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SLEEPING BEAUTY: EXPLORING A NEGLECTED SOLUTION 
 

Laureano Luna 
 

ABSTRACT  
The strong law of large numbers and considerations concerning additional 
information strongly suggest that Beauty upon awakening has probability 1 3⁄  to 
be in a heads-awakening but should still believe the probability that the coin 
landed heads in the Sunday toss to be 1 2⁄ . The problem is that she is in a heads-
awakening if and only if the coin landed heads. So, how can she rationally assign 
different probabilities or credences to propositions she knows imply each other? 
This is the problem we address in this article. We suggest that ‘𝑝 whenever 𝑞 and 
vice versa’ may be consistent with 𝑝 and 𝑞 having different probabilities if one of 
them refers to a sample space containing ordinary possible worlds and the other to 
a sample space containing centred possible worlds, because such spaces may fail to 
combine into one composite probability space and, as a consequence, ‘whenever’ 
may not be well-defined; such is the main contribution of this paper. Keywords: 
Sleeping Beauty problem; strong law of large numbers; co-implication; centred 
worlds; Groisman’s relativity. 
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1. The Sleeping Beauty Game 
 
A fair coin is flipped on Sunday evening. If it comes up heads, Beauty is set to sleep 
in the laboratory from Monday 0:00 to Wednesday 0:00 (when she wakes up on 
her own at home) but woken up once on Monday. If the coin comes up tails, Beauty 
is likewise put to sleep from Monday 0:00 to her spontaneous awakening at home 
on Wednesday 0:00 but awoken twice in the laboratory: on Monday and again on 
Tuesday. But, if the coin lands tails, when Beauty is put to sleep again after her first 
awakening on Monday, she is given a drug that makes her forget her first 
awakening, so that, in any awakening in the laboratory, Beauty will never 
remember a previous one. As a consequence, the different awakenings are 
indistinguishable to her. Beauty is perfectly aware of the conditions of the game 
from, say, Sunday afternoon and, although she will always realize that she is in a 
laboratory awakening when she is in one, she will have no clue in any of them 
about how the coin landed or what day it is. 
 
The question is what degrees of belief (or credences) Beauty should assign to 
heads and tails in the Sunday coin toss when she is woken up to a particular 
awakening. Of course, Beauty’s credences should be the same in any awakening 
since the awakenings are indistinguishable to her. We need not choose one. 
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Beauty’s phrases like “the awakening I am currently in” are given a definite 
meaning by the context. 
 
There is an ongoing debate between two initial positions. So-called ‘halfers’ (see, 
for instance, Lewis [2001]) argue that Beauty should assign 1/2 to each of the 
results in whatever awakening, essentially because this is the assignment she 
should make on Sunday before she has fallen asleep and, upon awakening, she gets 
no additional information about the outcome of the Sunday coin toss. ‘Thirders’  
(see, for instance, Elga [2000]) believe that Beauty should assign 1/3 to heads and 
2/3 to tails in any awakening1.  
 
Following Groisman ([2008]), we will distinguish the event that the coin landed 
heads in the Sunday coin flip from the event that Beauty, upon awakening, is in an 
awakening resulting from a heads outcome in the coin toss (i.e. in a ‘heads-
awakening’  as opposed to a ‘tails-awakening’). In order to turn those events into 
two different outcomes of two different experiments, we will slightly modify the 
game by introducing a second experiment conducted by Beauty, as follows: each 
time Beauty is awakened in the laboratory she asks the experimenters and learns 
what awakening she is in, either the Monday heads-awakening or the Monday 
tails-awakening or the Tuesday tails-awakening. For Beauty, this behaves as a 
random experiment, since the outcome is random for her. As Beauty’s experiment 
takes place in all awakenings, the probability that Beauty is in a particular 
awakening when she performs her experiment is the same as the tendency or 
likelihood the Sleeping Beauty game has to produce that particular awakening as 
compared to other awakenings (this would not be so if Beauty, for instance, 
conducted the experiment only on Monday or only on Tuesday or with some other 
bias). According to the laws of large numbers, the relative tendency of the Sleeping 
Beauty game to produce a particular awakening should become apparent, upon 
iteration of the Sleeping Beauty game, in that awakening’s relative frequency. 
 

2. Groisman’s and Peter Lewis’ Approaches 
 
Groisman ([2008]) published a paper claiming to have solved the Sleeping Beauty 
conundrum. In a nutshell, Groisman’s proposal was this: the sentence ‘the coin 
lands heads’ expresses different propositions or denotes different events in the 
two different experimental setups involved in the Sleeping Beauty game: in the 
coin toss setup, it denotes the simple heads landing of the coin; in the wakening 
setup, it means ‘my (i.e. Beauty’s) current awakening is a heads-awakening (i.e. 
one resulting from a heads outcome in the coin toss)’. Groisman writes: 
 

However, the phrase ‘the coin landed Heads’ alone does not define that event 
completely. As I will discuss in detail in the course of this article, an 
experimental setup is necessary to describe an event. (Groisman [2008], p. 
411) 

 

                                                           
1See lists of thirders and halfers in (Groisman [2008]; Ross [2010]; Pust [2012]). 
As both positions seem to entail counter-intuitive propositions, more nuanced 
stances, like Bostrom’s hybrid model (see Bostrom [2007]), have been proposed. 
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According to Groisman the problem arises only because those two different 
propositions are believed to be the same. The claim that an event, as an object of 
probabilistic reasoning, is defined only by reference to a particular experimental 
setup is what we call ‘Groisman’s relativity’. Determining the probability Beauty 
should assign to heads in the Sunday coin flip and determining the probability she 
should assign to the event that she is in a heads-awakening seem to be one and the 
same problem for Beauty to solve (namely, assigning probability to the proposition 
‘the coin lands heads’) but Groisman argues that they are two different problems. 
 
Groisman believes that making the opportune distinction solves the apparent 
contradiction: Beauty should ascribe the proposition expressed by ‘the coin lands 
heads’ in the coin toss setup probability 1 2⁄  while she should ascribe the 
proposition expressed by the same sentence in the wakening setup probability 
1 3⁄ . The contradiction arises only from the confusion of the two meanings of the 
sentence. Groisman claims he has dispelled rather than solved the problem 
because the distinction he proposes purportedly dispels the appearance of a 
problem.  
 
Groisman is surely right that there are two different experiments and two different 
calculations. For Beauty, computing the probability of heads in order to determine 
her credence in heads on Sunday and computing the probability that she is in a 
heads-awakening upon awakening amounts to solving two different problems. As 
we will see the strong law of large numbers gives two different solutions. If, 
however, Groisman’s proposal did not put an end to the debate around the 
Sleeping Beauty problem, this was most probably a consequence of the fact that 
the two different propositions expressed, according to Groisman, by ‘the coin lands 
heads’ imply each other in an obvious way and it is hard to see how one could 
rationally assign different probabilities or credences to propositions that are 
known to imply each other. Indeed, most people feel inclined to endorse the 
following principle: 
 
(PE) Any rational agent who knows that p if and only if q has equal credence in p and q. 
 
