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ABSTRACT 

Lightweight, thin-walled structures stiffened by a set of stringers or ribs are widely used in many 
engineering applications. Thus, the need for the structural capability assessment of such structures 
has increased and development of accurate, yet computationally efficient, models has become a 
major interest to industry. We present a novel approach for the static analysis of stiffened structures 
using a one-dimensional (1D) refined beam model. The approach is based on Carrera Unified 
Formulation (CUF), and can recover complex, three-dimensional (3D) stress fields in a 
computationally efficient manner. As a novelty, recently developed hierarchical set of expansion 
functions, based on Lagrange polynomials, namely Serendipity Lagrange expansions (SLE), are used 
to define cross-sectional displacements. In this scheme, the beam’s cross-section is discretised using 
four-node Lagrange elements, which allows local stress-concentrations to be modelled. Further, the 
hierarchical nature of Serendipity Lagrange expansions within each cross-sectional element make it 
suitable for predicting higher-order effects. The higher-order expansion functions also improve the 
geometrical approximation of curved sections by employing a local mapping technique based on a 
blending function method. In the present work, the so-called 1D CUF-SLE model is used to analyse 
flat and curved panels stiffened with transverse ribs and longitudinal stringers. The performance of 
the proposed approach in terms of computational cost and precision is assessed in comparison to 
reference solutions obtained by employing 3D finite element (FE) analysis in ANSYS. Our results 
show the capability of the present formulation to model complex structures which otherwise could 
only be done with computationally expensive 3D FE analysis.  
 
1 INTRODUCTION 

Stiffened structures are extensively used in many engineering fields, namely the aerospace, 
automobile, naval and civil engineering industries. The reason is due to their high strength-to-weight 
ratio, which is obtained by reinforcing thin-walled shells with a set of stiffeners, either transversal ribs 
or longitudinal stringers. Further, composite materials add significant value to these structures’ 
application. Therefore, determination of accurate stress/strains in stiffened composite components is 
of prime interest for structural analysts. Researchers have proposed various models and techniques to 
analyse the static response of these structures. The simplest approach to studying a stiffened panel is 
replacing it with an equivalent orthotropic plate of constant thickness, obtained by smearing-out the 
stiffness property of ribs (or stiffeners) over the plate [1]. However, this method generally leads to 
erroneous results if the stiffeners are not closely spaced. Another approach is employing a discrete 
analysis technique, where the plate and the stiffeners are modelled separately while maintaining 
continuity of displacements and forces at the interface [2]. A similar method was proposed where the 
portion of a skin between the stiffeners are modelled, assuming the edges as simply-supported or 
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clamped, and several closed-form solutions are available for isotropic and composite materials [3, 4]. 
Despite various analytical and semi-analytical methods, only a few of them allow flat and curved 
composite panels to be studied under combined loading conditions and therefore, more emphasis is 
being laid on numerical techniques using energy principles, the finite element method, constraint 
method and boundary element method [5]. Out of these, the finite element method (FEM) is widely 
adopted as a design and analysis tool in many industries. However, the accuracy of the solution 
obtained depends upon the type of element used. Discretising the reinforced structure with a finite 
number of three-dimensional (3D) or solid elements, yields precise results as their kinematics is not 
afflicted by fundamental assumptions. But this requires calculation of a large number of unknowns 
which leads to high computational cost. In contrast, using 1D elements (for stringers) and 2D elements 
(for the panel) can be economical but the accuracy of the solution is not guaranteed. As these elements 
are based on classical structural theories, they are unable to capture non-classical effects like severe 
transverse shear deformations and are only applicable to regions remote from boundary constraints, 
discontinuities and points of load application. The errors get further compounded when employed for 
composite plates due to the low ratio of transverse shear stiffness to bending stiffness. This effect will 
exacerbate in stiffened composite structures and have been the focus of attention in several papers 
[6, 7, 8]. 

To develop a benchmark solution that captures non-classical phenomena in stiffened plates and 
predicts 3D stress fields accurately, it is required to rigorously model the plate and stiffeners with 3D 
solid elements. However, these models are computationally expensive when used for laminates with 
a large number of layers, in optimization studies, or for non-linear analyses. Hence, there is a need to 
develop a simpler model which rules out the requirement for a complete 3D analysis of the stiffener 
and yet accurately captures non-classical effects in stiffened structures. 

