
 Atkinson, P., & McIntosh-Smith, S. (2017). On the Performance of Parallel
Tasking Runtimes for an Irregular Fast Multipole Method Application. In
Scaling OpenMP for Exascale Performance and Portability - 13th
International Workshop on OpenMP, IWOMP 2017, Proceedings (1 ed., Vol.
10468, pp. 92-106). (Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Vol. 10468 LNCS). Springer, Cham. https://doi.org/10.1007/978-3-319-
65578-9_7

Peer reviewed version

Link to published version (if available):
10.1007/978-3-319-65578-9_7

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via SPRINGER at https://www.springer.com/gb/book/9783319655772 . Please refer to any applicable terms of
use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/158371228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1007/978-3-319-65578-9_7
https://research-information.bris.ac.uk/en/publications/on-the-performance-of-parallel-tasking-runtimes-for-an-irregular-fast-multipole-method-application(b15aa3a9-3a3e-4ee4-9616-128ada692515).html
https://research-information.bris.ac.uk/en/publications/on-the-performance-of-parallel-tasking-runtimes-for-an-irregular-fast-multipole-method-application(b15aa3a9-3a3e-4ee4-9616-128ada692515).html

On the performance of parallel tasking runtimes
for an irregular fast multipole method

application

Patrick Atkinson and Simon McIntosh-Smith

Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom
{p.atkinson,simonm}@bristol.ac.uk

Abstract. This paper will present our work on optimising and com-
paring the performance of an irregular algorithm for the increasingly
important fast multipole method with the use of tasks. Our aim is to
provide insight into how different methods of synchronisation can af-
fect the performance of tree-based particle methods, finding that perfor-
mance can be improved by 21% on some platforms. We also compare the
performance of the chosen application between different OpenMP imple-
mentations and to other task-parallel programming models, finding that
significant performance differences can be observed on both NUMA and
Many Integrated Core architectures.

Keywords: OpenMP, tasks, mini-apps, locks, atomics

1 Introduction

Introduced in 2007, OpenMP tasks have allowed for the simplification of ex-
pressing parallel execution of irregular problems, such as divide and conquer al-
gorithms. The mapping of tasks to threads is non-deterministic and the schedul-
ing efficiency is highly dependant on the underlying runtime. The availability of
different OpenMP implementations and other similar task-parallel programming
models, such as OmpSs [1], Intel Threading Building Blocks [2], and Cilk [3],
has given application developers many options to choose from, whilst differences
in scheduling techniques and the features provided has lead to differences in
performance.

As the tasks constructs in the OpenMP standard have been expanded and
matured in the past 10 years, the level of parallelism in current architectures has
increased dramatically. Non-unified Memory Access (NUMA) architectures are
now commonplace in high performance systems, with current generation Intel
architectures comprising of as many as 22 cores per socket. In addition to NUMA
architectures, the introduction of many integrated core architectures, such as the
72 core Intel Knights Landing chip, has demonstrated the need for low-overhead
and scalable parallel runtimes.

In addition to simplifying the expression of irregular problems, task-parallelism
has the potential to increase performance on systems with large numbers of cores.

2 On the Performance of parallel tasking runtimes for Fast Multipole

Using fine-grained parallelism by way of task dependencies, tasks are only exe-
cuted when the specific data they operate on is available. This is in contrast to
conventional OpenMP programs that make use of fork-join constructs whereby
steps of an algorithm are executed in a series of parallel for-loops, whilst a task-
based approach would allow for each step to overlap and correctness assured
through the programmer’s use of task-dependencies.

OpenMP has become the de facto standard for thread-parallelism in HPC,
with a large range of different implementations from groups such as Intel, GNU,
and Cray; it has become a simple and powerful way to parallelise both existing
and new applications. It is not the only parallel programming model that offers
task-parallelism however. Cilk [3], TBB [2], StarPU [4], OmpSs [1], Kokkos [5],
and even the C++11 standard all now offer task constructs, giving an application
developer a wide range of options. However, there is also great uncertainty in
which models provide both the richest and the most convenient APIs, while also
offering the greatest performance on modern, highly parallel architectures.

