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Abstract Nowadays, much research is concerned with execution of long-term continuous

tasks, which produce data in real time, e.g. monitoring applications. These tasks can be run

for months or years and they are usually resource intensive in terms of the large amounts of

data which is processed per time unit. A Grid can potentially provide the amount of resources

necessary to execute these tasks, but it might prove to be impossible or non-beneficial for a

Grid to allocate resources for such long durations as these resources can be also requested

by other clients or might join a Grid only for some periods of time. To resolve these dif-

ferences, a client and a Grid Resource Allocator negotiate, and a client has to agree for a

shorter execution period at the end of which it needs to negotiate again. In this paper, we

discuss in detail a decision-making mechanism for a client as part of its negotiation strategy,

which aims to increase the duration of execution periods and to decrease the duration of

interruptions. This new strategy, ConTask, has been tested on a realistic Grid resource sim-

ulator, and it demonstrates better utilities than our strategy which has not been specifically

designed for continuous tasks under various conditions.

Keywords Automated negotiation · Continuous task · Grid resources

1 Introduction

Many researchers focus on processing data streams, which are obtained from sensors. For

example, these data streams may monitor the level of air pollution [13], or the possibility of

earthquake [10]. The tasks which process these data streams produce data in real time and,

therefore, it is desirable for these tasks to be run continuously, but short interruptions might

be acceptable, i.e. they do not noticeably affect the success of task execution. A duration of

interruption is considered to be acceptable if significant changes are unlikely to occur during

this time, e.g. a substantial rise or drop in the temperature, leading to a loss of relevant

information for a client. It has to be noted that a client knowledge of the observed parameter

(e.g. temperature) becomes less realistic with time if task is interrupted, causing the client

utility to be decreased at higher rates. These tasks are often required to run for unspecified

or long periods of time, which can be months or years. In our work, we consider that these
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tasks are intended to run for specified long periods of time rather than uncertain periods of

time and they are considered to be continuous long-term tasks.

A continuous task, as discussed above, is appropriate to execute in a Grid [12], because

it potentially comprises more resources (e.g. CPUs) than any cluster or supercomputer. A

Grid generally follows a concept of non-commercial resource sharing1, which means that

resources can be allocated with no monetary cost for a client. However, a Grid can be ac-

cessible by any clients who wish to run their tasks and, therefore, the resource availability

may vary over time. Moreover, some resources may leave or join a Grid in future. In our

work, we assume that resource availability changes near-periodically over time mostly due

to the pseudo-periodicity in demand on resources. This assumption is realistic for some

Grids [4, 20], e.g. Iosup et al. [20] show some periodicity patterns in their illustration of

Grid resource utilisation as well as Andrzejak and Ceyran [4] demonstrate a periodicity in

CPU utilisation for some servers. For instance, Kondo et al. [21] discuss CPU utilisation

in desktop grids, which is generally larger during weekdays than weekends. Their study

also suggests that CPUs are on average unavailable 19% of the time during working days

and only 3% of the time during weekends, where availability means that a CPU should

have more than 1% of free capacity to perform a task. Hence, relative predictability of the

pseudo-deterministic changes in resource availability is utilised in our work to support near-

continuous tasks execution.

We assume that it is impossible or non-beneficial for a Grid to allocate resources for

the whole requested long durations of time, because long-term predictions of resource avail-

ability are generally unreliable for highly dynamic and open environments [3, 38] and these

resources can be also requested by other clients. In other words, a Grid might be unable

to guarantee task execution in the long-term future and, hence, unwilling to commit to its

execution. Therefore, a task is likely to be granted a shorter period of resource utilisation

than initially requested. Then, this task is interrupted at the end of this period and this inter-

ruption is considered to be planned. If a task has been interrupted, it has to request resources

from a Grid again. Frequently, negotiation is used to agree the requirements between clients’

and resource providers’ [30]. In our work, a negotiation is bilateral and it is initiated by a

client immediately after task’s interruption. A resource provider’s interests are represented

by a Grid Resource Allocator (GRA) and a client’s interests by a Client Agent, where both

are autonomous agents [37]. The abilities of autonomous agents to monitor continuously

the environment and respond actively to the dynamic changes in this environment are im-

portant for automated negotiation in such open environments as a Grid. The other relevant

agent’s ability is to communicate and decide on their actions without human commands,

which becomes crucial for the huge number of simultaneously negotiating agents.

In this paper, we present a client’s negotiation strategy, ConTask, which allows a client

to concede beyond the last best proposal of the GRA or its own proposal in order to start the

subsequent interruption period under favourable conditions for negotiation, i.e. closer to the

maximum of resource availability. This maximum is estimated to some degree, considering

pseudo-periodicity in resource availability fluctuations. It should be noted that the client is

unaware of resource availability fluctuations and estimates them based on the outcome of

negotiation, i.e. the agreed duration of task execution. The ConTask strategy also offers a

largely extended evaluation function, compared to [16], which is used to decide whether the

current and / or cumulative (all previous interruptions) durations of interruption are too long,

while the previous strategy [16] only considers a risk of resource exhaustion before the end

of negotiation. If at least one of those interruptions is too long, a client generally tends to be

1 We do not focus on commercial Grids.
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more generous in negotiation. This extended evaluation function leads to considerably better

utilities for a client than its previous version, which takes into account only the risk of re-

source exhaustion during negotiation. The paper is structured as follows. Section 2 discusses

related work, while Section 3 presents a formal model for a continuity of task execution and

negotiation for resources. Section 4 describes our ConTask negotiation strategy and Section

5 discusses the evaluation results. Finally, Section 6 concludes this paper.

2 Background

Research and industry currently face the issues of continuous or near-continuous task exe-

cution on plants or in robotics, air pollution monitoring, etc. For example, Castro et al. [9]

aim to find an optimal schedule of resource usage (e.g. equipment) on plants for continu-

ous processes (e.g. continuous feedstock mixing). Other research [2] addresses the issues of

continuous area monitoring by a group of robots in order to detect some events of interest

(e.g. gas leaks). The work of Chen et al. [10] proposes a Grid-based Adaptive Execution on

Streams (GATES) to process distributed data streams in a real-time manner. For instance,

this Grid system can be used to process tasks, which can predict large earthquakes based

on ground movements. Although all these researchers offer effective mathematical or algo-

rithmic solutions for their problem domains, they mostly focus on matching or scheduling

resource-task pairs. Hence, a client (an owner of a task) cannot effectively influence task

execution or affect possible interruptions of tasks.

