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The domestication syndrome of many plants includes changes in their mating systems.
The evolution of the latter is shaped by ecological and genetic factors that are particular
to an area. Thus, the reproductive biology of wild relatives must be studied in their
natural distribution to understand the mating system of a crop species as a whole.
Gossypium hirsutum (upland cotton) includes both domesticated varieties and wild
populations of the same species. Most studies on mating systems describe cultivated
cotton as self-pollinated, while studies on pollen dispersal report outcrossing; however,
the mating system of upland cotton has not been described as mixed and little is
known about its wild relatives. In this study we selected two wild metapopulations
for comparison with domesticated plants and one metapopulation with evidence of
recent gene flow between wild relatives and the crop to evaluate the mating system
of cotton’s wild-to-domesticated complex. Using classic reproductive biology methods,
our data demonstrate that upland cotton presents a mixed mating system throughout
the complex. Given cotton’s capacity for outcrossing, differences caused by the
domestication process in cultivated individuals can have consequences for its wild
relatives. This characterization of the diversity of the wild relatives in their natural
distribution, as well as their interactions with the crop, will be useful to design and
implement adequate strategies for conservation and biosecurity.

Keywords: cotton, crop wild relatives, mating system, reproductive success, xenogamy, autogamy,
domestication process, introgression

INTRODUCTION

Plant domestication is a complex and continuing process (Casas et al., 2007; Vaughan et al., 2007).
For 10,000 years, humans have selected attributes of interest in a range of economically valuable
plants through their management and utilization (Gepts, 2004); consequently, different techniques,
trait preferences, environments, and selection intensities have shaped the degree of domestication
of each species (Meyer and Purugganan, 2013). Today we can find: (1) crop populations that
are highly domesticated and depend on human intervention for survival; (2) semi-domesticated
populations with recognizable traits of the domestication syndrome, but able to survive in the
wild if human intervention ceases; (3) incipiently domesticated populations whose selected traits
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have not yet diverged markedly from those found in wild
populations; (4) incidentally co-evolved populations that adapt
to human disturbed environments, but without direct human
selection; (5) feral populations derived from 2, 3, or 4; and (6)
wild relatives (Clement, 1999). Given these diverse scenarios, the
biological diversity contained in wild-to-domesticated complexes
should be considered in studies about crop ecology and evolution
(Warwick and Stewart, 2005; Casas et al., 2007).

In plants, one of the key life history traits is the mating
system (Vaughan et al., 2007). This feature helps determine
the genetic composition of populations and, therefore, has a
crucial role in the evolution of species (Charlesworth, 2006);
additionally, it explains who is mating with whom, which is a
fundamental issue for conservation biology (Barrett and Harder,
1996). The mating system often changes during domestication
(Meyer et al., 2012), and wild relatives contain the plesiomorphic
state of this trait (Ellstrand et al., 1999; Doebley et al., 2006;
Andersson and de Vicente, 2010). A shift from the ancestral
system toward a new one can be selected until fixation; for
instance, there are some crops that are unable to reproduce
without human intervention (Ellstrand et al., 1999), such as
vegetatively propagated sycamore fig and other fruit trees
(Zohary and Spiegel-Roy, 1975). Some crops have multiple
mating systems, such as domesticated ‘Maradol’ (Carica papaya),
which is hermaphroditic, while native varieties and wild papayas
are dioecious (Carvalho and Renner, 2012). Importantly, the
characterization of the mating system of many plant species has
been biased toward the domesticated counterparts, because only
a sub-sample of the wild-to-domesticated complex was used (e.g.,
Carica papaya (Damasceno et al., 2009), Persea americana (Ish-
Am et al., 1999), Piper nigrum (Thangaselvabal et al., 2008). This
bias may have profound consequences for the conservation of
conspecific wild relatives, especially because conclusions drawn
from studies with domesticated varieties are extrapolated to the
whole species, failing to consider the genotypic and phenotypic
diversity that wild relatives possess. The conservation of this
diversity is fundamental, because it is a genetic reservoir that
includes a wider range of adaptive traits that may be of additional
agricultural relevance, such as resistance to pests and pathogens
and tolerance to abiotic stresses (Warschefsky et al., 2014).