This paper will present a comparison of a range of different programming
models and OpenMP implementations using a representative application, known
as a ‘mini-app’. Mini-apps are scaled-down applications that capture the perfor-
mance characteristics of real scientific codes; they are commonly used to rapidly
compare and test both programming models and architectures [6]. Currently
however, few mini-apps exist that can make good use of tasks and can be used
to assess current tasking programming models. Hence, the comparison will be
performed using a new Fast Multipole Method mini-app, MiniFMM 1, developed
at the University of Bristol. The method works primarily around a tree traversal
algorithm and can exhibit high load imbalance, thus providing an interesting
real application to compare and test tasking performance.

The outline of the paper is as follows: Section 3 briefly describes the FMM
and details of the particular variant used, Section 4 gives details of the OpenMP
implementation and discusses the challenges faced using the tasking model with
FMM, Section 5 gives an overview of differences in OpenMP implementations
and similar programming models, Section 6 provides a comparison and discus-
sion of the different programming models, and Section 7 concludes the paper
describing how the results can be generalised and applied to other task-based
methods to improve performance.

2 Background and related work

Previous work has shown the significant design and performance differences be-
tween OpenMP implementations. Most work has focused on comparing the per-
formance and runtime execution characteristics of micro-benchmarks, such as
computing Fibonacci numbers and sorting arrays. Olivier et al. [7] had pre-
viously compared the parallel performance of OpenMP tasks using the BOTS
benchmark suite [8], finding that the overhead costs and idle thread times varied

1 https://github.com/uob-hpc/minifmm

On the Performance of parallel tasking runtimes for Fast Multipole 3

greatly between benchmarks. This work was then extended by Virouleau et al.
who looked at the KASTORS benchmark suite from BSC [9], which examined
the performance of tasks with data dependencies, finding that the performance
of some of the benchmarks could be impacted by the OpenMP runtime used.
Whilst these benchmarks have provided key insights, the aim of this paper is to
examine how the performance of a representative application is affected by both
parallel overheads and runtime decisions.

Previous efforts to parallelise the fast multipole method (FMM) have shown
that task-based approaches provide large performance benefits. The tree-traversal
algorithm designed by Yakota et al. [10] was initially implemented with tasking
features from Intel TBB and large performance improvements were gained over
similar methods. Following on from this, Pericas et al [11] extended this work
by implementing the tree-traversal step using tasks with data-dependencies in
OpenMP, finding only minor performance improvements could be gained. Mak-
ing use of extra data-dependency constructs available in StarPU, Agullo et. al
[12], found that performance could be improved over OpenMP.

3 Method overview

The FMM has many uses in the fields of physics and computational mathe-
matics, including calculating gravitational/electrostatic forces, fluid dynamics,
plasma simulation, and acoustics [13]. Fundamentally, the algorithm provides a
linear time approximation to O(n2) problems and allows for tunable precision
of results. It works by grouping particles via a space partitioning tree (such as
an octree), where groups of particles are located at each tree node. As in the
N-body problem, each particle will need to calculate the force due to all other
particles in the system. The difference using the FMM is that particles are com-
pared group to group; each target group of particles is compared to all other
nodes in the tree, resulting in two outcomes:

1. If the two nodes are far enough away, the force contribution for a source
node can be approximated for the target node.

2. Else the forces for each particle will be calculated directly.

If the force contribution can be approximated, then the target doesn’t need
to consider any tree node below that source node. This has the very important
property of the application’s control flow not being known until runtime; the
control flow is data-dependant. It is also of note that the application is compute-
bound due to the high FLOP/byte ratio of directly computing the forces of
particles in nodes that are close together.

