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Abstract—In this paper, we develop a variational principle from
the von Neumann entropy for directed graph evolution. We
minimise the change of entropy over time to investigate how
directed networks evolve under the Euler-Lagrange equation.
We commence from our recent work in which we show how to
compute the approximate von Neumann entropy for a directed
graph based on simple in and out degree statistics. To formulate
our variational principle we commence by computing the directed
graph entropy difference between different time epochs. This
is controlled by the ratios of the in-degree and out-degrees at
the two nodes forming a directed edge. It also reveals how the
entropy change is related to correlations between the changes in-
degree ratio and in-degree, and their initial values. We conduct
synthetic experiments with three widely studied complex network
models, namely Erdős-Rényi random graphs, Watts-Strogatz
small-world networks, and Barabási-Albert scale-free networks,
to simulate the in-degree and out-degree distribution. Our model
effectively captures the directed structural transitions in the
dynamic network models. We also apply the method to the
real-world financial networks. These networks reflect stock price
correlations on the New York Stock Exchange(NYSE) and can
be used to characterise stable and unstable trading periods. Our
model not only effectively captures how the directed network
structure evolves with time, but also allows us to detect periods
of anomalous network behaviour.

1. Introduction

Many real-world complex networks, such as financial net-
works, communication networks and social networks, change
their structure with time. There is an increasing number of
studies to develop models analysing the network evolution
[1]. Broadly speaking, this problem can be addressed from
two different perspectives. The first develops the microscopic
approaches to the global characterization of network struc-
ture, while the second applies the microscopic description to
simulate the local structure of networks. Specifically, at the
global level, the function of a network captures the structural
variance during the evolution, which can be used to distinguish
different types of networks. For example, thermodynamic
analysis of network structure describes network structure in
terms of macroscopic variables such as temperature. This
analysis associates the internal structure to the global pattern
of network evolution [8]. On the other hand, at the local level,
networks grow and evolve with the addition of new compo-

nents and connections, or the rewiring of connections from one
component to another [7], [11]. Generative and autoregressive
models, for example, estimate the detailed evolution of edge
connectivity structure with time [2], [8].

However, both the global and the local methods require
us to fit the models to the available graph time series data
by estimating their parameters. The underlying descriptions
of how vertices interact to give edge connections are not
simple and difficult to use effectively to simulate network
evolution. Motivated by the need to fill this gap in the literature
and to augment the methods available for understanding the
evolution of time-varying networks, there have been a number
of attempts to extend the scope of probabilistic generative
models [3], [4]. These models are again highly parameter
intensive.

Our recent work has addressed the problem using a genera-
tive model of graph-structure [3]. It can be applied to the time-
serial networks with an autoregressive model [4]. The key ele-
ment is the approximate von Neumann entropy on graphs. This
entropy is the extension of the Shannon entropy defined over
the re-scaled eigenvalues of the normalised Laplacian matrix.
A quadratic approximation of the von Neumann entropy gives
a simple expression for the entropy associated with the degree
combinations of nodes forming edges [6], [8]. Moreover, the
fitting of the generative model to dynamic network structure
involves a description length criterion which describes both
the likelihood of the goodness of fit to the available network
data together with the approximate von Neumann entropy of
the fitted network. This latter term regulates the complexity
of the fitted structure [1], [4], and mitigates against overfitting
of the irrelevant or unlikely structure. The change in entropy
of the two vertices forming an edge between different epochs
depends on the product of the degree of one vertex and the
degree change of the second vertex. In other words, the change
in entropy depends on the structure of the degree change
correlations.

The aim of this paper is to explore whether our model
of network entropy can be extended to model the way in
which the node degree distribution evolves with time, taking
into account the effect of degree correlations caused by the
degree structure of directed edges. We focus on the directed
graphs and consider the cases where there is a) a mixture
of unidirectional and bidirectional edges, b) where the uni-
directional edges dominate (strongly directed graphs) and c)
where the bidirectional edges outnumber the unidirectional
edges (weakly directed graphs). We exploit this property by



modelling the evolution of network structure using the Euler-
Lagrange equations. Our variational principle is to minimise
the changes in entropy during the evolution. Using our ap-
proximation of the von Neumann entropy, this leads to update
equations for the node degree which include the effects of the
node degree correlations induced by the edges of the network.
Here we mainly focus on the strongly directed graphs, where
edges are purely unidirectional and there are no bi-directional
edges. Our model distinguishes between the in-degree and out-
degrees of vertices, and it is effectively a type of diffusion
process that models how the degree distribution propagates
across the network. In fact, it has elements similar to pref-
erential attachment [11], since it favours edges that connect
high degree nodes [5], [13].