The use of refined structural theories can be an alternative to classical approaches and is able to 
provide accurate solutions [9]. Of relevance to the present work, one of the most recent contributions 
to the development of refined beam theories is the Unified Formulation by Carrera and co-workers 
[10, 11]. The formulation provides 1D (beam) and 2D (plate and shell) models that go beyond the 
classical approximations by exploiting a compact, hierarchical notation that allows most classic and 
recent formulations to be retrieved from one, hence unified, model. The displacement field is 
expressed over the cross-section (beam case) and through the thickness (plate and shell cases) by 
employing various expansion functions including Taylor (TE) polynomials, Lagrange (LE) polynomials, 
exponential and trigonometric functions, Chebyshev and Legendre polynomials. Amongst these, TE 
and LE models are most widely adopted. The recently developed Serendipity Lagrange expansion (SLE) 
model is found to solve some of the shortcomings of these commonly used Carrera Unified 
Formulation (CUF) beam models [12]. The SLE model combines two of the main features of TE and LE 
models, i.e. it is hierarchical and allows for numerically stable cross-sectional refinements via 
remeshing. With the hierarchical approach, it is easy to build higher-order models which further helps 
in the correct mapping of curved sections.  

In this work, a 1D CUF-SLE model, derived and assessed in the previous work [12], is used for the 
analysis of stiffened flat panel. The results are compared with those obtained by 3D finite element 
analysis performed in a commercial code, ANSYS. Further, existing model capabilities are extended by 
employing a higher-order mapping technique, based on blending functions, to describe curved 
sections. To the authors’ knowledge, this enhanced model is used for the first time in the literature to 
compute 3D stress fields in a curved stiffened panel. 

The remainder of the paper is structured as follows.  Section 2 provides an overview of 1D Carrera 
Unified Formulation based on Serendipity Lagrange expansions. Section 3 presents a brief summary of 
the mapping techniques employed herein for analysing curved cross-sections. Numerical results 
obtained for flat and curved panels are found in Section 4. Finally, conclusions are drawn in Section 5.  
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2 ONE-DIMENSIONAL UNIFIED FORMULATION  

CUF relies on a displacement-based formulation of the finite element method. In this setting, the 
3D displacement field is given as 

 

 
 

 

𝑼(𝑥, 𝑦, 𝑧) = {

𝑢𝑥(𝑥, 𝑦, 𝑧)

𝑢𝑦(𝑥, 𝑦, 𝑧)

𝑢𝑧(𝑥, 𝑦, 𝑧)

} . 

 

 

 
 

(1) 
 

To overcome the limitations of classical beam models and to predict displacement fields more 
accurately, one typical way is to enrich the kinematics. In CUF, refined beam models with an arbitrary 
number of terms in the kinematic field can be readily developed. Consider a beam-like structure, where 
the beam extends along y-axis and cross-section lie in the xz-plane. The displacement field 𝑼(𝑥, 𝑦, 𝑧) 
is written as a product of two functions: cross-section expansion functions, 𝐹(𝑥, 𝑧), and 1D Lagrange 
shape functions, 𝑁(𝑦), along the beam axis. In principle, these functions can have as many terms as 
desired. The more the terms, the richer the kinematics. In the current formulation, the beam is 
discretised along the length with traditional 1D finite elements and cross-sectional deformations are 
approximated using SLE functions as explained in Section 2.1. Mathematically, this means that the 
displacement field and its variation can be written as 

 

 
 

 

𝑈 = 𝐹𝜏(𝑥, 𝑧)𝑁𝑖(𝑦)𝑢𝑖𝜏 , 
δ𝑈 = 𝐹𝑠(𝑥, 𝑧)𝑁𝑗(𝑦)δ𝑢𝑗𝑠 , 

 

 

(2) 
 

with 𝜏, 𝑠 = 1, . . . , 𝑚, where 𝑚 is the number of terms that depends on the order of expansion; 𝑖, 𝑗 =
1, . . . , 𝑁𝑁𝐸 , with 𝑁𝑁𝐸  being the number of nodes per element; and finally, 𝑢𝑖𝜏  and 𝑢𝑗𝑠  are the 

generalised displacement vectors.  
The governing equations are derived using the Principle of Virtual Displacements (PVD) in the static 

formulation  
 

 
 

 

δ𝑊𝑖𝑛𝑡 = δ𝑊𝑒𝑥𝑡  , 
 

 

(3) 
 

where δ  denotes virtual variation with respect to the displacements, and 𝑊𝑖𝑛𝑡  and 𝑊𝑒𝑥𝑡  denote 
internal and external work, respectively. 