Upland cotton, Gossypium hirsutum, is an economically
important plant species, particularly known for being the
leading source of natural fiber. Worldwide, over 90% of cotton
production comes from cultivars of G. hirsutum and in 2014
the species ranked eighth in the world’s harvested area, reaching
almost 35 million hectares (Crop production, FAOSTAT, 2017).
Given the economic importance of the species, its mating system
has been the focus of several studies since 1903 (Simpson, 1954);
however, the majority of them concentrated on domesticated
cotton and have described it as predominantly autogamous and
self-pollinated (see Supplementary Material 1). On the other
hand, studies on pollen dispersal of G. hirsutum, from the
beginning of its modern breeding as a crop to the present day,
refer to cotton’s ability to produce offspring by crossing (1944–
2016; see Supplementary Material 1 for a review); however, the
mating system is not described as mixed (Loden and Richmond,
1951; Richmond, 1951; Simpson, 1954; Imam and Allard, 1965;

Meredith and Bridge, 1973). A specific study on the mating
system of wild populations in their natural distribution is lacking.

In Mesoamerica, G. hirsutum exists as a complex of wild to
domesticated forms (Brubaker and Wendel, 1994); hence, it is
an ideal region to characterize the mating system of this upland
cotton complex, identify possible differences, and to integrate
this information into regional management plans. In Mexico - its
center of origin, diversity and domestication (Ulloa et al., 2005;
Burgeff et al., 2014; Pérez- Mendoza et al., 2016) – the complex
includes cultivated and highly improved varieties, genetically
modified varieties, traditionally managed landraces, feral, and
wild populations. All of them belong to the primary gene pool
of the species (Andersson and de Vicente, 2010) and gene flow
among them occurs, even over long distances (Wegier et al.,
2011). Moreover, eight wild G. hirsutum metapopulations have
been recognized, based on geographic, ecologic, and genetic
differences (Wegier et al., 2011; Bauer-Panskus et al., 2013).
Wegier et al. (2011) demonstrated that recent gene flow, followed
by introgressive hybridization, occurs between a number of
wild populations distributed in the north and south of Mexico,
and commercial cotton cultivars in the northern states of the
country. Our study provides the first data on the mating system
of wild G. hirsutum in situ within the natural distribution of
the species in Mexico. In order to assess this, we evaluated
the capacity of domesticated cotton, wild cotton, and wild
cotton with evidence of introgression, to produce offspring by
either xenogamy (cross-pollination between different genets) or
autogamy (self-fertilization).

MATERIALS AND METHODS

Study System
Upland cotton, G. hirsutum L., is a species with wild, feral, and
semi-domesticated populations (Brubaker and Wendel, 1994).
All cultivated forms, including the highly improved varieties or
genetically engineered varieties, cannot be considered as fully
domesticated, because they are able to survive even if human
intervention stops.

Wild G. hirsutum flowers all year round. Flowers are
white, hermaphrodite, cup shaped, with a single central style
surrounded at the bottom by stamens (Meade, 1918; Smith and
Cothren, 1999). Some plants exhibit flowers with a colored disk
inside of the base of the cup that ranges from deep red to light
yellow (Tan et al., 2013). Flowers remain open between 8 and
11 h; at the start of the day, they are all white and when they
close the sepals start turning pink at the base (Smith and Cothren,
1999). Anthesis takes place in the morning, as soon as the flower
completely opens, and the stamens start to release pollen soon
afterward (Smith and Cothren, 1999). Flowers produce both
pollen and nectar as a reward for visitors (Wäckers and Bonifay,
2004).

Study Sites
Sampling was performed in coastal dunes and dry forests of
Mexico, in three of the eight wild cotton metapopulations
defined genetically, geographically, and ecologically by
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Wegier et al. (2011), namely: Central Pacific Metapopulation
(CPM), Yucatan Peninsula Metapopulation (YPM), and
South Pacific Metapopulation (SPM). SPM is of particular
interest due to evidence of recent introgressive hybridization
with domesticated plants (Wegier et al., 2011). Given the
distinctive extinction-colonization dynamic observed in cotton
metapopulations (Wegier, 2013), the full extent of CPM, YPM,
and SPM was surveyed to find G. hirsutum patches with enough
flowers (Figure 1). Hand-pollination treatments (Tate and
Simpson, 2004; Machado and Sazima, 2008; Hernández-Montero
and Sosa, 2016) were carried out during the dry season, between
November 2012 and May 2013: CPM in November 2012, YPM
in December 2012, and SPM in February 2013. Sites were
revisited for fruit collection after 86 days, on average. In addition,
domesticated cotton plants, bought in local markets, were kept
under greenhouse conditions in Mexico City to maintain a
suitable temperature (Figure 1).

