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Abstract—This paper presents a multidisciplinary case study
on a crude oil injection experiment in an artificially-grown young
sea ice environment under controlled conditions. In particular,
the changes in the geophysical and electromagnetic responses of
the sea ice to oil introduction are investigated for this experiment.
Furthermore, we perform a preliminary study on the detection
of oil spills utilizing the normalized radar cross section (NRCS)
data collected by a C-band scatterometer is presented. To this
end, an inversion scheme is introduced that retrieves the effective
complex permittivity of the domain prior and post oil injection by
comparing the simulated and calibrated measured NRCS data
while roughness parameters calculated using lidar are utilized
as prior information. Once the complex permittivity values are
obtained, the volume fraction of oil within the sea ice is found
using a mixture formula. Based on this volume fraction, a binary
detection of oil presence seems to be possible for this test case.
Finally, the possible sources of error in the retrieved effective
volume fraction, which is an over-estimate of the actual value,
are identified and discussed by a macro- and micro-level analyses
through bulk salinity measurements and x-ray imagery of the
samples, as well as a brief chemical analysis.

Index Terms—crude oil, arctic, remote sensing, electromagnetic
scattering

I. I NTRODUCTION

CLIMATE change has reduced the minimum Arctic sea
ice extent by approximately 9.4 to 13.6% per decade

from 1979 to 2012 [1]. This has led to the opening of
new sea routes, and a renewed interest in the Northwest
Passage in Canada [2]. Although this change in the Arctic
transportation offers new economic opportunities, it comes
with the risk of crude oil spills, and other transportation-
related contaminants (e.g., bunker fuel). Such spills need to
be properly dealt with. The first step in responding to such a
spill is the ability to detect its occurrence. The detectionof a
spill further allows us to enforce the environmental protection
regulations by identifying the violators, and holding them
accountable. But despite notable research on the impact and
detection of oil spills [3], [4], this detection science andits
associated technology need to be further improved [5].
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The topic of oil slick detection in open waters has received
significant attention [6]. In the microwave frequency range,
SAR data with single polarization has been utilized to detect
oil spills via the use of backscattering strength accompanied
with setting signal thresholds based on prior information [7].
Regarding polarimetric SAR, an excellent review of various
quad-, dual-, and compact-polarimetric methods is presented
in [8]. Most polarimetric parameters are used to detect the
deviation of oil slick scattering from the Bragg scattering
behavior of the open water [9]. Regarding quad-polarimetric
methods, the parameters of entropy, anisotropy, mean scatter-
ing angle, covariance scaling factor, degree of polarization, and
normalized pedestal height have successfully been utilized for
oil slick detection in open water before [9]–[12]. In the case of
dual-polarimetric methods, the co-polarized phase difference,
its standard deviation, and complex correlation coefficient
have been employed for slick detection [11], [13]. Finally,in
compact-polarimetric algorithms, the parameters of wave en-
tropy, polarization ratio and ellipticity, degree of polarization,
complex correlation coefficient, and the conformity index have
shown promise in oil spill detection [14], [15]. It should be
finally noted that not all these open-water methods are directly
applicable to sea ice infested environments as for example the
idea of deviation from Bragg scattering is most noticeable in
open water scenarios.

In terms of oil spills detection in sea ice environment,
different remote sensing approaches have been previously
considered. This includes the use of optical spectrometer
images for oil spill mapping in winter through MODIS and
Landsat images [16]. Another example of above-the-surface
detection is presented in [17], where the reflectance of oil in
different backgrounds was investigated to distinct the oilwith
sea water and sea ice. Moreover, a fluorescence polarization
instrument has been developed in [18] for the detection of
submerged oil spills relying on the property of viscous oil
fractions exhibiting polarized fluorescence from beneath ice.
Sonar technology has also been considered for oil detection
provided having local access to beneath the ice [19].

In this paper, we will focus on above-the-surface approach,
and within the microwave region. In particular, we utilize an
active remote sensing approach in which the profile of interest
is irradiated by microwaves. (Passive microwave radiometry
has not been tested for oil spill detection in sea ice-infested
waters [20]). In the microwave frequency regime, individual
sensors attempt to detect oil in one particular scenario based
on the oil presence within the profile (i.e., above, encapsulated,
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or beneath the sea ice). For instance, ground penetrating
radar (GPR) has been effectively utilized to detect oil located
between snow and sea ice, encapsulated between the ice layers,
or below the sea ice utilizing a reflection-waveform inversion
technique [21], [22]. Another developing technology is the
frequency modulated continuous wave radar (FMCW) that
has shown promise in the detection of oil near the surface
of the sea ice [4]. More conventional radar technologies
such as side looking airborne radar [23], and satellite SAR
platforms [24] have been tested for oil detection in sea ice-
covered waters based on signal strength and polarization ratios.
It is reasonable to state that most of the oil spills in sea ice
environment detection technologies are at a developing stage,
and are recommended to be applied in conjunction with other
sensors [4].