A client can significantly influence task execution when its requirements can be negoti-

ated with the GRA, where both parties can utilise various strategies in order to follow their

objectives. Strategies which depend on time naturally reflect many real-life time-dependent

tasks. Many such strategies have been developed in much work [1, 7, 11, 24, 31], where an

amount of concession changes over time, considering usually an approaching negotiation

deadline. If this deadline is reached without agreement, then a negotiation terminates.

For example, Faratin et al. [11] propose several time-dependent strategies, where a ne-

gotiator significantly concedes closer to its negotiation deadline (greedy behaviour) or it

significantly concedes from the beginning of negotiation (generous behaviour). Lang [22]

also mentions a strategy when a negotiator concedes linearly over time, while Sim [29] in-

troduces a “waiting” strategy, where a negotiator concedes only at the deadline. Such work

not only focuses on time in their strategies, but also takes into account changing market

competition and opportunity (e.g. [1, 30, 31]), the behaviour of the negotiator’s opponent

(e.g. [1, 11, 18, 28]), and even strategies that do not depend on time [7].

In particular, Sim [30] describes a Market-Driven Agent (MDA) which considers time

and market-related pressure on a negotiator. In this strategy, the opportunity for a negotiator

is determined by the number of potential trading partners and the differences between their

and negotiator’s proposals in terms of their utilities. The competition pressure is determined

by the probability that a negotiator is chosen as the most preferable partner by at least one of

its trading partners in a particular negotiation round, and the pressure potentially increases

with the number of competitors. The time-related pressure on the MDA is similar to the

time-dependent tactics, presented by Faratin et al. [11], where a pressure on a negotiator

increases when a negotiation approaches the deadline, and a negotiator can adopt generous,

indifferent (linear) or greedy behaviour. Sim et al. [32, 33] also consider that a negotiator

is able to decrease its utility expectation when a pressure becomes high by accepting a

’slightly’ worse proposal from its opponent, where a quantitative estimate of ’slightly’ or

’not slightly’ is determined through a fuzzy logic mechanism. Although this work allows a
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negotiator to accept a smaller than expected utility, it does not take into account an effect

of such decision for future negotiations, which is essential for continuous long-term task

execution.

The MDA agent [30] has been extended in many other research papers. For instance, Ren

et al. [26] re-calculate the opportunity and competition factors by considering possible future

market changes, e.g. the probability of n trading partners joining the negotiation process

in the next round. Adabi et al. [1] state that it is important to consider a past concession

behaviour of the trading partners in order to punish or encourage an unfair or favourable

behaviour respectively. However, Adabi et al. assume that a negotiator (e.g. client) has an

access to the database which stores a concession history of its opponents, which may not

be available to a client. There are other negotiation strategies which consider an opponent’s

behaviour [11, 18, 19], and they range from imitating this behaviour [11] to learning the

opponent’s tactics [19] or preference profile [18], etc. However, those strategies do not focus

on learning the causes behind the opponent’s behavioural changes such as environmental

changes.

It has to be noted that if the end of negotiation is unspecified (no specific deadline), but

the duration of negotiation is relevant for client’s tasks, especially for continuous tasks, then

the mentioned above strategies do not account to this issue. They also do not consider the

cumulative effect of previous interruptions on the current negotiation, e.g. a more generous

client if a cumulative interruption is too long.

Some researchers focus on developing and improving a platform Generic Environment

for Negotiation with Intelligent multi-purpose Usage Simulation (GENIUS) [5, 6, 17] for

multi-issue negotiation simulation between heterogeneous agents. It has a user interface,

which allows a human user to choose the domain of negotiation, the negotiating agents with

their strategies, preferences, etc. This platform also allows integration of new negotiation

agents and it can compare an outcome of negotiation with some optimal outcomes such as a

Pareto efficient outcome. This platform is also used to perform tournaments among agents,

where the agents’ performance can be contested in the different scenarios. However, this

platform is not designed to simulate negotiation processes for continuous task execution,

where future negotiations (e.g. a client’s tactic) depend on the duration and success of pre-

vious negotiations, e.g. a too long cumulative interruption leads to more generous client’s

tactic.

It is generally desirable for a client to ensure that an agreement can be reached as

fast and with as good an outcome as possible. This can be achieved if a demand on re-

sources is not high and resources are genuinely available. Hence, it is beneficial for a client

to find out when resource availability is at its maximum, assuming pseudo-periodicity in

workload and resource availability over time, and to negotiate during this period. Much

work [8, 25, 34, 36, 38] focuses on predictions of Grid performance to improve scheduling

of tasks, but also usually emphasise the role of the GRA rather than client, which may not

have direct knowledge of resource availability in a Grid. For example, Wolski et al. [35, 36]

describe the Network Weather Service which produces the short-term predictions of meta-

computing resource performance, considering its network and computational characteris-

tics, in a distributed environment based on historical data. Nudd et al. [25] propose a toolset,

the Performance Analysis and Characterisation Environment, which allows application de-

velopers to predict and evaluate a performance of sophisticated applications (e.g. parallel

applications) at the different stages of their development and deployment. However, these

performance predictions involve a knowledge of performance characteristics of available

resources, which might not be accessible by a client.
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3 Formal model

In our work, we assume that each task can be interrupted one or more times during its

long-term execution. If a task has been interrupted, it must again request resources from

a Grid. However, if resources are scarce and demand on resources is high at the time of

interruption, then a client may keep negotiating with the GRA much longer than if resources

are available, which may significantly decrease client utility. This section provides a formal

model for continuous execution of a task, including a client’s utility, as well as negotiation

itself. Note that this formal model of continuous task execution has been presented in the

work of Haberland et al. [15].

3.1 Continuous task model

The start time of task execution tstr is when a client has submitted its first request for

resources to a Grid, while the end moment for the whole long-term duration of task execution

is tend. We assume that a client may have multiple tasks, but they all run independently.

