
This is a repository copy of Depth-Based Subgraph Convolutional Neural Networks.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/132031/

Version: Published Version

Conference or Workshop Item:
Zhang, Zhihong, Hancock, Edwin R orcid.org/0000-0003-4496-2028, Bai, Lu et al. (1 more
author) (2018) Depth-Based Subgraph Convolutional Neural Networks. In: 24th
International Conference on Pattern Recognition, 21-24 Aug 2018. (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Depth-based Subgraph Convolutional Neural

Networks

Chuanyu Xu †, Dong Wang†, Zhihong Zhang∗†, Beizhan Wang†, Da Zhou†, Guijun Ren‡, Lu Bai§,

Lixin Cui§, Edwin R. Hancock¶

† Xiamen University, Xiamen, China
‡Capital Markets Analytics, Opera Solutions, LLC, Jersey City, NJ, 07302, USA

§Central University of Finance and Economics, Beijing, China
¶Department of Computer Science, University of York, York, UK

∗Corresponding author: zhihong@xmu.edu.cn.

Abstract—This paper proposes a new graph convolutional neu-
ral architecture based on a depth-based representation of graph
structure, called the depth-based subgraph convolutional neural
networks (DS-CNNs), which integrates both the global topological
and local connectivity structures within a graph. Our idea is to
decompose a graph into a family of K-layer expansion subgraphs
rooted at each vertex, and then a set of convolution filters
are designed over these subgraphs to capture local connectivity
structural information. Specifically, we commence by establishing
a family of K-layer expansion subgraphs for each vertex of graph
by mapping graph to tree procedures, which can provide global
topological arrangement information contained within a graph.
We then design a set of fixed-size convolution filters and integrate
them with these subgraphs (depicted in Figure 1). The idea is
to apply convolution filters sliding over the entire subgraphs of
a vertex to extract the local features analogous to the standard
convolution operation on grid data. In particular, the convolution
operation captures the local structural information within the
graph, and has the weight sharing property among different
positions of subgraph; the pooling operation acts directly on
the output of the preceding layer without any preprocessing
scheme (e.g., clustering or other techniques). Experiments on
three graph-structured datasets demonstrate that our model DS-
CNNs are able to outperform six state-of-the-art methods at the
task of node classification.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have gained sig-

nificantly improvement in problems such as image classifi-

cation, video recognition and machine translation, where the

underlying data representation has a grid-like structure. These

architectures efficiently reuse basic operations of convolution

and pooling. However, many interesting tasks (such as social

networks, biological networks and knowledge graphs) involve

data that lies in an irregular domain which can usually be

represented in the form of graphs.

Nevertheless, there is an increasing interest in the literature

to extend CNNs to non-lattice graphical structures. Advances

in this direction are often named as spectral approaches and

spacial approaches. spectral approaches draw on a spectral

representation of the graphs, i.e. the properties of convolution

operators in the graph Fourier domain which are related to

the Laplacian matrix of the graph [1], [2], [3]. However,

the learned filters depend on the eigenvectors of the graph

Laplacian, which depends on the graph structure. Thus, a

model trained on a specific structure can not be directly

transferred to a different graph with a different Fourier basis.

Spatial approaches [4], [5], [6] define groups of filters di-

rectly on the graph and operating on spatially close neighbors

to extract local features shared across the graph. One of the

challenges of these approaches is to define a fixed-size filter

sliding over the graph with different sized neighborhoods and

maintains the weight sharing property of CNNs, because the

size and ordering of spatially close neighbors is not well

definable.

In this paper, we focus on extracting both the global and lo-

cal structure within a graph by linking the ideas of convolution

and graph depth-based representations. We propose a depth-

based subgraph convolution neural networks (DS-CNNs) to

characterize the topological structure of a graph. This model

is motivated by the idea that each node and its neighbors have

local features shared across the graph. These features could

be extracted with local convolutional filters learned from the

graph and can provide a better basis for prediction. In general,

the main contributions of our work are summarized as follows:

• Depth-based subgraph convolution operation: The

depth-based subgraph convolution operation scans a ‘tree’

of parameters across the input data to extract local

features analogous to the standard convolution operation

on grid data. These local features could be composed to

form multi-scale structures.