Mating System
In order to execute the hand-pollination treatments to test for
different mating systems, a search was conducted for flower
buds before anthesis (Tate and Simpson, 2004; Machado and
Sazima, 2008; Hernández-Montero and Sosa, 2016). In each
metapopulation, 40 replicates of the five pollination treatments
were set up (Table 1), anticipating the risk of collecting too
few fruits afterward: assisted self-pollination, automatic self-
pollination, assisted cross-pollination (Kearns and Inouye, 1993),
emasculated control (to avoid automatic self-pollination), and
control (open-pollination). Multiple treatments were placed on
the same plant where possible to control for individual variation;
however, due to the variability of the number of flowers, not all of
the plants held the same type or number of treatments. Moreover,
when flowers were scarce, treatments were placed daily within
each study site, in up to four patches per metapopulation, until
the 40 replicates per treatment were completed. Special care was
taken to avoid changing or altering the environment (i.e., without
introducing new genotypes or changing plant abundances or
distributions). The same experimental design was applied for
domesticated plants in a greenhouse that allowed the entry of
local insects. Some treatments required mesh bags to exclude
any pollinator access that could alter the results (Table 1). The
treatments that did not include bagging before anthesis were
bagged after flower closure to help control for mechanical damage
from bagging.

Reproductive Success
Fruit-set was calculated as the percentage of recorded fruits
produced by each treatment in each metapopulation (Dafni,
1992). In each study site, 20 flowers not involved in the
pollination-treatments were collected and brought back to the
laboratory in separate sealed containers with 70% alcohol. Each
flower was dissected to count the number of ovules present.
An average number of ovules was calculated for each wild
metapopulation and for domesticated plants. Afterward, seed-set
(Schoper et al., 1987; Burd, 1994) was calculated as the percentage
of seeds obtained from each fruit for each pollination treatment in
relation to the average number of ovules of the study population

to which these fruits belonged. Additionally, all seeds were
weighed individually to estimate the seed weight per treatment in
each study site. Later, all the seeds were germinated individually.
Each seed was washed with 2% Captan (PESTANAL R©, Merck)
solution and covered with a damp cotton swab; tissue culture lids
were used. Seeds were checked daily until all reached emergence
of the radicle. While some studies on seed germination consider
only a set of seeds (Schemske, 1983; Gil and López, 2015; Raphael
et al., 2017; Farooq et al., 2018), we took into account all of the
collected seeds for the analysis.

Outcrossing Rate
The outcrossing rate (Te) was calculated for each study site
following Barrett et al. (1996):

Te = 1− S (1)

where S is the selfing rate, estimated with the fruit-set results from
our selfing (Ws) and outcrossing (Wx) treatments, i.e., automatic
self-pollination and emasculated control, respectively. For CPM,
Wx was obtained with the fruit-set from the assisted cross-
pollination treatment, because none of the emasculated control
results were found when revisiting the metapopulation for fruit
collection.

S = (
ws

ws + wx
) (2)

Statistical Analyses
To test if there were significant differences in seed-set and seed
weight among treatments, a Generalized Linear Mixed Model
GLMM (Zuur et al., 2009) was used considering the plant
as a random factor, because the pollination treatments were
not equally represented in each plant (as explained in section
2.3). For GLMM analyses, a Quasi-Poisson distribution was
considered for seed-set and a Gaussian distribution for seed
weight (Cayuela, 2009). Afterward, a Tukey post hoc test was
performed to evaluate the significance of the results. To compare
germination frequencies and percentage of fruit-set, a chi square
test was used with the post hoc standardized residue test for
each one. Outliers were identified using the method described
by Viechtbauer and Cheung (2010); to summarize, a multivariate
detection method (Cook distance) was used to calculate the
distance among all data points, and those that were not included
in the general model were identified as “influential data points”
or outlier values. Germination was calculated as the number
of germinated seeds in relation to the total number of seeds
(Gómez, 2004; Gil and López, 2015). All tests were carried out
with the lme4, multcomp, stats, and ggplot2 packages of R version
3.4.3 (R Core Team, 2017). The scripts utilized for the analyses
are available online at https://github.com/conservationgenetics/
BiologiaReproductiva.git.

RESULTS

Fruit-Set, Seed-Set, and Seed Weight
All treatments produced fruits regardless of the metapopulation
(Table 2). The CPM open-pollinated control showed the highest
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FIGURE 1 | Approximate distributions of the Central Pacific (blue), Southern Pacific (green) and Yucatan Peninsula (orange) upland cotton metapopulations studied
in Mexico, with locations of field study sites (leaves) and the greenhouse in Mexico City where cultivated upland cotton was grown out for this study. The Central
Pacific and Yucatan Peninsula metapopulations are wild and the Southern Pacific metapopulation contains populations with evidence of recent introgression with
cultivated upland cotton.

TABLE 1 | Characteristics of each of the pollination treatments applied to G. hirsutum flowers, following Dafni (1992), in three field wild metapopulations and cultivated
cotton in the greenhouse.

