮ	Y	Y
<i>Footno</i> Y = yes		probably	yes; N	= no; ar	nd PN =	probab	ly no									

CONTRIBUTIONS OF AUTHORS

Zhenmi Liu: conceived, designed and coordinated the overview; extracted data; analysed and interpreted data; undertook and checked quality assessment; performed statistical analysis; produced the first draft of the overview; contributed to writing and editing the overview; performed previous work that was the foundation of the current overview; wrote to study authors / experts / companies; approved the final overview prior to submission and is a guarantor of the overview.

Jo Dumville: conceived, designed and coordinated the overview; extracted data; checked the quality of data extraction; analysed and interpreted data; checked the quality of the statistical analysis; produced the first draft of the overview; contributed to writing and editing the overview; made an intellectual contribution to the overview; advised on the overview; secured funding; performed previous work that was the foundation of the current overview; wrote to study author / experts / companies; and approved the final overview prior to submission.

Gill Norman: advised on the overview; and approved the final overview prior to submission.

Maggie Westby: advised on the overview; and approved the final overview prior to submission.

Jane Blazeby: advised on the overview; secured funding; and approved the final overview prior to submission.

Emma McFarlane: advised on the overview; and approved the final overview prior to submission.

Nicky Welton: advised on the overview; and approved the final overview prior to submission.

Louise O'Connor: advised on the overview; and approved the final overview prior to submission.

Julie Cawthorne: advised on the overview; and approved the final overview prior to submission.

Ryan George: advised on the overview; and approved the final overview prior to submission.

Emma Crosbie: advised on the overview; and approved the final overview prior to submission.

Amber Rithalia: advised on the overview; and approved the final overview prior to submission.

Hung-Yuan Cheng: checked quality assessment; and approved the final overview prior to submission.

Contributions of the editorial base:

Nicky Cullum (Co-ordinating Editor): edited the overview; advised on methodology, interpretation and overview content; approved the final overview prior to publication.

Gill Rizzello (Managing Editor): co-ordinated the editorial process; advised on content; edited the overview. Ursula Gonthier (Editorial Assistant): edited the Plain Language Summary and reference sections.

DECLARATIONS OF INTEREST

Zhenmi Liu: my employment at the University of Manchester is supported by a grant from the National Institute for Health Research (NIHR) UK (NIHR Systematic Review Fellowships).

Jo Dumville: I received research funding from the National Institute for Health Research (NIHR) UK for the production of systematic reviews focusing on high priority Cochrane Reviews in the prevention and treatment of wounds.

Gill Norman: my employment at the University of Manchester was funded by the National Institute for Health Research (NIHR) UK and focuses on high priority Cochrane Reviews in the prevention and treatment of wounds.

Maggie Westby: my employment at the University of Manchester was funded by the National Institute for Health Research (NIHR) UK and focuses on high priority Cochrane Reviews in the prevention and treatment of wounds.

Jane Blazeby: I receive funding from the National Institute of Health Research to undertake a feasibility study to examine whether a full trial of different types of dressing or no dressing is possible (NIHT HTA Bluebelle study).

Emma McFarlane: none known.

Nicola Welton: I have received research grants from the NIHR and the MRC. Pfizer part-fund a junior researcher working on a methodology project using historical data in a clinical area unrelated to this project. I have received honoraria from ABPI for delivering masterclasses on evidence synthesis. I have delivered a short-course on network meta-analysis to ICON plc, the funds from which were paid to my institution.

Louise O'Connor: none known.

Julie Cawthorne: none known.

Ryan George: none known.

Emma Crosbie: I am an employee of the University of Manchester and my institution has received funds in return for my membership of the CRUK Population Health Early Diagnosis Funding Panel.

Amber Rithalia: none known.

Hung-Yuan Cheng: none known.

SOURCES OF SUPPORT

Internal sources

• Division of Nursing, Midwifery and Social Work, School of Health Sciences University of Manchester, UK.

External sources

• National Institute for Health Research (NIHR), UK.

This project was supported by the National Institute for Health Research, via Cochrane Infrastructure and Cochrane Programme Grant funding (NIHR Cochrane Programme Grant 13/89/08 - High Priority Cochrane Reviews in Wound Prevention and Treatment) to Cochrane Wounds. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Systematic Reviews Programme, NIHR, NHS or the Department of Health.

• National Institute for Health Research (NIHR) Systematic Review Fellowships (NIHR-RMFI-2015-06-52 Zhenmi Liu), UK.

• National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care (NIHR CLAHRC) Greater Manchester Centre, UK.

Jo Dumville was partly funded by the National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care (NIHR CLAHRC) Greater Manchester. The funder had no role in the design of the studies, data collection and analysis, decision to publish, or preparation of the manuscript. However, the review may be considered to be affiliated to the work of the NIHR CLAHRC Greater Manchester. The views expressed herein are those of the authors and not necessarily those of the NHS, NIHR or the Department of Health.

• NIHR Biomedical Centre, Bristol, UK.

This study was supported by the NIHR Biomedical Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

• NIHR Manchester Biomedical Research Centre, UK.

This review was co-funded by the NIHR Manchester Biomedical Research Centre. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.