In order to compare and average utilities over multiple tasks, we assume that each task

has the same global start tstr and end tend time. The total execution time for each task is

τ tot = tend
− tstr .

Each task i may have several interruption(s) within τ tot, which are not simultaneous for

multiple tasks. Each adjoined pair
(

τ int
i , τexe

i

)

l
of a single interruption τ int

i,l and execution

τexe
i,l periods of time for continuous task i, where an interruption period precedes a corre-

sponding execution period, has its counter l = 1, 2, 3, ... within τ tot. Here, each τexe
i,l starts

at tstri,l and ends at tend
i,l . Task interruption or execution at time t (i.e. when in progress) is

τ int
i,l (t) or τexe

i,l (t) respectively, where t ∈
[

tstr, tend
]

.

We assume that a cumulative duration of interruption over time objectively reflects on

the success of the client’s strategy, because each interruption period might have lighter or

tougher conditions for negotiation (e.g. level of resource availability). We define a cumula-

tive duration of interruption τcum
i,l =

∑l
k=1

τ int
i,k as the sum of all interruption durations

from the first until the lth prior to the execution period τexe
i,l . A cumulative interruption of

a task at time t, when a task is inside an interruption period τ int
i,l (t), is τcum

i,l (t), where

t ∈
[

tstr, tend
]

.

Client utility considers all interruption and execution periods for each task, where only

execution periods explicitly contribute to utility. We argue that the utility gained by a client

for each execution period τexe
i,l must be affected negatively to a varying degree by two fac-

tors: the duration of the preceding interruption τ int
i,l , which shows how much successfully

a client negotiated for this execution period; the cumulative duration of interruption τcum
i,l ,

which shows how much successfully a client generally negotiated for previous execution pe-

riods, including τexe
i,l . To derive client utility, we introduce an effectiveness function Ei,l (t)

which shows the success level of execution of task i as a process over time within each exe-

cution period τexe
i,l (t), assigning a value from the range [0, 1] to each point in time t. Figure

1 shows the effectiveness of task execution over time as alternating execution and interrup-

tion periods. The effectiveness function increases linearly when the task is running (during

τexe
i,l (t)) and does not change when the task is interrupted (during τ int

i,l (t)). The length of

interruptions (single and cumulative) affects the values of the effectiveness function during

the following execution period (e.g. Ei,l=2

(

tstri,l=2

)

< Ei,l=1

(

tend
i,l=1

)

).
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Fig. 1 An effectiveness of continuous task execution over time

The level of impact of the length of interruption on the following execution period is

calculated with damping functions SI
(

τ int
i,l

)

and CI
(

τcum
i,l

)

for a single and cumulative

interruptions respectively. These functions have a form of broadened step functions and they

produce values from the interval [0, 1] where 1 denotes no impact. The values of these func-

tions decrease during the interruption period from 1 towards 0. Each of these functions has

two variables which define how fast the possible increment of the client utility for a par-

ticular execution period decreases towards zero, depending on the duration of interruption

period. They are (τmax
int , ǫint) for a single interruption, while (τmax

cum , ǫcum) for a cumula-

tive interruption. Specifically, the variables τmax
int or τmax

cum denote the durations of single or

cumulative interruptions after which the corresponding functions’ values decrease by half

compared to their maximal value, which is considered to be a substantial level of impact for

a client. The variables ǫint or ǫcum determine the speed of decrease in the corresponding

increment of the client’s utility, caused by interruption, and this speed increases closer to the

end of period τmax
int or τmax

cum . For example, a continuous task which monitors temperature in

the building has been interrupted. The temperature will not rapidly change, but our knowl-

edge about its value becomes more and more unrealistic when time passes, and therefore

it should more significantly affect the effectiveness of task execution. These functions are

presented below:

SI
(

τ int
i,l

)

=
1

e(τ
int
i,l
−τmax

int )/ǫint + 1
. (1)

CI
(

τcum
i,l

)

=
1

e(τ
cum
i,l

−τmax
cum )/ǫcum + 1

. (2)

Here, if τ int
i,l ≪ τmax

int , then the value of SI
(

τ int
i,l

)

is close to one. If τ int
i,l ≫ τmax

int , then

the value of SI
(

τ int
i,l

)

is close to zero. The smaller the value of SI
(

τ int
i,l

)

or CI
(

τcum
i,l

)

,

the less effective task execution becomes in future.

The effectiveness function Ei,l (t) increases in the range from the level of effectiveness

Ei,l−1

(

tend
i,l−1

)

, achieved by a task before interruption τ int
i,l at time tend

i,l−1, multiplied by the

values of functions SI
(

τ int
i,l

)

and CI
(

τcum
i,l

)

, towards the largest possible effectiveness 1
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at time tend in the time interval τexe
i,l , as below if j ≡ l − 1:

Ei,l (t) =































[

(

1− Ei,j

(

tend
i,j

))

t+ Ei,j

(

tend
i,j

)

tend
− tstri,l

tend − tstri,l

]

×

SI
(

τ int
i,l

)

× CI
(

τcum
i,l

)

, if t ∈ τexe
i,l ,

Ei,j

(

tend
i,j

)

, if t ∈ τ int
i,l .

(3)

Here, if t = tstri,l , then the effectiveness of task execution Ei,l (t) = Ei,j

(

tend
i,j

)

×SI
(

τ int
i,l

)

×

CI
(

τcum
i,l

)

, which means that the effectiveness function at the beginning of execution pe-

riod τexe
i,l corresponds to its value at the end of previous execution τexe

i,j , and it is affected

by the durations of interruptions. If t = tend, then the effectiveness of task execution

Ei,l (t) = SI
(

τ int
i,l

)

× CI
(

τcum
i,l

)

. Consequently, if task execution reaches its deadline

tend with interruptions, then the effectiveness of task execution will not be equal to its

largest possible value, i.e. 1.

Client utility Ui for a task i is the sum of all areas under the effectiveness function

for the execution periods in proportion to the maximum possible area when the task is run

without interruptions during τ tot, and is shown in Figure 1 as the area of ‘ABC’. This utility

is presented in Equation (4).