II. PROBLEM STATEMENT

This paper presents our multidisciplinary case study on
the response of artificially-grown young sea ice to the in-
troduction of crude oil via the water column beneath the
sea ice. The aforementioned response includes the changes
in (i) the single-polarization radar signature of the profile,
and (ii) geophysical and chemical properties on a micro- and
macro-scale. In particular, we are interested in studying the
possibility of oil detection within the profile utilizing the
radar data accompanied by prior information. To this end,
we introduce a preliminary detection strategy, and interpret
its retrieved results. The proposed detection strategy is based
on a simplified electromagnetic inverse scattering formulation
in which the effective complex permittivity of the profile, and
subsequently the oil spill volume fraction thereof, are to be
found from the measured radar data.

This paper is structured as follows. First, an overview of the
experiment is given in Section III. Then in Section IV, the lidar
measurements for surface roughness calculation are presented.
The measured radar response of the system at a time interval
of interest is brought in Section V. In Section VI, a scheme
for “binary” (i.e., presence or absence) oil detection utilizing
such radar data is implemented. Finally in Section VII, the
oil distribution within sea ice and the retireval error for the
effective volume fraction are investigated from a macro-level,
micro-level, accompanied withx-ray and chemical analysis.
This section is followed by a conclusion and recommendations
in Section VIII.

III. OVERVIEW OF THE EXPERIMENT

The oil in sea ice experiment spanned from January to
March in 2016 at the Sea-ice Environmental Research Facility
(SERF), located at the University of Manitoba. The physical
setting of the experiment consists of a specifically-designed
open-ended tank of cylindrical shape, with a depth of about
1 m, and a radius of 1.5 m. This tank, shown in Figure 1,
was filled with artificial sea-water having 32 salinity (herein,
we refrain from using any unit for salinity), and the sea
ice was allowed to grow under ambient temperature. This
temperature during the period of interest in our experiment
was approximately between -15 and -20◦C [25]. We were

Fig. 1. Scatterometer measures the normalized radar cross section (NRCS)
of the oil-contaminated sea ice. In this figure, an external calibration is being
performed utilizing a metallic trihedral.

also able to heat the tank to melt the sea ice. Scaffolding
facing this tank was used as a platform for the remote sensing
equipment, as depicted in Figure 1.

This experiment was carried out in two phases. Phase
one was a controlled experiment, and phase two was the
experiment that is the focus of this paper. As will be seen,
the controlled experiment was performed for data calibration
and lidar characterization. In phase one, the ice was grown
from open water to a thickness of about 30 cm. This sea ice
was cored during its evolution, and its radar signature was
also continuously measured. In phase two of the experiment,
the sea ice was grown from the open water to a thickness of
roughly 6 cm. A petroleum sour crude oil (from Tundra Oil
and Gas Ltd.) was then introduced from beneath the sea ice
at the center of the tank. The sea ice kept growing for a few
weeks after this point through ice growth cycles. The radar
signature of this evolving profile was measured temporally,
and various cores were extracted during this phase across six
equiphased radii.

IV. L IDAR SCAN OF THE PROFILE

Based on our previous remote sensing experiments at SERF,
we found it to be useful to acquire lidar scans of the pro-
file [26]. Not only did this provide us with the topography
of the profile, but the analysis of data allows us to calculate
the roughness parameters associated with the profile. In a
simulation-based electromagnetic inversion approach forenvi-
ronmental parameter retrieval, having access to surface rough-
ness data is helpful as it can provide the utilized inversion
algorithm with a prior information. This prior informationis
particularly useful if we are limited in the number of measured
data points. As will be seen in Section V, we will use this prior
information in our proposed binary inversion algorithm.

To this end, on January 21st, a terrestrial laser scanner was
used to acquire three-dimensional models of the snow and ice
surface topography in the tank. Figure 2 depicts a scene of the
profile’s surfaces as captured through lidar. Two scans were
acquired from this profile. The first one was taken of the snow
surface (1 to 2 cm thick snow), and the second one from the
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Fig. 2. A lidar scan of the profile’s topography.

TABLE I
THE ROUGHNESS PARAMETERS CALCULATED BASED ON THE LIDAR

SCANS ON21ST OFJANUARY 2016. HEREIN, rs , ls , SD, AND ECC

DENOTE THE RMS HEIGHT, CORRELATION LENGTH, STANDARD DEVIATION

OF ls , AND ECCENTRICITY OF THE ELLIPSE RESPECTIVELY.

Surface Type rs (cm) ls (cm) SD ECC

Snow 0.179 1.225 0.090 0.54
Sea Ice 0.390 0.965 0.088 0.81

sea ice surface after the snow was carefully removed from the
sea ice surface.