Hand Treatment Pollination type Emasculation Bag Pollen source

Automatic self-pollination Autogamy No Yes Bagged before anthesis and no hand pollination
provided.

Assisted self-pollination Autogamy No Yes Hand pollinated from the anthers to the stigma
of the same flower; bagged before anthesis,
and after hand self-pollination.

Assisted cross-pollination Xenogamy Yes Yes Pollen from a different plant was transferred to
the stigma of the emasculated focal flower
before bag placement.

Emasculated Control Allogamy (xenogamy
and geitonogamy)

Yes No Flower emasculated and no hand pollination
done; bagged only after closing.

Open-pollination Control Autogamy and
allogamy

No No No hand pollination or emasculation of the
flower; bagged only after closing.

value of all treatments among all groups; YPM showed the highest
fruit-set produced by outcrossing, and the lowest by automatic
self-pollination and control treatment. On the other hand, the
highest fruit-set was observed for all the treatments in SPM, with
exception of the open-pollination control.

Seeds were produced both by outcrossing and selfing
treatments in all metapopulations (Figure 2). The average
number of seeds per fruit was 15.9 in SPM, 15.4 in domesticated,
12.3 in CPM, and 10.0 in YPM, while the average number of
ovules was 16.3 in SPM, 28.6 in domesticated, 15.6 in CPM,
and 13.4 in YPM. Regarding seed-set, the control treatment of

domesticated cotton was lower than that of wild and introgressed
plants [P(χ2) = 4.13× 10−4, df = 3] (Figure 3). When evaluating
the results of each metapopulation individually, CPM presented
seed-set differences between the control and the rest of the
treatments (P(χ2) = 0.1 × 10−4, df = 3), in SPM the differences
were found between cross-pollination and all treatments, except
emasculated control [P(χ2) = 0.001, df = 4], while in YPM and
the domesticated there were no significant differences among
treatments (Figure 2). On the other hand, seed weight only
presented differences in SPM, between cross-pollination and
both assisted and automatic self-pollination [P(χ2) = 0.026,
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TABLE 2 | Fruit-set percentage in five pollination treatments applied to G. hirsutum and Chi-square test per treatment.

Sites Open-pollination:
control

Emasculated
control

Assisted
self-pollination

Automatic
self-pollination

Cross-pollination

YPM 20.93∗ 20.00 32.69∗ 13.73∗ 51.85∗

CPM 60.00∗ ND 20.69∗ 25.93 24.14

SPM 48.84 78.26 73.33∗ 69.23∗ 54.05

Domesticated 43.48 10.00 60.00∗ 34.09 19.05

Chi-square test χ2 = 18.70, df = 3,
p = 3.1 × 10−4

NA χ2 = 37.68, df = 3,
p = 3.3 × 10−8

χ2 = 47.69, df = 3,
p = 2.46 × 10−10

χ2 = 26.78, df = 3,
p = 6.5 × 10−6

∗Categories significantly different using adjusted standardized residuals greater than 2.0 and less than −2.0 (χ2 test). ND: Fruit-set could not be determined because none
of the treated flowers were found when revisiting the metapopulation for fruit collection. NA: the chi-square test could not be determined because one of the treatments
was not collected.

df = 4] (Figure 2). In YPM, CPM, and the domesticated cotton,
no significant differences among treatments were observed
(Figure 2).

Germination
Less than 20% of the seeds from wild metapopulations CPM
and YPM germinated. Regarding the domesticated group, 40–
63% of the seeds germinated, except for the seeds produced by
cross-pollination that only reached 28%. The seeds from the
five treatments assessed at SPM showed germination percentages
above 83%, with cross-pollination reaching the highest value of
96% (Table 3).

With regard to the germination rate of the seeds that
germinated (Figure 4), the slope of the curve suggests that wild
upland cotton presents some kind of inhibition to the completion
of germination, whereas domesticated populations do not
display this behavior. As shown in Figure 4A, domesticated
seeds germinated faster, within the first 6 days, whereas seeds
presenting evidence of introgressive hybridization (SPM) reached
95% of germination within the first 7 days and continued
germinating for 48 days. Unlike domesticated and SPM seeds,
the seeds of wild plants germinated over the course of 73 days
(Figure 4A). Concerning the pollination treatments from all
study sites, 50% of the seeds of all treatments germinated within
the first 5 days; however, after the 5th day the difference in
germination rate is evident between autogamy and the rest of the
treatments (Figure 4B).