The remainder of the paper is organized as follows. In
Sec. II, we provide a detailed preliminary analysis of network
entropy. In Sec. III, We theoretically analyse directed networks
with dynamic entropy changes and develop models for degree
statistics by minimising the von Neumann entropy change
using the Euler-Lagrange equations. In Sec. IV, we conduct
numerical experiments on the synthetic and real-world time-
varying networks and apply the resulting characterization of
network evolution. Finally, we conclude the paper and make
suggestions for future work.

2. Network Entropy
Consider a directed graph with node-set V and directed

edge-set E. In a recent paper we have shown how to compute
an approximtion to the von Neumann entropy for such a graph
using just the in-degrees and out-degree of its nodes [10].
To do this we distinguish between two subsets of edges E1

and E2, where E1 = {(u, v)|(u, v) ∈ E and (v, u) /∈ E}
is the set of unidirectional edges, E2 = {(u, v)|(u, v) ∈
E and (v, u) ∈ E} is the set of bidirectional edges. The two
edge-sets satisfy the conditions E1 ∪ E2 = E,E1 ∩ E2 = ∅.
With this distinction between unidirectional and bidirectional
edges, the approximation for the von Neumann entropy of the
directed graph is,

Sd = 1−
1

|V |
−

1

2|V |2

⎧

⎨

⎩

∑

(u,v)∈E

dinu
dinv dout2u

+
∑

(u,v)∈E2

1

doutu doutv

⎫

⎬

⎭

(1)
where dinu is the in-degree or number of directed edges incom-
ing edges at node u and doutu is the corresponding out-degree
or number of nodes exiting the node.

To simplify the expression according to the relative impor-
tance of the sets of unidirectional and bidirectional edges E1

and E2, the von Neumann entropy can be further approximated
to distinguish between weakly and strongly directed graphs.
For weakly directed graphs, i.e., |E1| ≪ |E2| most of the
edges are bidirectional, and we can ignore the summation over
E1 in Eq.(1), rewriting the remaining terms in curly brackets
as

Swd = 1−
1

|V |
−

1

2|V |2

⎧

⎨

⎩

∑

(u,v)∈E

din

u

dout
u

+
din

v

dout
v

doutu dinv

⎫

⎬

⎭

(2)

For the strongly directed graph the unidirectional edges
dominate, i.e., |E1| ≫ |E2|, there are few bidirectional edges,

and we can ignore the summation over E2 in Eq.(1), giving
the approximate entropy as

Ssd = 1−
1

|V |
−

1

2|V |2

⎧

⎨

⎩

∑

(u,v)∈E

dinu
dinv dout2u

⎫

⎬

⎭

(3)

Thus, both the strongly and weakly directed graph en-
tropies depend on the graph size and the in-degree and out-
degree statistics of edge connections [10].

3. Variational Principle on Graphs

3.1. Euler-Lagrange Equation

We would like to understand the dynamics of a directed
network which evolves so as to minimise the entropy change
between different sequential epochs. To do this we cast the
evolution process into a variational setting of the Euler-
Lagrange equation, and consider the system which optimises
the functional

E(q) =

∫ t2

t1

G [t, q(t), q̇(t)] dt (4)

where t is time, q(t) is the variable of the system as a function
of time, and q̇(t) is the time derivative of q(t). Then, the Euler-
Lagrange equation is given by

∂G

∂q
[t, q(t), q̇(t)]−

d

dt

∂G

∂q̇
[t, q(t), q̇(t)] = 0 (5)

Here we consider an evolution which changes just the edge
connectivity structure of the vertices and does not change the
number of vertices in the graph. As a result, the factors 1− 1

|V |

and 1
|V |2 are constants and do not affect the solution of the

Euler-Lagrange equation.
Consider two nodes u and v forming a directed edge. The

ratio of in-degree to out-degree at node u is ru =
din

u

dout
u

and
rv =

din

v

dout
v

at node v. We use these node degree ratios to re-
write the strongly and weakly directed graph entropies.