• Weight sharing property: The same convolution is glob-

ally valid across the subgraph, resulting in a significant

parameter reduction.

• Depth-based subgraph pooling operation: Our depth-

based subgraph pooling operation acts on the output of

the preceding layer directly without any preprocessing

scheme such as clustering.

• Accuracy : In our experiments, DS-CNNs significantly

outperform several alternative methods for node

classification tasks. The code will be made available for

public use.

Fig. 1. An illustrative example of our DS-CNNs with K = 4 and m = 3.
The ‘Conv’ arrow depicts the convolution operation. The subgraph above the
‘Conv’ arrow represents a convolution kernel, extracting structural features
along the tree. Then the extracted features are summarized by pooling
operation.

II. PRELIMINARY CONCEPTS

In this section, we introduce the related basics of graph that

will be used for developing the work presented in this paper.

A. Graphs

A graph G is a pair of sets (V,E), where V = {v1, ..., vt}
is the set of vertices and E ⊆ V × V is the set of edges,

formed by pairs of vertices. Each graph can be represented by

an adjacency matrix A of size t × t, where t is the number

of vertices in G. In particular, Ai,j = 1 if there is an edge

between vertex vi and vertex vj , i.e. vi and vj are adjacent,

and Ai,j = 0 otherwise. A walk is a sequence of edges and

vertices, where each edge’s endpoints are the two vertices

adjacent to it. A path is a walk in which all vertices are distinct

(except possibly the first and last). We denote d(u, v) as the

length of the shortest path between vertex u and vertex v,

and denote v′ k-hop as the k-neighborhoods of vertex v, i.e.

d(u, v) = k for any vertices u of v′ k-hop.

III. PROPOSED DS-CNNS MODEL

In this section we combine the idea of subgraph convolution

with that of using a depth-based representation to develop

a novel depth-based subgraph convolution architecture for a

graph. Our idea is to decompose a graph into substructures

(i.e., subgraphs) spanned from a root vertex to the remaining

vertices with a K-layer expansion. More specifically, for each

vertex, a neighborhood subgraph consisting of exactly m

vertices is extracted by leveraging graph grafting and graph

pruning procedures and normalized as a m-ary tree. The

leaf nodes of the m-ary tree are further replaced by their

own neighborhood m-ary trees. This process is performed

recursively until a K-level m-ary tree is constructed for each

vertex. We then designed a set of subgraph feature detectors,

which can be viewed as convolution with a set of finite support

kernels, sliding over the obtained K-level m-ary tree to extract

local features as the standard convolution operation. After one

layer of convolution over different positions of the subgraph

along the tree structure, structural features are extracted, and

a new tree is generated. The new tree has a reduced level

Fig. 2. An illustrative example of graph grafting. Vertices connected in dotted
line are the pink vertex’s 2-hop, the red vertex has a higher pagerank value
than other vertices of pink vertex’s 2-hop.

Fig. 3. An illustrative example of graph pruning. The pink vertex has a
smaller pagerank value than other vertices of green vertex’s 1-hop.

size compared with the input tree, where each parent node

and its child nodes in the input layer become a new node in

the next layer. The extracted local features produced by the

convolution layer are forwarded to the pooling layer and are

thereafter packed into one or more fixed-size vectors by taking

the max/mean value in each dimension. After the pooling

layer, the fixed-size feature vector is subsequently presented

to the fully-connected layers (FC) to compute the predicted

probability over the class labels. One merit of such an archi-

tecture is that each vertex has K-layer expansion subgraphs,

and hence both the global topological arrangement information

and local connectivity structural information contained within

a graph can be learned effectively and efficiently by subgraph

convolution.

A. The Depth-Based Representation for a Graph

In order to exploit topological information concerning the

arrangement of vertices and edges in a graph, we develop a K-

layer depth-based representation for a graph from each vertex.