Figure 3 depicts the topography of the area of interest
produced utilizing the lidar data. The processing procedure as
implemented in this paper to calculate the surface roughness
parameters is explained below. First, the laser scanner data
were pre-processed to (i) correct for the offset between scat-
terometer and laser scanner origin locations (required as the
roughness parameters derived from the lidar data is to be used
in conjunction with the data collected via the scatterometer),
(ii) filter out anomalous laser returns from light blowing/falling
snow, and (iii) crop the desired surface area for analysis
(approximately a 2 m×2 m square). Herein, our focus is to
extract the snow and sea ice surface roughness parameters of
root-mean-square height denoted byrs, and correlation length
denoted byls (These two parameter are the ones that will
later be utilized in our inversion algorithm to simulate the
NRCS data of a predicted profile.). To this end, we utilized
the spectral decomposition and the two-dimensional auto-
correlation length, following the algorithms brought in [27].
Next, the calculated parameters were corrected for inherent
biases, principally involving the high inclination scanning
angle, using a pre-established set of calibration functions [28].

The roughness parameters calculated through this method-
ology for the surface under investigation are reported in
Table I. It is evident that the ice surface underlying the snow
is relatively rough. Moreover, the snow surface was more
isotropic than sea ice when considering the eccentricity (ECC)
as reported in this table. An ECC value close to 0.5 means
an isotropic, and an ECC value close to 1 means anisotropic
surface distribution.
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Fig. 3. The calculated surface topography (in meter) of the analyzed scene
utilizing the lidar scans.

V. ELECTROMAGNETIC RESPONSE

In an inversion-based detection strategy, the response (out-
put) of the domain under investigation (in our case, the sea ice
profile) is often utilized and processed to infer some properties
of that domain (e.g., oil volume fraction, complex permittivity,
etc.). Herein, the response to be used is an electromagnetic
response, known as the normalized radar cross section (NRCS)
data. To this end, we initially present the temporal NRCS
data measured from the sea ice profile before and after
contamination using a polarimetric scatterometer. Next, we
investigate these data to assess the degree of its usefulness
in the detection of oil presence, and possible retrieval of its
volume fraction and amount. Finally, we look at the macro and
micro-properties of the sea ice to put the retrieved information
in perspective.

NRCS can be thought of as the radar signature of the
illuminated profile. More precisely, the monostatic NRCS is
related to the ratio of the power density of the scattered wave
by the profile and that of the incident wave, and is defined
as [29]

σpq ,
1

C

〈

lim
Rr→∞

(

4πR2
r

Sp
s

S
q
i

)〉

(1)

In (1), C is the surface area of our distributed target (e.g.,
the sea ice surface illuminated by the antenna) located at
a distance ofRr (its associatedlimit denotes the far field
condition). Also,Sq

i and Sp
s are the power densities of the

illuminating and the scattered wave having a linearq and p

polarization respectively. The symbol〈 〉 is defined as the
ensemble average of a number of independent scans of the
surface. This averaging accounts for the random scattering
within the profile, and is achieved through averaging the
azimuthly-measured NRCS values by our scatterometer. The
central frequency of the utilized scatterometer is 5.5 GHz (in
C-band), and the measurements are continuous in time.
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A. NRCS Calibration

We utilized a metallic trihedral to externally calibrate our
scatterometer measurements. The system also does a cold
calibration in each scan. In addition, a so-called data calibra-
tion was also performed at a post-processing stage. This data
calibration was deemed necessary since (i) tank was very close
to the scatterometer, and we suspect that the sea ice profile
might not be in the Fraunhofer far field region (although the
radar system has an algorithm developed to partly alleviatethis
issue through the use of a correction defocusing factor [30]),
and (ii) there are possible interferences and multiple reflections
due to the small size of the tank that are not accounted for
in our numerical model. For example, possible reflections at
the edge of the tank are not modeled in our utilized for-
ward electromagnetic scattering solver. Therefore, to alleviate
the discrepancy between the actual wave propagation, and
the modeled one, we utilize the following data calibration
technique. This data calibration first compares the measured
NRCS data for a known reference sea ice profile in the tank
setting with the simulated NRCS data due to the same profile.
This comparison will then result in a calibration factor that
is the ratio of the simulated NRCS data to the measured
one. This calibration factor will then be applied to subsequent
NRCS measurements to create the calibrated measured NRCS
data. In our experiment, this known reference sea ice profile
was grown in a separate oil-free experiment (i.e., phase one),
and the true sea ice profile in this separate experiment was
determined through physical sampling. We finally note that
such a data calibration technique, often referred to as the
scattered field data calibration, is also performed in microwave
tomography applications [31] to reduce the so-called modeling
error. This additional data calibration, estimated based on the
comparison of the measured and simulated NRCS for a known
sea ice profile in the tank setting, resulted in an equal shift
in all temporal NRCS values. This reference sea ice profile
was grown in a separate oil-free experiment, and the true
profile was determined through physical sampling. It should
be mentioned that data calibration is a necessary step in many
cases of measured data processing [31].