Ui =
1

τ tot

Li
∑

l=1

(

Ei,l

(

tstri,l

)

+ Ei,l

(

tend
i,l

))

× τexe
i,l , (4)

where Li is the total number of interruption-execution pairs within τ tot for task i. The

average utility Uaver = 1/N
∑N

i=1
Ui is calculated as an average of utilities for N tasks,

and used in our evaluation.

3.2 Negotiation model

In this work, a polynomial function, presented by Faratin et al. [11] has been chosen as a

basic negotiation strategy for a client, because it allows a client to concede faster at the be-

ginning of negotiation as compared to an exponential function for conceding tactics. This

distinction between a polynomial and exponential functions is crucial for a client, because

a client becomes generous in negotiation when there is a risk of resource exhaustion. In the

cases of client’s greedy behaviour, a polynomial function produces much smaller values at

the beginning of negotiation than an exponential function which would preserve the client

utility, and this function also allows a client to wait shorter time before start conceding sub-

stantially which might prevent negotiation failure. While the work of Faratin et al. tested

different time-dependent strategies, the number of possible tactics in their experimental set-

tings was finite, which limits a choice for a client. Our ConTask negotiation strategy not

only assumes the infinite number of tactics, but the choice of those tactics is determined

through a sophisticated mechanism at every negotiation round, which takes into consid-

eration task-specific characteristics (e.g. continuity) and dynamics of Grid environment as

discussed further in this paper.

A client and GRA negotiate using an adopted alternating proposals protocol [27], where

the parties send proposals in turns, and both can accept the opponent’s proposal or quit a

negotiation process. In our work, a client has to negotiate with the GRA until resources are
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obtained which leads to uncertainty in respect of the final deadline of negotiation. However,

a negotiation process is time-dependent in terms of the length of interruption. Therefore, we

utilise time-dependent strategies [11] with reasonably short deadlines by the end of which

a client should not lose significant utility, and a client repeats these short negotiations until

an agreement is reached. In particular, short negotiations are defined in our experimental

settings further in this paper. In an ideal scenario, a client should be able to reach agreement

during a single short negotiation. Agreement is reached when a client accepts the GRA’s

proposal, or the GRA accepts a client’s proposal after it has been confirmed as the final one

by a client.

In each short negotiation, a negotiator concedes towards its opponent, starting from an

optimal length of task execution2 τCOp
i,l for a client and a minimum length τGMn

i,k for the

GRA, where the client’s optimal value can change at the beginning of each interruption pe-

riod, but the GRA’s minimum can change at the beginning of each short negotiation (k is

the counter of short negotiations). A negotiation proceeds towards the negotiators’ reserva-

tion values, i.e. the minimum acceptable length of task execution τCMn
i,l for a client and the

maximum available length τGMx
i,r for the GRA, which can change every next r negotiation

round. The GRA varies its reservation value in order to reflect on the changes in resource

availability, e.g. if resources become less available, its reservation value decreases. A short

negotiation stops when the negotiators reach agreement, one of them quits (e.g. the GRA if

resources are exhausted) or the short negotiation deadline tdl is reached. The level of con-

cession depends on the greediness βC
i,r for the client and βG

i,r for the GRA. If a proposal

from a client is τC
i,r for task i at round r, and the proposal from the GRA is τG

i,r , then:

τC
i,r = τCOp

i,l +

(

r ×∆t

tdl

)βC
i,r

×

(

τCMn
i,l − τCOp

i,l

)

, (5)

τG
i,r = τGMn

i,k +

(

r ×∆t

tdl

)βG
i,r

×

(

τGMx
i,r − τGMn

i,k

)

, (6)

where ∆t is equal to one conventional time unit. Note that τGMx
i,r increases or decreases

proportionally to the level of resource availability. In these equations, when r = 0, then

τC
i,r = τCOp

i,l and τG
i,r = τGMn

i,k . When r×∆t = tdl, then τC
i,r = τCMn

i,l and τG
i,r = τGMx

i,r .

The level of greediness for both negotiators changes, according to three tactics [11, 22]:

greedy (βC,G
i,r > 1), generous (0 < βC,G

i,r < 1) or indifferent (βC,G
i,r = 1).

The GRA’s level of greediness is based on the change in its reservation value and the de-

mand on resources, e.g. if demand is high and reservation value decreases, then it becomes

more greedy. The client’s level of greediness is estimated according to our extended evalu-

ation function, discussed in this paper, which controls a composition of fuzzy sets [14, 16].

A fuzzy set A is a subset of Y where each element y ∈ Y is mapped to the value from

the interval [0, 1], which determines the degree of membership of y in A, defined by the

membership function µA (y) [23, 39]. Each fuzzy set has a range of values of y ∈ Y which

have a non-zero membership. For example, a decrease in the level of greediness for a client

between 50% and 100% of its previous value can be considered as a substantial one with

the different or same levels of certainty for the different values from this range. In this work,

those ranges for the number of fuzzy sets are determined based on the extended evaluation

function, presented in this paper.

2 Note, “C” denotes a client and “G” denotes the GRA, while “Op”, “Mn” and “Mx” denote an optimal,

minimum and maximum length of time in the upper index of the notations, presented in this section.
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This evaluation function shows the level of attractiveness of a specific level of greedi-

ness, produced by a fuzzy logic mechanism, for a client at each negotiation round, consid-

ering different factors such as the risk of resource exhaustion. The ranges of fuzzy sets are

varied and their combinations constitute different compositions of fuzzy sets, which pro-

duce different levels of greediness for a client. In this paper, a client also chooses to concede

beyond the best last proposal from the GRA (or beyond its own non-confirmed last pro-

posal accepted by the GRA) in a short negotiation to start the next interruption period at

approximately maximum resource availability.