Groisman mentions the relation between the propositions in question but does not 
really address it2.  He writes: 
 

At first sight, these two questions might seem similar, especially because there 
is a one-to-one logical cause-effect correspondence between them. 
Nevertheless they are not. (Groisman [2008], p. 411) 

 
This ‘one-to-one logical cause-effect correspondence’ amounts at least to an ‘if and 
only if’, for, given the experimental setup, the coin landed heads on Sunday if and 
only if Beauty, upon awakening, is in a heads-awakening. Elga ([2000]) makes this 
relation explicit while he resolutely endorses (𝑃𝐸): 

 

                                                           
2In fact, Groisman reasons in accordance with (𝑃𝐸) in later writings (see e.g. 
Groisman, Hallakoun, Vaidman [2013]). 
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Upon first awakening, you are certain of the following: you are in predicament 
H1 if and only if the outcome of the coin toss is Heads. Therefore, calculating 
P(H1) is sufficient to solve the Sleeping Beauty problem. (Elga [200], p. 145) 

 
𝐻1 is the ‘predicament’ that it is Monday and the coin has landed heads. Note how 
Elga assumes that two propositions known to be connected through a 
biconditional must be accorded the same probability or credence.  
 
Peter Lewis ([2010]) does address explicitly the problem of unequal probabilities 
of materially equivalent propositions. He contends, as we do, that such 
propositions need not always receive same credence from a rational agent and 
points at the impossibility to merge centred and non-centred worlds into one class 
of worlds, against that proposed by David Lewis ([1979]). Following Peter Lewis’ 
footsteps, we want to address here the problem of how two propositions that 
imply each other could be rationally assigned different credences by an agent 
aware of the co-implication. Does Groisman’s relativity render such a thing 
possible when both centred and non-centred worlds are involved, as suggested by 
Peter Lewis? We will argue that, in fact, it does so at least in some cases, where 
combining these different classes of worlds into one and the same probability 
space brings about inconsistency. 
 

3. Discussing Beauty’s Credences 
 
In this section, we argue for the claim that Beauty’s correct credence in the event 
that she is in a heads-awakening is 1 3⁄  but that her correct credence when she is 
in an awakening that the coin landed heads on Sunday is 1 2⁄ .  
 
The fact that Beauty’s experiment has no bias combines with a probability theorem 
called the strong law of large numbers (Kolmogorov [1930]) to set the probability 
that Beauty is in a heads-awakening to 1 3⁄ . However, the very same theorem sets 
the probability that the coin landed heads to 1 2⁄ . Let 𝑂 be the set of actual 
outcomes {𝑜1, 𝑜2, … , 𝑜𝑛} in 𝑛 iterations of an experiment, where the 𝑜𝑖  are members 
of the experiment’s sample space 𝛺, let 𝐹: 𝛺 → ℝ be a function from the sample 
space to the real numbers3, and let 𝑃: 𝛺 → ℝ be a probability distribution; the 
theorem states that 𝐹’s average value over the iterations of the experiment tends 
to its expected value 𝜇 =  ∑ 𝐹(𝑜𝑖)𝑃(𝑜𝑖)𝑖  with probability 1 as the number 𝑛 of 
iterations tends to infinity4: 
 

𝑃 ( lim
𝑛→∞

∑ 𝐹(𝑜𝑖)𝑖
𝑛⁄ = 𝜇) = 1. 

                                                           
3𝐹: 𝛺 → ℝ is a random variable, i.e. a function replacing qualitative outcomes by 
numerical values so that we can do math with them. Instead of independent and 
identically distributed random variables, we use the more intuitive notions of 
iteration of the same experiment.  
4It is a condition for the theorem to apply that the iterations of the experiment can 
be represented by independent and identically distributed random variables with 
finite expectation 𝜇, all of which is in order here: making 𝐹 take 𝐻𝑒𝑎𝑑𝑠 to 1 and 
𝑇𝑎𝑖𝑙𝑠 to 0, we deal  with a Bernoulli random variable with 𝜇 = 1 2⁄ . 
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The following is a consequence of the strong law of large numbers: 
 
Theorem 1. The probability of an outcome in an experiment equals the number its 
relative frequency tends to with probability 1 as the number of iterations of the 
experiment tends to infinity. 
 
The appendix derives a suitable form of theorem 1 from the strong law of large 
numbers.  
 
Theorem 1 applies to our case in that Beauty when awakened would tend to be in a 
heads-awakening 1 3⁄  of the time and this together with theorem 1 sets the 
probability that upon awakening Beauty is in a heads-awakening to 1 3⁄ . As Beauty 
can perform this calculation and know theorem 1, her credence in the event that 
she is in a heads-awakening should be 1 3⁄ . But, of course, this is only possible if 
(𝑃𝐸) fails. 
 
There is at least one author who, ignoring theorem 1, rejects the strong law of 
large numbers (hence implicitly also the usual axioms of probability; see 
Kolmogorov [1933]) as a tool to compute Beauty’s rational credences. Bostrom 
([2007], pp. 72-5) acknowledges that if the Sleeping Beauty experiment were 
repeated, the relative frequency of heads-awakenings would be 1/3 in the limit 
while he maintains a halfer position, arguing we must reason differently for merely 
possible awakenings than for actual awakenings. This stance is at odds either with 
theorem 1 or with Lewis’ Principal Principle, which states that credences should 
agree with probability assignments. Bostrom finds a difference between reasoning 
from the number of heads-awakenings there would be if we repeated the Sleeping 
Beauty experiment a large number of times, and reasoning from the number of 
heads-awakenings there will be as we repeat the Sleeping Beauty experiment a 
large number of times. But dealing with possible counterfactuals and not only with 
factual cases is an earmark of probability, as opposed to statistics, not so easy to 
dismiss5.  
 
Theorem 1, however, does not imply that Beauty, upon awakening, should 
substitute 1 3⁄  for her initial 1 2⁄ . The first argument6 for the thirder position we 
wish to examine is the faulty application of theorem 1 that assumes that if the 
relative frequency of heads-awakenings tends to 1 3⁄ , then the probability of 
heads, as computed by Beauty upon awakening, should be 1 3⁄ . The implication 
would only hold if (𝑃𝐸) were always true: if Beauty were rationally compelled to 
have the same credence in heads she has in being in a heads-awakening, she would 

                                                           
5Bostrom ([2007], p. 75) seems to apply to the strong law of large numbers the 
criterion that makes him prefer the Self-Sampling Assumption to the Self-
Indicating Assumption, namely, that one must think of oneself as a random 
individual from among all actual (not all merely possible ones) of the suitable 
class. 
6We address Elga’s elegant argument for the thirder position in section 6: we will 
need there some notions not yet introduced. 
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be rationally compelled by theorem 1 to have credence 1 3⁄  (as well as 1 2⁄  on 
another count) in heads. It is remarkable that (𝑃𝐸) together with theorem 1 
induces inconsistent beliefs. 
 
The faulty argument is sometimes based on the record of Beauty’s correct answers 
or wins in a repeated game. This form of the argument ignores the difference 
between the misleading claim:  
 
‘Beauty, if she always answers “heads”, will correctly answer the question “what 
side did the coin come up?” 1/3 of the time’, 
 
and the true claim: 
 
‘Beauty, if she always answers “the heads-awakening”, will correctly answer the 
question “which awakening are you in?” 1/3 of the time’. 
 
The former claim is misleading because if the coin falls tails, Beauty would twice 
give the same answer to exactly the same question (on the Monday and on the 
Tuesday awakenings), and two identical answers to the same question should not 
count as two different cases of successful or failed guess.  
 
It is the word ‘time’ that is tricky in this context: when Beauty is guessing the 
outcome of the coin toss, the relevant number of times is the number of tosses. In 
contrast, the relevant number of times, if Beauty is guessing the kind of awakening 
she is in, is the number of awakenings. Certainly, Beauty, if she said in each 
awakening ‘the coin landed heads’, would be uttering a truth on only about 1 3⁄  of 
all the occasions (i.e. awakenings) but in about 1 2⁄  of all the coin tosses. Note that, 
in contrast, there is no such deceptive repetition of the same question when Beauty 
is asked about her current awakening: then Beauty is never asked twice the same 
question because the question refers to a different awakening each time. 
 
