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ABSTRACT 

 

Recent studies reporting that small-for-gestational-age (SGA) birth is associated with increased 

adiposity in childhood and adulthood have been based on analyses “adjusting” for height, 

weight, or BMI measured concurrently with the adiposity measurement.  To assess the potential 

for bias due to overadjustment for a causal mediator, we compared two approaches to analyzing 

the association between SGA birth and adiposity outcomes (skinfold thicknesses and 

bioelectrical impedance measure of body fat) at age 11.5 years using the same dataset on a 

cohort of Belarusian children followed from birth in 1996-97:  (1) effect of SGA birth on 

adiposity, adjusted for baseline covariates only;  and (2) additional regression adjustment for 

concurrent height, weight, or BMI.  The first approach yielded negative associations between 

SGA birth and all adiposity outcomes.  Regression modeling of concurrent weight or BMI 

reversed (i.e., to positive) the SGA-adiposity association.  To explore the latter anthropometric 

measures as causal mediators, we also used marginal structural models (MSMs) to estimate the 

controlled direct effect of SGA birth.  That effect was similar to the effect seen with the first 

approach when modeled on height, was null when modeled on BMI, but was confounded by 

differences in lean vs fat mass when modeled on weight.   

 

Word count: 199 
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Abbreviations: 

 

SGA = small for gestational age 

AGA = appropriate for gestational age 

BMI = body mass index 

PROBIT = Promotion of Breastfeeding Intervention Trial 

MSM = marginal structural model 
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Epidemiologic studies published from the 1970s to the 1990s reported that infants born small for 

gestational age (SGA) experienced long-term reductions in height, weight, body mass index 

(BMI), and skinfold thicknesses.(1-5)  Several recent studies, however, have reported that SGA 

birth is associated with greater adiposity in later childhood and adulthood, suggesting a fetal 

origin of obesity(6-8) and a link to adult chronic disease outcomes that have also been associated 

with restricted fetal growth, including high blood pressure, type 2 diabetes, and coronary heart 

disease.(9)   

 

In a recent publication(10) based on 11.5-year-old Belarusian children followed from birth, we 

reported results for the SGA-adiposity association that were consistent with the older(1-5) and 

some recent(11-17) epidemiologic literature, but contrasted with the above-cited studies.(6-8) 

We hypothesized(10) that the contrasting results were caused by the latter(6-8) studies’ 

overadjustment of adiposity measurements for height, weight, and/or BMI obtained at the same 

time as the adiposity measurements.  In the current paper, we illustrate the pitfalls of analyzing 

these anthropometric mediators as confounders by using alternative statistical approaches to the 

same longitudinal dataset.   

 

METHODS 

 

We present observational analyses of Belarusian children who participated in the Promotion of 

Breastfeeding Intervention Trial (PROBIT), a cluster-randomized trial of a breastfeeding 

promotion intervention.  The original design of PROBIT(18) and a description of the follow-up 

anthropometric methods and results at 11.5 years(19) have been previously published.  In brief, 
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the clusters randomized were 31 maternity hospitals and one affiliated polyclinic (an outpatient 

clinic where children receive routine heath care) per hospital.  The trial recruited 17,046 healthy, 

singleton infants with gestational age ≥37 weeks (92.5% ultrasound-confirmed), birth weight 

≥2500 grams, and 5-minute Apgar scores ≥5.  All were born in 1996 and 1997, were enrolled 

during their postpartum stay, and initiated breastfeeding. 

 

Follow-up interviews and examinations at 6.5 and 11.5 years of age were performed by one or 

two pediatricians (depending on volume) at each of the 31 affiliated polyclinics.  The training 

and quality-assurance procedures at both the 6.5- and 11.5-year follow-up visits have been 

described in detail previously.(19;20)  The 11.5-year follow-up included measurements of 

height, weight, waist and hip circumferences, triceps and subscapular skinfold thicknesses, and 

percentage body fat, based on foot-to-foot bioelectrical impedance using the Tanita TBF body fat 

analyzer.  This measure of body fat has been found to correlate extremely highly with body fat 

mass measured by dual-energy x-ray absorptiometry in school-age children.(21)  We excluded a 

priori children with implausible outcome measurements, i.e., those with values <−4 SD (n = 0-2, 

depending on measurement) or >+4 SD (n = 3-117) from the mean. 