The Dual Tree Traversal method for FMM, devised by Yakota and Dehnen
[10], has been shown to be an efficient tree traversal method that also allows
user control over the distance required to approximate node interactions, hence
greater control over the precision of the final results. It is worth noting that other
FMM implementations exist that do not allow for control over the distance at
which approximations are made; this affects the implementation when using

4 On the Performance of parallel tasking runtimes for Fast Multipole

tasks and is outlined further in Section 4.1. Pseudo-code for the tree traversal is
shown in Listing 1.1.

dtt (node source , node target)
{

// c a l c u l a t e d i s t ance between source and ta rg e t
. . .

i f (source and target well separated)
approximate_force (source , target)

e l s e i f (is_leaf (source) && is_leaf (target)
direct_force (source , target)

e l s e
{

i f (source . radius > target . radius)
f o r (child in target)

dtt (child , source)

e l s e
f o r (child in source)

dtt (target , child)
}

}

Listing 1.1: Dual Tree Traversal

All of the results collected in this paper are run with an input of O(106) par-
ticles uniformly distributed inside a box. At the finest level of the tree structure,
the maximum number of particles per node is set to 300. These input parameters
were selected to match those seen in previous work [10][11]. Unless stated, all
tests are performed using double precision values.

4 Implementation overview

As the method evaluates all pairs of nodes in the tree, it is possible for two
threads to be calculating the force contribution for the same target node. In
OpenMP, task dependencies, atomics, and locks can all be used to ensure cor-
rectness. This section will detail efforts to increase performance of synchroni-
sation in a task-based application using the architectures listed in Table 1 and
using the Intel C Compiler (17.0).

4.1 Task dependencies

Using task dependencies introduced in the OpenMP 4.0 standard, we can avoid
memory read/write conflicts. However, optimal performance won’t be achieved
for two reasons. Firstly, task dependencies are resolved in the order in which
tasks are created, hence an unnecessary ordering on tasks is enforced; the fast
multipole method permits updating particle values in any order. Secondly, the
work of finding the distance between nodes and deciding whether to approximate
or calculate the force directly and creating a task to do so, is too great for a
single thread to perform whilst issuing enough tasks to saturate the other threads

On the Performance of parallel tasking runtimes for Fast Multipole 5

with work, hence the entire computation is stalled by the thread issuing tasks.
With large numbers of threads this can cause a severe bottleneck; running on 256
threads of a KNL and using data-dependencies in this way results in performance
that is ∼22x slower than alternatives and as such a parallel traversal is required.
However, using a parallel traversal with data-dependencies has the issue of task
dependencies only being enforced for the immediate child tasks of the current
task, hence data conflicts would not be enforced across threads.

4.2 Atomics

An alternative to task dependencies would be to make the accumulations within
a task be atomic operations. Hence, for both the direct and approximate calcu-
lations, the force updates are applied atomically for each particle. As the force
calculations are over all particles in a node, this can mean many atomic oper-
ations are required. In addition, the method requires complex numbers (added
to C standard in ISO C99) and built-in complex data-type atomic operations
are not supported within OpenMP, hence separate arrays of real and imaginary
types are required instead.

4.3 Locks

Another option would be to create a lock for every node in the tree, then lock
and unlock a node to update the entire group of particles inside a node.

at
om

ic
s

lo
ck

s

yi
el
d

lo
ck

s

yi
el
d

lo
ck

s
un

tie
d

0

2

4

4.65 4.87 4.88 4.73

1.24 1.28 1.26 1.20ti
m

e
(s

)

(a)

at
om

ic
s

lo
ck

s

yi
el
d

lo
ck

s

yi
el
d

lo
ck

s
un

tie
d

0

1

2

3
2.44 2.39 2.33 2.20

1.61
1.31 1.35 1.30

ti
m

e
(s

)

SP

DP

(b)

Fig. 1: Comparison of synchronisation methods on a) two sockets of 22-core
Broadwell b) 64-core Xeon Phi Knights Landing

Which of these two options (locks or atomics) performs better depends en-
tirely on the execution of the method. Atomically updating the forces for each
particle introduces a fixed overhead compared to locks, however, high lock con-
tention will cause large amounts of idle thread time. As can be seen in Figure

6 On the Performance of parallel tasking runtimes for Fast Multipole

1a, using atomics results in superior performance on Broadwell for both single
and double precision data. However, on Intel Xeon Phi Knights Landing (KNL),
Figure 1b shows that double precision performance is roughly equivalent, whilst
locks outperform atomics for single precision.