A related counter-argument, also based on the fact that on tails Beauty confronts 
twice the same result versus just once if the coin lands heads, was put forward by 
Bradley and Leitgeb ([2006]) to argue, against (Hitchcock [2004]) and others, that 
Beauty can rationally have credence 1 2⁄  in heads although she should bet as if her 
credence in heads were 1 3⁄ : the authors contend that betting odds and credences 
come apart in the Sleeping Beauty case. Peter Lewis ([2010]) also tackles this point 
and he too denies that Beauty’s betting odds should reflect her credence. 
 
Actually, theorem 1 implies that Beauty is rationally compelled to compute 
probability 1 2⁄  for heads because, and this is crucial, in whatever awakening she is 
in, the coin toss leading to that awakening is for her any Sleeping Beauty game coin 
toss. Beauty’s being in an awakening does not make the coin toss that put her in it 
special. If the toss of a fair coin is no special one, then the probability of heads must 
be 1 2⁄ . As Beauty’s experiencing an awakening is a consequence of any Sleeping 
Beauty coin toss, contributions to the Sleeping Beauty problem that attempt a 
defence of the thirder position by explaining how Beauty upon awakening gains 
information seem doomed, for it is clear that Beauty, upon awakening, learns 
nothing that would turn the Sunday coin toss into a special one. 
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To render this more evident and explain what we mean by ‘a special coin toss’, let 
us compare Beauty’s case with the following at first sight similar setup.  
 
The two-room experiment. Two independent experiments are conducted. A fair 
coin is flipped in room 1.  In room 2, there is a box containing three cards; one card 
bears only the word ‘heads’ on it and two bear only the word ‘tails’; we choose 
randomly one card in room 2. Before we see the word on our card, we are 
informed that the outcome of the coin flip and the word on our card match. What 
probability should we assign at that time to heads in the coin toss in room 1?   □ 
 
We construct the sample space (see table 1, where we label the heads-card 𝐻1, and 
the two tails-cards 𝑇1 and 𝑇2): 

TABLE 1 
 

Coin \ Card 𝐻1 𝑇1 𝑇2 
𝐻 𝐻 & 𝐻1 𝐻 & 𝑇1 𝐻 & 𝑇2 
𝑇 𝑇 & 𝐻1 𝑇 & 𝑇1 𝑇 & 𝑇2 

 
and then apply Laplace’s rule.  
 
Indeed, all possible outcomes of the double experiment are equiprobable because 
heads and tails are equiprobable, any card is equally likely to be chosen, and the 
experiments are independent of one another. So, the experiment yields 6 initially 
possible and equiprobable cases, of which 3 (the ones not crossed out) are 
consistent with the information that card and coin match; and of these, 1 
(underlined) is favorable to the coin having landed heads. So we must assign 
probability 1 3⁄  to heads in the coin toss. In view of the coincidence, if we assigned 
probability 1 2⁄  to heads in room 1 and probability 1/3  to a heads-card in room 2, 
we would be assigning two different probabilities to one and the same outcome, 
namely, 𝐻 & 𝐻1. 
 
It would seem that the case is essentially the same as Beauty’s. Beauty in an 
awakening can be thought of as doing something very similar to what we have 
done in room 2: randomly choosing one item (an awakening) out of a set of three 
(possible awakenings). From an epistemological point of view, Beauty chooses 
randomly by simply saying ‘the awakening I am presently in’. In the two-room 
experiment, when we learn that our choice matches the outcome of a coin toss, we 
gain information about that outcome because we know the match is more probable 
if the coin fell tails since we are more likely to draw a tails-card; this makes tails 
more likely7. It would seem that our learning of the coincidence of coin and card is 
equivalent to Beauty’s knowing that the awakening she has chosen occurs as a 
consequence of the Sunday coin toss so that the items coin-toss-outcome and type-
of-awakening must match. Like in the two-room experiment, this would seem to 
bear information about the outcome of the Sunday toss, for her awakening is a 
heads-awakening if and only if the coin landed heads (just as our card is a heads-

                                                           
7Conditional probability implies this: 𝑃(𝑥|𝑦) = 𝑛𝑃(𝑥) → 𝑃(𝑦|𝑥) = 𝑛𝑃(𝑦). 
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card if and only if the coin landed heads), and the probability for her to be in a 
heads-awakening is just 1 3⁄ , not 1 2⁄ . 
 
There is, however, a crucial difference between the Sleeping Beauty and the two-
room experiment. In the two-room experiment, the coin toss in room 1 is no longer 
any coin toss for us, once we know of the match, but a special one: one that has 
happened to match the word in our card, an event that is more likely if the coin 
landed tails. In contrast, nothing in Beauty’s awakening makes the Sunday coin 
toss stop being any Sleeping Beauty coin toss: here the match between the side of 
the coin and the type of the awakening was guaranteed from the very beginning. As 
if-and-only-if has always had probability 1, it conveys no information and is 
therefore unable to alter the probability of heads, so as to make it possible to 
combine the outcome heads in the coin toss and the outcome heads-awakening in 
the choice of an awakening into one and the same possible outcome endowed with 
just one probability assignment (as 𝐻 & 𝐻1 in the two-room experiment).  
 
However, as the present approach requires the failure of (𝑃𝐸),  let us address this 
topic. 
 

4.  (𝑷𝑬)’s Failure 
 
We interpret the set of possible outcomes of an experiment (the sample space 𝛺) 
as a set of possible worlds: 
 

𝛺 =  {𝐴1, 𝐴2, , … 𝐴𝑚}, 
 
not in the sense of metaphysical possibility but in the sense of Aristotelian potency: 
these worlds (‘A-worlds’ henceforth) are possible futures of the actual world. We 
can restrict ourselves to finite sample spaces. So, we can think of a random 
experiment with sample space 𝛺 as a point of ramification in the world’s history: 
after which, the world branches out into 𝑚 possible futures. For instance, when 
dealing with a fair coin toss, the sample space is: 
 

𝛺𝐶 =  {𝐴𝐻, 𝐴𝑇}, 
 
where the subscripts correspond to the outcomes of the toss. The sample space of 
Beauty’s experiment is: 
 

𝛺𝐴 =  {𝐴𝕄𝐻 , 𝐴𝕄𝑇 , 𝐴𝕋𝑇}, 
 

where the first subscript refers to the day of the week and the second to the 
outcome of the coin toss. That all members of 𝛺𝐴 are equiprobable follows from 
theorem 1 and the experimental setup: the relative frequency of each of the three 
members would tend to 1 3⁄  upon iteration of the experiment. We define now 
property 𝒜 for A-worlds: 
 
Definition 1.  𝒜(𝐴) =𝐷𝐸𝐹 𝐴 becomes actual. 
 
We define a satisfaction relation ⊩ between A-worlds and propositions: 
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Definition 2.  𝐴 ⊩ 𝑝 =𝐷𝐸𝐹  𝒜(𝐴) → 𝑝. 
 
For any proposition 𝑝, let 𝑃(𝑝) be the probability of 𝑝 and for any set 𝑥, let |𝑥| be 
the cardinality of 𝑥. From the assumption that our probability distribution is 
uniform together with definition 2, we obtain: 
 
Laplace’s Rule. 

𝑃(𝑝) =
|{𝑛 ; 𝐴𝑛 ⊩ 𝑝}|

|Ω|
 

 
We define a trans-experiment equivalence relation 𝐸 ⊆ 𝛺 × 𝛺′, where 𝛺 ∩ 𝛺′ = ∅: 
 
Definition 3.  𝐸(𝐴𝑖 , 𝐴𝑗) =𝐷𝐸𝐹 𝒜(𝐴𝑖) ↔ 𝒜(𝐴𝑗). 