B. NRCS Measurements

The NRCS was measured for various incidence angles, and
at HH, VV, and HV/VH polarizations. After processing the
raw data, the vertically- transmitted vertically-received NRCS
(denoted byσV V ) at the incidence angle of57◦ was found
to be the only suitable data to be used in our model. (Other
measured data demonstrated unexpected jumps due to possible
cable issues, experiment setup, size of the oil tank vs radar
footprint at various incidence angles, etc.) This imposes a
challenge on the choice of the oil detection algorithm, as
many retrieval algorithms utilize dual- or quad-polarimetric
data [8]. The calibratedσV V collected by the scatterometer
at this incidence angle is depicted in Figure 4 for the period
between February 8th at 7 pm to February 10th at 10 am.
The significance of this time period is that it covers the pre-
injection, during injection, and post-injection times within a
few hours of stabilization. An interesting observation made in

Mon. 7pm Tues. 12pm Tues. 4pm Wed. 10am
Time (hours)

-19

-18

-17

-16

-15

-14

V
V

 (
dB

)

          
VV

 at 57°

Fig. 4. The calibrated vertically-transmitted vertically-received NRCS
(denoted byσV V ) at 57◦ incidence angle from February 8th at 7 pm to
10th at 10 am, 2016. The horizontal dash lines indicate the average NRCS
before and after the oil injection. The vertical dash lines bound the time span
of oil settling in the tank.

(a) (b)

Fig. 5. Next few hours after the oil injection. (a) Oil patches within and
below the sea ice are visible as darker areas. (b) Close-up shot of the sea
ice surface. Oil has migrated upwards through the cracks or brine channels
within the ice.

this figure is that the measured NRCS before and after the
oil injection is relatively stable. But a drop of approximately
3.33 dB occurs as the result of injection. This information
will be utilized in the upcoming Section VI for detection and
retrieval. It should be finally noted that the air temperature
during the oil injection settling time (i.e., between the vertical
lines in Figure 4) was almost constant at around -16.7±0.2◦C.

Finally, it should be mentioned that as the crude oil utilized
in this experiment had relative low density and medium vis-
cosity, we speculate that the oil moved up through the cracks
or brine channels within the ice very quickly, as can be seen
as dark spots in Figure 5 (the behavior of upward migration
of oil in sea ice has also been investigated previously [32],
[33]).

VI. D ETECTION AND RETRIEVAL

In many detection scenarios, a radar image is produced from
a scene with some of its pixels associated with a sub-scene
of the oil-contaminated area. Depending on the nature of the
collected measured data (e.g. coherent or incoherent, dual-,
quad-, or compact-polarimetric, etc.), various parameters are
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constructed for each pixel (e.g., gray-scale threshold, entropy,
etc.) [8]. Based on the distribution of such parameters, the
pixels in the image associated with the oil spill are recognized.
However, in our experiment in an oil tank with limited size,
we have only a single measurement associated with the tank
(i.e., equivalent to a single pixel in a SAR image). Therefore,
in our retrieval strategy, we have to trade the geographical
distribution (i.e., different pixels with or without oil at a
single measurement time) with temporal distribution (i.e., one
pixel with and without oil at different measurement times).
Moreover, we utilize a physical-based inversion algorithmto
retrieve some information (complex permittivity) from the
calibrated measured NRCS data. This usually means the use of
an electromagnetic forward and inverse solvers. The forward
solver simulates the NRCS associated with a known predicted
profile, and the inverse solver retrieves the parameter(s) of
interest via comparing the measured and simulated NRCS data.
One reason for choosing this approach is that the inversion
algorithm has access only to single polarization radar data(i.e.,
σV V ). Therefore, we cannot produce polarimetric parameters
for oil detection similar to those in [8]. Finally, it shouldbe
noted that the physical-based approach has been previously
implemented successfully to retrieve various snow-covered sea
ice profiles [26], [34].

The first step in developing the retrieval model is to
parametrize the profile under investigation. Based on our
observations (and later samplings), the oil-contaminatedsea
ice profile in this experiment was highly heterogeneous on
different scales. Therefore, we did not treat the injected oil
as an individual layer within a multi-layered medium since
it was distributed across the sea ice profile in various forms.
Consequently, we decided to treat the profile as a rough half-
space having a single effective complex permittivity value
that represents this ensemble. (The half space consideration
was based on the assumption that most of the incident power
does not penetrate to the bottom of the ice at our frequency
due to limited penetration [35], [36]). Moreover, the azimuth
NRCS averaging which was performed by the scatterometer
further justifies our decision, as it effectively considersa
single averaged profile on the azimuth plane for each elevation
incidence angle.

To simulate the NRCS associated with our model, an
integral equation method is utilized as introduced in [29].
Considering the inverse solver, a Monte Carlo search method
is utilized in which a minimum for an NRCS data misfit cost
function is sought after. It should be noted that more complex
inverse solvers were at hand, however the mentioned method
is sufficient since (i) our forward solver has a trivial run-time,
(ii) only one measured data point is available, and (iii) the
unknown quantity in our proposed scheme will only be a single
complex permittivity (in both pre- and post-injection stages).