Concretely, it comprises two steps: (1) construct a m-ary tree

with each vertex by the graph grafting and graph pruning

algorithm; (2) The leaf nodes of the i-level m-ary tree are

further replaced by their own neighborhood m-ary trees hence

a K-level m-ary tree is recursively constructed for each vertex.

For each vertex, a receptive field with the same size should

be constructed. However, the size of each node’s 1-hop are

different, so we propose graph drafting and graph pruning to

normalize each node’s neighborhood subgraph to a m-ary tree.

Graph Grafting For node v whose size of 1-hop is less than

m, we use graph grafting to choose nodes from node v′ i-hop

(i>=2) to fill node v′ 1-hop. As shown in Figure 2 , besides

the pink vertex itself, we still need to incorporate m = 1
vertex into the receptive field from node v′ i-hop (i>=2). We

prior choose nodes from node v′ 2-hop, if nodes in 2-hop is

not enough, then we choose nodes from 3-hop and so on. If

there exist more nodes than we need, we prior choose nodes

with higher pagerank values. In this way, the neighborhood

subgraph consisting of exactly m vertices is extracted and

normalized as an m-ary tree. Then we rank the leaf nodes

of the m-ary tree according to the pagerank values of them.

Graph Pruning For node v whose size of 1-hop is more

than m, we use graph pruning to choose nodes from node v′ 1-

hop. As shown in Figure 3, besides the green vertex itself, we

need to cut one node so that only m = 3 vertices is reserved,

we prior cut nodes with smaller pagerank values. In this way,

the neighborhood subgraph consisting of exactly m vertices is

extracted and normalized as an m-ary tree. Then we rank the

leaf nodes of the m-ary tree according to the pagerank values

of them.

Mapping Graph to Tree From graph grafting and graph

pruning, we normalize each node’s subgraph as an m-ary tree,

the leaf nodes of each m-ary tree are further replaced by their

own neighborhood m-ary trees. In this way, a K-level m-ary

tree is recursively constructed for each vertex. Algorithm 1

illustrates the detail of Mapping Graph to Tree algorithm.

Algorithm 1: Mapping Graph to Tree

Input: graph, receptive field size m+ 1, pagerank

algorithm, graph grafting, graph pruning, the

depth K
Output: normalized neighborhood graph (K-level m-ary

tree) for each vertex

1 initialization;

2 compute pagerank value for each vertex;

3 construct a m-ary tree with each vertex by the graph

grafting and graph pruning algorithm;

4 for i = 2, i ≤ K − 1 do

5 The leaf nodes of the i-level m-ary tree are further

replaced by their own neighborhood m-ary trees;

6 end

7 return K-level m-ary tree for each vertex;

B. Depth-based Subgraph Convolution Operator

In this section, we first list the notation used in the paper,

in Table I. Then, we present our depth-based subgraph con-

volution neural networks for the K-level m-ary tree. Figure 1

shows an example of the whole process with K = 4 and

m = 3. In a manner similar to CNNs on images, our DS-

CNNs also contains convolution and pooling operations. Our

depth-based subgraph convolution operation extracts structural

features along the tree. Then the extracted features are sum-

marized by a depth-based subgraph pooling operation. In this

way, our DS-CNNs allows effective structural feature learning.

TABLE I
IMPORTANT NOTATIONS USED IN THIS PAPER AND THEIR DESCRIPTIONS.

Symbol Definition

node(s, t) the t-th node in level s

Xl,p the p-th feature channel in layer l

X
l,p
s,t the node (s, t)′ p-th feature channel in layer l

H
l,p
s,t

H
l,p
s,t = {Xl,p

s,t , X
l,p

s+1,(t−1)m+1
, ..., X

l,p
s+1,tm}

i.e. the p-th feature channel of node (s, t)′

receptive field in layer l + 1

W l,k,p the filter mapping from the p-th feature channel in
layer l to the k-th feature channel

f the activation function

fl−1 the number of filters in layer l − 1

bl,k the bias of the k-th filter in layer l

⊙ element-wise multiplication

When CNNs are applied to images, a square grid is moved

over each image with a particular step size to extract structural

features as the output of the convolution. More precisely, a

receptive field in the preceding layer becomes a neuron in the

next layer after a convolution operation. In this way, the local

structure features of images is well captured by the convolution

operation. By generalizing CNNs to the K-level m-ary tree

obtained in previous step of graph normalization, we scan

a subgraph-based window along the tree to extract structural

features as the output of our convolution.