 
We wish to characterize the equivalence relation ↔𝛺𝛺′ which obtains between two 
propositions that state actualizations of two different A-worlds8 in two different 
sample spaces 𝛺, 𝛺′ if and only if those A-worlds are compelled by their 
experimental setups either to both become actual or to both fail to become actual. 
Such is the case for the proposition that the coin lands heads in the Sunday coin 
toss (which states the actualization of 𝐴𝐻  from 𝛺𝐶) and the proposition that the 
awakening Beauty is presently in is a heads-awakening, which states the 
actualization of 𝐴𝕄𝐻  from 𝛺𝐴. We can characterize relation ↔𝛺𝛺′ in terms of A-
worlds by means of theorem 2, which follows immediately from our definitions. 
 
Theorem 2.  Let 𝛺, 𝛺′ be two disjoint sample spaces; then 
 

𝑝 ↔𝛺𝛺′ 𝑞 
 

iff 
 

∀ 𝐴𝑖 ∈ 𝛺, ∀𝐴𝑗 ∈ 𝛺′ (𝐸(𝐴𝑖 , 𝐴𝑗) → (𝐴𝑖 ⊩ 𝑝 ↔  𝐴𝑗 ⊩ 𝑞)).   □ 

 
Now let 𝐻𝑒𝑎𝑑𝑠 be the proposition that the coin landed heads in the Sleeping 
Beauty Sunday toss and let 𝐻 − 𝑎𝑤𝑎𝑘𝑒𝑛𝑖𝑛𝑔 be the proposition expressed by ‘the 
awakening I am presently in is a heads-awakening’ as stated by Beauty on Monday. 
 
Theorem 3.  (𝐻𝑒𝑎𝑑𝑠 ↔𝛺𝐶𝛺𝐴

𝐻 − 𝑎𝑤𝑎𝑘𝑒𝑛𝑖𝑛𝑔) & (𝑃(𝐻𝑒𝑎𝑑𝑠) ≠ 𝑃(𝐻 − 𝑎𝑤𝑎𝑘𝑒𝑛𝑖𝑛𝑔)) 

 
Proof.  To see the first conjunct is true, consider the unique pair in 𝐸 ⊆ 𝛺𝐶 × 𝛺𝐴: 

 
𝐸(𝐴𝐻, 𝐴𝕄𝐻); 

 
and the relevant satisfaction relations between A-worlds and propositions: 

                                                           
8Some propositions may state compound actualizations: ‘I have just been woken to 
a tails-awakening’ would state 𝒜(𝐴𝑀𝑇) ∨ 𝒜(𝐴𝑇𝑇). This requires introducing the 
usual 𝜎-algebra of events in probability spaces and we will do so occasionally. 
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𝐴𝐻 ⊩ 𝐻𝑒𝑎𝑑𝑠 & 𝐴𝕄𝐻 ⊩ 𝐻 − 𝑎𝑤𝑎𝑘𝑒𝑛𝑖𝑛𝑔. 

 
As theorem 1 implies the members of 𝛺𝐴 to be equiprobable in Beauty’s 
experiment, the second conjunct follows from Laplace’s rule and the fact that 

 
|{𝐴𝐻}|

|𝛺𝐶|
=

1

2
≠  

|{𝐴𝕄𝐻}|

|𝛺𝐴|
 =

1

3
.      □ 

 
Theorem 3 shows that two ↔𝛺𝐶𝛺𝐴

-equivalent propositions may have different 

probabilities in their respective sample spaces. Now, suppose we are informed that 
Beauty is presently undergoing a Sleeping Beauty experiment and that she is 
currently in an awakening, and assume this is all our relevant information. 
Theorem 1 tells us we should assign probability 1 2⁄  to heads in the coin flipping 
and probability 1 3⁄  to Beauty’s presently being in a heads-awakening. Thus, a 
rational agent determining his credences in accordance with his probability 
assignments should have different credences in those ↔𝛺𝐶𝛺𝐴

-equivalent 

propositions. (𝑃𝐸) fails, unless one of the following two propositions is true: the 
axioms of probability are wrong in a relevant way or rational agents should not 
assign credence in this case in accordance with their probability assignments. Both 
caveats seem unjustifiable here. 
 

5.  Making Sense of (𝑷𝑬)’s Failure 
 
The intuitive argument for (𝑃𝐸) is this: when you know that 𝑝 if and only if 𝑞, you 
know that, whatever the experiment, the set of outcomes making 𝑝 true is the same 
as the set of outcomes making 𝑞 true, so that if you assigned two different 
probabilities to those propositions, you would be knowingly assigning two 
different probabilities to one and the same set of outcomes.  
 
Tschirk ([2016]) includes among the desiderata for reasoning about plausibility 
the following, which is a version of (𝑃𝐸): 
 

(II) Plausible reasoning qualitatively corresponds with common sense. (…) 
From desideratum (II) the following rule, which we call ‘implication rule’ can 
be derived: 
 
If, given C, A implies B and B does not imply A, then, given C, B is more 
plausible than A. 

 
It corresponds with common sense because, given C, B is true whenever A is 
true, but B can even be true when A is false. (Tschirk [2016], p. 80) 

 

Indeed, the fact that the set of outcomes rendering 𝑝 true is the same as the set of 
outcomes rendering 𝑞 true is what we mean by ‘whenever 𝑝 is true, so is 𝑞, and 
vice versa’. So, if we are dealing with random experiments, ‘whenever 𝑝’ should 
mean ‘in all possible outcomes making 𝑝 true’, and ‘whenever 𝑞’ should mean ’in all 
possible outcomes making 𝑞 true’. That two propositions implying each other (in 
the sense that the set of outcomes making one true is the same as the one making 
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the other true) have the same probability is a theorem9: but for such to be the case 
the propositions must refer to one and the same sample space. For instance, the 
proposition ‘even and greater than 3’ and the proposition ‘either 4 or 6’ are 
represented by the same subset of the sample space of a die roll: 
 

{2, 4, 6} ∩ {4, 5, 6} =  {4} ∪ {6} =  {4, 6}. 
 
Here, that both propositions have the same probability is an elementary 
mathematical fact.  But what if 𝑝 and 𝑞 refer to two different experiments with two 
different sample spaces 𝛺 and 𝛺′? Then the double ‘whenever’ should refer to a 
combined sample space 𝛺′′ ⊆ 𝛺 × 𝛺′, such that the subset of 𝛺′′ containing exactly 
the outcomes that make 𝑝 true is the same as the one containing exactly the 
outcomes that make 𝑞 true. In the two-room experiment that set is {(𝐻, 𝐻1)}. But 
what if the sample spaces concerned cannot combine into one because their 
respective members are of a definitely different nature? In such a case ‘whenever’ 
may not be well-defined, and this would make a mathematically consistent failure 
of (𝑃𝐸) possible10. 
 
In the Sleeping Beauty game, the problem is that the propositions 𝐻𝑒𝑎𝑑𝑠 and 
𝐻 − 𝑎𝑤𝑎𝑘𝑒𝑛𝑖𝑛𝑔 appear to pick one and the same temporal continuation of the 
world; this is what their ↔𝛺𝐶𝛺𝐴

-equivalence seems to mean after all: either both of 

them come out true or both come out false when all experiments have been 
conducted; thus, they lie in exactly the same possible future. So, it would seem that 
Beauty, in assigning different probabilities to those propositions, would be 
assigning two different probabilities to one and the same temporal continuation of 
the world. Such a thing would amount to inconsistency. But is it as it seems? 
 