It should be mentioned that we did not have access to
new lidar scans for the scene under investigation. Nonethe-
less, we utilized the roughness parameters for sea ice as
reported in Table I, as the experiment setting and the ice
formation conditions are roughly similar to those of phase one
(i.e., controlled experiment used for calibration). Furthermore,
average upper and lower bounds for the expected complex

permittivity values for a typical young sea ice can be assumed
based on dielectric measurements on similar ice types [35].
Such intentional bounding of our search spaces acts as a
projection-based regularization scheme, and helps us to avoid
local minima [37].

Before describing our proposed inversion strategy, as will
be outlined in Section VI-A, let’s consider the direct retrieval
of the unknown parameters of the post-injection sea ice
permittivity, and the effective volume fraction of oil utilizing
the measuredσV V . Our prior information is the oil com-
plex permittivity value [38] and the roughness parameters.
The inverse solver we utilized is the Differential Evolution
(DE) [39]. This inverse solver is based on biological evolution,
and iteratively minimizes our cost function so that the fittest
element would survive into the next generation. The DE
algorithm has been utilized for property retrieval of snow-
covered sea ice before [34]. Herein, we used the DE algorithm
to reconstruct the complex permittivity value as well as the
oil spill volume fraction for the post-injection profile. The
retrieved complex permittivity value is depicted in Figure6
at four different runs for the exact same inversion problem.
We also had 10 elements (i.e., the searching members within
one generation) and 10 generations (i.e., the attempts to create
a new set of elements with lower cost function values than
the previous iteration) for each of the four separate runs. In
this figure, the arrows show the movement of the elements
during each generation towards the minimum. Also the amber
line follows the best permittivity retrieved in every iteration.
As can be seen, the algorithm cannot find the single global
minimum of the problem as each scenario converges to a
different complex permittivity. (We also observed this for
the retrieved oil spill volume fraction.) This is most likely
due to the imbalance between the number of unknown and
known quantities. To handle this issue, the following inversion
strategy is proposed and evaluated.

A. Inversion Strategy

Our proposed retrieval (inversion) strategy is as follows.
First, the mean of the measured NRCS data (denoted by
σ
mean(meas)
V V ) for the period immediate before the oil injec-

tion is calculated. Next, the minimum of the following cost
function for the range of the expected permittivity values at
the frequency of operation is calculated,

CF (ǫ) =
|σ

mean(meas)
V V − σsim

V V (ǫ)|2

|σ
mean(meas)
V V |2

(2)

In (2), σsim
V V denotes the simulated NRCS through our forward

solver for a given predicted relative complex permittivityǫ.
Figure 7(a) depicts the logarithm of this cost function for the
pre-injection period. The minimum in this figure corresponds
to the relative complex permittivity of5.2 + 1i for the sea
ice in the pre-injection stage. (We are assuming ae−iωt time-
dependency.) Next, a similar scheme is followed for the post-
injection stage, with the cost function values (logarithmic
scale) depicted in Figure 7(b) as a function of varying relative
complex permittivity. The minimum in this figure corresponds
to an effective relative complex permittivity of3.2 + 0.6i for
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Fig. 6. Differential evolution inversion results for four independent runs for
the exact same problem. Each arrow follows the path of an elementduring
one generation. The amber line tracks the best retrieved dielectric. The box
provides a magnified view of the final minimum found.

the post-injection profile. We have now retrieved the effective
permittivity of the profile after and before oil injection.

Another prior information utilized in our approach is the
oil complex permittivity. In practice, oil complex permittivity
can be sampled and measured independently, and then be
utilized as a known quantity in inversion algorithms dealing
with the detection of that specific oil. It is also reported in
the literature that once oil type is known, its permittivity
can be estimated [4], [40]. (For example, in [41], the real
part of the complex permittivity for oil is reported to vary
between 2.2 to 2.3, and its imaginary part to vary between
0 to 0.02; similar results are also reported for light crude oil
in [38].) Although there is a large variety of oil types and
densities, and weathering and aging conditions might change
the oil’s permittivity, this is not within the scope of this paper.
Therefore, we assume to know the complex permittivity of oil,
which is taken to be2.2 + 0.05i.

Now if we consider that the sea ice permittivity has not
changed after oil injection, the following simplified formu-
lation is utilized for the calculation of the effective volume
fraction of the oil as the true heterogeneous distribution of the
oil within the profile is unknown [42],

υoil =
|(ǫeff − ǫ)(ǫs + 2ǫ)|

|(ǫs − ǫ)(ǫeff + 2ǫ)|
(3)
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Fig. 7. Logarithm contour plot of the cost function value for(a) pre-oil
injection, and (b) post-oil injection.