3.2. Weakly Directed Graphs

Using the node degree ratios, the weakly directed graph
entropy becomes

Swd = 1−
1

|V |
−

1

2|V |2

⎧

⎨

⎩

∑

(u,v)∈E

ru(ru + rv)

dinu dinv

⎫

⎬

⎭

(6)

As a result, for two weakly directed graphs Gt
wd =

(Vt, Et) and Gt+1
wd = (Vt+1, Et+1), representing the structure

of a time-varying complex network at two consecutive epochs
t and t+ 1 respectively, the change of von Neumann entropy
is given by

∆Swd = S(Gt+1
wd )− S(Gt

wd) (7)

= −
1

2|V |2

∑

(u,v)∈E,E′

{

(2ru + rv)∆ru + ru∆rv
dinu dinv

−
ru(ru + rv)(d

in
u ∆in

v + dinv ∆in
u )

(dinu dinv )2

}



where ∆in
u is the change of in-degree for node u, i.e., ∆in

u =
dinu (t+1)− dinu (t); ∆in

v is similarly defined as the change of
in-degree for node v, i.e., ∆in

v = dinv (t+1)−dinv (t), and ∆ru
and ∆rv are the change of in to out degree ratio for the node
u and node v respectively.

The Euler-Lagrange equation for ru gives
∂∆Swd

∂∆ru
−

d

dt

∂∆Swd

∂∆ru
= −

2(2ru + rv)(d
in
u ∆in

v + dinv ∆in
u )

(dinu dinv )2
= 0

(8)
and similarly for rv gives
∂∆Swd

∂∆rv
−

d

dt

∂∆Swd

∂∆rv
= −

2ru(d
in
u ∆in

v + dinv ∆in
u )

(dinu dinv )2
= 0 (9)

Combining the Eq.(8) and Eq.(9), the relationship between dinu
and dinv is

∆in
u

dinu
= −

∆in
v

dinv
(10)

Thus, for the weakly directed graph, there exists a linear
correlation between ∆in

u /dinu and ∆in
v /dinv .

3.3. Strongly Directed Graphs

For a strongly directed graph, on the other hand, when re-
expressed in terms of the node degree ratios, the von Neumann
entropy in Eq.(2) becomes

Ssd = 1−
1

|V |
−

1

2|V |2

⎧

⎨

⎩

∑

(u,v)∈E

r2u
dinu dinv

⎫

⎬

⎭

(11)

For two strongly directed graphs Gt
sd = (Vt, Et) and

Gt+1
sd = (Vt+1, Et+1), the change of von Neumann entropy

is

∆Ssd = S(Gt+1
sd )− S(Gt

sd) (12)

= −
1

2|V |2

∑

(u,v)∈E,E′

dinu dinv ∆ru − ru(d
in
v ∆in

u + dinu ∆in
v )

(dinu dinv )2

where ∆in
u is the change of in-degree for node u; ∆in

v is
similarly defined as the change of in-degree for node v.

The structure of the above expression deserves further
comment. The change in entropy gauges the correlations be-
tween the in-degree and node degree changes and in-degrees
and in/out degree ratios of the nodes defining the directed
edges.

Now we again apply the Euler-Lagrange equation to the
changes of entropy for strongly directed graph. The partial
derivative of the ratio ru is

∂∆Ssd

∂ru
= −

dinu ∆in
v + dinv ∆in

u

(dinu dinv )2
(13)

And the partial time derivative to the first order ratio difference
∆ru is

∂∆Ssd

∂∆ru
=

2

dinu dinv
(14)

Then, the solution of the Euler-Lagrange equation for ru can
be computed as

∂∆Ssd

∂∆ru
−

d

dt

∂∆Ssd

∂∆ru
= −

2(dinu ∆in
v + dinv ∆in

u )

(dinu dinv )2
= 0 (15)

Similarly, applying the Euler-Lagrange equation on the in-
degree dinu , we get

∂∆Ssd

∂dinu
−

d

dt

∂∆Ssd

∂∆in
u

= (16)

ru(d
in
u ∆in

v + dinv ∆in
u ) + dinv (ru∆

in
u − 2dinu ∆ru)