We believe not and an analysis of the case can give us a clue regarding the reason 
why two sample spaces could in some cases be unable to combine. Note that the 
outcomes of Beauty’s experiment are not ordinary A-worlds, that is, A-worlds 
representing the branching future of the world resulting from a physical random 
experiment (e.g. what side the coin came up), but self-locating alternatives ensuing 
from an epistemic random experiment (i.e. Beauty’s 
asking what day it is). The only physical random 
experiment branching the future into ordinary A-
worlds in our story is the coin toss. The A-worlds in 
𝛺𝐴 do not represent possible futures but possible 
locations of Beauty and what Beauty has to compute 
in her experiment is not the probability that the 
world took one or another path into the future but 
the probability for each of her possible locations 
(A𝕄H, A𝕄T, and A𝕋T) to be the actual, as suggested in 
Figure 1. Her branching of the world is epistemic and 
self-locating. 

                                                           
9From the fact that if 𝑝 → 𝑞, then 𝑃(𝑝 & 𝑞) = 𝑃(𝑝), we have that if 𝑝 ↔ 𝑞, then 
𝑃(𝑝 & 𝑞) = 𝑃(𝑝) = 𝑃(𝑞). But this is only so if 𝑝 and 𝑞 dwell in one sample space. 
10Peter Lewis ([2010]) considers a Dutch Book argument for (𝑃𝐸) and 
convincingly rejects its applicability to the Sleeping Beauty case. 
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Consequently, while the probability of 𝐻𝑒𝑎𝑑𝑠 concerns which possible future 
becomes actual, the probability of 𝐻 − 𝑎𝑤𝑎𝑘𝑒𝑛𝑖𝑛𝑔 concerns self-location, namely, 
which awakening Beauty is currently in. When philosophers treat sample spaces as 
sets of possible worlds, the worlds that represent possible self-locations are called 
centred worlds. So, the coin toss experiment in the Sleeping Beauty game yields 
two equiprobable non-centred A-worlds but Beauty’s experiment yields three 
equiprobable centred A-worlds.  
 
The two centred tails-awakening A-worlds are not 
a sub-branching of the one non-centred tails A-
world, against what is suggested in Figure 2. They 
are part of a different structure and express a 
different perspective over the world. Therefore, 
assigning different probabilities to 𝐻𝑒𝑎𝑑𝑠 (i.e. to a 
possible future of the world) and to 𝐻 −
𝑎𝑤𝑎𝑘𝑒𝑛𝑖𝑛𝑔 (i.e. to one of Beauty’s possible 
locations) need not involve contradiction: the 
relativity of probability to sample spaces does not 
translate here into inconsistent probability 
assignments to one and the same possible branch 
of time, since in one case the question is about 
non-centred worlds but in the other it is all about centred worlds.  
 
Beauty can set the probability that the world became a heads-world as a 
consequence of the Sunday toss to 1/2 and the probability that she is in a heads-
awakening to 1/3. In fact, she relies on the former to compute the latter, for it is 
precisely because the main branches in Figure 2 are equiprobable that the relative 
frequency of heads-awakenings tends to 1 3⁄  when the experiment is repeated. 
Thus, the proposition that the world became a heads-world on Sunday is more 
probable for Beauty than the proposition that Beauty, upon awakening, is in a 
heads-awakening, because the heads-world, even if it represents half the chance of 
the world’s future in the coin toss experiment, has only 1 in 3 equiprobable ways 
to accommodate Beauty in an awakening. And this is so even if the two 
propositions must obtain or fail together in our game11.  
                                                           
11

A case akin to ours may have been implicitly made by Carroll and Seben ([2018]) 

reasoning within a many-worlds interpretation (MWI) of Quantum Mechanics. In their 

version, Beauty’s destiny is decided by an up/down spin measurement with equal 

amplitudes. They adopt the thirder position but argue this is not in contradiction with 

the Born rule because two different kinds of uncertainty are involved: between-branch 

uncertainty, which obeys the rule, and within-branch uncertainty, which need not. As far 

as we can see, their approach entails that the branches are equiprobable for Beauty to be 

on, though Beauty has equal probability to be in each of the awakenings, which would 

set the probability of being in an up-awakening equal to 2 3⁄ . The authors may be 

prohibited by their implicit commitment to (𝑃𝐸) from deriving this consequence: 

indeed, Beauty is on the up-branch if and only if she is in an up-awakening. We 

conjecture that if partisans of MWI manage to make sense of quantum probabilities, 

disposing of (𝑃𝐸) may be their only chance to cope with quantum versions of the 

Sleeping Beauty problem. 
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If Groisman’s relativity is right and an event, as an object of probabilistic 
reasoning, must be referred to a particular experimental setup in order to be 
properly defined, then mixing self-locating with non-self-locating events may lead 
to inconsistency because it may imply conflating different events. Figure 2 shows 
the only way in which 𝛺𝐶  and 𝛺𝐴 could combine into one probability space and it is 
easy to see that there is no way to consistently assign probabilities assuming 
theorem 1: the upper branch should receive probability 1/2 as a non-centred 
world but probability 1/3 as a centred one. In the following paragraphs, we show 
how intertwining self-locating with non-self-locating events in one and the same 
process of reasoning in the Sleeping Beauty problem leads to a contradiction 
(assuming the strong law of large numbers and Bayes’ theorem). 
 
If we define a 𝜎-algebra on 𝛺𝐴, we can define the self-locating events or centred A-
worlds 𝐴𝕄 (meaning ‘the awakening I am currently in is a Monday-awakening’ as 
said by Beauty upon awakening), and 𝐴𝕋 (meaning ‘the awakening I am currently 
in is a Tuesday-awakening’ as said by Beauty upon awakening). Then we can show 
that mixing non-centred worlds 𝐴𝐻  and 𝐴𝑇  with such centred worlds in the same 
reasoning leads to contradiction. From the Sleeping beauty game design and 
theorem 1, we have: 
 

𝑃(𝐴𝐻) =  𝑃(𝐴𝑇) =  1 2⁄                                                      (1) 
 

𝑃(𝐴𝕄) =  2 3⁄                                                              (2) 
 

𝑃(𝐴𝕄|𝐴𝑇) =  1 2⁄  
 

𝑃(𝐴𝕄|𝐴𝐻) = 1 =  2𝑃(𝐴𝕄|𝐴𝑇)                                             (3) 
 

From (3), by Bayes’ theorem 
 

𝑃(𝐴𝐻|𝐴𝕄)
𝑃(𝐴𝕄)

𝑃(𝐴𝐻)⁄ = 2 𝑃(𝐴𝑇|𝐴𝕄)
𝑃(𝐴𝕄)

𝑃(𝐴𝑇)⁄                       (4) 

From (1) and (4): 
 

𝑃(𝐴𝐻|𝐴𝕄)  =  2𝑃(𝐴𝑇|𝐴𝕄)                                                (5) 
 
which implies 
 

𝑃(𝐴𝐻|𝐴𝕄) =  2 3⁄                                                         (6) 
 

 
𝑃(𝐴𝑇|𝐴𝕄) =  1 3⁄  

 
Now, from (2) and (3): 
 

𝑃(𝐴𝕄|𝐴𝐻) = 1 =  3
2⁄ 𝑃(𝐴𝕄)                                               (7) 
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And from (1), (7), and conditional probability12 
 

𝑃(𝐴𝐻|𝐴𝕄) =  3
2⁄ 𝑃(𝐴𝐻) =  3

2⁄ 1
2⁄ = 3

4⁄                                  (8) 

 
in contradiction with (6). 
 