TABLE II
RETRIEVED PARAMETERS THROUGH THE UTILIZED INVERSION SCHEME.

ǫeff DENOTES THE PROFILE’ S DIELECTRIC AFTER OIL INJECTION.

ǫsea ice ǫeff υoil

5.2+1i 3.2+0.6i 0.5976

In (3),υoil denotes the effective oil volume fraction. Alsoǫeff ,
ǫs, and ǫ denote the effective permittivity of the profile after
oil injection, the oil permittivity, and the sea ice permittivity
receptively. Based on (3), the volume fraction of the introduced
oil is estimated to be 0.5976. The retrieved parameter values
are reported in Table II.

The retrieved value for the effective oil volume fraction,
υoil, is large enough that would trigger a warning after an
spill has occurred. Therefore, this strategy seems promising
to be considered in a future spill detection approach in
conjunction with other sensors [4]. Also, due to its simplicity
and computational efficiency, it has the potential to be used
on the fly so as to cover large areas. We finally note that
the retrieved volume fraction was larger than the expected
value; roughly 7 times if we neglect the actual oil distribution
pattern within the profile. This deviation is explained in the
next section.

VII. A NALYSIS OF THE RETRIEVAL ACCURACY

It is clear that there is an inherent error associated with
simplifying the profile that allowed us to use a practical
retrieval strategy. But apart from this source of error, thelarge
retrieved value for the volume fraction can be interpreted as
an indication that the incidence waves have interrogated a
heavily-effected part of the sea ice. Considering the limited
penetration depth of interrogating microwaves, it can be con-
cluded that the interrogating microwaves “see” the top portion
of the oil-contaminated sea ice profile more effectively. Due
to this, it is expected that the inversion algorithm is biased (or,
more sensitive) toward the top portion of the oil-contaminated
sea ice. That being said, and noting the high value for the
retrieved oil spill volume fraction, it can be concluded that a
large amount of oil could exist close to the surface of the
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(a)

(b)

Fig. 8. The surfacing of oil on the sea ice in the latter stagesof the
experiment. (a) Above photo taken at 10 am February 11th. (b) Beneath sea
ice photo taken from within the water at 11 am February 12th. In this photo,
the black section on the bottom right is the observation tube.

profile. In what follows, we present the physical evidence
supporting the speculation of having a larger amount of oil
spills close to the sea ice surface.

After the oil was introduced in the water column beneath
the sea ice, it moved up within the tank, and partly replaced
the highly dielectric saline water at the porous soft end of the
ice and then migrated up to the surface. This speculation is
partly supported when we look at Figure 8. Only by 11th of
February at 10 am, a significant amount of oil has surfaced
on the sea ice, as evident in Figure 8(a). Moreover, an under
ice photo on the 12th of February at 11am shows that there is
no oil left underneath the profile. Most of the large dark spots
seen in this photo, Figure 8(b), are the shadows corresponding
to the surfaced oil. In the meanwhile, it should be taken into
consideration that not all the surfaced oil moved up through
the ice cracks or the brine channels, as a portion of oil leaked
towards the surface through the gap between the sea ice and
the tank interface due to an undesired flaw in the tank’s design.

Another reason behind the larger than expected retrieved
volume fraction for the injected oil can be traced back to
the speculation of expedited brine rejection as oil moved up
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Fig. 9. Sea ice salinity comparison in the presence and absence of oil.

through the sea ice cracks and channels. Such desalinization
leads to a lower permittivity for sea ice, as brine has a
very high permittivity of about48 + 44i at the experiment’s
temperature [43]. In other words, the reduction of the effective
permittivity of the entire profile after oil injection, is not
only due to the direct presence of the oil (having a lower
permittivity than the original sea ice), but also the reduction of
the sea ice permittivity as the background material for the post
injection mixing formula. Since the amount of brine loss is not
known before any in-situ sampling, it cannot be accounted
for in the renewed permittivity of the background sea ice
utilized in (3). The evidence indicating to such desalinization
and the oil migration through the sea ice comes from the
(i) macro-level, (ii) micro-level, and (ii) chemical analysis of
the contaminated oil physical samples extracted from the tank.
In what follows, these three investigations are presented.

A. Macro-level Analysis

On a macro-level, the bulk salinity of some of the extracted
cores having similar age and core thicknesses between phase
one (no oil present) and phase two (pertaining oil injection) is
presented in Figure 9. When plotting this figure, the ice cores
are sectionized as top, middle, and bottom. The error bars
represent the salinity standard deviation in each of the cores
for their associated three sections. The open water in both
cases had the same salinity of 32, and the growth condition and
settings for both phases are similar. Nonetheless, on average
the non-contaminated sea ice is 55% more saline than the
contaminated sea ice for the extracted cores. This reduction in
salinity is significant. These cores were extracted on the 1st of
March, when oil had ample time to move through the sea ice.
This phenomenon is expected to have similarly lowered the
salinity of the sea ice at the early stages after the oil injection,
but on a lower scale. This can contribute to the reduction
of the measured NRCS as shown in Figure 4. As a further
comparison, the salinity values for ice cores in phase two were
compared to cores with similar thickness values extracted in
a separate experiment carried out at the main SERF pool in
2015. The salinity of phase two cores were still consistently
lower than those extracted in SERF 2015. (Both experiments
had the same open water salinity.)
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Fig. 10. Thex-ray of an oil-contaminated sample. Air, oil, ice, and brine
are represented by black (color range 2-72), orange (color range 105-136),
green (color range 137-170), and blue (color range 171-252)respectively.

