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Abstract. In a cyclic executive, a series of frames are executed in se-
quence; once the series is complete the sequence is repeated. Within each
frame, units of computation are executed, again in sequence. In imple-
menting cyclic executives upon multi-core platforms, there is advantage
in coordinating the execution of the cores so that frames are released at
the same time across all cores. For mixed criticality systems, the require-
ment for separation would additionally require that, at any time, code of
the same criticality should be executing on all cores. In this paper we de-
rive algorithms for constructing such multiprocessor cyclic executives for
systems of periodic tasks, when inter-processor migration is permitted.

1 Introduction

Recent trends in embedded computing towards the widespread use of multi-core
platforms, and the increasing tendency for applications to contain components
of different criticality, have thrown up major challenges to the developers of
reliable software-based systems. In this paper we consider these two challenges in
the context of highly safety-critical application domains where cyclic executives
remain the scheduling mechanism of choice.
Cyclic executives. A cyclic executive is a simple deterministic scheme that
consists, for a single processor, of the continuous executing of a series of frames

(or minor cycles as they are often called). Each frame consists of a sequence of
jobs that execute in the specified sequence and are required to complete by the
end of the frame. The set of frames is called the major cycle.
Multicore CPUs.On a multi-core, or multiprocessor, platform each core should
have the same frame size and the same major cycle time. The time source from
which the run-time support software will execute the jobs contained within each
frame, is synchronised so that all cores switch between minor cycles concur-
rently. Within each frame there are a series of jobs to be executed. If jobs are
constrained to execute always within the same minor cycle and always on the
same core then the run-time schedule is defined to be partitioned. Alternatively,
if jobs can migrate from one active frame to another active frame on a different
core then the schedule is defined to be global. In this paper we allow a small
number of constrained job migrations. In a previous workshop paper [5] we fo-
cused on independent jobs, in this paper we address the more practical problem



of jobs that are derived from periodic tasks. In other work [6, 7] we have shown
how fully partitioned systems can be constructed.

Mixed criticality. In mixed-criticality scheduling (MCS) theory, tasks are char-
acterized by several different WCET parameters denoting different estimates of
the true WCET value, these different estimates being made at different levels
of assurance. The scheduling objective is then to validate the correct execution
of each task at a level of assurance that is consistent with the criticality level
assigned to that task: tasks assigned greater criticality must be shown to ex-
ecute correctly when more conservative WCET estimates are assumed, while
less critical tasks need to have their correctness demonstrated only when less
conservative WCET estimates are assumed.

Related work. A cyclic executive is a particularly restricted form of static
schedule. The issue of mapping mixed criticality code to static schedules has
been addressed by Tamas-Selicean and Pop [13, 14]. An alternative approach
to implementing the move between criticality levels in a static schedule is by
switching between previously computed schedules; one per criticality level - this
approach is explored in [3, 12]. However, these schemes are only applicable to
single processor systems. The notion of separation used in this paper comes
from [9].

2 System Model

In a typical implementation, a cyclic executive (CE) is defined by two durations,
the length of the minor cycle (or frame) TF and the duration of the major cycle
TM . These values are related by (TM = k.TF ) where k is a positive integer
(usually a power of 2), denoting the number of frames in the repeating major
cycle of the CE.

The issue of how to choose TF and TM to best support a set of tasks with
given periods is beyond the scope of this paper. Rather we follow industrial
practice [4] and assume these parameters are fixed by the system definition and
that application tasks’ periods are constrained to be multiples of TF (up to the
value of TM ).

The mapping of tasks to frames implies that there is a set of jobs allocated
to each frame. All jobs within a frame must complete by the end of the frame.
However, what it means to complete will depend on the behaviour of the system
in terms of its criticality levels – as will be explained shortly.

We assume that the hardware platform consists of m identical (unit speed)
processors (or cores). Each job can execute on any core and has identical tem-
poral behaviour on all cores.

In general V criticality levels, L1 to LV , may be defined for a system with
L1 being the highest criticality; in this paper we primarily restrict ourselves to
just two criticality levels (V = 2), and use the notation L1 = hi and L2 = lo.