The convolutional activation X l,k
s,t for node (s, t), feature k

and layer l is given by

X l,k
s,t = f(

fl−1∑

p=1

(
m+1∑

j=1

W l,k,p
j H l−1,p

s,t,j) + bl,k) s ≤ K − l + 1

The activation X l,k for k-th feature channel in layer l can

be expressed more concisely using tensor notation as

X l,k = f(

fl−1∑

p=1

(W l,k,p ⊙H l−1,p) + bl,k)

C. Depth-based Subgraph Pooling Operator

Another important operation proposed by CNNs is pooling.

Reducing the dimensionality of the input data allows the

convolution filters to have a large receptive field and at the

same time decrease the number of parameters. One of the

most common methods for pooling graph is the multiscale

clustering of the grid and then a pooling operation over each

cluster. Instead, our pooling operation acts directly on output

of the preceding layer without any preprocessing scheme. The

pooling activation X l+1,k
s,t for node (s, t), feature k and layer

l + l is given by

X l+1,k
s,t = f(W l+1,k · pool(H l,k

s,t) + bl+1,k)

A maximum pooling function poolmax can be found by taking

the maximum value over a region and an average pooling

function poolave can be obtained by taking the mean value

over a region:

poolmax(Rk) = maxi∈Rk
ai

poolavg(Rk) =
1

|Rk|

∑

i∈Rk

ai

D. Applying DS-CNNs to Node Classification

For the purpose of node classification, each node could

be represented by a K-level m-ary tree constructed through

Algorithm 1. After multiple layers of applying the depth-based

subgraph convolution and pooling operation, multiple features

which carry different structural information become the final

representation XN of the input node. Then, the final node

representation XN is passed to a fully connected layer and

outputs a conditional probability distribution P(Y |X), which

can be obtained by applying the softmax function. This process

can be formulated as below:

P(Y |X) = softmax(f(W d ⊙XN))

Moreover, our depth-based convolutional representation for

graph is invariant with respect to the node index (rather

than the node position), which means our activations of two

isomorphic input graphs will be the same. We prove it as

follows.

Theorem 1. The depth-based convolutional activations of two

isomorphic input graphs will be the same.

Proof. We prove this theorem by contradiction.

Assume two graphs G1 and G2 are isomorphic but their depth-

based convolutional activations are different. At least a pair of

nodes u,w, where u, v belongs to the resulting node sequence

of graph G1 and G2 respectively and will have the same

position in the resulting node sequence. The activations of u
and v in layer l are different. The depth-based convolutional

activations of two nodes ca be written as

X l,k
u = f(

fl−1∑

p=1

(W l,k,p
u ⊙H l−1,p

u) + bl,ku)

X l,k
v = f(

fl−1∑

p=1

(W l,k,p
v ⊙H l−1,p

v) + bl,kv)

Note that

W l,k,p
u = W l,k,p

v = W l,k,p

bl,ku = bl,kv = bl,k

Graphs that are isomorphic (the same except for vertex labels)

become identical after canonical graph labelling, so

H l−1,p
u = H l−1,p

v = H l−1,p

by isomorphism, allowing us to rewrite the activation as

X l,k
u = f(

fl−1∑

p=1

(W l,k,p ⊙H l−1,p) + bl,k)

X l,k
v = f(

fl−1∑

p=1

(W l,k,p ⊙H l−1,p) + bl,k)

Which implies that X l,k
u = X l,k

v and presents a contradiction

and completes the proof.