It is also possible to improve the performance of locks when combined with
task constructs in OpenMP. Introduced by Chalk [14], the use of taskyield

when a task cannot acquire a lock, shown in Figure 1.2, as opposed to using
omp set lock, can dramatically improve performance. Essentially, a thread ex-
ecuting a task tries to acquire a lock and if it is unsuccessful, a task scheduling
point is reached, allowing for the runtime to suspend the execution of the cur-
rent task. This allows the executing thread to do other work in the hope that
when the task execution is resumed, the lock can now be acquired. In Figures
1a and 1b, this method is referred to as ‘yield lock’ and, as can be seen, this
alone has little effect when compared to omp set lock. However, when combined
with untied tasks, i.e. pragma omp task untied, the performance difference is
noticeably improved. The use of the untied keyword allows for any thread to
resume the execution of a suspended task. Whilst it was measured to have no
performance impact when combined with atomics or omp set lock, using untied
tasks in conjunction with taskyield and locks leads to a performance increase
(‘yield locks untied’ in Figures 1a and 1b). This is due to threads being able to
resume tasks that were suspended by another thread when a lock could not be
acquired; overall this leads to better load balance of tasks.

i n t locked = 0 ;
whi le (! locked)
{

locked = omp_test_lock (&target−>lock) ;
i f (! locked)
{

#pragma omp ta s ky i e l d
}

}

Listing 1.2: Locking with taskyield

Instead of using a single lock per tree node, two locks could also be used.
One to prevent a race condition on the approximate force accumulation and one
to prevent the race condition on the direct force accumulation. Using two locks,
the same synchronisation methods were tested and the results are displayed in
Figures 2a and 2b. Overall, this results in the best performance as lock contention
was reduced, however some interesting effects were observed. Firstly, there is
little benefit gained from the use of #taskyield lock variant on Broadwell.
This is because as lock contention is lower, the #taskyield is less likely to
be encountered. Whilst on KNL, higher thread counts result in high enough
lock contention that the use of #taskyield is still marginally beneficial when
using double-precision values. The use of untied tasks generally results in worse
performance when using two locks.

From these results it was concluded that if you have highly contended locks,
as in the case where a single lock was used per tree node, then there are perfor-

On the Performance of parallel tasking runtimes for Fast Multipole 7

mance benefits from using ‘yield locks’ and untied tasks. In contrast, with locks
that have lower contention, these keywords aren’t needed and can result in the
same or even worse performance.

at
om

ic
s

lo
ck

s

yi
el
d

lo
ck

s

yi
el
d

lo
ck

s
un

tie
d

0

2

4

4.65 4.66 4.69 4.75

1.24 1.20 1.20 1.20ti
m

e
(s

)

(a)

at
om

ic
s

lo
ck

s

yi
el
d

lo
ck

s

yi
el
d

lo
ck

s
un

tie
d

0

1

2

3
2.44

2.15 2.10 2.11

1.61
1.24 1.26 1.24

ti
m

e
(s

)

SP

DP

(b)

Fig. 2: Comparison of synchronisation methods using two locks per tree node on
a) two sockets of 22-core Broadwell b) 64-core Xeon Phi Knights Landing

Another attempt to optimise lock performance was to specify the lock im-
plementation via the omp init lock with hint function added in OpenMP 4.5.
This allows a user to request a lock optimised for high contention (uncontended /
contended) and/or speculative locks. It was found that in all cases uncontended
locks performed worse than contended, and whilst speculative locks are sup-
ported on Intel Xeon CPUs (but not Xeon Phi), the use of the hint had no
effect. The ability to specify the lock implementation was only available in the
Intel OpenMP implementation, whilst the Cray compiler and GCC lacked this
feature.