Run-time support

Mixed-criticality scheduling (MCS) theory has primarily concerned itself with
the sharing of CPU computing capacity in order to satisfy the computational
demand, as characterized by the worst-case execution times (WCET), of pieces
of code. However, there are typically many additional resources that are also
accessed in a shared manner upon a computing platform, and it is imperative
that these resources also be considered.

An interesting approach towards such a consideration was advocated by Gi-
annopoulou et al. [9] in the context of multicore platforms: during any given
instant in time, all the cores are only allowed to execute code of the same crit-
icality level. This approach has the advantage of ensuring that accesses to all
shared resources (memory buses, cache, etc.) during any time-instant are only
from code of the same criticality level. We refer to such a scheme of switching
between workloads of different criticality levels as synchronised switching .

We focus our attention in this paper on synchronized switching. That is,
we seek to construct cyclic executives in which each minor cycle may be con-
sidered partitioned into V criticality levels. Initially the highest criticality jobs
are executed, when they have finished the next highest criticality jobs are ex-
ecuted, and so on. This continues until finally the lowest criticality jobs are
executed. In a simple system with just two criticality levels, hi and lo, there
is a switchover time S defined within each minor frame. Before S each core is
executing hi-criticality work, after S each core is executing lo-criticality work.
To give resilient fault tolerant behaviour, if the hi-criticality work has not com-
pleted by time-instant S on any core then the lo-criticality work is postponed
(on every core), thereby giving extra time for the hi-criticality work to execute
(up to the end of the minor cycle). In this paper we will explore how to find
acceptable (safe and efficient) values for the switching times.

Implementing the criticality switches. Giannopoulou et al. [9] advocated,
if supported by the hardware platform, the use of synchronisation barriers. In
the case of dual-criticality workloads (the generalization to > 2 criticality levels
is straight-forward), each core calls the barrier upon completing its assigned
hi-criticality work. When the final core completes and calls the barrier, all the
calls are released from the barrier and each core continues with executing lo-
criticality work.

The benefit of this barrier-based scheme is that it can take advantage of time
gained by jobs executing for less than their estimated WCETs. So at the end of
the hi-criticality executions if the signal occurs before the pre-computed barrier
S, then all cores can move to lo-criticality executions early. Additionally, there
may be situations arising at run-time when a late switch to one criticality level
is compensated by time gained from under-execution within jobs of the next
criticality level. For example, the switch occurs at some time > S, but the lo-
criticality jobs end up executing for less than their lo-criticality WCET values
and hence all complete by the end of the frame.



3 Dual Criticality Jobs

In this section, we consider the scheduling of a collection of jobs within a single
frame of an m-processor platform, when there are only two criticality levels (V =
2). All the jobs are assumed to become available at the start of the frame (without
loss of generality, denoted as being at time 0), and they all have a deadline at the
end of the frame (denoted D). In keeping with prior work on the scheduling of
such dual-criticality systems, we use the notation hi and lo to denote the greater
and lesser criticality levels (i.e., L1 = hi and LV = L2 = lo). The criticality
of job ji is denoted by χi ∈ {lo,hi}; each hi-criticality job is characterized by
two WCET parameters Ci(lo) and Ci(hi) (with Ci(lo) ≤ Ci(hi)), while each
lo-criticality job ji is characterized by a single WCET parameter Ci(lo) (for
convenience such jobs are also assigned a Ci(hi) value with Ci(lo) = Ci(hi)).

Given a collection of such dual-criticality jobs to be scheduled within a frame
of duration D upon an m-processor platform, our objective is to determine the
switching point S such that only hi-criticality jobs are executed over the interval
[0, S). If all hi-criticality jobs complete by time-instant S, then lo-criticality
jobs are executed over [S,D); else, the lo-criticality jobs are abandoned and
execution of hi-criticality jobs continues over [S,D) as well. It follows that there
are three conditions that need to be satisfied:

1. If each hi-criticality job ji executes for no more than Ci(lo), then all the
hi-criticality jobs must fit into the interval [0, S).