 

For simplicity and clarity, the current analysis is limited to comparisons of infants born SGA and 

those born appropriate for gestational age (AGA), i.e., it excludes infants born large for 

gestational age, who are known to be at higher risk for later obesity.  SGA birth was defined as a 

birth weight <10th percentile for gestational age and sex, derived from a Canadian population-

based reference(22) (no such reference is available for Belarus).  AGA birth was defined as birth 

weight between the 10th and 90th percentiles of the same reference.     
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To illustrate the pitfalls of analyzing mediators as confounders, we analyzed the same dataset 

using two different statistical approaches.  The first approach (already reported)(10) estimates 

the total effect of SGA on adiposity at 11.5 years, i.e., it does not adjust for any of the 

anthropometric mediators measured at the 11.5-year follow-up.  The approach is based on the 

MIXED procedure in SAS (version 9.4; SAS Institute, Inc.), which accounts for the clustered 

measurement of the adiposity outcomes (by polyclinic) and adjusts for the following potentially 

confounding baseline covariates:  maternal and paternal height and BMI, geographic region, 

urban vs rural residence, and maternal education.  To maximize precision, we also adjusted for 

the child’s exact age at follow-up.  Because the breastfeeding promotion intervention had no 

effect on any of the adiposity outcomes,(18)  we did not adjust for intervention group.  The 

second approach uses regression modeling in an attempt to estimate the independent effect of 

SGA on 11.5-year adiposity by adjusting for the concurrent anthropometric mediators as if they 

were confounding factors.(23)  For this approach, we used the same MIXED procedure in SAS 

and the same baseline confounders but also included either height, weight, or BMI measured at 

11.5 years of age.   

 

Finally, we also used marginal structural models (MSMs) to explore causal pathways from SGA 

birth to child adiposity via the anthropometric mediators.  Unlike the two approaches to 

estimating the causal effect of SGA birth on child adiposity, the MSM estimates the controlled 

direct effect, i.e., the effect of SGA birth that is not mediated by the concurrent anthropometric 

measures.(24) The MSM was also fit using the MIXED procedure in SAS, using inverse 

probability weighting of the mediators.(24-26)  The weights for continuous variables were 

calculated using the procedures reported by Cole and Hernán.(27;28)  We estimated two sets of 
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weights: one for exposure (SGA vs AGA birth) and one for each of the three anthropometric 

mediators.  The inverse probability weight for SGA birth was calculated from a logistic 

regression model including the baseline covariates, while the weight for the mediator was based 

on a linear regression model including the same baseline covariates, exposure, and mediator.  

Weights for both exposure and mediator were stabilized by replacing the numerator with the 

marginal probability of the observed exposure, and the marginal probability of the observed 

intermediate conditional on the exposure, respectively.(27;28)  In addition, the stabilized weights 

were truncated at the 1st and 99th percentiles.(27) We used the product of the two stabilized 

weights for the exposure and mediator for the inverse probability weighting in the MSM to 

estimate the controlled direct effect.(24-26)    

 

RESULTS 

 

Table 1 summarizes the baseline characteristics of the SGA and AGA newborn infants who were 

followed up at age 11.5 years.  As expected, small but statistically significant differences were 

seen in place of residence and maternal education between the SGA and AGA groups, with 

larger, highly statistically significant differences in maternal and paternal height and BMI. 

 

Table 2 shows the mean (± SD) height, weight, BMI, and adiposity outcomes in the SGA and 

AGA groups.  As previously reported,(10) all of these measurements were significantly lower in 

the SGA group than in the AGA group, with the exception of the subscapular:triceps ratio, which 

was slightly but significantly higher in the SGA than in the AGA group. 
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In Table 3, we compare the two statistical approaches to estimating the causal effect of SGA (vs 

AGA) birth on the adiposity outcomes.  With the exception of the subscapular:triceps ratio, 

effects observed in the first approach were reduced when using the second (regression modeling 

to adjust for concurrent height), and were reversed when adjusted for concurrent weight or BMI.  

Finally, Table 4 shows the controlled direct effects from the MSM.  Those effects were similar to 

the total effects from the first approach with height as the mediator and similar to those of 

regression modeling with weight as the mediator (see Table 3).  They were close to null, 

however, with BMI as the mediator.   

 

DISCUSSION 

 

We observed substantial differences among the two compared statistical approaches. These 

contrasting results were obtained using the same dataset and controlled for the same set of 

potentially confounding baseline covariates (see Table 1), all of which temporally preceded both 

exposure and outcome.  Our findings demonstrate that different statistical approaches to analysis 

of anthropometric measurements affected by SGA birth and obtained concurrently with the 

adiposity outcomes can yield opposite results and causal inferences.  Our findings cannot be 

explained by differences in study setting, the exclusion of infants weighing <2500 grams at birth, 

or restriction to infants who initiated breastfeeding⎯the explanations offered by the editorial that 

accompanied our previous manuscript(29)⎯since these were identical under both approaches.   