Note that setting 𝑃(𝐴𝐻) = 1 3⁄ , 𝑃(𝐴𝑇) = 2 3⁄ , we get 𝑃(𝐴𝐻|𝐴𝕄) = 1 2⁄  from (4) as 
well as from (8). In other words, if we treat 𝐴𝐻  as theorem 1 tells us to treat the 
self-locating event ‘the awakening I am presently in is a heads-awakening’ (i.e. as 
𝐴𝕄𝐻 ∈ 𝛺𝐴), no contradiction follows. 
 
So, in Groisman’s spirit, we suggest that whenever Beauty, upon awakening, 
combines ‘it is Monday/Tuesday’ with ‘the coin landed heads/tails’, she 
automatically adopts a self-locating perspective in which ‘the coin landed 
heads/tails’ necessarily becomes ‘the awakening I am currently in is a heads/tails-
awakening’. Even if Beauty is able to know that heads in the Sunday coin toss has 
probability 1 2⁄ , everything behaves as though what makes Beauty’s being in a 
Monday awakening more probable is not the heads outcome in the toss of the coin 
but her being in a heads-awakening.  In other words, the sample space displayed in 
Table 2 appears not to exist: 

TABLE 2 
 

𝛺𝐶  \  𝛺𝐴 𝐴𝕄𝐻  𝐴𝕄𝑇 𝐴𝕋𝑇  
𝐴𝐻   𝐴𝐻 & 𝐴𝕄𝐻     
𝐴𝑇   𝐴𝑇  &  𝐴𝕄𝑇  𝐴𝑇  & 𝐴𝕋𝑇 

 
 
The reason is that there is no way, consistent with theorem 1, to assign 
probabilities to the squares in the table. So, the paradoxical in the Sleeping Beauty 
paradox would be the nonexistence of a prima facie existent mathematical object, 
just like in the paradoxes of set theory. The contrast with the two-room 
experiment is glaring. There, two experiments branching the future into ordinary 
non-centred A-worlds are conducted and their outcomes combine into the 
composite sample space shown in Table 1, according to which the propositions 
that imply each other, namely, 𝐻, 𝐻1, have both probability 1 3⁄ . 
 

6. Elga’s and Lewis’ Arguments 
 
As Bostrom ([2005]), has argued, the original arguments by Elga ([2000]) and 
Lewis ([2001]) encounter obvious problems in more extreme versions of the 
Sleeping Beauty game. If we are right that 𝛺𝐶  and 𝛺𝐴 cannot combine into one 
sample space, that they are in that sense incommensurable, then the difficulties 
affecting Elga’s or Lewis’ arguments could originate from the fact that they try to 
combine them. We will try to show that this is, in fact, the case. 
 
Elga ([2000]) reasons as follows. If Beauty were to know that the coin has landed 
tails, she would assign the same probability to her current awakening being the 

                                                           
12 See footnote 7 on p. 7. 
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Monday or the Tuesday one, for they are indistinguishable to her and both are sure 
to take place. Then, by an indifference principle, we get 
 

𝑃(𝐴𝕄|𝐴𝑇)  =  𝑃(𝐴𝕋|𝐴𝑇) 
 
whence13 
 

𝑃(𝐴𝕄&𝐴𝑇)  =  𝑃(𝐴𝕋&𝐴𝑇)                                                 (9) 
 
Now Elga proposes another version of the game in which the coin is flipped on 
Monday night after Beauty has been awoken and put back to sleep14; then Beauty 
is awoken once again if and only if the coin falls tails. It is commonly agreed (also 
by Lewis) that this change does not alter the probabilities but we will have our say 
below on this alternate version. In this version, when Beauty learns it is Monday, 
she knows the coin toss is ahead, and she can only ascribe probability 1 2⁄  to heads 
in a fair coin toss that is about to take place; hence, her priors must be as shown in 
(10): 
 

𝑃(𝐴𝐻|𝐴𝕄)  =  𝑃(𝐴𝑇|𝐴𝕄)                                                (10) 
 

 
𝑃(𝐴𝕄&𝐴𝐻)  =  𝑃(𝐴𝕄&𝐴𝑇)                                              (11) 

 
From (9) and (11): 
 

𝑃(𝐴𝕄&𝐴𝐻)  =  𝑃(𝐴𝕄&𝐴𝑇) =  𝑃(𝐴𝕋&𝐴𝑇)  =  1/3                            (12) 
 
And as heads implies Monday: 
 

𝑃(𝐴𝕄&𝐴𝐻) = 𝑃(𝐴𝐻) =  1 3⁄  
 
Where does Elga’s reasoning go wrong? Events 𝐴𝕄 and 𝐴𝕋 refer unequivocally to 
centred worlds in the 𝜎-algebra of 𝛺𝐴, while events 𝐴𝐻  and 𝐴𝑇  are interpreted by 
Elga as non-centred worlds. As we have seen, they cannot be meaningfully mixed 
in a formula such as ‘𝑃(𝐴𝐻|𝐴𝕄)’ in Beauty’s reasoning. Consider that 𝐴𝐻  and 𝐴𝕄 
belong in different sample spaces: ‘𝑃(𝐴𝐻|𝐴𝕄)’ is not akin to the probability that the 
die has landed on 5, given it has landed on an odd number.  
 
In fact, (10) is problematic if 𝐴𝐻  and 𝐴𝑇  represent non-centred worlds. For, as we 
have seen in the previous section, it is clear that  𝐴𝐻  makes  𝐴𝕄  twice as probable 
as 𝐴𝑇  does; and as 𝐴𝐻  and 𝐴𝑇  -as non-centred worlds- are previously equally 
probable (since the coin is fair), then, by conditional probability, (see footnote 7 on 
p. 7) 𝐴𝕄 should make 𝐴𝐻  twice as likely as  𝐴𝑇 . Consequently, we should have: 
 

𝑃(𝐴𝐻|𝐴𝕄)  =  2𝑃(𝐴𝑇|𝐴𝕄)                                                 (5) 

                                                           
13Because 𝑃(𝐴𝕄|𝐴𝑇) =𝐷𝐸𝐹 𝑃(𝐴𝕄 &𝐴𝑇) 𝑃(𝐴𝑇⁄ );  𝑃(𝐴𝕋|𝐴𝑇) =𝐷𝐸𝐹 𝑃(𝐴𝕋&𝐴𝑇) 𝑃(𝐴𝑇)⁄ . 
14In this version, Beauty’s experiment could not elicit an informed response on 
Monday but nothing essential changes if she receives the response sometime later. 
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Elga reasons for (10) in an alternative arrangement, in which Beauty is taken out 
of the wakening setup into the coin toss setup because heads and tails are no 
longer for her self-locating events but possible futures of the world. So, if we take 
the difference between centred and non-centred worlds seriously, it is very 
dubious that a result based on the alternative arrangement can be transferred to 
the original one.  
 
Elga’s argument makes perfect sense if ‘heads’ and ‘tails’ are interpreted all along 
as events in the wakening setup, that is, as centred worlds or self-locating events. If 
we read 𝐴𝐻  and 𝐴𝑇  in Elga’s argument as referring to self-locating events 
whenever they are combined with other self-locating events, what his argument 
really shows is that the three possible awakenings are equally likely for Beauty to 
be Beauty’s current awakening. But this only translates into the assignment of 
probability/credence 1 3⁄  to heads in the Sunday coin toss on the assumption of 
(𝑃𝐸). Thus, 1 3⁄  is indeed the probability/credence Beauty should assign upon 
being awakened to the event that she is in a heads-awakening but, if we dare drop 
(𝑃𝐸), not necessarily the probability she should assign to the Sunday coin flip 
having come out heads.  
 