The internal work can be written as 
 

 
 

 

𝛿𝑊𝑖𝑛𝑡 = ∫ ∫ 𝛿휀𝑇𝜎
𝛺𝑙

𝑑𝛺𝑑𝑙 , 
 

 

(4) 
 

where 𝑙  is the length of the beam and Ω  represents the surface of the cross-section domain. By 
considering the kinematic field as given by equation (2) and the 3D constitutive and geometrical 
relations [10], the expression of the internal work can be rewritten as 

 

 
 

 

δ𝑊𝑖𝑛𝑡 = 𝛿𝑢𝑗𝑠
𝑇 𝑲𝜏𝑠𝑖𝑗𝑢𝑖𝜏 , 

 

 

(5) 
 

where 𝑲𝜏𝑠𝑖𝑗  represents the 3 x 3 fundamental nucleus of the element stiffness matrix, derived 
assuming small displacements and strains, in the present work. It is to be noted that the final 
expression of the fundamental nucleus is invariant of the choice of expansion polynomials and beam 
shape functions. Fundamental nuclei are assembled in a global stiffness matrix following the standard 
finite element procedure. A detailed description of 1D formulations based on CUF can be found in [10, 
11].  
 
2.1 Serendipity Lagrange Expansion model  

The SLE model is derived by adopting a hierarchical set of Lagrange-type polynomials to expand the 
generalised displacement variables over the cross-section. In this model, cross-sections are discretised 
using four-node Lagrange sub-domains and the displacement field within the sub-domains can be 
enriched by increasing the order of local Serendipity Lagrange expansion. Each physical sub-domain is 
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mapped into a natural reference system as shown in Figure 1. Three different sets of 2D-polynomials 
are required to define the cross-section expansion functions.  

• Polynomials of type I: These are the same as linear Lagrange polynomials, defined to satisfy vertex 
continuity.  

 

 
 

 

𝐹τ
𝐼 =

1

4
(1 + 𝜉𝑠𝜉)(1 + 𝜂𝑠𝜂)        𝜏 = 1, 2, 3, 4, 

 

 

(6) 
 

where (𝜉𝑠, 𝜂𝑠) are coordinates of the four corner nodes of sub-domain in the natural reference system. 

• Polynomials of type II: These are defined to satisfy the continuity of displacements across cross-
sectional sub-domains, i.e. side continuity. 

 

 
 

 

𝐹τ
𝐼𝐼 =

1

4
(1 − η)𝑝𝑟(ξ)       𝜏 = 5, 9, 13, 18, … 

  𝐹τ
𝐼𝐼 =

1

4
(1 + ξ)𝑝𝑟(η)       𝜏 = 6, 10, 14, 19, … 

 𝐹τ
𝐼𝐼 =

1

4
(1 + η)𝑝𝑟(−ξ)      𝜏 = 7, 11, 15, 20, … 

𝐹τ
𝐼𝐼 =

1

4
(1 − ξ)𝑝𝑟(η)        𝜏 = 8, 12, 16, 21, … 

 

 

(7) 
 

where 𝑝𝑟  corresponds to the 1D Lagrange-type polynomials as given in  [13].  

• Polynomials of type III: These are defined in the interior subset, also called internal expansions 
and are included for order, 𝑁 ≥ 4. In total, there are (𝑁 − 2)(𝑁 − 3)/2 internal polynomials 
given by 

 

 
 

 

𝐹𝜏
𝐼𝐼𝐼 = 𝑝𝑛(𝜉)𝑝𝑚(𝜂)        𝜏 = 17, 22, 23, … 

 

 

(8) 
 

with 𝑛, 𝑚 = 2, 3, . . . , 𝑁  and constrained by 𝑛 + 𝑚 = 𝑟  and 𝑛 + 𝑚 ≤ 𝑁 , where 𝑟 = 1, 2, . . . , 𝑁 . The 
reader is referred to [12] for more detailed treatment of SLE models.  

 
3 CROSS-SECTION MAPPING 

A correct geometrical description of the structure is of fundamental importance when dealing with 
complex geometries and curved section beams. The SL expansion functions, as defined in the previous 
section, are used to enrich the kinematics in the cross-section. These functions are integrated over the 
cross-section of the beam, which requires transformation of the coordinates. If the edges of a 
quadrilateral element are straight, the approximation of the geometry is obtained through linear 
mapping by using linear Lagrange polynomials. However, to represent curved edges, higher-order 
polynomials can be used [14]. In this paper, since the geometries analysed are represented by circular 
arcs, a non-linear function representing equation of a circle is employed. The choice of this function 
guarantees the exact description of shape, normal and tangents at each point on the curve, unlike 
using higher-order polynomials which can lead to numerical errors due to approximation.  