4 Negotiation strategy

The goal of our ConTask negotiation strategy for a client is to reduce the length of interrup-

tion periods and increase the length of execution periods, while not losing significantly in

utility3. As long as resource availability is assumed to change pseudo-periodically [4, 20],

then the reservation value of the GRA fluctuates periodically as well. A client is unaware

of resource availability or demand on resources, but higher demand generally leads to more

scarce resources. Resource scarcity leads to a less generous GRA with a smaller reserva-

tion value. As a result, it is likely that a task is allocated a shorter execution period when

resources are scarce. Hence, a client can determine which time interval is unfavourable for

negotiation and which is not based on the durations of agreed execution periods. That is,

the longer an allocated execution period is as a result of negotiation, the more favourable

this negotiation interval. Therefore, a client can estimate when the resource availability will

be at maximum, and aim to negotiate during this time (see Subsection 4.1). A client esti-

mates it through preliminary short negotiations with the GRA within some period before

tstr , which is not noticeable to the GRA as those negotiations follow the same rules as any

negotiations after tstr . Here, the accuracy of locating this maximum depends on the length

of this period, the amount of statistics and / or the level of determinism in the GRA’s reser-

vation value fluctuations (i.e. those fluctuations might have large or smaller oscillations over

time). Therefore, a client may need another technique, except negotiating at the maximum

resource availability, in order to reduce the durations of interruptions. We offer an extended

evaluation function, which allows a client to become more generous in negotiation when

single or cumulative interruptions are too long (see Subsection 4.2).

4.1 Negotiating at maximum resource availability

A client generally aims to obtain a longer execution period during negotiation. Convention-

ally, an agreement is reached when the negotiator’s utility for the opponent’s offer is higher

than for the next possible negotiator’s offer. In our work, a client does not always accept a

proposal which leads to a better utility than its own next proposal, but may decide to con-

cede more by proposing a shorter execution period to the GRA if this shortened period ends

closer to the maximum resource availability. This decision is mostly connected with the

continuity of task execution, because a client tries not only to obtain a better outcome in the

current negotiation, but must improve the overall effectiveness of task execution by reducing

all possible interruptions within τ tot, i.e. one successful negotiation affects any following

one in terms of the initial conditions such as resource availability, etc.

3 Note, the ideas of this strategy have been very briefly discussed in a short paper [15].
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Fig. 2 A decision to shorten an execution period τexe
′

i,l

Here, we define the best offered execution period τexe′

i,l as the last proposal of the GRA

or a client, which is to be accepted by a client or which is already accepted by the GRA

(not confirmed by a client) [15]. That is, it is a proposal that should conventionally seal an

agreement between negotiators. However, a client may decide to ask for a shorter execution

period τexe
i,l in order for this period to end around the maximum of resource availability. It

also has to be noted that a client attempts to reduce the length of τexe′

i,l only as much as to

reach the closest maximum from the end of this execution period.

Assume the length of time on which a client shortens its execution period is ∆τ . The ex-

pected end time of τexe′

i,l is tend′

i,l . The shortened execution period τexe
i,l must end around the

maximum resource availability as in Figure 24. A client tries to choose as short as possible

∆τ to lose as little utility as possible. Assume that an estimated period of a pseudo-periodic

resource availability fluctuations is Pest, while an estimated time interval between tstr and

the first maximum of resource availability is τest. Both values are derived from accumulated

statistics of average execution periods per time interval (e.g. per half hour) during prelimi-

nary short negotiations. Note that if the execution period τexe′

i,l does not contain at least one

maximum of resource availability, a client does not shorten it because τexe
i,l < 0. If the end

of τexe′

i,l is already in the maximum, ∆τ = 0. That is, ∆τ is calculated as follows:

∆τ =
(

tend′

i,l − tstr
)

− (τest + Pest × n) , (7)

where n is the number of the corresponding periods Pest until the estimated maximum

resource availability, where the execution period would be expected to end if it becomes

shorter. Consequently, the shortened execution period is τexe
i,l = τexe′

i,l − ∆τ , while its

expected end time of τexe
i,l is tend

i,l . The algorithm to shorten the best offered execution

period is presented below.

4 The figure shows a strongly periodic dependence for average execution periods over time only as an

example.



Negotiation Strategy for Continuous Long-Term Tasks in a Grid Environment 11

Algorithm 1 Client algorithm to shorten τexe′

i,l

1: {One negotiator offers τexe
′

i,l , but there is no agreement yet}

2: Calculate ∆τ (see Formula (7))

3: if ∆τ < τexe
′

i,l then

4: Calculate τexei,l = τexe
′

i,l −∆τ

5: Calculate tend
i,l = tend′

i,l −∆τ {The end time is re-calculated to start the next interruption period at

the correct point in time}
6: Send a new proposal of τexei,l to the GRA

7: Respond to the request of confirmation to the GRA {Agreement for τexei,l }

8: else

9: Accept execution period τexe
′

i,l {Agreement for τexe
′

i,l }

10: end if

4.2 Considering the duration of interruptions

The damping functions SI (·) and CI (·) in Equations (1), (2) determine how much the

length of single and cumulative interruptions affect the effectiveness of task execution, and

as a result client’s utility. The values of SI
(

τ int
i,l (t)

)

and CI
(

τacc
i,l (t)

)

can be calculated

at point in time t during task’s interruption τ int
i,l (t) to ensure that their values have not sub-

stantially dropped towards zero. Assume that a client determines the sensitivity thresholds

χint and χcum with respect to a single and cumulative interruptions respectively. When

the difference between the value of any damping function and its largest possible value 1 at

time t becomes larger than χint for SI
(

τ int
i,l (t)

)

and/or χcum for CI
(

τcum
i,l (t)

)

, a client

infers that the interruption is too long. An interruption is too long if it significantly affects

the client’s utility.

Formally, χint or χcum denotes the difference between the largest possible value 1 of

the corresponding damping function (no impact on client utility) and the values of these

functions when the durations of the current single τ int
i,l (t) and/or cumulative τcum

i,l (t) in-

terruptions exceed the durations τmax
int − m × ǫint and τmax

cum − k × ǫcum, as shown in

Equations (8), (9).