2. All the lo-criticality jobs must fit into the interval [S,D)
3. If each hi-criticality job ji executes for no more than Ci(hi), then all the

hi-criticality jobs must fit into the interval [0, D).

In Section 3.1 below, we derive a simple and efficient algorithm for determining
S (and the corresponding schedules) such that these conditions are satisfied; in
Section 3.2, we describe an optimization to this simple method. These algorithms
assume minimal run-time support.

3.1 A simple scheme for constructing CEs

We first define two (potential) candidates for the switching point S:

Smin The earliest instant at which all hi-criticality jobs have completed if they
execute for no more than C(lo).

Smax The latest instant at which a switch must occur for the lo-criticality work
to complete by time D.

It is evident that any candidate S must satisfy the two inequalities Smin ≤ S ≤
Smax.

Let us additionally define two interval durations, which constrain the possible
values of Smin and Smax.

∆lo The duration (makespan) of the interval needed for all the lo-criticality
jobs to (begin and) complete execution.



∆hi The duration of the interval needed for all the hi-criticality jobs to exe-
cute the extra work they must do in hi-criticality mode — i.e., the amount
(Ci(hi)− Ci(lo)), for each ji with χi = hi.

To determine these durations, we employ the optimal scheme of McNaughton [10,
page 6]. Given a collection of n jobs with execution requirements c1, c2, . . . , cn,
McNaughton showed that the minimum makespan of a preemptive schedule for
these jobs on m unit-speed processors is given by

max

(∑n

i=1
ci

m
,

n
max
i=1

{ci}

)

(1)

The actual schedule is obtained by taking the jobs (in any order) and allocating
them to m intervals of the size of the makespan, each representing one of the m
processors. As one interval is filled, perhaps with part of a job, the next interval
starts with the rest of this job. At most (m− 1) jobs are split across intervals in
this manner. During run-time a job that was split across two intervals will run
at the beginning of the time-interval upon one processor, and towards the end
of the time-interval on the other processor.

A direct application of McNaughton’s result yields the conclusion that the
minimum makespan for a global preemptive schedule for the jobs in lo-criticality
mode is given by

∆lo def

= max

(

∑

χi=lo
Ci(lo)

m
, max
χi=lo

{

Ci(lo)
}

)

(2)

We therefore set
Smax def

= D −∆lo (3)

Similarly, a direct application of the makespan result allows the minimum inter-
val for the hi-criticality work (in lo-criticality mode) to be computed:

Smin def

= max

(

∑

χi=hi
Ci(lo)

m
, max
χi=hi

{

Ci(lo)
}

)

(4)

Clearly for the whole system to be schedulable, it is necessary that Smin ≤
Smax which is equivalent to requiring that

Smin ≤ D −∆lo

⇔ Smin +∆lo ≤ D (5)

We now consider the final constraint — the scheduling of hi-criticality jobs
executing in hi-criticality mode. It has been shown [2, Example 1] that this is not
necessarily ensured by simply computing the makespan (using McNaughton’s
method, as above) with the Ci(hi) values, and validating that the resulting
makespan is ≤ D. We instead determine the minimal makespan for all the hi-
criticality jobs, subject to each such job having received an amount of execu-
tion equal to its lo-criticality WCET by time-instant Smin. To determine this



makespan, we apply McNaughton’s scheme to the work that is left to do after
time-instant Smin (i.e. Ci(hi) − Ci(lo) for each job ji with χi = hi). Letting
Ci(ex) denote the “excess” computational requirement of job ji in hi-criticality
mode over lo-criticality mode:

Ci(ex)
def

=
(

Ci(hi)− Ci(lo)
)

,

we have

∆hi def

= max

(

∑

χi=hi
Ci(ex)

m
, max
χi=hi

{

Ci(ex)
}

)

(6)

It is evident that Smin + ∆hi ≤ D is sufficient for schedulability; earlier
(Expression 5) we had shown that Smin + ∆lo should also be ≤ D. Putting
these pieces together, we may summarize this method as follows. We compute
Smin, ∆lo, and ∆hi according to Expressions (4), (2), and (6) respectively, and
require that

Smin +max
(

∆lo, ∆hi
)

≤ D (7)

as a sufficient schedulability condition. If this condition is satisfied, S ← Smin

(i.e., we declare Smin to be the switch-point we had set out to compute).