Lewis ([2001]), too, conflates centred with non-centred worlds. He defends the 
halfer position but as he equates the outcome heads in the coin toss with the 
outcome heads-awakening in Beauty’s experiment, he is compelled to the 
conclusion that Beauty, informed it is Monday, should assign probability/credence 
2/3 to heads, so multiplying her prior 1 2⁄  by 4/3, because heads makes Monday 
4/3 times more likely (increasing its probability from 3/4 to 1). Our proposal is 
that it is the self-locating event that Beauty is in a heads-awakening that should be 
affected by Beauty’s credence in the self-locating event that she is in a Monday-
awakening, increasing its credence/probability from 1/3 to 1/2, while the non-
centred possible world denoted by ‘heads’ should retain credence 1 2⁄ . The claim 
that Beauty should remain a halfer even if she learns it is Monday is called the 
‘double-halfer’ position. However, ours is not exactly the double-halfer position 
because such a position, as usually expounded, combines centred and non-centred 
worlds15.  

                                                           
15 This is why our position escapes Titelbaum’s ([2012]) argument against the 
double-halfer, which in our view furnishes another example of the inconsistency of 
combining centred with non-centred worlds. In Titelbaum’s scenario, the coin is 
first tossed on Monday night and then flipped again on Tuesday night, whatever 
the outcome of the Monday toss. Beauty is informed on Sunday of the additional 
coin toss and nothing else changes in the game. What should be Beauty’s credence 
upon awakening in ‘today’s coin toss will be heads’? On one hand, the figure is 
obviously 1/2, because, whatever the day, the coin that is going to be tossed is fair. 
On the other hand, the figure should be greater than Beauty’s credence that the 
Monday coin will land heads because it is the probability of this disjunction: Today 
is Monday and the Monday coin toss is heads or today is Tuesday and the Tuesday 
coin toss is heads; as these events are disjunct, the probability of their disjunction 
is the sum of their probabilities. Note that as heads in the Monday coin toss implies 
today’s being Monday, the probability of the first disjunct is the same as the 
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As anticipated, Bostrom ([2005]) uses his Extreme Sleeping Beauty example to 
show that both Elga’s and Lewis’ approaches have inadmissible consequences. We 
will examine the case in order to show how the troubles pointed out by Bostrom 
are overcome by our proposal of interpreting all events in Beauty’s computation as 
self-locating events and assigning them probabilities in accordance with theorem 
1. Bostrom’s example goes as follows: 
 

Extreme Sleeping Beauty     
 
This is like the original problem, except that here, if the coin falls tails, Beauty 
will be awakened on a million subsequent days. As before, she will be given an 
amnesia drug each time she is put to sleep that makes her forget any previous 
awakenings. When she awakes on Monday, what should be her credence in 
HEADS? (Bostrom [2005], p. 62) 

 

Bostrom shows that Elga’s reasoning leading to (12) would lead now to assigning 
heads probability 1 (106 + 1)⁄ ≈ 0, which is hard to admit16. What his argument 
shows, however, as we view it, is that (𝑃𝐸) has to fail, for assigning heads 
probability 1 (106 + 1)⁄  seems inadmissible but theorem 1 establishes that the 
probability for Beauty to be in a heads-awakening in the Extreme Sleeping Beauty 
game is in fact 1 (106 + 1)⁄ . And there is no obvious reason for credence to deviate 
from probability.  
 
To see how Lewis’ approach fares in an extreme example, take 𝑘 to be a large 
number, the number of tails-awakenings in an extreme version of the Sleeping 
Beauty game. Then, adopting Lewis’ position, Bostrom’s Extreme Sleeping Beauty 
would yield: 
 

𝑃(𝐴𝐻) =  𝑃(𝐴𝑇) =  1 2⁄                                                     (1) 

                                                                                                                                                                          

probability that the Monday coin toss is heads. Surely, Beauty’s credence that 
today is Tuesday and the Tuesday coin toss will be heads is greater than 0; as a 
consequence, Beauty’s credence that today’s coin toss will be heads should be 
greater than her credence that the Monday coin toss is heads. If the latter is 1/2, 
the former is greater than 1/2, which is extremely counter-intuitive (so far 
Titelbaum). But decreasing the latter to the end of tuning the former to 1/2 would 
also be counter-intuitive, for it would imply that Beauty, just upon awakening, has 
more information about the Monday coin toss outcome than about today’s toss 
outcome when, in fact, all she knows, in either case, is that the coin is fair. We 
suggested in the preceding section that as soon as Beauty considers a compound 
event containing a self-locating one, she must adopt an entirely self-locating 
perspective; thus, we suggest that in the event ‘today is Monday and the Monday 
coin toss will be heads’ the second conjunct has to be interpreted as the self-
locating ‘I am in a Sleeping Beauty heads-awakening’, which should receive 
credence 1/3. Upon plausible assumptions, this would yield probability 1/2 for 
today’s coin toss being heads, as expected. I wish to thank an anonymous reviewer 
for pointing Titelbaum’s paper out to me. 
16Bostrom’s figure is 1 (106 + 2)⁄ , for he assumes the coin toss occurs after the 
Monday awakening. 
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As there are two equiprobable ways (heads and tails) in which it can be Monday, in 
one of them with probability 1 and in another with probability 1 𝑘⁄ : 
 

𝑃(𝐴𝕄) =  
1

2
+

1

2
∙

1

𝑘
=  

𝑘 + 1

2𝑘
                                             (13) 

 
From (13) and the game design: 
 
 

𝑃(𝐴𝕄|𝐴𝐻) =  1 =  
2𝑘

𝑘 + 1
𝑃(𝐴𝕄)                                         (14) 

 
From (1) and (14), by conditional probability17: 
 

𝑃(𝐴𝐻|𝐴𝕄) =  
2𝑘

𝑘 + 1
𝑃(𝐴𝐻) =  

2𝑘

𝑘 + 1
∙

1

2
=

𝑘

𝑘 + 1
≈ 1, 

 
which seems incredible, since Beauty, in an iterated experiment, is expected to be 
in a heads-awakening about half the time she is awake on Monday. Interpreting all 
events involved as self-locating events (as we propose to do), hence making ‘𝐴𝐻 ’ 
denote the event (in the 𝜎-algebra of 𝛺𝐴) that Beauty upon awakening is in a 
heads-awakening, and using theorem 1, the calculus would be: 
 

𝑃(𝐴𝕄) =  
2

𝑘 + 1
                                                          (15) 

 

𝑃(𝐴𝐻) =  
1

𝑘 + 1
                                                          (16) 

 
From (15) and the design of the game: 
 

𝑃(𝐴𝕄|𝐴𝐻) =  1 =  
𝑘 + 1

2
𝑃(𝐴𝕄)                                          (17) 

 
From (16), (17), and again by conditional probability 
 

𝑃(𝐴𝐻|𝐴𝕄) =  
𝑘 + 1

2
𝑃(𝐴𝐻) =  

𝑘 + 1

2
∙

1

𝑘 + 1
=  

1

2
, 

 
just as theorem 1 would have it. This suggests that both Elga’s and Lewis’ problems 
are caused by mixing centred with non-centred worlds into one and the same 
framework. 
 