χint = 1− SI (τmax
int −m× ǫint) , (8)

χcum = 1− CI (τmax
cum − k × ǫcum) , (9)

where the non-dimensional coefficients m, k ∈ R denote the amount of the values of ǫint or

ǫcum which are deducted from τmax
int or τmax

cum to indicate the start of the time range where

the client utility is significantly affected. Considering χint and χcum are chosen by a client,

we can calculate the value of m from Equations (1) and (8) as in Equation (10) and similarly

the value of k from Equations (2) and (9) as in Equation (11).

m = ln
((

1− χint
)

/χint
)

, (10)

k = ln ((1− χcum) /χcum) . (11)

Here, we describe our additional criteria C1

i,l (t) and C2

i,l (t) for our extended evaluation

function, compared to this function in [16]. The previous version of this function consists

of only one criterion Ci,r for a client to become more generous, when the risk of resource

exhaustion in round r for task i is high before the end of negotiation. This criterion is esti-

mated as Ci,r =
∑r

k=1
αi,k + r × ∆t/tdl, where αi,k is a relative change of the GRA’s
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reservation value in respect of the difference of its initial reservation value and its initial

offer to a client at the beginning of short negotiation. This criterion Ci,r < 0, if resource

availability mostly decreases with an average speed
∣

∣1/r
∑r

k=1
αi,k

∣

∣ > ∆t/tdl, which

means that resources might become exhausted before the end of negotiation. The new cri-

teria C1

i,l (t) and C2

i,l (t), described in this paper, solve the distinct problem of prolonged

interruption durations. Consequently, C1

i,l (t) denotes whether the length of the current sin-

gle interruption is in the time range where the utility is significantly affected by its duration,

i.e. τ int
i,l (t) > τmax

int −m×ǫint, while C2

i,l (t) has the same idea for the current cumulative

interruption, and they are presented below:

C1

i,l (t) = (τmax
int −m× ǫint)− τ int

i,l (t) , (12)

C2

i,l (t) = (τmax
cum − k × ǫcum)− τcum

i,l (t) . (13)

Our evaluation function Qi,r,l (rx, t), which is calculated at every point in time t (negoti-

ation round) for the different levels of client greediness, which lead to different rounds rx
of expected agreements. The maximum of this function for the different expected rx indi-

cates the smallest or largest level of greediness among all levels, produced by the different

fuzzy sets’ combinations [16]. Therefore, this function consists of the two summands, where

only one summand at time t can have a non-zero value: if rx × ∆t/tdl is maximised for

the different expected rx, the longest negotiation is chosen (the largest level of greediness);

if (tdl − rx ×∆t) /tdl is maximised, then the shortest negotiation is chosen (the smallest

greediness) within a negotiation deadline tdl. A zero or non-zero value of a summand is

determined by the Heaviside step functions θ (·) with criteria as their arguments. For exam-

ple, if C1

i,l (t) < 0, then θ
(

C1

i,l (t)
)

= 0 and if C1

i,l (t) ≥ 0, then θ
(

C1

i,l (t)
)

= 1. Our

extended evaluation function is below.

Qi,r,l (rx, t) =

(

rx ×∆t

tdl

)

θ (Ci,r) θ
(

C1

i,l (t)
)

θ
(

C2

i,l (t)
)

+

+

(

tdl − rx ×∆t

tdl

)

(

1− θ (Ci,r) θ
(

C1

i,l (t)
)

θ
(

C2

i,l (t)
))

.

(14)

Here, the maximised value of this function over the different combinations of fuzzy sets

indicates the largest level of greediness only if Ci,r ≥ 0, C1

i,l (t) ≥ 0 and C2

i,l (t) ≥ 0. If

at least one criterion is negative, at least one criterion is unfavourable for negotiation, and

then a client tends to concede more generously. The flexibility of this evaluation function in

terms of adding new criteria for a client to take into account is clear when the new criteria

are embedded.

5 Evaluation

We evaluate improvements in client utility compared to our previous negotiation strategy

[16], while applying the ConTask negotiation strategy in realistic settings for different Grid

environment conditions, reflected in the GRA’s reservation value, which changes pseudo-

periodically, following changes in resource availability. The GRA’s reservation value has

also random deviations, which are generated with the normal distribution, representing the

more or less predictable GRA’s behaviour. As long as deviations in the GRA’s reservation

value may significantly affect negotiation, we consider them important. That is, we compare

client utilities for cases when the standard deviation of the GRA’s reservation value can
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be 1, 5, 10, 20 and 50 % of the client’s optimal value. Larger deviations also cause larger

uncertainty for a client in terms of identifying a favourable time interval for negotiation.

We also assume that each short negotiation takes a maximum 100 rounds, equivalent

to 100 conventional seconds (but these negotiations may repeat until agreement is reached

between a client and the GRA). In our model, all time units are modelled in conventional

units, not real time. The duration of execution can be up to 10 days as a result of negotiation,

while the total execution period τ tot for each task is equal to 1 conventional year. The period

of the change in the GRA’s reservation value is considered to be 24 conventional hours.

Client utilities are averaged for 100 tasks, assumed to be executed independently. The

variables for the functions SI (·) and CI (·) are considered to be τmax
int = 100.0, τmax

cum =
4800.0, ǫint = 30.0 and ǫcum = 2000.0 conventional seconds. These variables are chosen

experimentally, and they generally aim not to significantly affect utility, if a client negotiates

successfully during 100 rounds without negotiation repetitions. More repetitions and, as a

result, longer interruption periods, affect client utility more significantly.

5.1 Model of resource dynamism

Here, we describe the main principles of our Grid resource dynamism model, which are

based on real-life observation of resource utilisation in a Grid, presented in the paper of

Iosup et al. [20]. We have identified several pseudo-periodic patterns of resource utilisation

fluctuation over time, which are used in this model. Some Grids show a pseudo-periodicity

in resource consumption over the days, where period is approximately equal to one day.

Although some Grids demonstrate approximately equal peaks of resource consumption ev-

ery day, others generally show the smaller peaks for the beginning and the end of the week.

Some Grids generally show the repetitions in resource utilisation over the days of each week,

which we consider as a pseudo-periodicity over the weeks. For example, the resource con-

sumption is generally smaller at the beginning of the week and at the weekends than during

the working days. However, some weeks are less distinctive from each other, that is the re-

source consumption does not drop significantly during the weekends. Some of Grids also do

not demonstrate a pseudo-periodic resource utilisation, but they are out of the scope of our

research.