3.2 An improvement

Let us now suppose that Condition 7 is violated, and Smin +max
(

∆lo, ∆hi
)

>

D. Since
(

Smin + ∆lo ≤ D
)

is a necessary condition for schedulability (see
Inequality 5), it must be the case that

Smin +∆hi > D.

Now if
(
∑

χi=hi
Ci(hi) ≥ mD

)

, there is nothing to be done. Otherwise, there
must be some unused processor capacity in the McNaughton schedule con-
structed according to Expression 4 for the interval [0, S), and/or in the Mc-
Naughton schedule constructed according to Expression 6 for the interval after
time-instant S. Let us consider the situation where the schedule has some unused
processor capacity over the interval [0, S) (recall that S ← Smin in the method
of Section 3.1). An inspection of Expression (4) reveals that this happens if

∑

χi=hi
Ci(lo)

m
< max

χi=hi

{

Ci(lo)
}

Our idea, intuitively speaking, is that any such unused capacity prior to time-
instant S may as well be allocated to some hi-criticality task, for use in the
event of the system undergoing a mode-change into hi-criticality mode. (If the
system does not undergo such a mode-change, this allocated capacity may end
up remaining unused.) Doing so leaves less execution remaining to be completed
after the switch instant S in hi-criticality mode, and may thus result in a smaller
makespan in hi-criticality modes (i.e., a smaller value for ∆hi).



Such a scheme is particularly effective if the duration of the hi-criticality
schedule after S — the one of duration ∆hi — is also dominated by longer jobs,
i.e., if in Expression 6

∑

χi=hi
Ci(ex)

m
< max

χi=hi

{

Ci(ex)
}

If this be the case, then the unused capacity prior to time-instant S can be filled
so as to minimise the maximum Ci(ex) by bringing forward work to before S —
this is accomplished by increasing Ci(lo) for such a job, thereby decreasing its
Ci(ex) by the same amount. However, jobs that have (Ci(lo) = S) cannot have
work brought forward in this manner since this would result in S increasing as
well.

It is evident that this scheme is effective since:

– Any work brought forward will not change S,
– The first term in Expression (6) is not increased by bringing work forward,

and
– The second term in Expression (6) is reduced by always choosing the largest

value and decreasing it.

We note that if more than one job has the same Ci(ex) value then an arbitrary
choice is made (and has no impact on optimality).

And what if there is no unused processor capacity in the schedule over [0, S)?
In that case, the switch-point S may be increased to any value ≤ Smax (where
Smax is as defined by Expression (3)). An obvious choice for S is S ← Smax;
an iterative algorithm for achieving the smallest value of S (i.e., the earliest
possible switch-time) is as follows. Setting the switch point S to be Smin+1 will
generate m free slots. So Ci(lo) values of hi-criticality jobs can be increased by
this amount (and the corresponding C(ex) values decreased). If this will reduce
the size of ∆hi by more than one then an overall decrease in S +∆hi will have
been achieved. This cycle is repeated (i.e. adding 1 to S) until either no further
gain is made or S takes the value of Smax. At each step of the cycle no C(lo)
value should increase beyond the current value of S.

Example 1 We apply this improved scheme to the scheduling of the mixed-
criticality instance of Table 1 upon 3 unit-speed processors with a frame length
of 8 (D = 8).

We can immediately use the equations above to compute: ∆lo = 3 (and
hence Smax = 5) and Smin = 4. So the first step to schedulability is satisfied (i.e.
Smin ≤ Smax). if we ignore mixed criticality issues then the minimum makespan
for the hi-criticality jobs (ignoring lo-criticality work) is 7. So a completely
separated scheme would require a frame size of 10 (7 + 3).