Outcrossing Rate
All study groups presented outcrossing rates different from 0
and 1 (i.e., 1 > Te > 0), which is indicative of a mixed mating
system. Wild metapopulations (YPM and CPM) recorded a
higher outcrossing rate (0.72 and 0.71, respectively) than SPM
(0.40) and domesticated (0.65) (Supplementary Material 1).

DISCUSSION

Mating System of Upland Cotton’s
Wild-Domesticated Complex
Richards (1997) defined autogamy as within-flower or self-
pollination, and allogamy as the pollination between pollen
and ovules of different flowers; moreover, he further divided

allogamy into geitonogamy (i.e., pollination between different
flowers on the same genet) and xenogamy (i.e., pollination
between pollen and ovules of different genets). Our results
show that wild and domesticated cotton produce offspring in all
pollination treatments (Figures 2, 4B and Tables 2, 3); thus, the
analyzed plants have the capacity to produce progeny by both
autogamy and xenogamy. To discard geitonogamy, it is necessary
to perform a molecular genetic analysis of paternity. However,
since autogamy is common in our system, there is no need
to discard this type of allogamy. Furthermore, previous studies
(see Supplementary Material 1), together with our own, indicate
that the G. hirsutum wild-domesticated complex has a mixed
mating system. This result is particularly relevant in upland
cotton’s center of origin, because of its significance on strategies
for long-term conservation of genetic diversity in the event of
gene flow between wild and domesticated relatives (Ellstrand,
1992).

Barrett and Eckert (1990) and Barrett et al. (1996) described
the outcrossing rate (Te), which indicates that when the value
is 0.5 the mating system is equally balanced between self and
cross-pollination. Any value different from 0 (completely self-
pollinated) or 1 (completely cross-pollinated) implies a mixed
mating system; when Te > 0.5, the system is predominantly
allogamous-xenogamous, whereas when Te < 0.5, the system
is predominantly autogamous. Our observed rates vary from
Te > 0.5, e.g., 0.71 (CPM), 0.72 (YPM) and 0.65 (domesticated),
to Te < 0.5, e.g., 0.40 (SPM). Domesticated plants, and wild
CPM and YPM, have a greater contribution of seeds from cross-
pollination in the next generation, although the contribution
of self-pollination is high and important, and it contributed to
maintenance of genetic structure. The high contribution of self-
pollinated seeds in SPM is striking, far from being similar or
intermediate between wild and domesticated; local factors may
be affecting the result and should be addressed in a future study.

To further explore the mixed mating system of the species, we
compared the germination rate of seeds produced by different
pollination treatments. We found that within the first 5 days
the seeds for all treatments reach 50% of germination. After the
10th day, a notorious difference on germination rate (<15%)
among autogamy and the other treatments is observed. Such
discrepancy is due to the difference in number of seeds produced
in each treatment (Figure 4B). As suggested theoretically, when
germination does not differ among treatments, self-pollination
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FIGURE 2 | Box and whisker plots of seed-set and seed weight of the pollination treatments in wild upland cotton metapopulations (YPM and CPM), a
metapopulation with recent gene flow (SPM), and domesticated plants. Treatments: assisted self-pollination (red), automatic self-pollination (blue), emasculated
control (green), cross-pollination (purple), and open-pollination control (orange). The horizontal line within each box indicates the median. The bottom and top
borders of the box are the first and third quartiles, respectively. The whiskers (vertical lines above and below the box) give the 99% range of the data; values outside
this range are represented with a dot. Different letters indicate statistically significant differences identified by the Tukey test at p < 0.05.

is not the cause of inbreeding depression (Charlesworth and
Willis, 2009). The mating system described in our study coincides
with Baker’s law of reproductive assurance (Pannell and Spencer,
1998), where species that migrate long distances colonize or
recolonize patches initially by self-fertilization; then, because
of its perennial nature, generations overlap in the same area
and plants are pollinated by close relatives or by themselves in
the absence of pollinators (Kalisz et al., 2004). The information
described here, agrees with the ecological and genetic evidence
that describes the metapopulation dynamics of G. hirsutum,
along with the ability to migrate long distances, historically and
currently (Wegier et al., 2011).

In addition, Wegier et al. (2011) reported high values of
gene flow among metapopulations in the same study area,
which could homogenize genetic variation, but their data exhibit
population structure (k = 8) and high FST. Self-pollination
and cross-pollination seem to maintain the genetic diversity of
the species in the wild, although crossings with domesticated
members of the complex (Wendel et al., 1992; Wegier et al.,
2011) or even domesticated plants of Gossypium barbadense
(Brubaker et al., 1993; Brubaker and Wendel, 1994; Ellstrand
et al., 1999; Ellstrand, 2014) might be contributing to these
results. In addition, gene flow with feral cotton can also take place
(Rache Cardenal et al., 2013; de Menezes et al., 2015).
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FIGURE 3 | Violin plots showing seed-set densities of the control treatment (open pollination) in wild upland cotton metapopulations (YPM and CPM), a
metapopulation with recent gene flow (SPM), and domesticated plants. The horizontal line within each box indicates the median. The bottom and top borders of the
box are the first and third quartiles, respectively. The whiskers (vertical lines above and below the box) give the 99% range of the data; values outside this range are
represented with a dot. Different letters indicate statistically significant differences identified by the Tukey test a p < 0.05.