Our model is implemented as a simulator, which calculates the amount of free Nf (t)
and busy Nb (t) resources, the total amount of resources Ntot (t) and the accumulated

amount of demanded resources Nd (t) at each time step. This simulator allows us to test the

ConTask negotiation strategy for the different scenarios. Figure 3 shows three conventional

weeks of resource dynamism simulation, where the total amount of resources is equal to the

sum of free and busy resources. In this figure, some days or weeks periodicities in resource

consumption are less distinctive than others. For example, the amount of busy resources

does not decrease substantially for the weekends between the first and the second weeks

(i.e. in the time interval of [120, 168] hours), but it decreases more deterministically for the

weekends between the second and the third weeks (i.e. in the time interval of [228, 336]
hours). The total amount of resources also changes over time as resources can join or leave

a Grid, or fail. The larger resource scarcity is modelled for the cases when the demand on

resources increases and / or the total resource amount decreases. Note that the demand on

resources Nd (t), depicted in this figure, shows the accumulated amount of requested re-

sources at each time step which has not been allocated yet. In the cases, when the value of

Nd (t) close to zero means that there are almost no outstanding resource requests, but it does

not mean that there are no new resource requests which is discussed later in this section. In
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Fig. 3 A demonstration of resource dynamism simulation

order to calculate the amount of free and busy resources as well as the demand on resources

at any time point, the system of differential equations is solved numerically:























dNf (t)

dt
= −α×Nd (t)×Nf (t) + β ×Nb (t) + µ (t)×

dNtot (t)

dt
,

dNd (t)

dt
= −α×Nd (t)×Nf (t) + γ (t)− υ (t)×

dNtot (t)

dt
,

Ntot (t) = Nb (t) +Nf (t) ,

(15)

where α×Nd (t)×Nf (t) or β×Nb (t) are the amounts of resources which become busy or

free during an arbitrary small time unit, and α (1/[time unit]*[resource unit]) and β (1/[time

unit]) are experimentally chosen coefficients.

The change in the total amount of resources Ntot (t) also affects the amount of free and

busy resources and, as a result, the accumulated amount of requested resources. Fluctuation

of Ntot (t) over time is simulated using different random superpositions of step-type func-

tions. Here, µ (t) or υ (t) denote the portion of change in the total resource amount for an

arbitrary small time unit which are free or busy resources respectively, and µ (t)+υ (t) = 1.

When the total resource amount increases dNtot (t) /dt > 0, then υ (t) = 0 and µ (t) = 1,

i.e. the amount of Ntot (t) increases only as a result of additional free resources joining a

Grid. When the total resource amount decreases dNtot (t) /dt < 0, then υ (t) ∈ [0, 1] and

µ (t) ∈ [0, 1], i.e. the amount of Ntot (t) decreases in respect of free and busy resources as

a result of resource failure and / or withdrawal from a Grid.

The accumulated amount of requested resources Nd (t) also depends on the newly re-

quested resource amounts γ (t) per time unit, which exhibit periodic dependencies discussed

at the beginning of this section. It is assumed that there are more resource requests during
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working days than at the weekends, and during the normal working hours than at night.

Those periodicities are presented below:

γ (t) = γ0

(

1− γ1 × sin

(

2πt

Tdyn

))d1

×

(

γ2 +

∣

∣

∣

∣

sin

(

2πt

14× Tdyn

)∣

∣

∣

∣

d2

)

, (16)

where γ0, γ1 and γ2 are experimentally chosen constants, i.e. γ0 = 11 ([resource unit]/[time

unit]), γ1 = 0.9 and γ2 = 0.1; Tdyn is the period of a sine-type wave and is equal to

24 virtual hours; d1 and d2 ∈ [0, 1] are the degrees which define the level of distinction

between the peaks of newly requested resource amounts over days and weeks, and t is

the current time. The first factor of γ (t) models the periodicity in the requested resource

amounts over days, while the second factor models the periodicity over weeks. The degrees

d1 and d2 can be re-calculated randomly in the interval [0, 1] once every 24 virtual hours.

The smaller their values, the less distinctive peaks are in resource utilisation over days and

weeks. For example, the same level of resource utilisation can be observed for two days

without distinctive peaks for each day.

The GRA’s reservation value τGMx
i,r changes proportionally to the amount of free re-

sources Nf (t) with random deviations above mentioned, while the GRA’s level of greedi-

ness βG
i,r changes, depending on the change in the GRA’s reservation value and the demand

on resources Nd (t) as discussed in Section 3.2.

5.2 Evaluation results

Here, we evaluate each of the contributions of the ConTask negotiation strategy separately

and together. In Figure 4, we compare utilities for continuous task execution when a client

shortens the best offered execution period “wShort” or a negotiation finishes in a traditional

way “noShort”, as explained in Subsection 4.1. In the case of “noShort”, our previous nego-

tiation strategy [16] is used by a client, where the evaluation function has only one criterion

Ci,r (see Subsection 4.2). The results show that the shortening algorithm improves client

utility for all GRA reservation value deviations. However, the difference between utilities in

“wShort” and “noShort” becomes gradually smaller towards larger intervals of deviations,

due to the increasing uncertainty in estimations of maximum resource availability when the

GRA’s reservation value has significant oscillations. All utilities decrease towards the higher

deviation intervals, because the higher level of deviation of the GRA’s reservation value de-

notes that resources may be exhausted during one or few negotiation rounds when a client

has no time to adapt to the resource availability changes.