To understand the procedure, consider a section as shown in Figure 2(a) which is discretised using 
quadrilateral domains. In each domain, two of the sides are curved and the coordinates of these sides 
are represented by 

 

 
 

 

𝑥 = 𝑥𝑐1(ξ) + 𝑥𝑐2(ξ),  
𝑧 = 𝑧𝑐1(ξ) + 𝑧𝑐2(ξ), 

 

 

(9) 
 

Figure 1: Mapping from physical sub-domain to natural reference system 
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where 𝑥𝑐1(ξ), 𝑧𝑐1(ξ) and 𝑥𝑐2(ξ), 𝑧𝑐2(ξ) are functions, as given below, that represents the curved edges 
with radius of curvature 𝑟1and 𝑟2.  

 

 
 
 

 

𝑥𝑐1(ξ) =
1

2
(1 − ξ)𝑥1 +

1

2
(1 + ξ)𝑥2, 

𝑥𝑐2(ξ) =
1

2
(1 + ξ)𝑥3 +

1

2
(1 − ξ)𝑥4, 

𝑧𝑐1(ξ) = √(𝑟1
2 − 𝑥𝑐1

2 ), 

𝑧𝑐2(ξ) = √(𝑟2
2 − 𝑥𝑐2

2 ), 

 

 

(10) 
 

where 𝑥1, 𝑥2, 𝑥3, 𝑥4 are the x-coordinates of the corners of a quadrilateral element as shown in Figure 
2(b). These functions are defined in such a way that 𝑥𝑐1(−1) = 𝑥1  and 𝑥𝑐1(1) = 𝑥2 . Similarly, 
𝑥𝑐2(−1) = 𝑥3 and 𝑥𝑐2(1) = 𝑥4. Applying the blending function method, the mapping functions are 
written as 

 

 
 

 

𝑥 =
1

2
(1 − η)𝑥𝑐1 +

1

2
(1 + η)𝑥𝑐2, 

𝑧 =
1

2
(1 − η)𝑧𝑐1 +

1

2
(1 + η)𝑧𝑐2. 

 

 

(10) 
 

This procedure can be expanded to all the edges in case of a quadrilateral domain with all sides curved.  

 
4 NUMERICAL RESULTS  

This section aims to investigate the behaviour of previously introduced 1D CUF, based on SLE model, 
in the analysis of stiffened structures. The first part of this work presents the static analysis of a flat 
panel with stiffeners reinforced in longitudinal and transverse directions. In the second part, a similar 
but curved panel is used to assess the validity of the mapping techniques employed on the SLE model 
for analyzing curved cross-section geometries. These examples have been selected to show the 
capabilities of the present formulation in representing a wide range of structures used in civil and 
aerospace industries. The present formulation requires these structures to be modelled as a 1D beam 
with different cross-sections running along the length. To understand this modelling strategy, consider 
two beam models, beam-A and beam-B. Beam-A represents the panel reinforced with longitudinal 
stringers, with the beam axis aligned along its length and cross-section as shown in Figure 3(a) and 4(a) 
for flat and curved panels, respectively. While beam-B represents the panel reinforced with a 
transverse stiffener, with beam axis aligned along the thickness direction and the section normal to it 
is treated as its cross-section as shown in Figure 3(b) for flat and Figure 4(b) for curved. These beam 
models are connected along the length to get the desired structures. The cross-section discretisation 
feature of SLE model within the CUF framework allows different cross-section beams to connect and 
maintain the displacement continuity at the interface.  