E. Learning Filters

We assume that each convolution layer l is followed by

a pooling layer l + 1. According to the back propagation

algorithm says that in order to compute the sensitivity for

a unit at layer l, we should first sum over the sensitivities

of the next layer corresponding to units that are connected

to the node of interest in the current layer l. We multiply

each of those connections by the associated weights defined

at layer l+1. We then multiply this quantity by the derivative

of the activation function evaluated at the current layer’s

pre-activation inputs,Z. In the case of a convolutional layer

followed by a pooling layer, we can upsample the pooling

layer’s sensitivity map δl+1,k to make it the same size as

the convolutional layer’s map and then just multiply the

upsampled sensitivity map from layer l+1 with the activation

derivative map at layer l element-wise. The ‘weights’ defined

at a pooling layer map are all equal to W l,k, so we just scale

the previous step’s result by W l,k to finish the computation

of δl,k. So we can get:

δl,k ,
∂E

∂Zl,k

δl,k =
∂E

∂Zl+1,k
·
∂Zl+1,k

∂X1,k
·
∂X l,k

∂Z1,k

δl,k = f ′(Zl)⊙ (up(W l+1,kδl+1,k))

δl,k = W l+1,k(f ′(Zl)⊙ up(δl+1,k))

where up is the Upsampling function and E is the loss energy.

Finally, the gradients for the kernel weights are computed

using back propagation:

∂E

∂W l,k,p
=

∑

i,j

(δl,k)i,j(P
l−1,p)i,j

where (P l−1,p)i,j is the patch in X l−1,p that was multiplied

element-wise by W l,k,p during convolution. we can compute

the bias gradient by simply summing over all the entries in

δl,k :
∂E

∂bl,k
=

∑

i,j

(δl,k)i,j

IV. EXPERIMENTS AND COMPARISONS

In this section, we discuss the merits and limitations of

the proposed DS-CNNs model. A comprehensive experimental

study on a variety of data sets is conducted in order to compare

our proposed model DS-CNNs with six state-of-art works in

node classification.

A. Node Classification

To demonstrate the effectiveness of the proposed approach

on node classification, we conduct experiments on two citation

network data sets and one communication data set, i.e. Cora,

Pubmed datasets [7] and Email-Eu [8]. Each citation dataset

consists of scientific papers (represented by nodes), citation

links (represented by edges), and subjects (represented by

labels). Table. II summarizes the extent and properties of

the three data sets. For node classification, six alternative

algorithms are selected as baselines. We will briefly introduce

these methods in turn.

TABLE II
DATASET STATISTICS OF NODE CLASSIFICATION TASK.

Dataset Type Nodes Edges Classes Features

Cora Citation network 2,708 5,429 7 1433

Pubmed Citation network 19,717 44,338 3 500

Email-Eu Communication network 1005 25,571 42 -

Datasets The Cora data set [7] contains 2,708 machine learn-

ing articles categorized into seven possible machine learning

subject classes. Each article is represented by a binary 0/1-

valued word vector where each feature corresponds to the

presence or absence of a term drawn from a dictionary. The

dictionary contains 1,433 unique entries. This graph contains

5,429 citation edges. We treat the citation links as undirected

edges and construct a binary, symmetric adjacency matrix.

The Pubmed data set [7] consists of 19,717 scientific papers

from the Pubmed database on the subject of diabetes. Each

paper is classified into one of three classes. This citation

network that links the papers consists of 44,338 links. Each

paper is represented by a Term Frequency Inverse Document

Frequency (TFIDF) vector drawn from a dictionary with 500

terms. As with the CORA corpus, we construct an adjacency-

based DS-CNNs that treats the citation network as an undi-

rected graph.

The Email-Eu data set [8] was generated using email

data from a large European research institution. There is

an edge (u, v) in the network if person u sent person v at

least one email. The e-mails only represent communication

between institution members. The data set also contains

”ground-truth” community memberships of the nodes. Each

individual belongs to exactly one of 42 departments at the

research institute. Note that the vertices of the Email-Eu-Core

has no vertex information, so we only take the structural

information of the vertices as the input.

Baseline Methods We compare our proposed method DS-

CNNs with six state-of-the-art methods for node classification.