Finally, one of the fitness components measured in plants
is seed weight (Primack and Kang, 1989), due to the
fact that larger seeds perform better because of the higher
amount of resources they possess (Armstrong and Westoby,
1993; Westoby et al., 1996). In our research, seed weight
showed no significant difference between treatments within
metapopulations (Figure 2).

Differences of Reproductive Traits Within
G. hirsutum’s Wild to Domesticated
Complex
Our analyses show differences in characters linked to some of the
reproductive structures of upland cotton, which can be associated
with the domestication syndrome and will be discussed below.

Ovule Number
There are significant differences in ovule number [P(χ2) = 0.001,
df = 2], which was initially estimated to obtain the seed-set
in each population (Supplementary Material 2). Wild plants
produce on average 14.5 ovules per flower, while cultivated
plants produce twice as many. Several authors have described
a change in ovule number as a consequence of evolutionary
processes. For instance, Pasquet (1998) found that ovule number
supports the physiological division of cultivated cowpeas [Vigna

unguiculata (L.) Walp.] into two different groups: cultivars
able to flower early under inductive conditions, with ovule
number lower than 17 (Biflora and Melanophthalmus) and
cultivars not able to do so, with ovule number higher than
17 (Unguiculata and Sesquipedalis). Moreover, Andargie et al.
(2014) reported a pair of quantitative trait loci (QTLs; qon1
and qon3) that regulate ovule number in cowpea; the alleles
from the wild parent increase this trait as opposed to the
cultivated, which reveals a feature of cowpea’s domestication
syndrome. In the case of climbing common bean (Phaseolus
vulgaris L.), among the changes that occurred during the
domestication process is the modification on the number of
ovules, which changed from 5–8 to 2–9 ovules (Gepts and
Debouck, 1991).

Seed-Set
As shown in Figure 3, there are significant differences in the
seed-set of wild and domesticated populations. From a much
larger number of ovules, domesticated plants (open pollination
controls) produce, proportionally, a lower quantity of seeds,
which implies that they are not efficiently using the resources
invested on ovule production (Cilas et al., 2010). Variation
in seed number per boll is produced by the interplay of the
plant genetics and the environment, which in turn generates
either the lack of seed fertilization or completion of embryo
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TABLE 3 | Germination of seeds obtained from each upland cotton metapopulation and treatment.

Metapopulation Traits Germinated Not germinated Percentage of germination
per treatment

Percentage of germination
per metapopulation

CPM+ Assisted self-pollination 2 26 7.14

χ2 = 2.07, df = 3,
P = 0.55

Automatic self-pollination 4 28 12.50 11.95

Cross pollination 2 30 6.25

Open-pollination: control 25 159 13.59

YPM Assisted self-pollination 35 168 17.24

χ2 = 6.68, df = 4,
p = 0.15

Automatic self-pollination 7 45 13.46 13.45

Cross pollination 13 126 9.35

Open-pollination: Control 12 78 13.33

Emasculated control 0 14 0.00

SPM Assisted self-pollination 393 45 89.73

χ2 = 19.29, df = 4,
p = 0.0006

Automatic self-pollination 298 60∗ 83.24 94.12

Cross pollination 149 6∗ 96.13

Open-pollination: Control 292 44 86.90

Emasculated control 150 25 85.71

Domesticated Assisted self-pollination 101 114 46.98

χ2 = 23.68, df = 4,
p = 9.24 × 10−5

Automatic self-pollination 145 84∗ 63.32 53.57

Cross pollination 10∗ 26∗ 27.78

Open-pollination: control 53 40 56.99

Emasculated control 6 9 40.00

+All the repetitions of the emasculated control were placed, but none of them were found when revisiting the metapopulation for fruit collection. ∗Categories significantly
different using adjusted standardized residuals greater than 2.0 and less than −2.0 (χ2 test).