 

Why are the results of these two analytic approaches so different?  Regression adjustment for the 

mediator biases the effect estimate by overadjusting for concurrent height, weight, or BMI as if it 
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were a confounder.(30-32)  A true confounder, however, should be a cause of exposure (here, 

SGA birth) and thus temporally precedent to it.(30) This is quite different from a causal 

mediator, which by definition occurs after the exposure and is itself a consequence of exposure.  

Neither height, weight, nor BMI at age 11.5 years can influence fetal growth (SGA vs AGA 

birth).  If it were possible to randomize human fetuses to become SGA vs AGA newborns, no 

trialist would “adjust” for post-randomization outcomes, because those outcomes are potentially 

caused by the randomized intervention.  Similarly, adjusting for an effect of exposure in an 

observational study will systematically bias the estimate of its effect on outcomes that occur 

“downstream” from the mediator adjusted for.  To the extent that effect on the mediator adjusted 

for is in the same direction as, and lies on the causal path to, the downstream outcomes, effect 

estimates for the latter outcomes will be biased downwards or even reversed.(31;32) 

 

Why should an investigator be interested in effects of SGA birth on adiposity that are 

“independent” of its effects on concurrent height, weight, or BMI?  In a nutritional or biological 

context, it is not clear what such “independent” effects denote.  Adjusting for height is like 

selecting those SGA infants who catch up to AGA infants in stature.  SGA-born children who 

catch up in height are also likely to catch up in adiposity to those in the AGA group, and most of 

the overall (total) effect of SGA on adiposity is consequently removed (overadjusted).  Adjusting 

for weight creates even greater bias.  On average, SGA-born children are shorter than their AGA 

counterparts(10); thus their average BMI is higher at the same weight.   

 

We explored causal pathways from SGA birth to child adiposity by using MSMs.  MSMs 

estimate the controlled direct effect of SGA birth:  the effect of SGA birth when the concurrent 
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anthropometric mediator is held constant, i.e., the unmediated effect.  The inverse probability 

weighting of the intermediate removes the association between the intermediate and the exposure 

in the resulting pseudo-population.  Using height as the mediator in the MSM yields controlled 

direct effects similar to the total effect of the baseline-only approach, demonstrating that the 

negative effect of SGA on later adiposity operates independently of its negative effect on height.  

Using BMI as the mediator in the MSM model also appears to provide a valid inference for the 

null controlled direct effect by suggesting that the negative effect of SGA birth on later adiposity 

is largely indirect, i.e., it is similar to its negative effect on BMI.  These results suggest that 

similar BMIs among children born SGA vs AGA in the pseudo-population ensure similar 

fat:lean ratios. 

 

Even the MSM modeling approach, however, assumes no uncontrolled confounding of the 

mediator-outcome association.  Although the MSM with weight as mediator ensures no 

association between weight and SGA in the pseudo-population, it is not immune to confounding 

by the inverse association between height and BMI at a given weight, i.e., between lean mass and 

fat mass.  This source of confounding also contributes to the biased results of the regression 

(second) approach with weight as the mediator. 

 

These considerations make it clear that the first statistical approach, which estimates the total 

effect of SGA birth on adiposity, is clearly preferred to the second.  True (baseline) confounders 

of the exposure-outcome association are taken into account.  The second approach, however, 

attempts to estimate an “independent” effect by treating concurrent anthropometric mediators as 

confounders using regression modeling, as has been done in some recent studies.(6-8) MSM 
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estimation of controlled direct effects provides insight about causal pathways when adjusting for 

height or BMI but, as with regression modeling, induces confounding by lean vs fat mass when 

adjusting for weight. 

 

Our findings have important implications for other outcomes studied in lifecourse epidemiology.  

Longitudinal (cohort) studies have many methodologic advantages for studying long-term effects 

of early-life exposures, but ensuring temporal precedence of potential confounders and 

appropriate analysis of causal mediators is essential to avoid overadjustment and biased causal 

inferences. 
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Table 1.  Baseline characteristics of PROBIT children born SGA or AGA 

 

Characteristic SGA AGA P valuea 

 (n = 1,247) (n = 11,560)  

Place or residence % % <0.001 

   East/urban 33.4 31.8  

   East/rural 16.2 15.4  

   West/urban 21.2 26.5  

   West/rural 29.2 26.2  

Maternal education % % <0.001 

   Completed university 10.0 13.8  

   Partial university 47.5 51.2  

   Completed secondary school 37.4 31.4  

   Incomplete secondary school 5.1 3.6  

 Mean (SD) Mean (SD)  

Maternal height (cm)b 162.4 (5.9) 164.1 (5.7) <0.001 

Maternal BMIb 25.3 (5.2) 26.5 (5.5) <0.001 

Paternal height (cm)b 174.9 (6.8) 176.0 (6.6) <0.001 

Paternal BMIb 25.2 (3.3) 25.7 (3.2) <0.001 

 

  a  Based on chi-square tests for comparisons of proportions and t-tests for comparisons of means   

 
   b  Based on heights and weights reported by the mother at the 6.5-year visit 

      