(dinu )3(dinv )2
= 0

Substituting Eq.(15) into Eq.(16), the relationship between du
and ru can be obtained

∆in
u

dinu
= 2

∆ru
ru

(17)

Therefore, the Euler Lagrange dynamics leads to a lin-
ear relationship between ∆in

u

din
u

and ∆ru
ru

for strongly directed
graphs. This should be compared to the analogous relation-
ship which arises from the incremental analysis of the ratio
ru =

din

u

dout
u

,

∆ru =
∆in

u

doutu

−
dinu ∆out

u

(doutu )2
(18)

and as a result
∆ru
ru

=
∆in

u

dinu
−

∆out
u

doutu

(19)

Combining with Eq.(17) gives the growth equation

∆out
u

doutu

=
1

2

∆in
u

dinu
(20)

which is the out-degree grows at half the rate of the in-
degree. In the next section we explore empirically how well
this relationship is observed.

4. Experiments

Here, we use both synthetic and real-world network
datasets. The synthetically generated data consists of artificial
networks, generated according to a) the Erdős-Rényi random
graph model, b) the small world network model and c) the
scale-free network model. These represent the three most
widely used models of network structure. In addition, we use
networks representing daily trading patterns on the New York
Stock Exchange.

4.1. Data Sets

Synthetic Networks: We generate graphs according to
the three complex network models, namely, a) Erdős-Rényi
random graph model, b) Watts-Strogatz small-world model
[12], and c) Barabási-Albert scale-free model [11]. These
are graphs are created with a fixed number of vertices with
time-varying network parameters. For the Erdős-Rényi random
graph, the connection probability monotonically increases at
the uniform rate of 0.005 per unit time. Similarly, the link
rewiring probability in the small-world model [12] increases
uniformly between 0 to 1 as the network evolves. For the
scale-free model [11], one vertex is added to the connection
at each time step.
Real-world Networks: We test our method on data pro-

vided by the New York Stock Exchange. This dataset consists
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Figure 1. In-degree and out-degree distribution of original networks and simulated networks for three network models. The red line is for the originally observed
networks and the black line is for the results simulated from the Euler-Lagrange analysis. (Erdős-Rényi random graphs, Watts-Strogatz small-world networks,
Barabási-Albert scale-free networks.

of the daily prices of 3,799 stocks traded continuously on
the New York Stock Exchange over 6000 trading days. The
stock prices were obtained from the Yahoo! financial database
[14]. A total of 347 stock were selected from this set, for
which historical stock prices from January 1986 to February
2011 are available. In our network representation, the nodes
correspond to stock and the edges indicate that there is a
statistical similarity between the time series associated with
the stock closing prices [14].

4.2. Simulation Results

We first conduct experiments on the synthetic networks.
We generate three kinds of time-evolving network models
from Erdős-Rényi random graphs, Watts-Strogatz small-world
networks, and Barabási-Albert scale-free networks to compare
with our theoretical analysis.

We aim to determine whether the networks evolve in
a manner that is consistent with the principle of minimum
entropy change under the Euler-Lagrange equation. We thus
turn our attention to how the structure of the synthetic network
data changes with time. For the evolution of the three complex
network models, we fix the number of vertices to 200. The
random graphs evolve from an initially sparse set of edges
with a low value of the connection probability to one with a
high density of connections with giant connected components.
This transition can be observed as we increase the probability
of connection. A similar process occurs in the Watts-Strogatz
small-world model. As the rewiring probability evolves with
time, the network structure changes from a regular ring lattice
to a small-world structure with high rewiring probability,
and finally becomes an Erdős-Rényi random graph with unit

rewiring probability. For the scale-free network, the evolution
takes place via preferential attachment. The nodes with the
highest degree have the largest probability to receive new
links. This process produces several high degree nodes or hubs
in the network structure.

Fig.1 compares the in-degree and out-degree distribution
from the original time series to the simulation results from
the Euler-Lagrange equation. Our model uses the relationship
in Eq.(20) to simulate the network structure at different time
steps in the evolution of the degree distribution. The in-degree
and out-degree distributions resulting from Euler-Lagrange
dynamics at the final time step fit quite well to those predicted
from the originally observed distributions. This provides em-
pirical evidence that the Euler-Lagrange equation accurately
predicts the short-term time evolution of the different network
models.