If we initially focus on Smin then we note that there are no free slots, so
equation(6) gives a makespan in hi-criticality mode (∆hi) of 5. So the use of this
value for S (i.e. 4) gives a required frame size of 9 (4+5); since the frame-size is
8, the instance would be deemed unschedulable with S ← 4.



χi Ci(lo) Ci(hi) Ci(hi)− Ci(lo)

j1 LO 3 - -
j2 LO 2 - -
j3 LO 2 - -
j4 HI 2 7 5
j5 HI 3 7 4
j6 HI 3 3 0
j7 HI 4 4 0

Table 1. An example dual-criticality job instance

However, if we set S ← (Smin+1) which equals Smax = 5 then the total work
available on three processors by time 5 is 15. The work required using C(lo)
values for hi-criticality work is 12. Hence 3 units of work can be added to these
C(lo) values. If we make C4(lo) = 4 and C5(lo) = 4 then maximum Ci(ex)
becomes equal to 3. Hence ∆hi = 3 and Smax +∆hi = 8. Therefore the job set
fits into the frame size of 8, with a switch time of 5. ⊓⊔

Rather than iterating through potential candidate values for S in the manner
described above, we can construct a single linear program (LP) for determining
a suitable value for S – see Figure 1. In this linear program

– δi denotes the amount of execution that is “moved” from Ci(ex) to Ci(lo);
the first two constraints of the LP restrict this amount to (i) be positive and
(ii) not exceed the value of Ci(ex).

– The next two constraints are an LP representation of the makespan result-
ing from applying McNaughton’s rule to the lo-criticality execution require-
ments of the hi-criticality jobs.

– The fifth constraint represents the requirement that the synchronization bar-
rier should not be moved beyond Smax (since doing so could result in lo-
criticality jobs failing to complete even in lo-criticality behaviors).

– The final two constraints are an LP representation of the makespan resulting
from applying McNaughton’s rule to the excess (i.e., hi-criticality minus lo-
criticality) execution requirements of the hi-criticality jobs.

Since a linear program can be solved in time polynomial in its representation,
this LP-based approach allows us to determine, in polynomial time, whether an
instance can be scheduled using our improved approach. (The iterative approach
could require time proportional to Smax − Smin; in pathological cases, it could
thus have a run-time that is pseudo-polynomial in the representation of the
instance to be scheduled.)

4 Periodic Task Systems

We now consider instances in which the workload is specified as periodic tasks
rather than as individual jobs. In this section, we again focus upon dual-criticality
systems.



Minimize (S + S′) subject to

(1). δi ≥ 0 for each i : χi = hi

(2). δi ≤ Ci(ex) for each i : χi = hi

(3). S ≥ Ci(lo) + δi for each i : χi = hi

(4). S ≥

(

∑

i:χi=hi

(Ci(lo) + δi)
)

/m

(5). S ≤ Smax

(6). S′

≥ Ci(ex)− δi for each i : χi = hi

(7). S′

≥

(

∑

i:χi=hi

(Ci(ex)− δi)
)

/m

Fig. 1. A linear program for determining the switching point S

Let us assume that there are k minor cycles in the major cycle of the cyclic
executive we seek to construct, with k being an integer power of 2. As before,
we assume that we have m parallel cores. Application tasks are assumed to have
harmonic periods that are k or 2k or 4k etc. times the size of the minor frame (e.g.
∈ {25ms, 50ms, 100ms, 200ms, 400ms, . . .}). For the purposes of illustration in
the following discussions we will assume that there are 8 minor cycles to the
major cycle (i.e., k = 8).

We now describe how we construct cyclic executives for such dual-criticality
periodic task systems. For each of the k sets of frames we seek to compute a
switch point S1, S2, . . . , Sk; we do not require these switch points to be the same
in each minor cycle.

First the tasks with period equal to the minor cycle must be allocated to all
the minor cycles. These can be dealt with by the job-based procedures described
in Section 3.