     SD = standard deviation; SGA = small for gestational age; AGA = appropriate for gestational 

     age; SF = skinfold; BMI = body mass index in kg/m2 
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Table 2.  Crude comparison of anthropometric mediators and adiposity outcomes in 11.5-

year-old children born SGA vs AGA 

 

Anthropometric Mediators SGA AGA P Valuea 

 Mean (SD) Mean (SD)  

Height (cm) 147.4 (8.0) 149.8 (7.7) <0.001 

Weight (kg) 38.2 (8.6) 41.1 (9.2) <0.001 

BMI 17.4 (2.8) 18.1 (2.9) <0.001 

Adiposity Outcomes   <0.001 

Percent body fat 15.8 (7.6) 17.1 (7.8) <0.001 

Fat mass index (kg/m2) 2.9 (1.8) 3.3 (2.0) <0.001 

Triceps SF thickness (mm) 12.8 (6.0) 13.9 (6.3) <0.001 

Subscapular SF thickness (mm) 8.3 (4.6) 8.9 (5.0) <0.001 

Sum of SFs (mm) 21.1 (10.1) 22.9 (10.8) <0.001 

Subscapular:triceps ratio 0.68 (0.27) 0.66 (0.22) 0.009 

 
a Based on t-tests of differences in means 

   

  SD = standard deviation; SGA = small for gestational age; AGA = appropriate for gestational 

  age; BMI = body mass index in kg/m2; SF = skinfold
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Table 3.  Effect estimates (and 95% CIs) for adiposity measures at 11.5 years in the SGA (vs AGA) groups using two different statistical approaches 

 

Outcome Baseline Covariatesa Only Baseline Covariatesa + Anthropometric Mediators 

   Height Weight BMI 

 Effect Estimate 95% CI Effect Estimate 95% CI Effect Estimate 95% CI Effect Estimate 95% CI 

Percentage body fat (%) −0.5 −1.0, +0.1 0.0    −0.5, +0.5 +0.6  +0.3, +0.9 +0.4  +0.1, +0.7 

Fat mass index (kg/m2) −0.2 −0.3, −0.05 −0.1  −0.2, +0.1 +0.1  +0.1, +0.2 +0.1  +0.04, +0.2 

Triceps SF (mm) −0.6 −1.0, −0.2 −0.3  −0.7, +0.1 +0.1  −0.1, +0.4 0.0  −0.2, +0.3 

Subscapular SF (mm) −0.2 −0.5, +0.1 0.0  −0.3, +0.3 +0.5  +0.2, +0.7 +0.4  +0.2, +0.6 

Sum of SFs (mm) −0.8 −1.5, −0.1 −0.3  −1.0, +0.3 +0.5  +0.1, +1.0 +0.3  −0.1, +0.8 

Subscapular:triceps ratio +0.02 +0.01, +0.04 +0.03  +0.01, +0.04 +0.03  +0.02, +0.04 +0.03  +0.02, +0.04 

 

 
a Both approaches include adjustment for the baseline covariates shown in Table 1 

   

  CI = confidence interval; SGA = small for gestational age; AGA = appropriate for gestational age; BMI = body mass index; SF = skinfold 
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Table 4.  MSM estimates (and 95% CIs) of the controlled direct effect of SGA birth on adiposity measures at 11.5 years, with mediation  

by height, weight, or BMI 

 

 

 MSM Controlled Direct Effecta 

 Height Weight BMI 

 MSM Estimate 95% CI MSM Estimate 95% CI MSM Estimate 95% CI 

Percentage body fat (%) −0.6  −1.0, −0.1 +0.5 +0.2, +0.8 0.0    −0.3, +0.2 

Fat mass index (kg/m2) −0.2  −0.3, −0.1 +0.1 +0.1, +0.2 0.0    −0.05, +0.1 

Triceps SF (mm) −0.4  −0.7, −0.05 +0.4 +0.1, +0.6 0.0    −0.3, +0.2 

Subscapular SF (mm) −0.2  −0.5, +0.1 +0.5 +0.3, +0.7 +0.2    +0.03, +0.4 

Sum of SFs (mm) −0.6  −1.2, +0.01 +0.8 +0.4, +1.2 +0.2    −0.2, +0.6 

Subscapular:triceps ratio +0.01  +0.003, +0.03 +0.02 +0.01, +0.04 +0.02    +0.01, +0.03 

 
a Includes adjustment for the baseline covariates shown in Table 1 

       

                          CI = confidence interval; SGA = small for gestational age; MSM = marginal structural model; BMI = body mass index; SF = skinfold 
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