These results are explained in Figure 5, which shows the execution periods averaged

over 100 tasks per half an hour for one day for the different deviation intervals of the GRA’s

reservation value, where the standard deviation is chosen to be 1% (i.e. “AverExec 1”), 5%,

10%, 20% and 50% of the client’s optimal value. As depicted in this figure, smaller devia-

tions (e.g. “AverExec 1” and “AverExec 5”) lead to more accurate estimation of maximum

resource availability based on the average execution periods, where this maximum is more

distinctive than for larger deviations. However, the longest execution periods around the

minimum of resource availability are shown for the largest deviation (i.e. “AverExec 50”),

which is due to the drastic increases and decreases in the GRA’s reservation value and, as

a result, in the durations of allocated time slots of resource utilisation for each task. Con-

sequently, the execution periods on average at the minimum resource availability become

almost equal to their values at the maximum of resource availability.
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In Figure 6, we compare utilities for our extended evaluation function Qi,r,l (rx, t)
(i.e. “wEval”) with utilities for the case “noShort”. We also evaluate the results for dif-

ferent levels of sensitivity χint = χtot (see Subsection 4.2), imposed by a client. In this

case, we have chosen 0.1 (“noShort&wEval 0.1”), 0.2 (“noShort&wEval 0.2”) and 0.5
(“noShort&wEval 0.5”) for evaluation, because 0.1 represents a mostly generous client,

while 0.5 represents a mostly greedy client in negotiation (a client becomes more gener-

ous only after the inflection points τmax
int and τmax

cum ). Consequently, 0.2 is chosen as some

“medium” level of sensitivity between 0.1 and 0.5.

Figure 6 shows that the smallest utility in all cases is when a client uses our previous

non-extended evaluation function “noShort” [16], which does not consider the durations

of single and total interruptions. This figure also demonstrates that the smaller sensitivity

thresholds, e.g. 0.1, lead to the higher utilities than the larger thresholds. In the cases of the

larger sensitivity thresholds, clients greediness leads to longer interruptions when a client

does not necessarily negotiate at the maximum resource availability and, as a result, the

smaller utilities. It has to be noted that the difference between utilities for all cases decreases

with the larger intervals of deviation. This can be explained that the large deviations may as

much increase interruption or execution periods at any resource availability as decrease it,

because of drastic random increases or decreases in the GRAs reservation value. As a result,

the choice of the sensitivity threshold less affects the outcome of negotiation.

However, the durations of interruptions on average for the larger deviations are longer

when resources are more scarce, as depicted in Figure 7 (e.g. for the cases with standard de-

viation 5% (“AvrInt 5”) and 50% (“AvrInt 50”)). This tendency is due to the large negative

deviations in the GRA’s reservation value which lead to negotiation failures. Note that the

average interruptions for the larger deviations around the maximum of resource availability

are in turn shorter than for the smaller deviations due to the large negative deviations which
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Fig. 7 The average interruption periods during one day, corresponding to the average execution periods in

Figure 5

might be perceived by a client as a risk of resource exhaustion and lead to more generous

tactics, finishing negotiation earlier. It has to be remembered that the maximal duration of

a single negotiation is 100 seconds in our experiment, i.e. if the duration of interruption

is close to 100 seconds, it means that the majority of negotiations are successful at first

attempt. The average interruption durations for the case “AvrInt 50” at the maximum of

resource availability are longer than for the case “AvrInt 20”, which just shows an unpre-

dictable nature of the GRA’s behaviour in the case “AvrInt 50”. That is, the large negative

or positive deviations may lead to either too generous (shorter negotiation) or too greedy

(longer negotiation) client’s behaviour respectively, averaging closer to the maximal possi-

ble duration of negotiation.

In Figure 8, we compare our ConTask negotiation strategy that uses both the shorten-

ing algorithm and an extended evaluation function (“wShort&wEval”) to the case when we

do not use any of these contributions “noShort”, and generally to all other figures. Here,

all utilities are larger than for each separate contribution, as in Figures 4 and 6. It is also

important to indicate that the sensitivity threshold 0.2 shows the best utilities for all con-

sidered deviations of the GRAs reservation value, which is different to the best sensitivity

threshold presented in Figure 6. A less generous client’s behaviour (sensitivity 0.2) becomes

more beneficial when each negotiation is likely to start at the maximum of resource avail-

ability, while more generous client’s behaviour is beneficial when each negotiation is likely

to proceed under unfavourable conditions.

Here, the sensitivity 0.5 leads to the better utilities than 0.1, when the standard deviations

are 5%, 10% and 20%, but it shows the worse utilities than 0.1, when the standard deviations

are 1% and 50%. It means that a substantial greediness is better than a substantial generosity

for almost all deviations, except for the extremely small or large deviations, but it is worse
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Fig. 8 Evaluation of the whole ConTask negotiation strategy

than a moderate generosity 0.2. In the case of extremely small deviations a greedy client

loses in utility in terms of the duration of negotiation for no larger outcome, and in the case

of extremely large deviations a greedy client loses in utility, because it is difficult to reach an

agreement. A conclusion is that a substantial generosity might be more beneficial for the ex-

treme small or large deviations of the GRA’s reservation value, compared to the substantial

greediness, while a moderate generosity is better for all cases in general. However, an opti-

mal generosity cannot be chosen precisely and it has to be derived through experimentation

for the different Grid environment settings, which can be our further direction of research.

6 Conclusion

In this paper, we described in detail a new negotiation strategy, ConTask, that allows near-

continuous task execution by increasing the durations of execution without interruptions

and by reducing the interruptions as well. Our strategy offers a different way of reaching

agreement where a client may concede beyond the proposal which would be accepted in a

traditional negotiation in order to negotiate around the maximum of resource availability. A

client also takes into account the durations of the single and cumulative interruptions within

the long period of task execution to change its negotiation tactic.

As a result, our negotiation strategy shows an improvement in client utility for differ-

ent scenarios within a realistically modelled Grid environment, where resource availability

changes near-periodically over time. The evaluation results also demonstrate that an ex-

tremely generous client’s behaviour is more beneficial for the cases when it may not nego-

tiate at the maximum resource availability. A moderately generous behaviour for a client is

generally beneficial for the different Grid environments, when a client considers the shorter
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execution periods in order to negotiate closer to the maximum of resource availability. It

has to be noted that the larger deviations of the GRA’s reservation values may lead to the

shorter interruptions due to the possible large positive deviations. However, the larger devia-

tions also denote a less predictable Grid’s behaviour, which generally leads to smaller client

utilities for all strategies.

In our future work, we plan to focus on continuous long-term task execution, consid-

ering the dependencies among them in terms of input data streams. In such scenario, an

interruption of one task would not just affect its own utility, but also the utilities of other

tasks, imposing more time constraints on negotiation process and increasing a complexity

of decision-making for a client.
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