All the essential geometrical parameters for stiffened flat and curved panels, considered in the 
present study, are described in Figure 3 and Figure 4.  The constituent material is isotropic with Young’s 

Figure 2: Mapping curved element 



 Mayank Patni, Sergio Minera, Paul M. Weaver and Alberto Pirrera  

modulus 𝐸 = 71.7 GPa and Poisson’s ratio 𝜈 = 0.3. The structures are clamped at one end (𝑦 = 0) 
and a surface load of 1 kN is applied across the section at the other end (𝑦 = 1 m). The load applied 
in case of a flat panel is in the negative z-direction, whereas in case of a curved panel it is in the positive 
z-direction. For both cases, beam-A and beam-B are discretised using five- and three-B4 (four-node 
cubic) elements, respectively, which adds up to 29 B4 elements in the complete structure. It is to be 
noted that the distribution of nodes, within each beam subset, follows the Chebyshev distribution, as 
given in [12]. In doing so, the accuracy of the results is increased near the stringer-rib interface as well 
as towards the clamped end, without the need to increase the total number of beam nodes. Further, 
the cross-sections of beam-A and beam-B are discretised with twenty-two and forty-two SL5 (four-
node Serendipity Lagrange element with fifth-order expansion). This results into 110,220 unknown 
variables or degrees of freedom (DOFs). The number of beam elements, cross-sectional mesh and the 
order of expansion is decided by performing a convergence analysis. For the sake of brevity, only the 
converged results for all the cases are presented in the paper. In both the numerical cases assessed, 
stresses are computed at various locations along the beam and are compared with those obtained 
with high fidelity 3D finite element analyses.  

Figure 3: Stiffened flat panel – Geometry 

Figure 4: Stiffened curved panel - Geometry 
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4.1 Stiffened flat panel 

Results obtained by performing the static analysis of a stiffened flat panel are presented in this 
section. To validate the present approach, a reference solution is required, which is obtained by 
discretising the structure with a finite number of 3D elements and analysing it using commercial finite 
element package, ANSYS. A mesh convergence analysis is performed which ensures that an optimum 
number of elements are employed to obtain accurate results. In this case, the model is discretised with 
669,696 SOLID186 (3D 20-node) elements, which leads to solving 8,832,243 equations (DOFs).  

Normal stress (𝜎𝑦𝑦) values are plotted along the length of the panel at two different locations as 

shown in Figure 5. These results are key towards the validation of the present modelling technique of 
connecting different cross-sections along the beam length. This displacement-based formulation 
naturally satisfies the displacement continuity requirement at the stringer-rib interface; however, a 
higher-order displacement field approximation is required to obtain a continuous stress/strain 
distribution. The present model clearly meets this requirement and hence no discrepancies are 
observed in the normal stress values along the length when compared to those obtained with ANSYS.  

Further, to demonstrate the capability of the proposed model in predicting the 3D stress fields in 
such structures, normal and transverse stress components have been measured at several locations. 
The distribution of axial normal (𝜎𝑦𝑦), transverse shear (𝜏𝑦𝑧) and transverse normal (𝜎𝑧𝑧) stresses are 

plotted, along the width of the panel at (𝑦, 𝑧) = (𝐿/4, ℎ/2) in Figure 6 and through-thickness at 
(𝑥, 𝑦) = (𝑏/2, 𝐿/4) in Figure 7. To show the ability of the model in capturing the accurate structural 
response particularly at the rib-stringer junction, through-thickness normal and transverse stresses are 
presented in Figure 8. All these plots clearly show that the stress values are in excellent agreement 
with those obtained with ANSYS. In addition, the proposed higher-order refined beam model can 
capture 3D stress fields accurately in a computationally efficient manner.  

(a) 𝜎𝑦𝑦 for (𝑥, 𝑧) = (𝑏1 + 𝑏𝑠/2, ℎ + ℎ𝑠) and 𝑦 ∈ ሾ0, 𝐿ሿ (b) 𝜎𝑦𝑦 for (𝑥, 𝑧) = (𝑏/2, ℎ) and 𝑦 ∈ ሾ0, 𝐿ሿ 

Figure 5: Variation of axial normal stress (𝜎𝑦𝑦) along the length of the flat panel. 

(a) Axial normal stress (𝜎𝑦𝑦) (b) Transverse shear stress (𝜏𝑦𝑧) (c) Transverse normal stress (𝜎𝑧𝑧) 

Figure 6: Variation of normal and shear stresses across the panel width at (𝑦, 𝑧) = (𝐿/4, ℎ/2). 
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4.2 Stiffened curved panel 

The scope of this section is to assess the proposed higher-order 1D formulation in capturing the 
structural response of a curved panel, stiffened with stringers and ribs, that usually require the use of 
2D or 3D elements. A 3D FE analysis, performed is ANSYS, is used as a reference solution for validation, 
where the structure is discretised with SOLID186 elements and 9,286,608 equations (DOFs) are solved 
to yield converged results.  