To add tasks with longer periods a number of approaches are possible. The
simplest, and the one that is most appropriate if computation times for these
tasks are relatively small (and hence compatible with the jobs already allocated),
is to allocate each job of these tasks to exactly one minor cycle. So, for example,
a task with period equal to twice the minor cycle duration will be allocated
exactly once each in cycles {1, 2}, {3, 4}, {5, 6}, and {7, 8}. And a task with
period four times the minor cycle duration will be allocated exactly once each
in cycles {1, 2, 3, 4} and {5, 6, 7, 8}. Finally tasks with period equal to the major
cycle can be allocated to any one of the minor cycles. To manage this allocation,
common forms of heuristics may be applied. First-Fit or Worst-Fit for example,
with the tasks been allocated largest C(lo) first. As tasks are added to each
cycle the analyses of Section 3 above for the set of frames that make up that
cycle are applied. Different switch points for each cycle will emerge, but if the
full task set can be accommodated then allocation is complete and the system
is schedulable by construction.



This process of allocating jobs to single cycles can fail if tasks with larger
periods have larger computation times (C(lo) or C(hi)) that are not easily
accommodated within a single frame. To accommodate such tasks, jobs need to
be split between minor frames. (This is a common approach with single processor
cyclic executives and is considered to be one of the disadvantages of the cyclic
executive approach.) Two forms of splitting are possible, explicit or implicit.
With explicit splitting the code of the task is actually partitioned (statically).
So for a task with period equal to twice the minor cycle the code will be ‘cut’ in
half (approximately). Each portion can then be analysed to determine its C(lo)
and C(hi) values. The first half will be allocated to cycles 1, 3, 5 and 7; and
the second half will be allocated to cycles 2, 4, 6 and 8. These jobs are added to
the existing jobs corresponding to tasks with periods equal to the duration of a
single frame, and the earlier analysis of Section 3 again applied.

Although this explicit splitting is optimal from a scheduling point of view
(if the code can be partitioned exactly into two parts with the same C(lo)
and C(hi) values), this approach suffers from a number of significant practical
problems:

– The lack of available tool support for splitting code into exact portions that
can give rise to identical estimates of worst-case execution time.

– Code structures may not be amenable to such partitioning.
– Even if approximate splitting is possible, modifications to the code due to

upgrades or bug fixes, will require re-splitting, and re-testing. This is an
expensive process.

For these reasons we reject explicit splitting and employ an implicit scheme
similar to that used earlier for job splitting. But for a task with two estimates
of worst-case execution time there is the issue of when to trigger the migration.
(Note the migration here is to the next cycle; it may or may not involve a move
to a different core.)

Reducing a task that runs every 50ms, say, to one that runs every 25ms is very
similar to the use of period transformation [11] to reduce a task’s period (and
hence raise its priority in a rate-monotonic system). The application of period
transformation to mixed criticality systems has been discussed in a number of
papers [1, 8, 15]. Here we make use of the main techniques which is to divide
C(hi) by the number of parts the task is split into. So if the 50ms task has
WCET estimates of 8 and 12 and is split into two parts, its computation time
in the first cycle will be all at the “normal” or lo-criticality level (so it has
C(lo) = 6 and C(ex) = 0). In the second cycle it could again have C(lo) = 6
and C(ex) = 0, but this would be conservative in that the task is being allocated
6 + 6 = 12 units even at the lo-criticality level – it would be more efficient to
have C(lo) = 2 and C(ex) = 4. Moreover, if the lo-criticality load on the first
cycle is too high it could reduce its requirement in that cycle to be C(lo) = 5,
and then in the second cycle we have C(lo) = 3 and C(ex) = 4. Alternatively
if the second phase of the cycle is overloaded in the second cycle (i.e. C(ex) = 4
is too high) then the first cycle could have C(lo) = 8 and C(ex) = 2, and the



second cycle C(lo) = 0 and C(ex) = 2. This potential movement of work from
one cycle to another is exploited in the following scheme.