4.3. Directed Financial Networks

Now we turn our attention to the directed graph repre-
sentation of the New York Stock Exchange data. To extract
directed graphs from the stock times series data we compute
the correlation of the closing price time series with a time lag.
We measure the correlation over 30-day windows separated
by a time and then select the lag that results in the maximum
correlation. The sign of the lag determines the directionality
of the edge. We determine the directionality of the edges using
the sign of the lag. All the resulting edges are unidirectional.
We, therefore, explore how the time evolution follows our
model for strongly directed graphs.

First, we investigate how the distribution of ru evolves
with time. Fig.2 shows the distribution at three different time



Figure 2. The cumulative distribution of parameter ru in the directed financial
networks before/during/after the Black Monday. The distribution shrinks
during the Black Monday crisis.

epochs, i.e., before, during and after Black Monday. Here,
the parameter ru reveals the relationship between in-degree
and out-degree for each vertex. As shown in Fig.2, during the
Black Monday, the cumulative distribution becomes concen-
trated over a small range of values around unity. This reflects
the fact that a substantial fraction of vertices become isolated
during the Black Monday, without out-edges. The remaining
connections exist with a balance between in-degree and out-
degree. After Black Monday, the network structure begins to
recover as the cumulative distribution widens to return to its
previous shape.

From the analysis leading to Eq.(10), there is a linear
relationship between the quantities ru

∆ru
and din

u

∆in
u

. In order
to test whether this relationship holds in practice, Fig.5 shows
scatter plots of ru

∆ru
versus din

u

∆in
u

for epochs before, during
and after the Black Monday crisis. This provides evidence
that there exists a linear relationship between the fractional
in-degree change and the degree ratio change. By fitting a
linear regression model to the sequence of scatter plots for
the time series, we explore how the slope parameters of the
regression line and the regression error evolve with time. Fig.3
shows the linear regression errors, as well as the fitted slope,
during the period around Black Monday. Here we provide
the regression error, for a) the flexible fitting of the slope
and b) the regression for a fixed value of the slope. In the
time interval around Black Monday, both the linear regression
parameter and its error changes abruptly. This is because there
are substantial structural differences in the network evolution.
During the Black Monday, many nodes become disconnected
and the connected components of vertices become small and
fragmented. Only a small number of community structures
remain highly inter-connected. During Black Monday itself,
although the slope of the regression line is zero, the scatter
about the line is relatively small.

Furthermore, the linear regression error sequence for the
entire directed financial network time series is shown in Fig.4.
The peaks in the regression error correspond closely to the
occurrence of different financial crises. This regression anal-
ysis of the directed graph data thus provides an effective and
efficient means of detecting abnormal structure or behaviour
in dynamic networks. The most striking observation is that
the largest peaks of regression error can be used to identify
financial crises. This shows that the theoretical analysis based
on minimising the change of directed entropy is sensitive to
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Figure 3. The linear regression error and standard deviation during Black
Monday (June 1987 - April 1988). The blue diamond curve is the error bar
with the flexible slope of the regression. Red circle line is the errorbar with
the fixed slope in the regression. Black star curve is the value of the slope.

significant structural changes in networks. Financial crises are
characterized by significant entropy changes, whereas outside
these critical periods it remains relatively stable.

5. Conclusion

We use a variational principle based on minimum entropy
change to develop a model of network evolution with time.
Specifically, we use the Euler-Lagrange equations to minimise
the change of von Neumann entropy with time for directed
graphs. This treatment leads to a model of how the node degree
varies with time and captures the effects of degree change
correlations introduced by the edge-structure of the network.
We conduct experiments on network time-series representing
stock trades on the NYSE. Our model is capable of predicting
how the degree distribution evolves with time, provided the
trading is not disrupted by financial crises. Moreover, it can
also be used to detect abrupt changes in network structure
associated with such crises.
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Figure 4. The linear regression error for the whole sequential financial data in NYSE (1987-2011). Critical financial events, i.e., Black Monday, Friday the 13th
mini-crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002-2003, 2007 Financial Crisis, the Bankruptcy of Lehman Brothers and
the European Debt Crisis, are associated with significant error peaks.
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Figure 5. The scatter plots of din
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