growth post-fertilization (Davidonis et al., 1996); therefore, our
results are influenced by the experimental design and, in the
future, a common garden experiment will provide insight into
the effect of the environment. In comparison, wild plants are
more efficient, producing seeds from nearly all of their ovules,
although the net number of seeds is smaller than that produced by
domesticated fruits. Many features associated with domestication
are not advantageous in terms of reproduction and survival of
following generations lacking human intervention (Gepts, 2004),
because the selective pressures by which they have evolved are
determined by humans (see categories 1–4 of the classification
proposed by Clement, 1999). As a result, gene flow between wild
relatives and cultivated plants could have negative consequences
(Andersson and de Vicente, 2010), however, it could also give
rise to in situ reservoirs of domesticated genes for the future
(Ellstrand, 2018). Each domesticated cotton plant develops 50%
more descendant plants than the wild plants do within their
natural distribution, so the ecological-evolutionary consequences
of this result will depend on the evolutionary process and
the agro-ecological or ecosystem context in which plants are
developed.

Germination
One of the traits selected for during domestication is rapid
germination (Frary and Doganlar, 2003), as this helps crops to
start to grow at the same time and contributes to synchronous
fruiting. Over time, this trait contributes to harvesting efforts
and, therefore, unconsciously selects for loss of dormancy. In
natural habitats, conditions are less predictable, and dormancy
will contribute to different seeds germinating in different
environmental conditions (Long et al., 2015). Our results on seeds

that reached germination agree with what has been described
for other domesticated plants that have undergone similar
evolutionary processes (Fuller and Allaby, 2009; Abbo et al., 2014;
Hernández et al., 2017): domesticated seeds germinate faster and
practically simultaneously, whereas their wild relatives display
dormancy (Figure 4A).

Distinctive Traits of SPM
With respect to SPM (selected for study because of evidence
of recent introgression with domesticated plants; Wegier
et al., 2011), the reproductive system is mixed, as it is in
wild populations without introgression and in domesticated
populations. However, some of the traits that determine
reproductive success are unique to this population: the variability
in seed-set values is markedly different (Figures 2, 3); its
fruits produce more seeds than the other populations (similar
to domesticated fruits, but from half the number of ovules,
which makes them very efficient) (Supplementary Material 2);
and these seeds have a higher percentage of germination than
the other populations (Table 3). These characteristics can have
demographic consequences in the short term, unless there are
other factors that regulate this growth. On the other hand,
contrary to what was expected for SPM, their resemblance to
domesticated seed germination is higher than with the wild
ones. The behavior is also dissimilar for introgressed seeds,
which took longer to complete germination than domesticated
and wild seeds (Figure 4A). This last phase displays a very
slow response in SPM, probably associated with the loss of
physiological responses, resembling domesticated plants. It is
important that these analyses are repeated in subsequent years, to
confirm if there is an eco-genetic trend (Price and Waser, 1979;
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FIGURE 4 | (A) Germination rate of seeds from domesticated plants, with introgressive hybridization plants (SPM), and wild plants (CPM and YPM). (B) Germination
rate of pollination treatments from all study groups. The asterisk and the triangle represent 50 and 95 percent of the total of germinated seeds, respectively.

Edmands, 2007; Ellstrand and Rieseberg, 2016), or if it was the
result of local conditions.

Conservation and Biosecurity
Implications
Many nations want to defend the rights of the next generations
to enjoy and decide about biodiversity and its services, aware
that decisions made today will have an impact on the natural
resources available in the future (Bennett et al., 2015; Steffen
et al., 2015; Morales et al., 2017). Upland cotton is a remarkably
important plant for humanity, not only due to the versatile uses
of its fiber, but for many other applications (Wegier et al., 2016).
It follows that cotton’s wild-to-domesticated complex and its
environment should be a conservation priority. Mesoamerican