We need additional notation to denote per-cycle parameterisation. We will
add ‘[x]’ to the previously defined terms to denote the xth cycle. A task, τi, with
a period equal to k minor cycles is split into k jobs, τi[1] . . . τi[k]. Its computation

times will be denoted by Ci[x](lo), Ci[x](hi) and, by construction, Ci[x](ex)
def

=
Ci[x](hi)− Ci[x](lo).

We now describe the allocation process for dual critically systems. The fol-
lowing steps will be undertaken:

1. Allocate all single cycle tasks (i.e tasks with period equal to the minor cycle)
using the job-based analysis developed earlier (discussed in Section 3 above).

2. Allocate all remaining HI-crit tasks using the period transformation scheme
(as detailed below).

3. If the above step is not successful, move work to later cycles until all HI-crit
work is scheduled (or declare task set is unschedulable)

4. Allocate all remaining LO-crit tasks.

We will now describe these steps in more detail.
Initially the HI-crit tasks are allocated to the cycles with the computation

time of each part of the task τi being defined by:

Ci[x](lo) = min

(

Ci(hi)

p
, Ci(lo)−

(x− 1)Ci(hi)

p

)

≥0

(8)

(here, the subscript ≥ 0 denotes that this value is capped to be no smaller than
zero), and

Ci[x](ex) = Ci(hi)/p− Ci[x](lo) (9)

where p being the number of minor cycles that equal the period of the task and
x goes from 1 to p.

To illustrate this, a task with Ci(lo) = 8 and Ci(hi) = 12 split over 4 cycles
would have pairs of values for Ci[x](lo) and Ci[x](ex) of: (3, 0), (3, 0), (2, 1)
and (0, 3).

As all minor cycles are the same following step one, we initially focus on the
first cycle. The hi-criticality load from single cycle tasks is added to the extra
load from the set of Ci[1](lo) and Ci[1](ex) values. The analysis of the job-based
scheme is applied to give values of S[1]min, ∆[1]hi and ∆[1]lo. If the size of the
minor cycle is D, S[1]min +∆[1]hi ≤ D and S[1]min +∆[1]lo ≤ D then the first
cycle is schedulable and the scheme moves on to the second cycle.

However if the first cycle is not schedulable then the next step is to fill the
makespan (if there are ‘gaps’) by moving work from C(ex) to C(lo). Again
this follows the job-based approach. If this is not sufficient then work needs to
be moved from some task’s (or tasks’) Ci[1](lo) to Ci[2](lo) so as to reduce
S[1]min.

Once Ci[1](lo) and Ci[2](lo) have changed then the relevant Ci[1](ex) and
Ci[2](ex) values are recomputed.



To make the first cycle schedulable any task that is active in the following
cycle may be chosen as the one to have its work moved from the first to the
second cycle. The task or tasks to choose are those that will not have their
criticality behaviour in the first cycle changed. This constraint is best illustrated
by an example. If a task with C(lo) = 5 and C(hi) = 10 is split into two then
all of the following schemes are valid for the two computation times in the two
cycles: (5,0) and (0,5), or (5,1) and (0,4) etc. until (5,5) and (0,0). But if this
task moves just a single unit of its lo-criticality execution requirement into the
second cycle then the only valid scheme is (4,0) and (1,5).

Once the first cycle is made schedulable the process is repeated on the second
and subsequent cycles. If in any cycle there is no available work to be moved
forward (to another cycle), then the technique of moving work within a cycle
from after the switching point to before may be attempted. If none of these
schemes work then the task set is not schedulable.

Intuitively, work in being moved forward until C(lo) is satisfied. Then a
task’s work can be done as either C(lo) or C(ex) which gives more flexibility.
So if with the example used earlier, with Ci[x](lo) and Ci[x](ex) values of: (3,
0), (3, 0), (2, 1) and (0, 3), only two ticks could be accommodated in any S[x]min

then work would be pushed through until the following is obtained: (2, 0), (2,
0), (2, 0) and (2, 4).