Whilst this alternative to task dependencies, referred to as ‘conflicts’ in Chalk
[14], could be added to the OpenMP standard as a task clause, it can be seen that
in this application, there is not a definitive method to implementing ‘conflicts’;
as seen in Figure 1a, atomics still outperform the alternatives when using double
precision values in the mini-app, whilst locking with taskyield and untied tasks
perform better in other cases.

4.4 Extensions to task dependencies

Programming models such as OmpSs and StarPU have the ability to declare
commutative task dependencies. This feature allows for the specified data loca-
tions to be updated in any order, regardless of the order the tasks were issued.
This is in contrast to data dependencies in OpenMP, where for a data depen-
dency, the order in which tasks are created is the order in which the tasks have

8 On the Performance of parallel tasking runtimes for Fast Multipole

to be executed. Hence, commutative task dependencies provide benefits to appli-
cations such as fast multipole; however, due to having to perform a parallel tree
traversal, the data dependencies won’t be enforced for all threads (as in Section
4.1).

4.5 Comparison baseline

In contrast to a task-based approach, the algorithm can also be implemented
in a thread-parallel fashion. This is done by recursing down the tree and in-
stead of issuing tasks, we record whether to perform the direct or approximate
force calculation for the current node. Then, each node can be iterated over in
a parallel for loop, performing the required operations. A dynamic schedule
was found to be optimal due to the high load imbalance between the number of
operations each node needed to perform. This has the advantage of avoiding the
race condition in that no two threads will write to the same target node. How-
ever, using tasks still has a number of advantages. Firstly, there’s an overhead
cost of initially building the list of nodes needing to be operated on per thread;
a small cost in performance, which can dramatically increase memory usage; in
the worst case each node will store a list of all other nodes in the tree. When
implemented, this thread-parallel version tripled the number of lines of code
compared to the task-based approach of the tree traversal. Therefore, whilst it
is possible that the task-based approach may not offer a significant performance
increase over this approach, a runtime that is able to match the performance
of a thread-parallel implementation will be deemed a success, demonstrating
tasking can reduce code size without impacting performance. However, due to
the overhead of initially finding the lists of interactions, it was hoped that task-
ing implementations could be slightly faster than the thread-parallel equivalent.
This thread-parallel implementation of the algorithm is referred to as the ‘loop’
implementation of the algorithm for the remainder of the paper.

To compare to other FMM implementations we profiled the task-parallel
method, observing that 96% of the runtime was spent calculating the forces
directly. Counting the number of interactions between particles and knowing the
number of FLOPs per interaction tells us the compute performance achieved
in the direct force calculation, which was measured to be approximately 882
DP GFLOPs on the dual socket Broadwell CPU. Comparing this to previous
work [10] (and to the peak FLOPs) would indicate that the mini-app was both
representative of larger FMM applications and achieved reasonable performance.

5 Programming Models

This section briefly introduces each of the programming models used in the
comparison and discusses key features identified in each.

OmpSs - OmpSs provides a testing ground for new OpenMP features, and
has previously motivated changes to the OpenMP standard, such as task data-
dependencies. The OmpSs programming model is syntactically similar to OpenMP

On the Performance of parallel tasking runtimes for Fast Multipole 9

and provides both a compiler that allows for additional task extensions as well
as a runtime system. For our tests we are using the Intel compiler backend (17.0)
for OmpSs [1].

BOLT - BOLT stands for ‘BOLT is OpenMP over Lightweight Threads’.
From Argonne National Laboratory, the BOLT project aims to provide a light-
weight threading runtime based on the LLVM OpenMP runtime [15]. In contrast
to current OpenMP implementations based on OS-level threads, BOLT aims to
use light-weight threads, provided by Argobots [15], to improve performance.

Intel Cilk Plus - Built as an extension to Cilk++, Cilk plus provides a
simple interface of three keywords that enable task and data parallelism. The
scheduling policy has been shown to provide load balance close to optimal [3].