Figure 9 shows the bending stress distribution at the top of a stringer along its length. Through-
thickness variation of axial normal (𝜎𝑦𝑦), transverse shear (𝜏𝑦𝑧) and transverse normal (𝜎𝑧𝑧) stresses, 

computed at the rib-stringer junction at 𝑦 = 𝐿/4, is shown in Figure 10. It is to be noted that the results 

(a) Axial normal stress (𝜎𝑦𝑦) (b) Transverse shear stress (𝜏𝑦𝑧) (c) Transverse normal stress (𝜎𝑧𝑧) 

Figure 7: Through-thickness distribution of normal and shear stresses at (𝑥, 𝑦) = (𝑏/2, 𝐿/4). 

(a) Axial normal stress (𝜎𝑦𝑦) (b) Transverse shear stress (𝜏𝑦𝑧) (c) Transverse normal stress (𝜎𝑧𝑧) 

Figure 8: Through-thickness distribution of normal and shear stresses at (𝑥, 𝑦) = (𝑏1 + 𝑏𝑠/2, 𝐿/4). 

Figure 9: Variation of axial normal stress (𝜎𝑦𝑦) along the length of the curved panel. 
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shown in Figure 10(b) and (c) for 𝜏𝑦𝑧 and 𝜎𝑧𝑧 are computed in the local coordinate system (obtained 

by rotating the global coordinate system about y-axis such that the z-axis point towards the centre of 
curvature). To highlight the model’s ability in capturing localised regions accurately, contour plots of 
normal and shear stresses (σ𝑦𝑦 and τ𝑦𝑧) are computed across the entire cross-section at 𝑦 = 𝐿/4. The 

stress distribution obtained using CUF-SLE model is compared with 3D FE results, and the percentage 
difference is evaluated as shown in Figure 11. From the contour plots, it is evident that the proposed 
model is capable of predicting an accurate response of the structure with less DOFs than 3D FE.  

However, it is believed that comparing models based on only DOFs is not a fair assessment of 
computational efficiency. Instead, computational time must be the criterion for comparison. Although, 
it could be tricky when comparing in-house codes with a commercial software, as in the present case. 

Figure 11: Distribution of (a) normal stress (𝜎𝑦𝑦) and (b) shear stress (𝜏𝑦𝑧) in the cross-section 

of the curved panel at 25% of the length from the clamped end. 

(a) Axial normal stress (𝜎𝑦𝑦) (b) Transverse shear stress (𝜏𝑦𝑧) (c) Transverse normal stress (𝜎𝑧𝑧) 

Figure 10: Through-thickness distribution of normal and shear stresses at rib-stringer junction (𝑦 = 𝐿/4). 
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Therefore, we calculate the total number of operations N, required to solve the system in both the 
cases, using the below formula as given in [15], which accounts for the sparsity of a matrix.  

 

 
 

 

𝑁 =
1

4
𝑛𝐷𝑂𝐹𝑠(𝑏𝑤)2,   

 

 

(11) 
 

where 𝑛𝐷𝑂𝐹𝑠 are the number of unknowns (or DOFs) and 𝑏𝑤 is the bandwidth of the stiffness matrix. 
The number of operations in case of the stiffened curved panel, as calculated using Equation (11), are 
𝑁 ~ 8.358 × 109  (3D FE) and 𝑁 ~ 3.375 × 109  (CUF-SLE). This clearly shows that the computation 
time required to perform a 3D finite element analysis is nearly two and a half times of that required 
when employing the present formulation. It is to be noted that these numbers are problem dependent 
and the gain achieved in the computational efficiency over 3D FEA may vary with problems analysed.  
 
5 CONCLUSIONS 

In the present work, the recently developed Serendipity Lagrange cross-sectional expansion model 
is employed within the one-dimensional Unified Formulation framework to analyse reinforced 
structures. The cross-sectional discretisation feature of the SLE model is suited for capturing localised 
stress fields. It also enables a beam to be modelled with different cross-sections along its length and 
maintains displacement and stress continuity at the interface. This makes it possible to study complex 
structures. Moreover, the high-fidelity capabilities of the present model allow 3D stress fields to be 
modelled accurately and with greater computational efficiency than 3D finite element analysis. 
Further, the higher-order expansion functions together with the proposed mapping technique and 
blending functions, enable curved cross-section geometries to be represented. This leads towards the 
analysis of a broad class of structure regardless of the geometrical complexity of the cross-section. The 
results of this research provide good confidence for future work to model stiffened structures made 
of composite materials.  
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