If the hi-criticality tasks can be allocated then the next step is to allocate
the lo-criticality tasks. From the hi-criticality stage k switching times have been
computed S[1] . . . S[k]. The available space is therefore D − S[1] + D − S[2] +
· · ·+D−S[k]. lo-criticality tasks are spread evenly across the cycles. Those that
execute every cycle must go into every cycle, those that execute every two need
to be spread across the first two, then third and fourth etc. This is continued
until, again, the allocation is successful or the task set is deemed unschedulable.

4.1 An example

We illustrate our technique for the following task set:

χi T Ci(lo) C(hi)
τ1 hi 10 2 3
τ2 hi 10 3 4
τ3 hi 10 2 3
τ4 hi 10 1 2
τ5 lo 10 2 2
τ6 lo 10 3 3
τ7 lo 10 1 1
τ8 hi 20 4 6
τ9 hi 20 6 8
τ10 lo 20 2 2

Here there are two criticality levels (hi and lo) and the minor cycle time is
10ms. Tasks have periods of either 10 or 20, so only two minor cycles are needed



in the system’s major cycle. The hardware platform has two cores, so each of
the two minor cycles contains two frames.

The two hi-criticality tasks with period of 20 must be split. So τ8[1] has
a computation time C8[1](lo) = 6/2 = 3; and τ9[1] has computation time
C9[1](lo) = 8/2 = 4. Adding 3 and 4 to the computation times of tasks τ1
to τ4 gives a makespan for S[1]min of (2+3+2+1+3+4)/2 = 7.5.

The value of ∆[1]HI is 2 which is acceptable, but the makespan for the lo-
criticality jobs (∆[1]lo) is 3. So S[1]max is 7 and S[1]min > S[1]max which breaks
the invariant for schedulability. We need to move work out of the first cycle so
that S[1]min has a value of 7.

Choosing τ9 we reduce its computation time in the first cycle to 3. This
means that S[1]min now has a makespan of (2+3+2+1+3+3)/2 = 7, which is
acceptable.

In the second cycle τ8 needs 1 in the lo-criticality mode and 2 more in
the hi-criticality mode (ie. C8[2](lo) = 1 and C8[2](ex) = 2). Task τ9 now
needs 3 in lo-criticality mode and 2 more in hi-criticality mode. So S[2]min now
has a makespan of (2+3+2+1+1+3)/2 = 6, and ∆[2]hi in the second cycle is
(1+1+1+1+2+2)/2 = 4. So S[2]min +∆[2]hi is 10, which is the upper bound.

Finally we add τ10. There is no room in the first cycle, but it can be added
to the second cycle. The value of ∆[2]lo for the second cycle is now 4, from
(2+3+1+2)/2, which is just acceptable as now S[2]min +∆[2]lo is again 10.

The analysis shows that the full task set is schedulable over two frames and
two cycles with switching times of 7 in the first cycle and 6 in the second. In
total 40 time units are required (2 x 2 x 10). If one ignores the benefits of mixed
criticality scheduling then the total requirement using C(hi) values is 52. This
equates to the use of three frames (that is three cores) which is one core more
than is required with criticality-aware scheduling.

5 Conclusions and Further Work

Single processor safety-critical systems are often constrained so that they can be
implemented as a series of frames in a repeating cyclic executive. In this paper
we have extended this approach to incorporate multi-core platforms and mixed
criticality applications. We allow a minimum number of tasks to be split across
frames and cycles, and propose a practical means of constructing the necessary
cyclic schedule.

Under further work we will extend the use of Linear Programming from
job-based to task-based scheduling. We will also look to demonstrate how the
proposed model can be implemented in Ada. The Ada programming language
provides support for various forms of scheduling on single and multiprocessor
platforms. This includes direct support for a barrier synchronisation protocol,
and controlled task migration. These features, together with execution-time mon-
itoring and timing events, should enable the full model to be represented in Ada.
Once an appropriate multicore platform with full Annex D Ada support is avail-
able a demonstrator will be implemented.
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