These methods are used for comparisons are (1) ℓ1-regularized

logistic regression (l1logistic), (2) ℓ2-regularized logistic

regression (l2logistic), (3) exponential diffusion kernels-

on-graphs (KED) [7], (4) Laplacian exponential diffusion

kernels-on-graphs (KlED) [7], (5) diffusion convolutional

neural networks (DCNNs) [9], (6) GraphSAGE [4]. For the

TABLE III
THE DETAILS OF SOME PARAMETERS FOR NODE CLASSIFICATION.

Dataset Conv2 Conv3 FC lr L2 dropout

Cora 32 32 64 10−6 10−2 0.3

Pubmed 32 64 32 10−6 10−2 0.8

Email-Eu 32 32 64 10−4 10−2 0.8

‘l1logistic’ and ‘l2logistic’ methods, we use node features

alone as the input of logistic regression. This means that graph

structure information is not considered, and the regularization

parameter is fine tuned by the validation set. For ‘KED’ and

‘KlED’ , we take the graph structure as input, which means

the node feature information is not considered. Similar to

previous work [9], we chose parameters for various baseline

methods as follows: a) the penalty for l1logistic and l2logistic

is chosen from {10−4, 10−3, ..., 103, 104}, b) the parameter α
for ‘KED’ and ‘KlED’ is chosen from {10−6, 10−5, ..., 102},

c) the parameter H = 2 for DCNNs because it results in the

best classification accuracy, d) GraphSAGE provide a variety

of approaches to aggregating features within a sampled

neighborhood and we choose GraphSAGE-mean because it

almost results in the best accuracy. For each baseline method,

we report the results for the parameters which give the best

classification accuracy.

Experimental Set-up For all datasets, we normalize each

node as a 3 level 3-ary tree. We train a five-layer DS-

CNNs, where the first layer is input layer, the second and

third layers are the convolutional layer, the fourth layer is

the fully-connected layer, and the final layer is output layer.

We use the Adam optimization algorithm [10] for gradient

descent. All weights are randomly initialized from a normal

distribution with mean zero and variance 0.01. We choose the

ReLU as the activation function. This model was implemented

in Python using tensorflow [11]. A 10-fold cross-validation

strategy is employed to evaluate the classification performance.

Specifically, the entire sample is randomly partitioned into

10 subsets and then we choose one subset for test and use

the remaining 9 for training, and this procedure is repeated

10 times. The final accuracy is computed by averaging the

accuracies from each of the random subsets. The other detail

of parameters setting for each dataset are listed in Table. III, in

which Conv2 denotes the number of filters in layer 2, Conv3

denotes the number of filters in layer 3, FC denotes the number

of neurons in FC layer, lr denotes the learning rate, L2 denotes

the L2 regularization and dropout denotes the drop out.

Results Discussion Table. IV reports the average classification

accuracy of the different algorithms on node classification.

The boldfaced values are the best result. Our proposed five-

layer DS-CNNs outperforms each of the competing methods

for all datasets studied and the improvement is in the range

from 1.45% to 13.09% on the Cora dataset, from 1.06% to

6.48% on the Pubmed dataset and from 3.02% to 6.33%
on the Email-Eu dataset respectively. On the Cora dataset,

l1logistic and l2logistic give the worst performance. This

TABLE IV
STUDY OF NODE CLASSIFICATION: CLASSIFICATION ACCURACY (IN

MEAN ± STD). A COMPARISON OF THE PERFORMANCE BETWEEN SIX

BASELINE METHODS AND OUR PROPOSED DS-CNNS ON THREE NODE

CLASSIFICATION DATASETS. THE DS-CNNS OFFERS THE BEST

PERFORMANCE. - MEANS THE MODEL IS NOT SUITABLE FOR THE DATA

SET.