Intel TBB - An object-oriented C++ runtime library, Intel TBB maintains
a double-ended queue per thread, retrieving new tasks from the back of its queue
to exploit temporal locality. If a thread has finished its work, it steals from the
front of another thread’s queue [2].

OpenMP - Previous work has highlighted some of the implementation deci-
sions of each of the OpenMP runtimes finding that, depending on the architec-
ture, significant performance differences can be observed. For example, the Intel
implementation maintains a task queue per thread as opposed to a single task
queue for all threads (as in GNU OpenMP). This has the effect of improving
data locality by allowing threads to enqueue tasks on each thread’s own queue
first, in the hope that data can be reused from recently executed tasks.

6 Results

Broadwell KNL

Processor Xeon E5-2699 v4 Xeon Phi 7210

Sockets 2 -

Total Cores 22 64

Total Threads 44 256

Total TFLOPS 1.54 2.66

Table 1: Target machines

The performance evaluation was conducted on two of the most recently re-
leased architectures. This was done to both reflect current devices in some of
the largest supercomputers and to examine the performance characteristics of
different task-parallel runtimes with both high numbers of threads and NUMA
architectures. The details of the target machines appear in Table 1. The results
were obtained with both Hyper-Threading turned on and off for Broadwell,
whilst on KNL three different configurations were tested with 1, 2, or 4 threads
per core.

For the results, the Intel Compiler (17.0) was used for OpenMP, TBB, Cilk,
and the OpenMP parallel loop version of the algorithm. GCC 6.3 and Cray CCE
8.5.8 were used for the OpenMP GNU and Cray results respectively. The OmpSs
version used was 16.06.3.

10 On the Performance of parallel tasking runtimes for Fast Multipole

6.1 Broadwell

OpenMP
Intel GNU Cray BOLT Loop OmpSs Cilk TBB

Serial (s) 156.057 157.365 154.120 156.170 156.721 157.855 156.100 156.825

Parallel (s) 4.654 4.843 4.871 4.656 4.654 4.719 4.632 4.745

Table 2: Serial and fastest runtimes achieved using Broadwell

Figures 3 and 4 show the parallel speedup when increasing the number of
cores and, as can be seen, the different programming models and runtimes ex-
hibit similar scaling performance. The GNU and Cray OpenMP implementations
exhibit the poorest parallel times, whilst the serial times do not differ from the
other frameworks. The Intel OpenMP runtime performs well however and was
consistently measured, along with Cilk, to give the best performance.

0 4 8 12 16 20 24 28 32 36 40 44
0

5

10

15

20

25

30

35

cores

sp
ee

d
u
p

OMP-Intel OMP-GNU OMP-Cray OmpSs

BOLT Cilk TBB Loop

Fig. 3: Parallel speedup on Broadwell with 1 thread per core

The BOLT OpenMP implementation exhibits very similar performance to
the Intel OpenMP implementation. This could be due to the Intel OpenMP
runtime being open-sourced and used as the OpenMP backend for LLVM, on
which BOLT is based. Cilk exhibits good performance on both Broadwell and
KNL, being the fastest on both architectures - this is impressive because of its

On the Performance of parallel tasking runtimes for Fast Multipole 11

0 4 8 12 16 20 24 28 32 36 40 44
0

5

10

15

20

25

30

35

cores

sp
ee

d
u
p

Fig. 4: Parallel speedup on Broadwell with 2 threads per core

relatively small feature-set. Intel TBB achieves reasonable performance on both
targets, but slightly lags behind other Intel runtime implementations.

The majority of the runtimes compete with the baseline parallel loop im-
plementation (as described in Section 4.5) when using tasking, hence for this
CPU architecture, tasks provide a scalable and efficient way to parallelise the
mini-app whilst reducing the amount of code.