We wish to briefly consider the proposal by Cisewski et al. ([2017]), for we believe 
it supplies another example of how centred and non-centred worlds do not lend 
themselves to be combined in this context. The authors’ main aim is to provide a 
mathematical model of the Sleeping Beauty problem capable of pinpointing the 

                                                           
17See footnote 7 on p. 7.  
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differences in premises or assumptions between halfers and thirders. To this end, 
they make Beauty update her credence, in an awakening at time 𝑡, on the event 
that the total evidence she currently possesses (the authors call it 𝑥) is the same as 
the one Beauty would have in her Monday awakening or the same as the one she 
would have in her Tuesday one (with inclusive ‘or’) at 𝑡. This event they call 𝐶𝑥𝑡. 
Then the solution to the Sleeping Beauty problem, according to the authors, is the 
value of the formula 𝑃(𝐻|𝐶𝑥𝑡), where 𝐻 is meant to denote the event that the coin 
falls heads. The authors obtain a result (corollary 1) and show that the 
mathematics compels to this conclusion: 
 

According to corollary 1, the halfers’ assumption entails that, with probability 
1, everything that Sleeping Beauty knows on Monday at time t (including 
every ache, pain, and bodily function) will be known again on Tuesday if the 
coin lands tails. (Cisewski et al. [2017], p. 331) 

 
The conclusion is rather weird: the halfer position would entail things intuitively 
unrelated to it; however, corollary 1 is a theorem and it does entail what the 
authors claim it does. The rationale for such a strange-looking conclusion is that if 
heads and tails must keep their Sunday probabilities unchanged for Beauty in an 
awakening, they must be independent of the occurrence of 𝐶𝑥𝑡, and for this to be 
so, tails should not offer 𝑥 double opportunity to be the same as Beauty’s total 
evidence in some of her awakenings. As tails brings about two awakenings instead 
of one, the only way this can be the case is if, when the coin lands tails, Beauty’s 
total evidence in her Monday awakening is exactly the same as her total evidence 
in her Tuesday awakening. But, as we have seen in section 3, if it is the total 
number of heads-awakenings as compared to the total number of tails-awakenings 
that would determine different probabilities for heads and tails, it must not really 
be for heads and tails but for Beauty’s being in a heads-awakening and for her 
being in a tails-awakening. Therefore, 𝐻 in 𝑃(𝐻|𝐶𝑥𝑡) should be read as the event 
that Beauty is in a heads-awakening; then the mathematics makes perfect sense, on 
the assumption that it is on 𝐶𝑥𝑡 that Beauty must conditionalize and update.  
 
However, Beauty upon awakening knows more than the occurrence of 𝐶𝑥𝑡: she 
knows something stronger than the proposition that her evidence is the same as 
the one she would have in one awakening or another: she knows that she is in fact 
in an awakening. 𝐶𝑥𝑡 is a fact about Beauty’s total knowledge (namely, that it is the 
same as she would have in one or another of her awakenings) but maybe  not 
Beauty’s total knowledge. So, it seems dubious that 𝑃(𝐻|𝐶𝑥𝑡) is the correct formula. 
The authors show that if 𝑃(𝐻|𝐶𝑥𝑡) =  1 3⁄ , then the probability, given tails, that 
Beauty’s total evidence is the same in the Monday and in the Tuesday awakenings 
is exactly 0, which does not appear to be intuitively entailed by the thirder 
position, though it follows from the choice of 𝐶𝑥𝑡 for Beauty to update upon.  
 
Therefore, the attempt of the authors at pinpointing the diverging assumptions of 
halfers and thirders could be unsuccessful, both because they mix self-locating and 
non-self-locating events in one and the same formula18 and perhaps because their 
modelling violates the principle of total evidence. 

                                                           
18The authors seem to shun self-locating events and this appears to be the reason 
they introduce a set 𝛸 of packs of evidence (of which 𝑥 is a member) and a time 𝑡, 
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7. Conclusion 
 
Considerations in the previous sections suggest that sample spaces containing 
centred worlds cannot always combine with samples spaces containing non-
centred worlds into sets of composite worlds. In such cases, mixing worlds of 
different kinds in the same reasoning framework may lead one astray.  
 
At the same time, the impossibility to meaningfully combine sample spaces with 
different kinds of worlds may lead to the failure of (𝑃𝐸): the relation between 
propositions established by a true biconditional may in such cases convey truth-
value but not probability, hence also not credence. Ultimately, the reason is that in 
such cases there is no way to make the meaning of ‘whenever’ in ‘whenever 𝑝, then 
𝑞, and vice versa’ precise, since the sample spaces of the different experiments to 
which 𝑝 and 𝑞 refer do not meaningfully combine into one.  
 
Thus, we suggest that although it is true that Beauty is in a heads-awakening if and 
only if the coin landed heads, Beauty, upon awakening, should assign probability 
1 3⁄  to the former and probability 1 2⁄  to the latter. In fact, these are the only 
assignments consistent with the strong law of large numbers. 
 

Appendix 
 
We use the strong law of large numbers to derive a suitable form of theorem 1. 

Theorem. The probability 𝑃(𝐻) of the outcome 𝐻 from the sample space 𝛺 = {𝐻, 𝑇} 
in an experiment to which the strong law of large numbers applies19, is the number 
which the relative frequency 𝑓𝑅(𝐻) of 𝐻 tends to with probability 1 as the number 
𝑛 of iterations of the experiment tends to infinity.  

Proof.  Let 𝐹: 𝛺 → {0, 1} be such that 
 

𝐹(𝐻) =  1; 
𝐹(𝑇)  =  0. 

Let 𝑂 =  {𝑜1 ,𝑜2, … , 𝑜𝑛} be the set of actual outcomes in 𝑛 iterations of the 

experiment. As the 𝑜𝑖  are members of 𝛺, 𝐹 returns values for them in this way: 

𝐹(𝑜𝑖) =  1 𝑖𝑓 𝑜𝑖  =  𝐻; 
𝐹(𝑜𝑖) =  0 𝑖𝑓 𝑜𝑖  =  𝑇. 

                                                                                                                                                                          

and make Beauty update at 𝑡 not on something like ‘I am presently in an 
awakening’ but on something like ‘the member 𝑥 of 𝛸 happens to be at time 𝑡 the 
same as Beauty’s total evidence in some of her Sleeping-Beauty-awakenings at 
time 𝑡’. However, for Beauty, when she updates on 𝑥 at 𝑡, 𝑡 is ‘now’ and 𝑥 is ‘my 
current total evidence’. Thus, self-locating events are still with us. I wish to thank 
an anonymous reviewer for pointing (Cisewski et al. [2017]) out to me. 
19Remember the condition is that its iterations can be represented by independent 
and identically distributed random variables with finite expectation.  
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As 𝐹(𝑜𝑖)  =  0 if 𝑜𝑖  =  𝑇, we have: 
 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻 − 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 = ∑ 𝐹(𝑜𝑖)𝑖 . 
 
Thus, the relative frequency 𝑓𝑅(𝐻) of 𝐻 is 
 
 𝑓𝑅(𝐻) =def 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻 − 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠⁄ = ∑ 𝐹(𝑜𝑖)𝑖 𝑛⁄       (1) 

 

The expected value of any real valued function 𝑔: 𝑋 → 𝑅 is 
 

𝜇 = ∑ 𝑔(𝑥𝑖) ∙ 𝑃(𝑥𝑖)𝑖 , 
 
where the 𝑥𝑖  are the members of 𝑋. Therefore, for 𝐹, 𝜇 is 
 

 𝜇 = 𝐹(𝐻) ∙ 𝑃(𝐻) + 𝐹(𝑇) ∙ 𝑃(𝑇) = 1 ∙ 𝑃(𝐻) + 0 ∙ 𝑃(𝑇) = 𝑃(𝐻)             (2) 
 
The strong law of large numbers states that the average value of 𝐹 tends to 𝐹’s 
expected value with probability 1 as 𝑛 tends to infinity: 
 

𝑃 (lim𝑛→∞
∑ 𝐹(𝑜𝑖)𝑖

𝑛⁄ = 𝜇) = 1                                          (3) 

 
Substituting in (3) in accordance with (1) and (2), we have 
 

𝑃(lim𝑛→∞ 𝑓𝑅(𝐻) = 𝑃(𝐻)) = 1.   □ 
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