Model Cora Pubmed Email-Eu

l1logistic 71.63 ± 0.71 87.68 ± 0.89 -

l2logistic 71.81 ± 0.69 86.54 ± 0.93 -

KED 81.92 ± 0.91 83.15 ± 0.64 70.28 ± 0.87

KlED 83.27 ± 0.76 84.11 ± 0.77 71.54 ± 0.81

DCNN 82.52 ± 2.11 88.57 ± 1.34 -

GraphSAGE 82.68 ± 1.83 88.41 ± 1.25 73.59 ± 1.72

DS-CNNs 84.72 ± 2.28 89.63 ±1.67 76.61 ±2.33

Fig. 4. Impact of the receptive field size and the depth of the m-ary tree on
performance for node classification

may be explained by the fact that the logistic regression

models only take the node features as input and neglect

graph structure information. KED and KLED both take graph

structure as input (e.g. node features are not used) and show

inferior performance to our DS-CNNs. This indicates that

our DS-CNNs is able to extract graph structure features. On

the Pubmed dataset, we observed that those methods which

incorporate node features outperform those methods that do

not, i.e., l1logistic and l2logistic are superior to both KED

and KLED in terms of accuracy. Furthermore, our DS-CNNs

still maintains the best classification accuracy. Our DS-CNNs

outperforms GraphSAGE-mean (taking the elementwise mean

value of feature vectors) suggesting that assigning different

importance to different nodes within a subgraph while dealing

with different sized neighborhoods may be beneficial. Based

on these results, it is demonstrated that our proposed method

DS-CNNs integrates the merits of using both the global

topological and local connectivity structures within a graph.

Thus, it performs better than the traditional methods.

To investigate the effect of different receptive field size of

m+1 and the depth K of the m-ary tree on node classification

performance of proposed method DS-CNNs, we test several

groups of m + 1 and K. We report the results in Figure 4,

in which the two x-axes give the varying of m + 1 and K
respectively, and the y-axis gives the classification accuracies

of our DS-CNNs method. The lines of different colours

represent the results on different datasets. The classification

accuracies tend to become greater with increasing values of

m + 1 and K. This is because the greater values of m + 1
and K, the more global topological and local connectivity

information within a graph of our DS-CNNs method can be

captured.

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown how to construct depth-based

subgraph convolution network for a graph. The convolution

process makes use of both the global topological arrangement

information and local connectivity structures within a graph.

Experimental results on node classification show our DS-

CNNs is superior to a number of baseline methods.

Our future plan is to extend the work as follows. In prior

work we have developed methods for characterizing graphs

using the commute time [12] and the heat kernel [13]. For an

undirected graph, both of these methods encapsulate the path

length distribution between vertices. It would be interesting

to use the commute time or heat kernel as a means of node

ordering.

ACKNOWLEDGMENT

This work is supported by National Natural Science Founda-

tion of China (Grant No.61402389), the Fundamental Research

Funds for the Central Universities in China (no. 20720160073)

and Health joint fund of the Provincial Department of science

and technology No.2015J01534. The first two authors con-

tribute equally to this work.

REFERENCES

[1] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,
2013.

[2] O. Rippel, J. Snoek, and R. P. Adams, “Spectral representations for
convolutional neural networks,” in Advances in Neural Information

Processing Systems, 2015, pp. 2449–2457.
[3] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on

graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.
[4] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation

learning on large graphs,” CoRR, vol. abs/1706.02216, 2017.
[5] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional

neural networks for graphs,” in Proceedings of The 33rd International

Conference on Machine Learning, 2016, pp. 2014–2023.
[6] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,

A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Advances in neural information

processing systems, 2015, pp. 2224–2232.
[7] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-

Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, p. 93, 2008.

[8] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-
order graph clustering,” in Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.
ACM, 2017, pp. 555–564.

[9] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Advances in Neural Information Processing Systems, 2016, pp. 1993–
2001.

[10] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint

arXiv:1603.04467, 2016.
[12] H. Qiu and E. R. Hancock, “Clustering and embedding using commute

times,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 11, 2007.

[13] B. Xiao, E. R. Hancock, and R. C. Wilson, “Graph characteristics from
the heat kernel trace,” Pattern Recognition, vol. 42, no. 11, pp. 2589–
2606, 2009.