dry forests and coastal dunes contain the ecosystems and
evolutionary processes that originated, mold, and maintain wild
cotton diversity and its interactions. These evolutionary services
(Faith et al., 2010; Bailey, 2011; Rudman et al., 2017) are
essential for species conservation, because preserving this genetic
diversity allows the capacity to adapt to environmental changes
(Ellstrand, 1992; Hartl, 2000). However, the factors that mold
each part of the wild-to-domesticated complex are different; for
example, the conservation of native traditional varieties depends
to a great extent on the communities that cultivate them, their
management techniques, and interests (Zhang et al., 2007).
Hence, the parts of the complex that could be used for crop
improvement will depend on the objectives of the new processes
of domestication and breeding (Ellstrand, 2018; Mastretta-Yanes
et al., 2018).
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Gene flow between crops and wild relatives should be
examined on a case-by-case basis (Stewart et al., 2003),
especially when genetically modified organisms (GMO) are
involved, because the consequences depend on the nature of the
transferred genes and their regulatory mechanisms (Ellstrand,
2003). For instance, a recent study has demonstrated that
genetic modifications can affect fitness traits in the long-term
(Hernández-Terán et al., 2017). An important issue to keep in
mind is that for gene flow to occur, a crop must be within
pollination distance of a compatible population (Ellstrand and
Hoffman, 1990), but in the case of domesticated plants the
distances can be shortened by human activities (Dyer et al.,
2009; Wegier et al., 2011). Several studies have documented
hybridization events between crops and their wild relatives; for
instance, in the United Kingdom, one-third of the 36 species
analyzed by Raybould and Gray (1993) hybridize with at least
one element of the local flora; in the Netherlands, a quarter of
42 species does (de Vries et al., 1992); and all but one of the
13 crops reviewed by Ellstrand et al. (1999) hybridize naturally
with their wild relatives in some part of their agricultural
distribution (including G. hirsutum and other species of subgenus
Karpas). These hybridization events could lead to a decline in
wild genetic diversity, as opposed to native semi-domesticated
varieties in traditional Mesoamerican systems where there is
evidence that domesticated genomes have formed not only by
selection under domestication, but also by gene flow with other
closely related populations and species (Rendón-Anaya et al.,
2017). For this reason, the wild-to-domesticated dynamics in
terms of genetic diversity, reproductive biology, and gene flow
should be well understood in the natural distribution of the
species of interest, because extrapolating conclusions based on
external or incomplete information about species complexes is
inconsistent with the objectives of conservation and biosafety
(Beebe et al., 1997; Acevedo et al., 2016).

In this study we found that the reproductive capacity of
introgressed cotton is greater than that of wild and domesticated
plants. This reveals a scenario that de Wet (1968), de Wet and
Harlan (1975) and Keeler et al. (1996) had already described,
where wild relatives of some introgressed crops can become
weeds that are difficult to control. The wide genetic diversity
of G. hirsutum, along with factors modified by traditional
genetic improvement and modern genetic engineering, will be
problematic for agroecosystems (Altieri, 2000) and ecosystem
conservation if they increase cotton’s weediness or invasiveness
(Schafer et al., 2011). Cotton has already been reported to persist
in a few tropical regions, such as the north of Australia, Vietnam,
México, the continental United States and Hawaii (Hawkins et al.,
2005; Andersson and de Vicente, 2010; USDA, 2018), so it will be
necessary to monitor these changes in wild populations given the
species great capacity for long distance migration by natural and
anthropogenic means.

Finally, local conditions can influence the results of
reproductive biology studies (Ellstrand and Foster, 1983;
Hucl, 1996; Murray et al., 2002); hence, it was essential to
assess the mating system of G. hirsutum within its natural
distribution. Some of the factors that have an effect on the
results can be associated with the environment (pollen viability,

nectar production, and pollinator activity due to environmental
conditions; Ahrent and Caviness, 1994; Ibarra-Pérez et al.,
1997; Chaves-Barrantes et al., 2014), ecological interactions
(foraging rate, floral consistency, efficiency of pollen deposition,
interactions with arthropodofauna, and composition of
pollinator species; Rudgers, 2004; Kessler et al., 2012; Johnson
et al., 2015), as well as the landscape (species abundance and
surrounding species distributions; Murray et al., 2002). In
this study, the results of automatic self-pollination and the
emasculated control provide evidence that autogamy and
allogamy occur naturally in upland cotton’s natural distribution.
The occurrence of the latter highlights the importance of native
pollinators on the reproductive biology of G. hirsutum and,
consequently, conservation strategies should take this key
interaction into consideration.

CONCLUSION

This study found that upland cotton’s wild-to-domesticated
complex presents a mixed mating system. This information is
new for wild, domesticated, and introgressed G. hirsutum in
its natural distribution, but it is in agreement with previous
studies in populations of domesticated cotton (Supplementary
Material 3). Consequently, G. hirsutum should be considered
as having a mixed reproductive strategy throughout its whole
complex, rather than being primarily autogamous. Management
strategies and policies meant to conserve the diversity of cotton’s
wild-to-domesticated complex must take this into account.

Furthermore, physiological differences were found between
cultivated cotton and its wild relatives, especially in traits such
as the number of ovules per flower, number of viable seeds per
fruit, and their germination behavior. Given the evidence of
gene flow and introgression, these traits should be monitored
systematically in wild populations and agroecosystems of interest
for conservation, as well as the impact on ecological interactions,
such as pollination. On the other hand, the diversity contained
in the wild-to-domesticated complex must be included in long-
term conservation strategies, so that future generations can have
access to genetic resources with greater chances of surviving the
changing environments.
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