B. Micro-level Analysis

X-ray computed tomography (CT) has been previously uti-
lized for sea ice micro-structure and component analysis [44].
Herein, we utilized a CTx-ray SkyScan 1174 Bruker system to
investigate the micro-structure of an oil-contaminated sea ice
sample. To this end, a sample was carefully collected from
the interior of a large ice core extracted in February 2016,
and analyzed by ourx-ray machine. (Large cores themselves
cannot be placed inside thisx-ray system.) The sample was
cylindrical with 3 cm radius and 2.5 cm height. This sample
was placed in a polypropylene tube when being analyzed
inside the CT scanner. Our analysis is based on creating three-
dimensional images of the sample’s density contrast. Data
processing for thex-ray includes removal of the ring artifacts,
and application of a box Gaussian smoothing.

Figure 10 depicts a cross-section slice of our sample. The
ice, brine, air, and oil can be distinguished due to their
different x-ray attenuation characteristics and the range of
intensities. This figure is colored coded based on histogram
values (ranging from 0 to 255) so that each component can be
visually distinguished, with ice as green (color range 137-170),
brine as blue (color range 171-252), air as black (color range
2-72), and oil as orange (color range 105-136). If investigated
closely, we notice the following two items. (i) A portion of
the oil seems to have been spread across the core in minute
pockets. These may have been inhabited with brine once,
but pushed out as the oil moved up. (ii) A large amount of
oil seems to have gathered around the empty spaces within
the sample (e.g., the cracks or the air inclusions). To better
visualize this, a three-dimensional image from a section of
the sample is brought in Figure 11. In this visualization, only
the air (presented in white and mostly seen as spheres in this
figure), and the oil (presented in red) are represented. As can

Fig. 11. Three-dimensional visualization of the oil (red) and air (white)
in the sample under investigation. The average bubble area isabout2.8 ×

10−2 mm2.

be seen, although there are various red spots suspended in the
background (oil in the ice), there seem to be a tendency for
oil and air bubbles to converge. It should be noted that this
does not necessarily contradict the idea of dielectric reduction
after oil injection. The dielectric contrast of oil to air is2:1,
while for oil to brine is 1:20. Therefore, even if the oil has
a tendency to gravitate toward air bubbles in this sample, a
small brine rejection can still reduce the effective dielectric
value significantly.

Finally, we acknowledge that drawing a general conclusion
based on a single sample analyzed in this section is not
recommended. It is possible that different samples at various
depths of the core, various stages of the sea ice growth,
and different oil volume fractions might result in a different
micro-structure. Moreover, linking the micro-structure to the
dielectric value that is calculated based on macro-properties
(e.g., bulk salinity of the sample) is not straightforward.
Nonetheless, this example demonstrated a plausible micro-
level scenario for our case study, and provided us with some
insight into the possible behavior of the oil in sea ice.

C. Chemical Analysis

In this section, we study the effect of oil introduction to
the sea ice from a chemical perspective. To this end, we
consider two different properties: (i) oil concentration, and
(ii) oil composition at different depths of the oil-contaminated
sea ice. These properties have been previously studied for
various oil-contaminated sea ice types [45], [46]. Our chemical
analysis helps us to investigate the oil partitioning in theoil-
contaminated sea ice cores collected during our experiment.
For current analysis, we had access to three ice core samples
collected from different locations across the pool, and at
different points of the sea ice evolution.

Extraction, cleanup, and chemical analysis of individual ice
core sections are described briefly below. The crude oil was
separated from the salt water using glass separatory funnels
and hexane. The collected oil fractions were then concentrated
by fully reducing the solvent to dryness with the use of rotory
and nitrogen evaporization. The oil volume for each respective
ice core section was measured volumetrically, and their masses
were measured with the use of analytical balance. Volumes



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. XX, 2017 9

TABLE III
MEASURED OIL VOLUMES, DENOTED BY V oil IN MILLILITER , FOR THE

TOP (0-2.5CM), MIDDLE (2.5 CM-7.5 CM), AND BOTTOM (7.5 CM-REST)
SECTIONS FOR THREE ICE CORES EXTRACTED ATFEB. 12TH, FEB. 18TH,

AND MARCH 1ST 2016.