6.2 Knights Landing

OpenMP
Intel GNU Cray BOLT Loop OmpSs Cilk TBB

Serial (s) 181.385 199.271 185.728 181.401 175.975 190.622 181.272 181.371

Parallel (s) 2.059 3.508 3.224 2.054 1.949 2.192 2.010 2.533

Table 3: Serial and fastest runtimes achieved using KNL

On KNL the performance of tasks in all frameworks were slightly worse than
the parallel loop implementation. The Intel and Bolt OpenMP runtimes per-
formed the best when running the task parallel approach, yet the parallel loop
method was 1.05x faster. Most runtimes achieved similar performance when run-
ning with a single thread per core, however, running 2 and 4 Hyper-Threads per
core highlighted the weakness in some of the other runtimes. The Intel imple-
mentation of OpenMP and Cilk both exhibited good scaling with high numbers

12 On the Performance of parallel tasking runtimes for Fast Multipole

of threads whilst TBB lagged slightly behind. However, the Cray OpenMP im-
plementation exhibited poor scaling with all three thread configurations and
gave poorer performance as the number of threads per core increased.

The GNU OpenMP runtime actually results in a degradation in performance
as more threads are added. Whilst initially showing good performance in Figure
5, it can be seen that performance starts to degrade when using two Hyper-
Threads per core (Figure 6). Then finally with 4 Hyper-Threads per core (Figure
7), the runtime of the application becomes severely limited when the number of
threads used increases.

Initially the performance of OmpSs on KNL was extremely limited and with
256 threads was roughly 10x slower than the parallel loop implementation of
the method. This is due to the default scheduler being unsuitable for many-
integrated core architectures as it maintains a single global ready queue for
tasks, which causes high contention on this data-structure when utilising large
numbers of threads. Instead, the distributed breadth-first scheduler was used.
This scheduler maintains a task queue per thread and work-steals, resulting in
performance similar to the other implementations. Like the default scheduler in
OmpSs, GNU OpenMP also maintains a single task queue for all threads, thus
explaining the poor performance seen in Figures 6 and 7.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

cores

sp
ee

d
u
p

OMP-Intel OMP-GNU OMP-Cray OmpSs

BOLT Cilk TBB Loop

Fig. 5: Parallel speedup on KNL with 1 thread per core

On the Performance of parallel tasking runtimes for Fast Multipole 13

0 10 20 30 40 50 60
0

10

20

30

40

50

60

cores

sp
ee

d
u
p

Fig. 6: Parallel speedup on KNL with 2 threads per core

0 10 20 30 40 50 60
0

10

20

30

40

50

60

cores

sp
ee

d
u
p

Fig. 7: Parallel speedup on KNL with 4 threads per core

14 On the Performance of parallel tasking runtimes for Fast Multipole

7 Conclusion

The OpenMP tasking constructs were designed to allow users to easily express
the parallelism of recursive and irregular algorithms. In terms of productiv-
ity, OpenMP task features were a simple and powerful way to parallelise the
mini-app, drastically reducing the code required compared to the parallel loop
implementation.

Using our FMM mini-app, we have looked at how task synchronisation can
be improved for particle methods by comparing atomics and various ways of
using locks in OpenMP, finding that performance can be improved by up to 21%
on KNL whilst also bringing improvements on Xeon CPUs.

A common pattern in N-body, finite element, and unstructured mesh ap-
plications is to have data locations receiving multiple, unordered contributions.
Hence, the work done on examining synchronisation features in OpenMP could
be generalised and applied to a wide range of applications.

In addition to examining language features, we also compared OpenMP im-
plementations to each other and to other task-parallel programming models. We
found that on Broadwell, most programming models and OpenMP implementa-
tions performed well, competing with an equivalent parallel loop implementation.
However, on KNL we found that a parallel loop implementation outperformed
all task implementations of the method. Therefore, future work will focus on
understanding this difference and investigating solutions to improving task per-
formance on this platform.

This work builds upon the success of previous mini-app work within the
HPC group at the University of Bristol [16], demonstrating that mini-apps are
powerful tools to both compare and test different programming models, as well
investigate different language features that can lead to increased performance
for a more general set of applications.

Acknowledgements

The authors would like the thank EPSRC for funding this work, as well as Bris-
tol’s Intel Parallel Computing Centre (IPCC) for access to the KNL platform.
We would also like to thank GW4 for access to the Isambard supercomputer for
Broadwell results.

References

1. A. Duran, E. Ayguad, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas, “Ompss: A proposal for programming heterogeneous multi-
core architectures,” Parallel Processing Letters, vol. 21, no. 02, pp. 173–
193, 2011. [Online]. Available: http://www.worldscientific.com/doi/abs/10.1142/
S0129626411000151

2. W. Kim and M. Voss, “Multicore desktop programming with intel threading build-
ing blocks,” IEEE Software, vol. 28, no. 1, pp. 23–31, Jan 2011.

On the Performance of parallel tasking runtimes for Fast Multipole 15

3. R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations
by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, Sep. 1999. [Online].
Available: http://doi.acm.org/10.1145/324133.324234

4. C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: A unified
platform for task scheduling on heterogeneous multicore architectures,” Concurr.
Comput. : Pract. Exper., vol. 23, no. 2, pp. 187–198, Feb. 2011. [Online]. Available:
http://dx.doi.org/10.1002/cpe.1631

5. H. C. Edwards and D. Sunderland, “Kokkos Array Performance-portable Many-
core Programming Model,” in Proceedings of the 2012 International Workshop on
Programming Models and Applications for Multicores and Manycores (PMAM’12).
ACM, 2012, pp. 1–10.

6. M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich, “Im-
proving Performance via Mini-applications,” Sandia National Laboratories, Tech.
Rep. SAND2009-5574, 2009.

7. S. L. Olivier, B. R. de Supinski, M. Schulz, and J. F. Prins, “Characterizing
and mitigating work time inflation in task parallel programs,” in Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 65:1–65:12. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2388996.2389085

8. A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona openmp
tasks suite: A set of benchmarks targeting the exploitation of task parallelism in
openmp,” in 2009 International Conference on Parallel Processing, Sept 2009, pp.
124–131.

9. P. Virouleau, P. Brunet, F. Broquedis, N. Furmento, S. Thibault, O. Aumage,
and T. Gautier, Evaluation of OpenMP Dependent Tasks with the KASTORS
Benchmark Suite. Cham: Springer International Publishing, 2014, pp. 16–29.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-11454-5 2

10. R. Yokota, “An FMM based on dual tree traversal for many-core architectures,”
vol. 7, no. 3, pp. 301–324. [Online]. Available: http://journals.sagepub.com/doi/
abs/10.1260/1748-3018.7.3.301

11. P. Miquel, A. Abdelhalim, F. Keisuke, M. Naoya, Y. Rio, and M. Satoshi,
“Towards a dataflow fmm using the ompss programming model,” , 12, 2012-09-26.
[Online]. Available: http://id.nii.ac.jp/0606/00073141

12. E. Agullo, O. Aumage, B. Bramas, O. Coulaud, and S. Pitoiset, “Bridging the gap
between openmp and task-based runtime systems for the fast multipole method,”
IEEE Transactions on Parallel and Distributed Systems, vol. PP, no. 99, pp. 1–1,
2017.

13. L. F. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems
(ACM Distinguished Dissertation). The MIT Press, 1988.

14. A. M. E. Aidan Chalk and L. Mason, “Task-based parallelism in
dl poly 4,” 2017. [Online]. Available: http://staging.ixpug.org/documents/
1491984172IXPUG Spring 2017 paper 13(1).pdf

15. A. N. Laboratory, “Bolt is openmp over lightweight threads.” [Online]. Available:
http://www.bolt-omp.org/

16. M. Martineau, S. McIntosh-Smith, and W. Gaudin, “Evaluating openmp 4.0’s ef-
fectiveness as a heterogeneous parallel programming model,” in 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW),
May 2016, pp. 338–347.