Date V oil
top (mL) V oil

middle
(mL) V oil

bottom
(mL)

Feb. 12th 7.3 1.4 0.4
Feb. 18th 12.3 3.4 2.3
March 1st 1.3 0.3 0.24

for the top (i.e., pertaining air-ice interface), middle, and
bottom (i.e., pertaining ice-water interface) sections of these
cores are reported in Table III. Based on the ever-increasing
volumes of the oil from the bottom to the top sections in
all three cores, it can be concluded that the oil has moved
upwards through brine channels and any accessible cracks after
its introduction from beneath the sea ice. This observation
further supports our justification for the large retrieved value
of the effective volume fraction of oil,υoil.

Furthermore, the variation of oil volumes from one core to
another is a good indication of the oil distribution heterogene-
ity, as noted before. It should be noted that the oil volume
in the top section of the core collected on 1st of March is
considerably lower compared to the cores collected in Febru-
ary. Apart from the possible link to physical heterogeneityof
oil distribution across the pool, the sea ice was covered by
an average 1.5 cm snow for a number of days at this stage.
Consequently, snow soaked the oil at its basal layer, and this
possibly contributed to a lower oil volume at the ice top.

Moreover, the individual oil samples were diluted with
hexane, and analyzed by a Leco Pegasus 4D GC×GC-HR-
TOF-MS. The result of our analysis for the top, middle, and
bottom sections of the sample extracted on February 18th is
depicted in Figure 12. The chromatographic profiles for each
of the three ice core sections appeared for the most part to be
identical. We speculate that the similarity between profiles can
likely be attributed to the fast surfacing of the oil throughsea
ice cracks and brine channels. Furthermore, the hydrocarbon
composition of the technical oil mixture was determined using
a GC-MS method (Agilent 7890A). Thus, the estimates for the
relative percentages of major compound classes (i.e., Alkanes,
Naphthenes, and Aromatics) have been calculated with respect
to their relative areas provided by the GC chromatogram.
These values are reported in Table IV. Moreover, the amounts
for notable minor compounds of BTX and Hydrogen Sulphide
(H2S) are provided by the oil company. These include Toluene
100 ppm, Xylene 100 ppm, Benzene 10 ppm, Hydrogen sul-
phide 10 ppm. We also identified small quantities of Sulphur
and Nitrogen Compounds. Based on the dominance of the
relative percent of alkanes in the mixture, the oil can be
characterized as light crude oil. Also the crude oil contains
residual amounts of sulphur that is characteristic of its sour
nature.

VIII. C ONCLUSION AND FURTHER DISCUSSION

In the winter of 2016, an experiment on crude oil injection
in young sea ice was carried out at SERF, University of

TABLE IV
CHEMICAL COMPOSITION OFTUNDRA CRUDE OIL UNDER

INVESTIGATION.

Composition Alkanes Naphthenes Aromatics
Relative (%) 72.1 17.8 10.1
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Fig. 12. Total ion chromatograms of the top, middle, and bottom sections
of the oil-contaminated sea ice sample extracted on February 18th 2016.

Manitoba. In this paper, we presented some of our multidis-
ciplinary findings regarding the impact of this oil injection
in our controlled sea ice environment. It was shown that the
binary detection of oil through the measured NRCS data in
this experiment was possible via retrieving the oil spill volume
fraction. This retrieved volume fraction has the potentialto be
utilized as an auxiliary way to estimate the amount of the
spilled oil, knowing the sea ice thickness in the area, and
the radar footprint at which the drop in the NRCS value was
observed.

One reason that our retrieval accuracy suffered in this
experiment was the excessive surfacing of the oil, which was
partly due to our experimental setup. In addition to different
simplifications in our electromagnetic forward solver, theother
modeling error in our algorithm was to consider the changes in
the complex permittivity of sea ice to be negligible after the oil
injection. This problem can be dealt with through considering
the post-injection sea ice permittivity as an extra unknownin
the inversion algorithm. This, however, requires having access
to more measured data points from the oil-contaminated sea
ice in various incidence angles and/or polarizations. Moreover,
having access to more data reduces our need to utilize prior
information. In general, it is recommended to have platforms
with multiple sensors on-board when considering an opera-
tional system. One strong benefit of having a multi-sensor
system would be to help relate the cause of NRCS drop to
the change of ice type, or the presence of oil.

Furthermore, this paper was mainly focused on the time
period around the introduction of the oil. But this temporal
experiment offered other interesting cases to be studied in
future. One example is the investigation of the geophysical
changes to the oil-contaminated sea ice profile due to oil
thermal properties. Also, if the oil surfaces, its albedo contrast
with respect to the background, and/or the possible formation
of melt ponds due to heat absorption can be utilized for
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oil spill detection by active or passive systems. Last but not
least, it is always useful to increase the information content
of the measured data and use more sophisticated inversion
algorithms. For example, instead of single polarization NRCS
data used in this paper, one can measure and use dual-, quad-
, or compact-polarimetric data so as to have access to more
information about the region of interest.
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